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Depressed mood and anhedonia, the core symptoms of major depressive disorder (MDD), are linked to
dysfunction in the brain’s reward and emotion regulation circuits. To develop a predictive model for
treatment remission in MDD based on pre-treatment neurocircuitry and clinical features. A total of 279
untreated MDD patients were analyzed, treated with selective serotonin reuptake inhibitors for 8-12
weeks, and assigned to training, internal validation, and external validation datasets. A hierarchical
local-global imaging and clinical feature fusion graph neural network model was constructed. The
model achieved 76.21% accuracy (AUC = 0.78) in predicting remission. Validation on the internal and
external independent datasets yielded similar performance (accuracy =72.73%, AUC = 0.74;
accuracy = 71.43%, AUC = 0.72). Key contributing brain regions included the right globus pallidus,
bilateral putamen, left hippocampus, bilateral thalamus, and bilateral anterior cingulate gyrus. These

findings highlight the role of specific circuits in guiding antidepressant treatment.

Major depressive disorder (MDD) is a significant global mental health issue,
characterized by a high incidence and disability rate, imposing a substantial
burden on patients and society. Antidepressants, particularly selective ser-
otonin reuptake inhibitors (SSRIs), are widely used as the first-line treat-
ment for depression due to their efficacy in improving depressive
symptoms. However, MDD presents with high clinical heterogeneity,
leading to individual variability in treatment response. In current clinical
practice, antidepressant prescribing often relies on empirical, trial-and-error
strategies, resulting in significant variability among clinicians"”. Studies have
reported remission rates for first-time antidepressant treatments ranging
from 36% to 48%™. Insufficient remission rates can prolong illness and lead
to chronic or treatment-resistant depression’. Therefore, identifying
objective and effective methods to predict antidepressant response is crucial
for achieving personalized and precise therapy.

Previous studies primarily focused on clinical or neuroimaging features
independently for remission prediction. Clinical and demographic infor-
mation, such as age, sex, education, and illness duration, offers insight into
patients’ subjective experiences and disease backgrounds®. In contrast,

neuroimaging features serve as objective biomarkers, reflecting changes in
brain structure and function. Integrating these two modalities is essential for
constructing predictive models of antidepressant efficacy.

Depressed mood and anhedonia, core symptoms of MDD, are often
associated with poor treatment outcomes. SSRIs alleviate depressive mood
by inhibiting 5-hydroxytryptamine (5-HT) reuptake, with low mood
identified as a potential predictor of SSRIs’ efficacy’. Anhedonia has also
been closely linked to treatment outcomes, with studies highlighting its role
as a predictor of remission time in SSRIs-resistant MDD adolescents’.
Systematic reviews have shown that monoaminergic agents, glutamatergic
drugs, psychedelics, and stimulants are associated with varying degrees of
improvement in anhedonia among adults with MDD’. Consequently, brain
circuits related to depressed mood and anhedonia hold significant potential
as predictors of antidepressant efficacy. This study focuses on neuroimaging
circuits associated with these symptoms for feature selection.

Recent advancements in functional magnetic resonance imaging
(fMRI) have enabled the study of MDD pathophysiology and the identifi-
cation of biomarkers for predicting antidepressant efficacy. Studies suggest
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that dysfunction in the reward and emotion regulation circuits is closely
associated with anhedonia and depressed mood, key mechanisms under-
lying depression'®"”. The 5-HT-mediated emotion regulation circuit
includes the prefrontal cortex, hippocampus, amygdala, orbitofrontal cortex
(OFC), and anterior cingulate cortex (ACC)". Changes in the structure and
function of these regions in MDD patients are linked to symptom trajec-
tories and serve as significant predictors of antidepressant efficacy™".
Similarly, the reward circuit, which includes the ventral striatum, ventral
pallidum, dorsolateral prefrontal cortex (DLPFC), OFC, ACC, and thala-
mus, has been implicated in anhedonia'>'®. A review indicated that the
reward circuit comprises several key brain areas such as the ventral striatum,
ventral pallidum, DLPFC, OFC, ACC, and thalamus". Research indicates
that 5-HT levels in the insula and ventral striatum are associated with
anhedonia and that SSRIs may alleviate this symptom by modulating these
levels'®. Structural and functional changes in these circuits following SSRIs
treatment are closely associated with symptom trajectories and anti-
depressant efficacy’’ .

Baseline clinical characteristics and demographic information have
been associated with antidepressant outcomes™. Hamilton Depression
Rating Scale (HAMD) score have been proposed as predictors of early
remission””. Moreover, psychosocial functioning, a stable predictor of long-
term prognosis, has been suggested as an indicator of long-term treatment
efficacy’*™. This study aims to integrate age, sex, education level, illness
duration, HAMD score, Quality of Life Enjoyment and Satisfaction (QLES)
Questionnaire score, and neuroimaging features to develop a predictive
model for antidepressant treatment outcomes.

Machinelearning (ML) based on fMRI has been increasingly applied to
predict treatment responses in MDD. Previous studies primarily utilized
traditional ML models such as support vector machines, random forests, or
logistic regression for predicting antidepressant efficacy”’~'. However, these
models often fail to fully explore the complex topological structures of data
and the intricate dependencies between features’”, potentially limiting
insights into the mechanisms underlying brain changes induced by anti-
depressant treatment. Advanced ML methods are therefore essential for
improving the prediction of antidepressant efficacy.

Traditional network analysis methods, including metric indices, path
analysis, and network models, have been used to evaluate macroscopic
characteristics and structural properties of networks. Nonetheless, these
methods struggle to capture complex network topologies and higher-order
dependencies. Graph neural networks (GNNs), by contrast, update node
representations by aggregating information from neighboring nodes with-
out relying on a fixed number or order of neighbors, effectively capturing
complex topological structures within graphs. Unlike traditional network
analysis, which is limited to direct interactions, GNNs accommodate ver-
satile topological structures, with nodes and edges corresponding to the
brain’s regions of interest (ROIs) and their structural and functional con-
nections. This approach has been shown to enhance prediction
performance.

Recent advances in the application of GNNs to neuro-images such as
fMRI have laid the groundwork for learning informative brain repre-
sentations and supporting downstream tasks such as brain age prediction,
sex classification, and disease diagnosis. Notably, BrainGNN* introduced
ROI-aware graph convolutional layers and ROI-selection pooling, enabling
adaptive learning of region-specific features and interpretable biomarker
identification. Extending this progress, LGGNet” successfully adopted a
local-global paradigm for brain-computer interfaces using electro-
encephalogram (EEG) data, learning both intra- and inter-functional brain
activities. Similarly, PLI-GCNN™ leveraged hybrid feature representations
by combining electrode-level characteristics and global topological patterns
to automate the detection of alcoholism. Building on this foundation, BNT"
proposed an orthonormal clustering readout for self-supervised soft clus-
tering, further enhancing the discriminability of node embeddings across
functional brain modules. BrainRGIN® integrated clustering-based
embeddings and graph isomorphism networks to better capture modular
brain sub-network organization and enhance graph-level representations

via attention-based readout functions. CI-GNN* proposed a Granger
causality-inspired GNN to identify the most influential subgraph that is
causally related to the decision.

