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Emphysema progression risk in COPD
using a localized foundational model of
density evolution
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Emphysema progression in chronic obstructive pulmonary disease (COPD) presents a notable
challenge due to its significant variability among individuals and the current lack of reliable prognostic
markers. Given the limited therapeutic options available for emphysema, there is a critical need for
early detection and intervention strategies. Identifying individuals at risk of rapid progression is
essential to effectively halt or slow the disease’s advancement. This study introduces an innovative
approach employing a localized foundationalmodel of density evolution to pinpoint local radiographic
embeddings indicative of emphysema progression. Central to our methodology is the Local
EmphysemaProgression (LEP) score, a novelmetric derived fromourmodel that aggregates localized
lung tissue activations into a comprehensive, subject-level risk assessment tool. The model’s
performance was tested on 3728 COPDGene participants, comparing baseline to 5-year, and 1421
scans taken from the 5-year to 10-year interval period. Additionally, our findings were replicated in
1058 ECLIPSE participants. The model effectively identifies lung regions with emphysema
progression, achieving an AUC of 0.88. The LEP risk score shows good correlation with the change in
the percentage of low attenuation areas below−950 Hounsfield Units (Δ%LAA-950), with correlation
values of 0.50 in the COPDGene cohort and 0.40 in the ECLIPSE cohort among subjects with
emphysemaprogression (Δ%LAA-950 > 0). Furthermore, LEP risk score associateswithmortality and
several COPD outcomes, underscoring its potential as a valuable tool in clinical prognosis and
management of emphysema progression in COPD patients.

Emphysema, a lung disease characterized by abnormal and permanent
enlargement of the distal airspaces1, exhibits varied extent and distribu-
tion within the lung, leading to heterogeneous spatial emphysema
distribution 2,3. This destructive process of the lung tissue is thought to
afflict over two million people in the US and is the pathobiological basis
for chronic obstructive pulmonary disease (COPD), which is one of the
leading causes of death worldwide4,5. While most commonly due to
chronic tobacco smoke exposure, emphysema is increasingly detected in
never smokers without clear risks. Further, numerous studies including
those reflecting the broader population have demonstrated that people
with emphysema are at increased risk of death6–9. There is, therefore,
great interest in developing therapies that target the underlying pathol-
ogy of emphysema rather than just addressing its physiological

symptoms10. However, aside from augmentation therapy for the small
subset of people with Alpha-1 antitrypsin deficiency (AATD), these
efforts have had limited success. Image-based predictions can be a
powerful tool to assess lobe-specific emphysema progression and provide
lobe-specific treatments such as lung volume reduction.

The tool most commonly used to detect and quantify emphysema is
computed tomography (CT) of the chest and extensive investigation has
identified several image-basedmetrics of the lung tissueused in researchand
clinical care11–13. These range from measures of the density of the
parenchyma14,15 to more advanced machine learning algorithms that can
recognize different forms of disease and its distribution16–22, Clinical studies
of emphysema are, however, challenging to conduct because the evolution
of the disease is slow, and the regional heterogeneity of this process limits
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our ability to identify where in the lung this pathologic remodeling is most
active23,24.Moreover,whilewegenerally believe thatpeoplewith emphysema
will develop more emphysema, a therapy to heal destroyed lung tissue is
likelymore challenging to create than one that prevents its onset. The ability
to predict where emphysema will develop in the lung may fill a critical gap
that is currently preventing therapeutic development and optimal clinical
management of patients at high risk of developing emphysema.

We hypothesized that a CT-based deep learning model could predict
where emphysema would develop after learning the features that char-
acterize its radiologic progression. To test this hypothesis, we leveraged
longitudinal data from over 5000 people enrolled in one of two observa-
tional studies to identify lung-specific “embeddings” that described local
emphysema progression (LEP), associated with the local onset of emphy-
sema over a five-year period. A detailed description of the local emphysema
progression can be found in the Methods and the Supplementary Fig. 5.
These “embeddings” are mathematical representations of patterns embed-
ded in the image, which are not evident on subjective review but are able to
identify tissue that is most likely to become emphysematous. Once the
embeddings of disease progression were identified, we then sought to test
their ability to predict airspace dilation in a new set of longitudinal images
that were not used for training.