Despite these advances, many of these models primarily focused on
static, subject-specific graphs, consequently limiting their generalizability
across clinically heterogeneous populations. Moreover, they often over-
looked the integration of population-level information, which is crucial for
understanding the diversity of brain function and pathology across indivi-
duals. In response, recent studies have explored hierarchical GNN archi-
tectures to simultaneously model intra-subject brain features and inter-
subject similarities. For instance, SFC-GNN* combined regional graph
perception with a structure feature pooling strategy, constructing
population-level graphs via similarity kernels and enabling node classifi-
cation through community-aware embeddings. However, these models did
not support end-to-end joint optimization of local and global graphs, which
can hinder the alignment between individual- and population-level learning
objectives. LG-GNN" further introduced a two-level framework in which a
self-attention-based local ROI-GNN captures regional biomarkers, while a
global subject-level GNN integrates both imaging and non-imaging data to
enhance classification performance. This model achieved end-to-end
optimization of the local-global network structure, highlighting the
importance of integrating non-imaging data and subject relationships.
However, it still lacked the capability to dynamically update graph structures
based on task-specific signals derived from time-resolved neural features.

Alongside these developments, there has been growing attention to the
temporal dimension of fMRI data, particularly the dynamic fluctuations in
BOLD signals. Models such as BrainGNN and BrainRGIN treated fMRI as
static snapshots, ignoring the temporal progression of neural activity.
Addressing this limitation, Graph Clustered Transformer* conducted a
comparative analysis of resting-state functional magnetic resonance ima-
ging (rs-fMRI) time points and resting-state functional connectivity (rs-FC)
for Alzheimer’s prediction, utilizing temporal convolutional networks
(TCNs) for temporal feature embedding. Deep-Spatiotemporal® integrated
GNNs and temporal networks, including TCNs and LSTM, to model spa-
tiotemporal dynamics in rs-fMRI data, and confirmed findings that RNNs
and CNNs can provide similar performance. DSAM* further proposed a
dynamic spatiotemporal attention framework that employed TCNs to
extract multi-scale temporal features and leveraged self-attention to learn
task-specific FC directly from the time series. These works validate the
feasibility of integrating temporal features into GNN architectures and
further support the construction of task-specific brain connectivity matrices.

In addition to these modeling challenges, the integration of multimodal
data remains underdeveloped in the context of neuroimaging-based pre-
diction. While Deep-Spatiotemporal”’ proposed an architecture combining
TCNs and GNNs for spatiotemporal learning and claimed support for
multimodal integration, its fusion strategy was confined to combining fMRI
and structural connectivity from diffusion-weighted imaging (DWI). MS*-
GNN* proposed a GNN-based multimodal fusion strategy, which suc-
cessfully investigated the heterogeneity/homogeneity among audio and
EEG modalities for the subsequent MDD detection task. Following this
trend, LGMF-GNN" proposed the local-global multimodal fusion GNN,
which jointly modeled local ROI connectivity and global population-level
patterns, integrating functional and structural MRI with clinical data to
enhance MDD diagnostic accuracy. These advances collectively underscore
the critical importance of multimodal fusion in enhancing the predictive
power and clinical applicability of GNNs.

In this context, as illustrated in Fig.1, we propose a hierarchical local-
global imaging and clinical feature fusion GNN (LGCIF-GNN) to predict
antidepressant efficacy in the acute phase of SSRIs treatment. First, the
model performs dynamic graph structure optimization by adaptively
updating adjacency matrices based on pairwise similarities of ROI-level
temporal embeddings extracted via a bidirectional GRU (bi-GRU) encoder.
This learnable, task-driven graph construction captures richer temporal
dependencies than static correlation methods and aligns graph topology
with treatment prediction.
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Fig. 1 | Schematic overview of the LGCIF-GNN framework. a Local graph con-
struction and encoding. At the local level, subject-specific functional graphs are
constructed from ROI-wise BOLD time series and processed viaa GRU encoder and
GCN-based readout to extract individual brain embeddings. In parallel, clinical
variables are embedded into feature vectors. b Global graph modeling and multi-
modal fusion. The local embeddings are used to construct population-level func-
tional and clinical graphs, where nodes represent subjects and edges encode

ﬁ—

\ & Non-Remission

Prediction Remission

modality-specific similarity between subjects. Global graph modules extract shared
and unique representations across modalities, which are fused via attention and
passed to an MLP for individualized prediction. ¢ Model interpretability and marker
mining. The model supports interpretation by identifying discriminative functional
connections, relevant clinical features, and modality contributions to treatment
outcome prediction.
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Table 1 | Demographic and clinical information of train data

Remission (74) Non-remission (90) p value

(two-
tailed)

Age 28 (18-56) 27.0 (18-59) 0.485

(median, range)

Sex (male/ 24/50 23/67 0.332

female)

Education level® 22/41/11 14/59/17 0.091

HAMD-17 19.53£3.75 21.88 +4.03 <0.001

YSMR 0.50+1.15 0.70+1.86 0.488

QLES 36.26 +7.43 32.87 +8.99 0.005

Duration (day) 995.53 + 1196.53 1643.99 + 1934.82 0.012

Episode (first- 40/34 44/46 0.510

episode/

recurrence)

“The education level of adult groups was divided into three categories: primary school/junior, senior
high school/bachelor’s degree, and above. HAMD-17 17-item Hamilton Depression Rating Scale,
YMRS Young Mania Rating Scale, QLES Quality of Life Enjoyment and Satisfaction Questionnaire.

Second, we introduce a local-global architecture that jointly models
intra-subject ROI-level dynamics and inter-subject population-level simi-
larities. The local network focuses on modeling fine-grained, ROI-level
functional dynamics within each subject’s brain activity, encoding rich
temporal dependencies that reflect neural processes underlying MDD. In
parallel, the global network operates over population graphs based on
functional and clinical similarity among subjects, capturing inter-individual
relationships and common patterns. By integrating these two levels, the end-
to-end network effectively fuses personalized features with population-wide
trends. This design provides complementary, multi-angle supervision sig-
nals that enhance the model’s ability to identify both individual-specific and
group-consistent features predictive of SSRIs treatment response.

Third, to bridge the longstanding gap in multimodal fusion, we inte-
grated neuroimaging and clinical data within a unified graph-based archi-
tecture. Specifically, we constructed phenotype-informed population graphs
using a clinical trait similarity encoder (CTSE) and employed specialized
modules—modality-unique graph convolutional networks (MU-GCNs),
modality-shared GCNs (MS-GCNs), and a modality-attention fusion block
—to extract and integrate complementary information from each modality.
These design choices facilitate not only improved performance in predicting
SSRIs treatment response in MDD but also provide clinically interpretable
insights, representing a step toward precision psychiatry.