Our deep learning approach leveraged a local foundational model
(FM) of density evolution with an attention and scale mechanism where
the model focuses on important details mimicking a cognitive attention
mechanism25,26. The training involved: (1) image co-registration27, local
densitometric assessment of the parenchyma (percentage of low
attenuation areas below −950 Hounsfield Units, %LAA-950), and
z-score image normalization. This was followed by (2) a conditional
training strategy that balanced encoding emphysema progression infor-
mation into the embeddings of the local FM, proper local reconstruction
of the co-registered follow-up CT scan, and emphysema progression
based on the change of %LAA-950 (Fig. 1). Once trained, the algorithm
was applied to de-novo baseline CT scans using the following stepwise
approach: (1) z-score image normalization; (2) inference of the local
emphysema progression; (3) aggregation of the those spatial likelihoods

of emphysema progression across the entire lung to create the Local
Emphysema Progression Activity Map (Fig. 1), and finally (4) generation
of a local emphysema progression score by aggregating local activations.
Details are provided in the Methods section. We predicted the amount of
emphysema progression each person would experience as well as esti-
mated their clinical impairment due to that progression. We then
compared those predicted metrics of progression to the same outcomes
ascertained from serial observation.

Results
Study participants
A total of 10,198 smokers with and without COPD were enrolled in the
COPDGene27 study at phase 1 baseline (P1), and over 6000 participants
came back for a second visit (P2) 5 years later. Our training and testing data
consisted of 4712 COPDGene27 participants with complete data at baseline
and the 5-year follow-up. This cohort included 1882 participants with
Global Initiative for Obstructive Lung Disease (GOLD) COPD grades I-IV
expiratory airflow obstruction28 and 2805 smokers with normal lung
function and preserved ratio impaired spirometry (PRISm). For this study,
we utilized the primaryCOPDGene spirometry data, which employed race-
adjusted equations based on post-bronchodilator spirometry values, using
NHANES race-specific equations and the 2023 GOLD criteria28. The local
FM and LEPmodels were developed using 6.888million lung patches of 32
by 32 pixels (0.64 mm2) from 984 randomly selected COPDGene partici-
pants at P1P2 with complete data (only 7000 patches by participant).
Subjects were selected to keep the same GOLD severity distribution
observed in our entire cohort (see Table 1). The LEP model’s performance
was locally tested on 981.5 million patches from 795 COPDGene partici-
pants randomly selected from the test data at P1P2 (Supplementary Fig. 1—
Local Reconstruction). In addition, LEP reproducibility was tested on a
subset of COPDGene participants at phase 2 with a high- and low-dose
protocol (n = 1421 and n = 41, Table 1) and complete data at 10-year later
(P3), and 1058 ECLIPSE29 participants with complete data at baseline and
3-year follow-up.Details of these populations can be found inTable 1 and in
the Supplementary Fig. 1.

Fig. 1 | Schematic of the deep learning workflow for prognostication of
emphysema progression. This workflow diagram illustrates the process of local
emphysema progression prediction using a local foundational model of density
evolution. Starting with high-resolution CT scans, regions of interest (ROI) are
identified and fed into the FM. The encoder part of the autoencoder compresses the
ROI into a lower-dimensional representation z, which is then reconstructed back to

the original data space by the decoder. The feature vector z is subsequently processed
through a multilayer perceptron (MLP) to estimate the progression risk score. The
risk score is depicted as the local emphysema progression. The final output includes
the localized visualization of emphysema progression on the CT scan, highlighted
for clinical assessment.
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Local prognostic model performance and reproducibility
We first studied themean absolute error (std) of the LEPmodel predictions
on 981.5 million patches from 795 randomly selected COPDGene partici-
pants from phase 1 to phase 2 (P1P2) not included in the training dataset
(around 1.23million patches by participant). In general, the LEP prediction
shows a small MAE = 4.4% (7.7%). This error increased along with the
COPD status with values of 1.6% (4.7), 2.9% (6.5%), 6.1% (8.8%), 5.8%
(8.3%), 9.1% (8.8%) and 10.7% (8.8%) for PRISm, controls, GOLD 1 to 4,
respectively.