Focused on reward and emotion regulation circuits—including the
nucleus accumbens, striatum, thalamus, amygdala, hippocampus, DLPFC,
OFC, and ACC—this study employed ablation analysis to evaluate the
impact of radiographic features on model performance. An independent
external validation set was used to confirm the model’s predictive accuracy
and generalizability. It was hypothesized that clinical and neuroimaging
features from the reward and emotion regulation circuits would effectively
predict remission in MDD patients after 8-12 weeks of antidepressant
treatment.

Results
Demographic and clinical characteristics
In the training set, 19 patients were removed due to incomplete scale data or
duration information. For the internal validation dataset, 2 patients were
excluded due to head movement. For the external validation dataset, 1
patient was excluded due to head movement, and an additional 2 patients
were removed due to incomplete scale data. Ultimately, 279 patients were
included in the final analysis.

The demographic and clinical characteristics of the training set are
summarized in Table 1. The remission rate for MDD patients after 8 or

12 weeks of SSRIs treatment was 45.12% (74 out of 164 patients achieved
remission). No significant differences were found between groups regarding
sex, age, education level, or episode frequency (all p = 0.05). Compared to
the remission group, the non-remission group exhibited higher HAMD-17
scores and longer illness duration (p <0.001 and p =0.012, respectively),
and lower QLES scores (p = 0.005). Details of demographic and medication
information for the 66 MDD patients in the internal validation dataset and
the 49 MDD patients in the external validation dataset are provided in the
Supplementary Materials (Supplementary Tables 1 and 2).

Prediction model and performance validation

The area under the curve (AUC) of the prediction model was 0.78, with a
sensitivity of 75.20%, a specificity of 77.48%, and an accuracy of 76.21%
(Fig. 2a). Validation on the internal independent validation set yielded
comparable results, with an accuracy of 72.73%, sensitivity of 73.53%,
specificity of 71.88%, and AUC of 0.74 (Fig. 2b).

To further evaluate the generalizability of our approach, we tested the
model on an external cohort from an independent clinical site. The LGCIF-
GNN achieved an AUC of 0.72, with an accuracy of 71.43%, sensitivity of
70.00%, and specificity of 72.41% (Fig. 2c). Despite differences in imaging
protocols and demographic composition, the model maintained robust
predictive performance, indicating its ability to generalize across sites and
capture clinically relevant patterns.

To better understand the contribution of each modality, an ablation
study of imaging features was conducted. Model performance declined
significantly when using only clinical features without incorporating neu-
roimaging data into the fusion model, resulting in an accuracy of 69.41%,
sensitivity of 66.01%, specificity of 73.45%, and AUC of 0.71 (Fig. 2d). This
comparison clearly demonstrates the added value provided by integrating
imaging modality.

Model interpretation

The attention score for functional imaging data was 0.3312, indicating a
stronger influence compared to clinical data, which had a score of 0.3284.
The multimodal (MC) embedding, which integrates both modalities,
achieved the highest attention score of 0.3404, underscoring its critical
contribution to the model’s predictive performance.

The differential rs-FC matrix identified the top five enhanced and top
five diminished rs-FC characteristics within the reward and emotion reg-
ulation circuits (Fig. 3). The primary brain regions involved included the
right globus pallidus, bilateral putamen, left hippocampus, bilateral thala-
mus, and bilateral ACC. Among these regions, the left hippocampus was the
most frequently selected.

Feature masking analysis revealed that imaging features contributed
more significantly to the model’s predictive performance than clinical fea-
tures (Fig. 4). The top ten node features included brain regions such as the
bilateral ACC, right globus pallidus, bilateral dorsolateral prefrontal cortex
(dPEC), OFC, right hippocampus, and right thalamus. Among clinical
features, HAMD item 5 (Sleep poorly) and item 8 (Retardation) showed
slightly higher contributions compared to other clinical features (Fig. 4).

The neural substrates showing significant alterations in rs-FC between
remission and non-remission groups included the left ACC, right thalamus,
and right globus pallidus. These brain regions were identified as pivotal
contributors, ranking among the top ten nodes with the most substantial
impact on network prediction performance, as determined by the feature
masking strategy.

Discussion

The primary objective of this study was to develop a GNN model to predict
the efficacy of SSRIs during the acute treatment period based on rs-fMRI
features of the reward and emotion regulation circuits, along with clinical
characteristics. The model demonstrated satisfactory predictive perfor-
mance with an accuracy of 76.21%, and its robustness and generalizability
were confirmed using an independent validation set (accuracy =72.73%).
Ablation studies revealed that neuroimaging features made a significant
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Fig. 2 | Performance evaluation and generalizability of the LGCIF-GNN. a The
ROC of the 5-fold cross-validation. The AUC is 0.78, accuracy is 76.21%, sensitivity
is 75.20%, and specificity is 77.48%. b The ROC on the internal independent vali-

dation set. The AUC is 0.74, accuracy is 72.73%, sensitivity is 73.53%, and specificity
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is 71.88%. ¢ The ROC on the external independent validation set from a separate
center. The AUC is 0.72, accuracy is 71.43%, sensitivity is 70.00%, and specificity is
72.41%. d The ROC of the ablation study using clinical features alone. The AUC is
0.71, accuracy is 69.41%, sensitivity is 66.01%, and specificity is 73.45%.

contribution, with the most impactful brain regions including the right
globus pallidus, bilateral putamen, left hippocampus, bilateral thalamus, and
bilateral ACC. These findings underscore the potential of a model com-
bining clinical and neuroimaging features of the reward and emotion reg-
ulation circuits for predicting SSRIs response in MDD patients.

Recent advances in spatiotemporal GNNs have substantially shaped
the landscape of neuroimaging-based predictive modeling. Models such as
BrainGNN™, BrainRGIN™, and BNT*” have demonstrated the utility of
ROI-aware architectures or cluster representation for brain network

modeling, integrating specific brain regions and subnetworks. Con-
currently, spatiotemporal frameworks such as DSAM*, Graph Clustered
Transformer”, and Deep-Spatiotemporal”® have pioneered hybrid
temporal-graph approaches for capturing dynamic brain states. LG-GNN*,
SFC-GNN™, and MS*-GNN* have made strides toward integrating intra-
subject features and population-level information or fusing features from
different modalities. While building upon these foundations, our Local-
Global Imaging and Clinical Feature Fusion GNN (LGCIF-GNN) offers a
meaningful advancement by combining dynamic, task-adapted graph
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construction, local-global modeling that bridges subject-specific neurobio-
logical precision with population-level similarity, and interpretable multi-
modal disentanglement and fusion.

First, unlike prior edge-enhanced GNNs such as BrainGNN* and
BrainRGIN™, which rely on static FC matrices or precomputed similarity
graphs, LGCIF-GNN constructs subject-specific functional graphs during
training by leveraging the dynamic similarity of ROI-level temporal
embeddings. This approach allows the model to directly align graph
topology with the treatment prediction task, improving representational
specificity and model interpretability. Additionally, this design avoids hard

clustering or top-k pooling strategies in previous works, such as Graph
Clustered Transformer" and BNT”, which are sensitive to hyperparameters
and risk discarding relevant features. Specifically, our attention-based
mechanism enables soft graph readout, preserving critical regional infor-
mation and improving robustness.

Second, previous studies have mainly defined the “spatiotemporal” or
“local-global” concept within the scope of individual subjects, focusing on
fine-grained temporal dynamics within single ROIs and spatial or global
relationships across brain regions. For example, models like DSAM* and
Deep-Spatiotemporal’ integrate TCNs with GNNGs to capture intra-subject
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spatiotemporal patterns using unidirectional and multi-scale temporal
modeling. In contrast, LGCIF-GNN replaces the commonly used TCN
modules with bi-GRU encoders, enabling the extraction of long-range,
bidirectional temporal dependencies—crucial for capturing feedback and
recurrent processes in emotion and reward-related circuits. Further, our
framework advances this paradigm through a population-tiered hierarchy.
This architecture dynamically links individual-level ROI dynamics (“local”)
to population graphs constructed from functional and clinical similarity
(“global”), enabling simultaneous learning from personalized neurody-
namics and group-level pathophysiological patterns. This dual-scale
supervision captures both individual heterogeneity and population-
consistent biomarkers of treatment response in an end-to-end manner—a
capability underexplored in prior local-global GNNs.

Third, while recent multimodal GNNs have started incorporating
non-imaging data, they often do so in a limited manner. For instance,
Deep-Spatiotemporal” replaces the adjacency matrix with DWI-
derived structural connectivity, without true feature-level integration;
LG-GNN" includes only age, sex, and site as phenotypic inputs. MS*-
GNN* recently demonstrated the promise of integrating EEG and
audio data for MDD detection, but the application of GNNs to fuse
fMRI and clinical features in psychiatry—especially for outcome
prediction—remains underexplored. In contrast, LGCIF-GNN pre-
sents a more comprehensive and clinically grounded multimodal
framework. It incorporates a diverse range of phenotype- and
symptom-relevant clinical features, including age, sex, education,
disease duration, and multiple clinical scale scores (HAMD, QLES,
YMSR), which reflect both underlying biological vulnerability and
external clinical status. Through modality-specific and shared feature
extraction (MU-GCN, MS-GCN) and adaptive fusion, it achieved
task-specific, interpretable multimodal integration tailored to SSRIs
response prediction. This integration notably enhanced predictive
performance, with the area under the receiver operating characteristic
(ROC) curve (AUC) increasing from 0.71 to 0.78, a 10% improvement,
after incorporating imaging features. These results highlight the added
value of including neuroimaging data to enable more precise and
individualized predictions of treatment response.

Moreover, previous studies on antidepressant efficacy prediction often
utilized small sample sizes, unbalanced datasets, or uncontrolled poly-
pharmacy approaches™*”, leading to potential confounding in model
assessments. In contrast, this study employed a larger sample size, balanced
training and testing datasets, and a rigorous single-drug therapy protocol,
enhancing the stability and generalizability of the predictive model. Addi-
tionally, the use of an independent validation set strengthens the model’s
robustness. Unlike earlier studies relying solely on internal cross-validation,
this study employed a validation dataset acquired with different scanning
parameters and acquisition batches, facilitating a more comprehensive
evaluation of generalization performance.

The proposed model achieved an AUC of 0.74 and an accuracy of
72.73% on the internal independent validation set, and an AUC of 0.72 and
an accuracy of 71.43% on the external independent validation set,
demonstrating its robustness and reliability. External validation is critical for
assessing a prediction model’s adaptability to real-world scenarios beyond
its development data and population”’. For comparison, a recent study by
Poirot et al. developed an XGBoost model to predict sertraline response,
achieving an internal cross-validation accuracy of 68% and an external
validation accuracy of 65%", which is notably lower than the accuracy
achieved by our model.

Consistent with the latest meta-study”, neuroimaging features con-
tributed more significantly to the model than clinical features. The ablation
experiments and feature importance analysis demonstrated that resting-
state brain imaging features played a more substantial role in predicting
treatment outcomes compared to clinical features. Combining the results of
the differential FC matrix analysis and feature masking analysis of node
degrees revealed that the ACC, globus pallidus, hippocampus, and thalamus
were common key features in predicting SSRIs treatment outcomes.

The right globus pallidus, a key component of the reward circuit™",
showed FCs with the left rostroventral area 24 and the right ventromedial
putamen, forming an integrative network responsible for modulating
emotional and motivational states. The globus pallidus plays a crucial
role in regulating anxiety- and depression-like behaviors and can inte-
grate and transmit signals related to motivation, reward, stress, and
depression in the brain™. A recent study has shown that the plasticity of
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the cholinergic neuronal circuit in the ventral globus pallidus regulates
pain-like and depression-like behaviors in mice”. Another study has
shown that there are structural and functional abnormalities in the
putamen among patients with depression and those at genetic risk in
their families, suggesting that the putamen is a potential biomarker for
depression”**. The left hippocampus, a core component of the emotion
regulation circuit", and the right thalamus, which is involved in both the
reward and emotion regulation circuits”'>*, were also identified as cri-
tical nodes. FCs between the left rostral hippocampus and subregions of
the right thalamus, the right subgenual area 32, and the right dorsolateral
putamen form an integrative network mediating interactions among
multiple brain systems involved in emotional and reward processing™®”".
The hippocampus plays a crucial role in emotional regulation and is
closely related to the pathophysiological mechanism of depression™.
Research has shown that SSRIs promote neurogenesis in the dentate
gyrus of the hippocampus and selectively act on the serotonergic
pathway™. Recently, many studies have emphasized that the pathways
involving the thalamus may be the targets for the treatment of depres-
sion. Zhang et al. found a circuit from the visual cortex to the lateral
posterior thalamic nucleus regulates depression-like behaviors in male
mice”. Zhang et al. found that the pathway from the thalamic reticular
nucleus to the lateral habenula regulates depression-like behaviors in
chronic stress and chronic pain®'. In this study, our findings highlight the
central role of functional alterations in the hippocampus, thalamus, and
globus pallidus in predicting antidepressant efficacy. Dysfunctions in
these connections may underlie core depressive and anhedonia symp-
toms. Antidepressant interventions likely exert their therapeutic effects
by restoring functional synchrony, offering promising targets for MDD
treatment strategies.