Then, we explored the performance of the LEP model to determine
whether the model could effectively discriminate between regions of lung
tissue stability and those showing emphysema progression (regions with >
5% LEP voxels, i.e. voxels than transition from tissue to air). Analyzing the
patches described before (981.5 million patches from 795 COPDGene
participantsP1P2), ourmodeldemonstrateda robustAreaUnder theCurve
(AUC) of 0.88. At an operating point thatmaximizes the Youden’s index on
the training dataset (probability th = 0.158), the model’s sensitivity (Sens.),
positive predictive value (PPV), accuracy (ACC), F1-score, and Cohen’s
Kappa coefficient (K) were Sens. = 0.55, PPV = 0.60, ACC = 0.85, F1 = 0.58,
and K = 0.49, respectively.

When themodel was applied to COPDGene participants fromphase 2
to phase 3 (P2P3) under a high-dose protocol (n = 2464million patches, 1.3
million patches by participant), the model’s performancemetrics remained
consistent (AUC= 0.88, Sens.=0.64, PPV = 0.53, ACC= 0.85, F1 = 0.59,
andK = 0.50). However, in the subset evaluated with a low-dose protocol at
P2P3, a slight reduction in performance was observed (AUC= 0.84,
Sens. = 0.61, PPV= 0.45, ACC = 0.83, F1 = 0.52, and K = 0.42) with decre-
ments of 4.5%, 4.7%, 15%, 2.3%, 11.8% and 16% in AUC, sensitivity, PPV,
ACC, F1-score, and K, respectively.

Additionally, we observed that the performance of our model was
generally consistent across different baseline disease severities, except in the
case of severe emphysema. We categorized the subjects into four groups
based on baseline emphysema severity (no emphysema 0-5% (n = 563),

mild 5-10% (n = 109), moderate 10-20% (n = 70), and severe ≥ 20%
(n = 53)) and generatedReceiverOperatingCharacteristic (ROC) curves for
each group by aggregating the per-subject ROC curves within the same
emphysema severity group measured at baseline. These curves demon-
strated an AUC ≥ 0.78 for the milder groups (no emphysema, mild, and
moderate) in high-dose CT scans with a slight drop in performance for
subjects with advanced emphysema at baseline (Fig. 2a, b), and an AUC of
≥0.73 for low dose scans (Fig. 2c).

To enhance the interpretability of our model, we conducted a visual
evaluation of the local FM predictions, which reconstructed the 5-year CT
patches from the baseline scans. The results for various patches, repre-
senting subjects with differing disease burdens and progression rates, are
presented in Supplementary Fig. 2.

Local emphysema progression activity maps
We computed subject-level maps of emphysema progression activity by
sequentially running the LEP model across the lung parenchyma and
aggregating the probability outputs of local progression. Figure 3a shows the
LEP activity maps for four subjects with different degrees of severity. Our
model is able to detect incipient regions of the parenchyma most likely to
progress to emphysema in a subject without emphysema at baseline and
without change in their clinical staging byGOLDguidelines (GOLDstage 2)
during the 5-year follow-up (Fig. 3 (a-No Emphysema). Figure 3 (a-Mild)
shows a strong spatial correlation between the model’s LEP prediction and
the measurement at 5-year, where the model effectively identifies specific
regions in the lung where the progression activity is concentrated. Addi-
tionally, Fig. 3a shows that themodel is not merely identifying local regions
with emphysema at baseline (Mild and Severe). A visual inspection of
several patches confirms the same local behavior (see Supplementary Note
and Supplementary Fig. 2). In cases with more advanced disease stages
(moderate to severe emphysema andGOLDstages2 and3), the LEPactivity
maps were also able to capture the heterogenous pattern of emphysema
progression (Fig. 3 (a -Moderate and Severe). This visual demonstration

Table 1 | Clinical characteristics of the populations used for training and testing

Baseline Characteristics COPDGene ECLIPSE

Phase 1–2 Phase 2–3

All Training LEP
Score Test

Local
Model Test

HD Test LD Test

N 4712 984 3728 795 1421 41 1058

Race Non-Hispanic White 3341 (70.9%) 727 (73.9%) 2614 (70.1%) 574 (72.2%) 1013 (71.3%) 23 (56.1%) 1058 (100%)