Regarding clinical features, HAMD item 5 (“Sleep poorly”) and item
8 (“Retardation”) contributed slightly more than other clinical features.
Previous studies have suggested that the initial presentation of retarda-
tion and sleep disturbances may influence antidepressant efficacy™ ™,
aligning with our findings. While neuroimaging features performed well
independently, adding clinical features further enhanced model accuracy.

However, this study has several limitations. Firstly, the FC structure
was initially estimated using Pearson correlation, a widely adopted approach
in neuroimaging research due to its practicality and interpretability. While
our model incorporates a graph structure optimization mechanism to adapt
and refine the FC using temporally informed representations, future
investigations into alternative FC metrics may offer additional benefits in
expressiveness and biological fidelity. Second, for poorly covered masks,
NaN values were replaced with the mean of non-NaN values from other
MDD patient signals. Future research could explore personalized mask
configurations. Lastly, this study focused solely on establishing a predictive
model for SSRIs efficacy. Considering the variety of real-world medications,
future studies should include additional antidepressant types to build more
comprehensive efficacy prediction models.

In summary, the Local-Global Imaging and Clinical Feature Fusion
Graph Neural Network (LGICF-GNN) was successfully applied to predict
the acute-phase efficacy of SSRIs treatment in MDD patients, and it
demonstrated consistently strong performance on the independent internal
and external validation sets. The integration of clinical and functional
imaging features achieved optimal predictive performance, with imaging
features contributing significantly more than clinical features. These find-
ings highlight the potential of neuroimaging features from the reward and
emotion regulation circuits as predictors of antidepressant response. The
current results represent an important step toward biomarkers of anti-
depressant response.

Methods

Participants

The MDD cohort in this study was derived from three cohort studies
(ChiCTR-O0OC-17012566, MR-11-23-003930, and ChiCTR2200059053)
conducted at Beijing Anding Hospital, Capital Medical University, from

September 2018 to October 2023. The study included 183 MDD patients in
Cohorts 1 and 2, and 68 MDD patients in Cohort 3. Cohorts 1 and 2 were
used as the training data, with all patients receiving SSRIs treatment for
either 8 or 12 weeks. Additionally, Cohort 3 was designated as the internal
validation set to assess model stability and generalization, with all patients
receiving SSRIs treatment for 8 weeks. To further evaluate the model’s
generalizability across different clinical sites, we included an external vali-
dation dataset comprising 52 MDD patients recruited from Shandong
Daizhuang Hospital between March 2023 and February 2025, all of whom
received SSRIs treatment for 8 weeks. Treatment outcomes were assessed
using the same clinical criteria as in the primary cohort to ensure con-
sistency in endpoint definition. The inclusion and exclusion criteria were
consistent with those applied in the discovery cohort. This external dataset
was acquired under different scanning protocols and demographic condi-
tions, providing a realistic testbed for evaluating the model’s robustness
across variations in scanner hardware, acquisition parameters, and popu-
lation characteristics.

Inclusion criteria were: (1) adults aged 18-65 years; (2) Han eth-
nicity and right-handedness; (3) diagnosis of MDD based on the Diag-
nostic and Statistical Manual of Mental Disorders-IV (DSM-IV) for
Cohorts 1 and 2, or the DSM-V for Cohort 3; (4) no prior antidepressant
use or use for no more than seven days within the preceding 14 days; (5)
willingness to undergo SSRIs treatment. Exclusion criteria included: (1)
significant non-depression DSM-IV or DSM-V diagnosis ; (2) previous
intolerance or lack of response to SSRIs; (3) MRI contraindications; (4)
presence of psychotic symptoms.

The study was approved by the Human Research and Ethics
Committee of Beijing Anding Hospital, Capital Medical University,
and all participants provided informed consent (Approval No. 2017-
24, 2020-106, 2022-14-202221FS-2). This study follows the STROBE
statement checklist.

Treatment and clinical assessment

The HAMD-17 was used to assess depressive symptoms. Patients achieving
a HAMD score <7 after 8 or 12 weeks of SSRIs treatment were classified as
the remission group, while those with a score >7 were classified as the non-
remission group. The Young Mania Rating Scale (YMRS) was used to assess
manic symptoms, consisting of 11 items with total scores ranging from 0 to
44, where higher scores indicate more severe symptoms. The quality of life
was measured using the 16-item QLES Questionnaire®. The total score was
calculated by summing the first 14 items, each rated on a 5-point Likert scale
(1 =very poor to 5 = very good), resulting in a total score range of 14-90,
with higher scores indicating better quality of life.

MRI image acquisition

Baseline neuroimaging data were collected using 3.0 T Siemens super-
conducting MRI scanners equipped with 64-channel head coils at two sites.
Both sagittal T1-weighted magnetization-prepared rapid gradient-echo
(MPRAGE) and gradient-recall echo-planar imaging (EPI) sequences were
acquired. Participants were scanned in a supine position with earplugs to
reduce noise, and were instructed to relax and minimize head movement.
The internal and external validation cohorts followed the same scanning
protocol, while the discovery cohort utilized a different protocol.

Scanning protocol of the training cohort

T1-MPRAGE sequence: repetition time (TR)=2530ms, echo time

(TE) = 1.85 ms, flip angle (FA) = 9°, matrix = 256 x 256, slice thickness = 1 mm,

gap = 0 mm, number of slices = 192, field of view (FOV) = 256 mm X 256 mm.
EPI sequence: TR = 2000 ms, TE = 30 ms, FA = 90°, matrix = 64 x 64,

slice thickness=3.5mm, gap=0.7mm, number of slices=33,

FOV =200 mm x 200 mm, 200 time points.

Scanning protocol of internal and external validation cohorts
T1-MPRAGE sequence: repetition time (TR)=2530ms, echo time
(TE)=421ms, flip angle (FA)=7° matrix=256x256, slice
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thickness =1 mm, gap=0mm, number of slices=192, field of view
(FOV) =256 mm x 256 mm.

EPI sequence: TR = 2000 ms, TE = 30 ms, FA = 90°, matrix = 64 x 64,
slice thickness = 3.5 mm, number of slices = 33, FOV = 224 mm x 224 mm,
240 time points.

MRI image preprocessing

The PhiPipe tool was used for preprocessing rs-fMRI data®. The steps
included head motion adjustment using AFNTI’s 3dvolreg, slice acquisition
correction with AFNT’s 3dTshift, boundary-based registration with Free-
Surfer’s bbregister, and masking for brain regions based on T1 processing
and BOLD-T1 registration. Motion outliers were interpolated using
neighboring volumes. Nuisance signals, including mean white matter and
ventricle signals, and Friston’s 24-parameter head motion model, were
regressed out. Bandpass filtering (0.01-0.1 Hz) was applied, and BOLD
images were transformed into MNI152 standard space using combined T1-
MNI152 and BOLD-T1 registration.

66

Functional connectivity analysis

FC analysis was performed using DPARSF (http://rfmri.org/DPARSF).
Following preprocessing, the FC matrix of the reward and emotion reg-
ulation circuits was constructed by calculating Pearson’s correlation
between the time courses of each ROL Brain region coordinates were
obtained from the Brainnetome Atlas template and relevant literature,
including the nucleus accumbens, striatum, amygdala, globus pallidus,
DLPFC, thalamus, OFC, ACC, and parahippocampus, totaling 70 ROIs
(Supplementary Table 3).

ROIs were defined as 5 mm radius spheres around the peak coordi-
nates of each cluster. The time series of voxels within each ROI was extracted
and averaged. Rs-FC between ROI pairs was calculated using Pearson
correlation, followed by Fisher R-to-Z transformation. NaN values for ROIs
with poor coverage were replaced with the mean of non-NaN signals from
other MDD patients.

Overall model design and computational pipeline

To predict SSRIs treatment outcomes in patients with MDD, this study
introduces a hierarchical local-global imaging and clinical feature fusion
graph neural network (LGCIF-GNN). The architecture integrates fine-
grained brain functional activity with population-level patterns to enhance
predictive accuracy and interpretability. An overview of the model archi-
tecture and computation pipeline is illustrated in Fig. 1.

LGCIF-GNN takes rs-fMRI signals and clinical variables as input,
processing them through a hierarchical local-global graph framework. At
the local level, subject-specific brain ROI graphs are constructed to capture
individual functional dynamics across ROIs using temporal encoding and
connectivity optimization. In parallel, clinical and demographic data are
structured and embedded. As a result, for each subject, the model derives
both functional and clinical embeddings, which serve as node features in two
modality-specific population graphs. In these graphs, each node corre-
sponds to a subject, and edges represent pairwise similarities in either FC
patterns or clinical profiles. The two global population graphs are then
jointly processed at the global level through modality-specific and shared
GCNY branches, followed by an attention-based fusion mechanism. The
fused representation is then passed to a final multi-layer perceptron (MLP)
for individualized prediction of SSRIs treatment response (remission vs.
non-remission). Importantly, the model supports interpretability by high-
lighting discriminative functional connections, clinically relevant traits, and
relative modality contributions, thereby enabling both accurate prediction
and biologically meaningful insights. In the following, we describe the key
components of the framework and elaborate on the underlying computa-
tional workflow.

Initially, rs-fMRI signals are preprocessed using the DPABI toolbox to
extract ROI-wise BOLD time series for each subject, using a standardized
brain atlas. These ROI-specific time sequences are then fed into a bi-GRU*
encoder, which captures the intrinsic temporal dynamics of each brain

region and generates region-level embeddings. These embeddings serve as
input to the graph structure optimizer, a module that learns subject-specific
FC matrices in a task-driven manner. This approach yields individualized
adjacency matrices that capture functionally meaningful neural interactions
tailored to the treatment prediction objective, thereby addressing the lim-
itations of conventional static, correlation-based connectivity measures. The
resulting adjacency matrix defines the structure of each subject’s local ROI-
level brain graph, wherein each node corresponds to an ROI defined by a
standard brain atlas, and the node features are derived from the corre-
sponding row of the Pearson correlation-based FC matrix. Subsequently,
the Local GCN Readout module takes both the node features and the
optimized graph structure as input, applies graph convolutional operations
coupled with attention mechanisms® to update and aggregate regional
features, producing a compact graph-level embedding that captures indi-
vidual functional patterns within the reward and emotion regulation cir-
cuits. This embedding is then propagated to the global level, where each
subject is represented as a node in the functional population graph.

In parallel, clinical and demographic variables—such as age, sex,
clinical assessment scale scores, disease duration, and education level—are
numerically encoded and concatenated into structured vectors in the Fea-
ture Encoding module. These vectors are used by the CTSE to project
clinical features to a shared latent space and compute a pairwise similarity
matrix across subjects, forming a clinical population graph that reflects
clinical phenotypic proximity between subjects.

Both the subject-level functional embeddings and clinical features are
input into the global graph modules as two population graphs. To disen-
tangle and integrate modality-specific and modality-shared information
across these population graphs, the global model employs a three-branch
design: the Modality-Unique (MU) GCN block extracts distinct repre-
sentations from each modality using independent multi-hop residual GCNs
(MHR-GCNs); the Modality-Shared (MS) GCN block captures common
cross-modal patterns via weight sharing; and the Multimodal Attention
(M-Attention) block adaptively fuses the outputs of all branches into a
unified representation, with attention weights reflecting their relative con-
tributions to final treatment outcome prediction. Finally, an MLP receives
the fused embedding and outputs the individualized prediction of the SSRIs
treatment response. Additional details on model construction and imple-
mentation are provided in the Supplementary Tables 4 and 5.

Through this design, LGCIF-GNN achieves end-to-end optimization
of both graph structures and multi-modality feature fusion, leveraging both
local fine-grained functional patterns and global population-level simila-
rities to improve the robustness and interpretability of multimodal pre-
dictive modeling.

Local graph construction and encoding

In local graphs, different functional ROIs of the reward and emotion
regulation circuit, according to neurological knowledge, were defined
as nodes, and the FC between these ROIs is defined as edges. Spe-
cifically, 70 ROIs were used as nodes, and the FC strength between
nodes was established as edge weights to construct the local graph,
with each graph corresponding to one subject. The FC derived from
the correlation computations was utilized to initialize the graph
structure of the local graph.

As depicted in Fig. 1a, the local ROI-based GNN consists of three main
components: (1) a GRU regional time series encoder, (2) an FC matrix
adjustment optimizer and graph generator, and (3) a readout module for
generating graph-level embeddings and local predictions.

The temporal resolution of f/MRI-derived time series signals is typically
low. To extract the temporal features of the fIMRI BOLD signals for each ROI
while avoiding overfitting, this paper employs a lightweight bi-GRU* as the
temporal encoder. Specifically, for an input BOLD time series X € R"*‘ ofa
subject, where # represents the number of ROIs and ¢is the length of the time
series, the GRU encoder produces a regional embedding for each RO,
h, = Encoder(x), where h, € R"*¢ and d is the output dimension of the
GRU encoder.
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To enable the graph structure defined by the FC matrix to be con-
tinuously optimized and adjusted in the network training stage, rather than
being determined solely by coarse and inflexible correlation computation
methods, a graph structure optimizer has been designed. This module
constructs the adjacency matrix A based on the node feature vectors. The
cosine similarity between the feature vectors of the ith and jth nodes is used
as the weight at the position A;; of the adjacency matrix: A; = h, - hl.

After the first two modules, the local graph structure has been learned
and optimized. The local readout module updates the node features based
on the GCN* and employs an attention mechanism to perform a weighted
aggregation of the features across all nodes in the entire local graph, thereby
generating a graph-level embedding. This graph-level embedding maps the
functional characteristics of various brain regions and the inter-regional FC
patterns within the reward and emotion regulation circuit of an individual
into a hidden space. Specifically, the node feature /; of node i was initialized
with the ith row of the Pearson correlation FC matrix A, .