Non-Hispanic Black 1371 (29.1%) 257 (26.1%) 1114 (29.9%) 221 (27.8%) 408 (28.7%) 28 (43.9%) 0 (0%)

Females 2315 (49.1%) 476 (48.4%) 1839 (49.3%) 381 (47.9%) 722 (50.8%) 24 (58.5%) 416 (39.4%)

Age [y] 59.8 (8.7) 60.0 (8.5) 59.7 (8.7) 59.8 (8.3) 59.2 (8.3) 55.1 (7.6) 61.5 (7.9)

BMI 29.2 (6.1) 28.9 (5.8) 29.1 (6.2) 29.1 (6) 28.9 (6) 29.1 (6.5) 26.5 (5.2)

Height [cm] 170.1 (9.6) 170 (9.6) 170.1 (9.5) 170 (9.5) 169.9 (9.4) 169.1 (8.9) 169.7 (9.0)

Pack-Years 42.4 (23.5) 43.2 (23.9) 42.2 (23.4) 43.0 (24.0) 42.1 (22.8) 40.1 (29.9) 44.8 (28.4)

FEV1 [liter] 2.4 (0.8) 2.3 (0.8) 2.4 (0.8) 2.4 (0.8) 2.4 (0.8) 2.6 (0.9) 1.71 (0.94)

FEV1/FVC 0.7 (0.1) 0.7 (0.1) 0.7 (0.1) 0.7 (0.1) 0.7 (0.1) 0.7 (0.1) 0.51 (0.18)

No COPD 2805 (60%) 554 (57%) 2251 (60%) 489 (62%) 860 (61%) 29 (71%) 218 (20.6%)

GOLD status 1 427 (9%) 87 (9%) 340 (9%) 65 (8%) 162 (11%) 5 (12%) 0

2 907 (19%) 199 (20%) 708 (19%) 152 (19%) 256 (18%) 5 (12%) 353 (33.4%)

3 446 (10%) 124 (12%) 322 (9%) 78 (10%) 111 (8%) 2 (5%) 361 (34.1%)

4 102 (2%) 20 (2%) 82 (2%) 11 (1%) 19 (1%) 0 (0%) 126 (11.9%)

%LAA-950 5.2 (7.9) 5.5 (8.1) 5.1 (7.9) 5.0 (7.3) 5.2 (7.7) 3.6 (6.2) 10.7 (12.2)

Smoking Status CS 2439 (51.8%) 507 (51.5%) 1932 (51.8%) 419 (52.7%) 781 (55%) 18 (43.9%) 434 (41%)

FS 2273 (48.2%) 477 (48.5%) 1796 (48.2%) 376 (47.3%) 640 (45%) 23 (56.1%) 622 (59%)

Continuous variables are presented as mean (SD) and categorical variables as N (%).
HD High Dose, LD Low Dose, CS Current Smoker, FS Former Smoker.
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underscores the model’s precision in predicting emphysema progression,
highlighting its potential clinical utility.

Association of LEP risk score and emphysema progression
The LEP activity maps serve as the foundation for creating a subject-level
emphysema progression risk metric known as the LEP score. The score is
calculated as the mean binary local activation at the threshold that max-
imizes Youden’s index (probability th = 0.158) across the entire lung par-
enchyma. A comprehensive explanation of the LEP risk score methodology
is detailed in the Methods section.

We examined the relationship of the LEP risk score and emphysema
progression, quantified as the change of %LAA-950 (Δ%LAA-950), in 3728
COPDGeneparticipants at P1P2, and in 1058participants of our replication
cohort, ECLIPSE. A positive change of the %LAA-950 (indicative of pro-
gression) signals an increase of the emphysema by P2, whereas a negative
change corresponds to an increase in voxels above the−950 HU threshold
at P2. While emphysema is understood as an irreversible process, lung
density can increase due to technical and physiological factors like scanner
parameters, inflation levels, smoking resumption and underlying inflam-
matory processes during disease activity that could potentially lead to
emphysema. On the other hand, higher LEP scores indicate a greater risk of
emphysema progression.

The correlation between the LEP score and Δ%LAA-950 among par-
ticipants with emphysema progression (Δ%LAA-950 > 0%) was 0.59, and
−0.57 among those with an increase in lung density (i.e., Δ%LAA-950 ≤ 0)
(see Supplementary Fig. 3). In the ECLIPSE replication cohort, the corre-
sponding correlations were 0.40 and−0.44, respectively, further supporting
our findings in COPDGene. This pattern suggests that the LEP score cap-
tures not only emphysema progression but also potential inflammatory or
reparative processes that may precede or counteract tissue destruction. The
variability in model correlation observed between the COPDGene and
ECLIPSE cohorts (−27.5%) is primarily attributed to differences in CT
acquisition protocols—including noise characteristics—and scanner man-
ufacturers. To further investigate this, we assessed themodel’s performance
across different scanner brands within the COPDGene cohort. The corre-
lation between the LEP score andΔ%LAA-950 varied by scanner type, with
values of−8.6% for Siemens, 10.4% for GE, and 14.3% for Philips scanners,
relative to the correlation computed across all COPDGene participants (see
Supplementary Table 2). This comparison provides useful insights into the
potential influence of scanner-related variability on model performance;
however, because the same subjects were not scanned across different
scanner manufacturers, definitive conclusions about the effect of scanner
type on variability cannot be drawn.

We then stratified the correlation between the LEP score andΔ%LAA-
950 by COPD severity (GOLD 0–IV) among COPDGene participants. For
those with emphysema progression (Δ%LAA-950 > 0), the correlations
were 0.33 for GOLD 0, 0.33 for GOLD I, 0.49 for GOLD II, 0.34 for GOLD

III, and 0.27 for GOLD IV. Among participants with stable or increasing
lung density (Δ%LAA-950 ≤ 0), the corresponding correlationswere−0.65,
−0.45, −0.54, −0.47, and −0.09 for GOLD stages 0 through IV,
respectively.

Additionally, when stratifying participants based on Δ%LAA-950
quartiles in the COPDGene dataset, the correlation values were−0.48 forΔ
%LAA-950 < −0.87% (25th percentile),−0.26 for values between −0.87%
and 0.00% (25th to 50th percentile), 0.26 for values between 0.00% and
1.07%, and 0.47 for values ≥ 1.07% (75th percentile). In the ECLIPSE
replication cohort, the corresponding correlations were−0.48,−0.26, 0.25,
and 0.47, respectively.

Association of local emphysema progression risk score with
prospective outcomes
In the COPDGene LEP Score test group (P1P2, n = 3728), we
examined the association of LEP risk scores and Δ%LAA-950 with
various COPD outcomes by fitting a multivariate linear model
adjusted by the following covariate variables measured at baseline:
age, gender, race, emphysema, BMI, TLC, smoking status, and packs
per year (see Data and statistical analyses section on Online Meth-
ods). Emphysema progression was classified as “fast” or “slow” based
on %LAA-950 changes above 0.66%. Emphysema progression risk
was categorized as “high-risk” or “low-risk” using an LEP score
threshold above 0.15. We established these thresholds at the 70th
percentile of the participants in the “LEP score” test.

LEP scores were significantly correlated with COPD severity,
increasing from 0.065 in smoking controls to 0.49 in GOLD 4. As expected,
LEP risk scores also rose with emphysema progression from 0.099 (slow) to
0.236 (fast) (see Fig. 3b, c). The mean (std) LEP values for slow and fast
progressors according to Δ%LAA-950 were 0.06 (0.10) and 0.08 (0.11) for
smoking controls, 0.16 (0.17) and 0.21 (0.19) for GOLD 1, 0.14 (0.17) and
0.24 (0.21) for GOLD 2, 0.30 (0.23) and 0.40 (0.23) for GOLD 3, and 0.45
(0.20) and 0.50 (0.20) for GOLD 4.