HY = [k, by, - B @

h = A,li,] )

A 3-layer GCN was used to update the node feature, and the kth GCN
layer is defined referring to the GCN proposed by Kipf and Welling” as:

Hj = o(GON(H},4)) = o( DD H~ W) (3)

Where D is the diagonal matrix, A is the adjacent matrix derived from the
graph structure optimizer and W' is a trainable weight matrix of the kth
layer, which is a two-layer MLP in our implementation. The final
embedding of the whole local graph is the concatenation of node embedding
weighted by the attention score.

n
agor = Attention(A) = softmax (jEOAif) -n 4)

H,; = concat (aROIHf‘) (5)

The local classification is determined by a 3-layer MLP classification
head:

= MLP(Hg) (6)

Global graph construction and cross-modal fusion

Each subject was used as a node to construct two global graphs, including a
functional graph and a demographic characteristics graph. The global fea-
ture vector (readout) of the subject’s fMRI signals learned from the local
graph was used as the node feature of the functional graph. The demo-
graphic characteristics graph was constructed by using the subject’s age, sex,
duration, education level, YMSR, HAMD, and QLE scale scores as node
features. Subsequently, an attention mechanism was used to perform
multimodal feature fusion of the two graphs. The node-level classification
was used as the supervisory signal by the local graph.

Asillustrated in Fig. 1b, the global GNN updates node features on both
the functional population graph G; = (V,E;, W/) and the clinical
population graph G, = (V, E_, W), facilitating the fusion of clinical and
imaging modalities, and performs node-level classification to obtain the
final prediction of treatment outcome. In these population graphs, each
node represents a patient, and the weights of the edges between nodes
indicate the similarity between two patients in the corresponding modality.
In the functional population graph, the node features are the functional
embeddings generated by the local GNN, and the edge weights are the
cosine similarity between the features of two nodes. In the clinical popula-
tion graph, the node features remain as the functional embeddings produced

by the local GNN, while the edge weights are determined by the CTSE based
on clinical information such as age, sex, education level, disease duration,
YSMR, QLES, and HAMD scale scores of the two patients. In the global
GNN, the modality-unique GNN module is designed to extract unique
features from each of the two modalities. The modality-shared GNN
module is utilized to capture the common features across both modalities.
Meanwhile, the modality-attention fusion module is employed to facilitate
the fusion of multimodal features.

The CTSE starts by accepting the clinical feature vector h , a con-
catenation of age, sex, education level, disease duration, and the sub-item
total scores of clinical scales, as input and maps each input to a common
latent space h,; € R™. In the D, = 128 dimensional space, the cosine
similarity can be better applied. The projection network is a 1-layer MLP to
avoid overfitting. Thereby, the CTSE calculates the similarity between node i
and j as:

cos(MLP(h), MLP (1, ) ) + 1
2

where cos denotes the cosine similarity between two input vectors.

In this study, we propose the MHR-GCN to address the over-
smoothing issue and enhance the aggregation of multi-scale information in
GCNs, inspired by the snowball GCN block. Our network architecture
incorporates residual connections to facilitate the training of deeper net-
works, mitigating the vanishing gradient problem and enabling the training
of GCNs beyond four layers. The MHR-GCN block concatenates the output
of each layer before the final GCN layer to enrich feature representation,
where the output of each hidden layer is a description of the center node with
its different-hop neighbors. Residual connections are added after each GCN
layer to learn the residual information, and the final output layer aggregates
features from all hidden layers to produce node embeddings. This design
allows the MHR-GCN to effectively aggregate information from various
receptive fields, providing comprehensive node representations in the
Subject-Graph, thus mitigating over-smoothing and enhancing the net-
work’s ability to learn complex graph representations. The structure of
snowball MHR-GCN is as follows:

@)

W (i.j) =

Hy=Hjg (8)

Hfg“:Hé—l—Tanh(HéWJ,l:0,1,2,..,,N—1 ©)
— 0 1

Cc= Tanh([Hg,Hg, o ,Hg} wﬂ) (10)

Hyg = normalize(LPCWc) (11)

Where N is the number of MHR-GCN layers, W;, W, W is the trainable
matrix, Hy, Hy, . .. ,Hfg are extracted features, p € {0, 1}, H,g is the global
Subject-Graph embedding of one specific modality. When p = 0, LF =1
andwhenp = 1, I? = L = D 2AD "%, which means that we project C back
onto the Fourier basis, which is necessary when the graph structure encodes
much information.

The MU-GCN is applied to extract modality-unique embeddings,
which are defined as follows:

HJ, = MHR — GCN (X', A"} = MHR — GCN (H 5, A") (12)

H{, = MHR — GCN(X*, A°) = MHR — GCN (H,5, A°) (13)

where X/andX® are the node features for rs-fMRI and clinical
modalities, respectively. And HfandH¢ are the modality-unique
representations. The weights of the three SnowballGCN networks are
independent of each other, making it possible to extract unique
features more effectively.
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Although the data structures and semantic information of various
modalities possess distinct characteristics, it is far from trivial to completely
disentangle these diverse data types. When performing the same task, data
from different modalities often contain overlapping information. Extracting
this shared information not only aids in distilling high-quality features for
problem-solving but also reduces redundancy during the integration of
multimodal information. To achieve this objective, we introduce the MS-
GCN module, which facilitates the sharing of weight matrices across dif-
ferent modalities during the execution of the MHR-GCN operation. The
specific formulations are as follows:

H/ = MHR — GCN (X, AT) = normalize(LPC'W,) (14

H¢ = MHR — GCN(X*, A°) = normalize(LYC°W ) (15)
where H/ and H¢ are the modality-common representations for rs-fMRI
and clinical modalities, respectively. And W is the shared trainable matrix.
By sharing weights in this way, modality-common features can be filtered
out. The final common embedding is obtained by the weighted sum of the
two H, = aH/ + BH, where a and 3 are hyperparameters measuring the
importance of each modality’s common embedding. In the implementation,
we set « = 8 = 0.5 to pay equal attention to all modalities.