Table 2 summarizes the associations between the LEP risk score andΔ
%LAA-950 across various COPD outcomes. Statistically significant differ-
ences were observed in the 5-year FEV1/FVC ratio andDLCO between low
and high-risk groups for the LEP score and slow vs fast progressors for Δ%
LAA-950 (p < 0.001). Patients classifiedashigh riskbasedon their LEP score
showed lower FEV1/FVC ratios and DLCO values. Additionally, the high-
risk group, as per LEP scores, exhibited a greater decline in FEV1

(approximately 12ml/y;−46.51 vs.−34.80, p < 0.001) and a larger decrease
in exercise capacity (about 40 feet;−168 vs.−127.4,p < 0.001) than low-risk
subjects, indicating a worsening of their disease condition. In contrast, Δ%
LAA-950 showed a less pronounced impact on those outcomes between
slowand fast progressors (approximately 0.31ml/y in thedifference of FEV1

change, p = 0.03; and about 26 feet in the exercise capacity, p = 0.83).
Additionally, Table 3 shows the outcome distribution of four risk groups

Fig. 2 | Performance of the LEPModel at the local patch level. The LEPmodel was
evaluated on test subjects from the COPDGene cohort with high-dose CT scans
from phase 1 to phase 2 (P1P2) and phase 2 to phase 3 (P2P3).We also evaluated the
model robustness in 41 participants with low-dose CT scan from Phase 2 to Phase 3.

ROC curves for the detection of local emphysema progression. Local emphysema
progression was defined as more than 5% of the pixels within a local patch transi-
tioning from tissue (CT density > -950 HU) to air (CT density <=-950 HU). LEP
Local Emphysema progression, E Emphysema measured at baseline.
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defined according to the quartiles Q1 = 0%–25%, Q2 = 25%–50%,
Q3 = 50%–75%, and Q4 = 75%–100%.

Survival analysis
Lastly, we evaluated the prognostic utility of the LEP risk score by con-
ducting a survival analysis. Kaplan-Meier estimatorwas utilized to delineate
survival trajectories, and the Cox proportional hazard model assessed the

significance of the risk stratification. Adjustments in the Cox model
accounted for an array of covariates measured at baseline including age,
gender, race, emphysema, body mass index (BMI), total lung capacity
(TLC), smoking status, andpack-years of smoking.A second survivalmodel
included those covariates and FEV1.

As depicted in Fig. 4a, our analysis within the COPDGene test cohort
(P1P2, n = 3728). revealed distinct survival trajectories that paralleled the

Fig. 3 | Illustration of the proposed LEP Activity Maps and LEP Risk Score
distributions. a LEP Activity Maps for four subjects with different degrees of
severity. The model’s prediction (i.e., LEP activity map) is plotted over the co-
registered CT scan in purple (bottom row), while the observed emphysema at
baseline is depicted in brown in the first row. The observed emphysema progression

based on the change in CT density of %LAA-950 between baseline and follow-up is
depicted in green in the second row. LEP: Local Emphysema Progression; EP:
Emphysema Progression. b Distribution of the LEP risk score on subjects at P1P2
stratify by Pre-COPD (excluding PRISm) and GOLD stages; and c by Low/High %
LAA-950.
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classification of patients with fast/slow Δ%LAA-950 progression and high/
low LEP risk. Notably, individuals presenting with high LEP scores or those
exhibiting a rapid increase inΔ%LAA-950 were associated with an elevated
risk of mortality when compared to their respective reference cohorts.
Hazard ratios were notably higher in these groups, with a hazard ratio (HR)
of 1.56 for high LEP scores and 1.37 for fast Δ%LAA-950 progression,
underscoring the predictive relevance of these biomarkers in survival out-
comes (refer to Fig. 4b and c). While smoking status exhibits a consistent

influence across both models, the LEP score emerges as a particularly sig-
nificant determinant in the context of emphysema progression and its
impact on mortality. Additionally, when the Cox model is adjusted for
spirometric measures, such as FEV1, the significance of LEP and Δ%LAA-
950 is lost (LEP score p value = 0.06 and Δ%LAA-950 p value = 0.22)
because the impact of spirometricmeasures onmortality is greater than that
of emphysema—particularly due to PRISm participants. However, in sub-
jects with high emphysema percentage, for example, %LAA-950 > 10%, the

Table 2 | Association between LEP Score, Δ%LAA-950, and various COPD outcomes over a 5-year period

LEP Score Δ%LAA-950

Outcomes Low Risk High Risk Diff. p value Slow Prog. Fast Prog. Diff. p value
(n = 3728) mean (std) mean (std) mean (std) mean (std)