The varying impact of various types of information on the
ultimate treatment outcome prediction depends on the specific illness
being targeted. In order to focus more on the informative methods
and relegate the less critical ones to a supporting function, we employ
an M-Attention Block on two unique embeddings H/, and H¢ and
one shared embedding H..

ay,a., a, = Attention(H{A,H;,HS) (16)
e; = Tanh(WH, + b;) (17)
exp(e;
a; xp( ’) yie{f,cs} (18)

P exp (ef> + exp(ec) + exp(es)

Once the attention score has been derived, the final embedding can be
computed by integrating the representation with the weight as follows:

H = a;H|, + a,H; + a,H, (19)
Finally, an MLP layer is employed for class prediction.
¥, = MLP(H) (20)

Training and implementation details

The optimization objective of the proposed LGCIF-GNN model integrates
three complementary loss components: a classification loss, a modality-
unique decorrelation loss, and a modality-shared consistency loss:

L= Lcls + Lum’que + L:hured (21)

First, to supervise the predictive task, we adopt a cross-entropy loss
framework. Since our architecture supports prediction at both local and
global levels, the classification loss is formulated as a weighted combination
of both contributions:

Lcls = Lcls +AL

global

ClSjocar (22)
Here, \ is a hyperparameter regulating the influence of the local loss term. In
our implementation, we set A =0.2 to prioritize the global classification
signal during training, while still retaining local-level supervision to enhance
representation learning.

Second, to disentangle modality-specific from modality-invariant
information, we introduce a statistical independence constraint between the
learned modality-unique embeddings H,, and shared embeddings H,. This
is achieved by minimizing the Hilbert-Schmidt Independence Criterion
(HSIC)”, which quantifies dependence between distributions in a repro-
ducing kernel Hilbert space (RKHS):

HSIC(H,,H,) = (m — 1)"*tr(K,RK,,R) (23)
where K (H', ') = <¢(H"), ¢(H’) > is the kernel function mapping the
input embeddings into an RKHS, R = I — L ee is the centering matrix, I is
the identity matrix, and e is an all-ones vector. The total decorrelation loss
aggregates HSIC values across multiple modality pairs:

Lypigue = HSIC(HI,, H,) + HSIC(H, H,) (24)

Additionally, to encourage alignment among modality-invariant
embeddings, we enforce similarity across shared representations derived
from distinct modalities. After L,-normalizing each embedding matrix, we
compute pairwise differences between their similarity matrices:

N,=H,-H! (25)

Lshared = ||N'£ - N§| |2 (26)

The proposed model was implemented in Python 3.7 and PyTorch
1.12.1, utilizing an NVIDIA RTX 4090 GPU. For optimization, the Adam
optimizer was employed with an initial learning rate of 5e-3, which was
halved every 100 epochs. Across all experiments, the model was trained for a
maximum of 200 epochs. The weight hyperparameter for the local classi-
fication loss was fixed at 0.2, giving precedence to the global classification
loss during optimization. Detailed architectural and implementation spe-
cifications are provided in Supplementary Table 5.

Performance validation

To ensure accuracy and robustness in feature selection, the model’s per-
formance was evaluated using 5-fold cross-validation, along with metrics
including the AUC of the ROC, accuracy, sensitivity, and specificity. The
training dataset was randomly divided into five equal parts. In each cycle,
four parts were used as sub-training sets to build the model, and the
remaining part was used to test the model’s performance. This process was
repeated five times so that each subset served as a test set once. The optimal
hyperparameter settings determined during cross-validation were applied
to construct the final model using the entire training dataset. The final model
was then tested on the internal and external validation sets for further
verification. All ML analyses were conducted using Python.

To assess the model’s generalization capability, we conducted valida-
tion on two held-out datasets. The internal validation set (n = 66) provided
an in-site assessment of predictive stability on temporally distinct data. In
contrast, the external validation set (n = 49) served to evaluate the model’s
cross-center generalizability. Specifically, it tested the robustness of the
learned representations under differences in MRI scanner types, acquisition
protocols, and patient population characteristics—factors known to chal-
lenge the reproducibility of neuroimaging-based biomarkers.

Additionally, an ablation study was performed to confirm the sig-
nificance of radiographic features in improving model performance. During
the ablation study, only the clinical features of 164 MDD patients were used
in 5-fold cross-validation to assess their independent contribution.

Interpretation of functional imaging

As described in the section “Local graph construction and encoding”, the
Graph Structure Optimizer in this study was designed to extract temporal
sequence features from brain regions within the reward and emotion reg-
ulation circuits during training of the efficacy prediction network. This
process constructs and optimizes an FC matrix specifically for predicting
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treatment outcomes. Through joint optimization of the local and global
networks, the learned adjacency matrix encapsulates deeper temporal
information while accounting for the constraints of functional brain ima-
ging and clinical feature similarities among patients. This matrix reflects FC
patterns relevant to treatment outcome prediction.

To understand the functional characteristics of the reward and emo-
tion regulation circuits in non-remission and remission groups, FC matrices
generated by the trained model for 164 subjects were analyzed. Subjects were
grouped by treatment outcomes (non-remission or remission), and their FC
matrices were averaged separately to obtain mean FC matrices for each
group. These average matrices represent the general FC patterns within the
two populations. A differential FC matrix, created by subtracting the mean
non-remission FC matrix from the mean remission FC matrix, highlights
differences in connectivity patterns between the groups.

The differential FC matrix was analyzed to identify brain regions and
connections with the most significant differences between remission and
non-remission groups. The specific rows and columns corresponding to the
top five highest and lowest values in the matrix represent the FCs most
enhanced or diminished in remission patients compared to non-remission
patients. To determine the most impactful brain regions, the absolute values
of the differential FC matrix were summed across rows to calculate node
degrees. Higher node degrees indicated greater discrepancies in functional
connections between the groups. Using this method, the 10 brain regions
with the highest node degrees were identified as the most indicative for
predicting treatment outcomes.

Assessment of modality importance

To evaluate the predictive contributions of different data modalities, the
Modality-Attention (M-Attention) module within the global GNN model
was utilized. This module fuses functional imaging and clinical data mod-
alities, generating three distinct feature embeddings: unique imaging fea-
tures, unique clinical features, and shared features between the two. The
M-Attention module performs weighted fusion of these embeddings based
on attention weights, allowing an assessment of the relative contributions of
unique and shared features to the prediction process.

To compare the impact of specific clinical information and functional
signals from different brain regions on treatment outcome predictions, a
feature masking strategy was employed. During the inference phase on the
independent test set, elements corresponding to clinical features were set to
zero, or time series signals of specific ROIs were nullified. The model’s
performance was evaluated using the masked features as input, and its
efficacy was assessed by the AUROC.

Performance loss caused by masking individual features was visualized
as a heatmap. Features with greater predictive importance caused larger
reductions in AUROC, indicated by deeper blue tones in the heatmap. This
analysis identified the clinical and functional features most critical to pre-
dicting antidepressant treatment efficacy.

Statistical analysis

Demographic data were analysed separately for the training and indepen-
dent validation sets using SPSS Statistics 26.0. Age and clinical character-
istics were compared using the Mann-Whitney U test or two-sample
t-test. Chi-square tests were conducted to evaluate differences in sex and
education level between the remission and non-remission groups.

Data availability
The datasets used and/or analyzed during the current study are available
from the corresponding author on reasonable request.

Code availability
The full implementation of the proposed LGCIF-GNN model is publicly
available at https://github.com/ATP-BME/LGCIF-GNN.
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