FEV1/FVC @ P2 0.74 (0.04) 0.55 (0.10) −0.06 <0.001 0.72 (0.08) 0.59 (0.12) −0.07 <0.001

Change of FEV1 [ml/yr] −34.80 (8.52) −46.51 (9.30) −8.15 <0.001 −38.24 (9.85) −38.55 (10.5) 3.74 0.03

Dlco @ P2 19.33 (4.12) 15.28 (5.98) −2.07 <0.001 18.93 (4.60) 16.13 (5.74) −1.62 <0.001

Change dist. walked [feet] −127.4 (48.3) −168.0 (65.7) 31.32 0.06 −131.6 (52.6) −158.3 (59.6) −4.46 0.83

Change MMRC 0.01 (0.11) 0.19 (0.12) 0.04 0.49 0.01 (0.12) 0.17 (0.14) 0.10 0.04

This table summarizes the associations and contrasts between low and high-risk groups based on the LEP score, as well as between slow and fast emphysema progressors as defined by changes in
measured%LAA-950, a quantitative metric for emphysema progression. The association was measured by fitting a linear model adjusted by the following covariate variables measured at baseline: age,
gender, race, %LAA950, BMI, TLC, smoking status, and packs per year. Key COPD outcomes examined include the FEV1/FVC ratio, annual change in FEV1, DLCO measurements, changes in exercise
capacity (distance walked), and modifications in the MMRC score. Adjusted covariance means, and the ordinary least square difference (Diff.) are shown for each group. Statistically significant results
(p-value ≤ 0.05) are in bold.

Table 3 | Association between LEP Score, Δ%LAA-950, and various COPDOutcomes over a 5-year Period according to the risk
groups defined by the quartiles Q1 = 0%–25%, Q2 = 25%–50%, Q3 = 50%–75%, and Q4 = 75%–100%

Outcomes
(n = 3728)

LEP Score, mean (std) Δ%LAA-950, mean (std)

Q1 Q2 Q3 Q4 p-val Q1 Q2 Q3 Q4 p-val.

FEV1/FVC @ P2 0.8 (0.1) 0.7 (0.1) 0.7 (0.1) 0.5 (0.2) <0.001 0.7 (0.1) 0.7 (0.1) 0.7 (0.1) 0.6 (0.2) <0.001

Change of FEV1
[ml/yr]

−30.3 (46.0) −35.8 (48.6) −40.9 (47.7) −46.2 (48.7) <0.001 −41.5 (48.0) −39.2 (49.1) −33.5 (47.1) −39.0 (48.0) 0.004

Dlco @ P2 18.8 (5.2) 19.7 (5.6) 19.7 (6.2) 15.0 (7.0) <0.001 19.1 (6.3) 19.1 (5.7) 19.1 (6.0) 15.9 (6.8) <0.001

Change dist.
walked [feet]

−102.7
(343.4)

−139.5
(360.2)

−141.2
(356.3)

−173.2
(370.7)

0.001 −138.9
(347.2)

−118.8
(360.6)

−139.1
(335.9)

−160.1
(387.8)

0.111

Change MMRC −0.1 (1.4) 0.0 (1.2) 0.1 (1.1) 0.2 (1.2) <0.001 0.0 (1.0) −0.0 (1.3) 0.0 (1.2) 0.2 (1.3) <0.001

This table summarizes the associations and contrasts between low and high-risk groups based on the LEP score, as well as between slow and fast emphysema progressors as defined by changes in
measured %LAA-950.

Fig. 4 | Kaplan–Meier and Cox proportional-hazards analysis for high/low LEP
risk and fast/slow emphysema progression. a Kaplan–Meier survival curves
demonstrating the differential impact of Δ%LAA-950 and LEP score categories on
the survival of patients in the COPDGene study (n = 3728). Patients were stratified
into two groups based on Δ%LAA-950 (slow and fast emphysema progression) and
into two groups based on LEP scores (low and high risk). Forest plot of the Cox

model for Δ%LAA-950 (b) and LEP score (c) adjusted for baseline covariates,
showing the log(HR) formortality risk associatedwith fast progressors and high-risk
after adjustment for clinical and demographic factors. Both models underscore the
enhanced risk of mortality associated with higher LEP scores and faster emphysema
progression, independent of other risk factors.
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impact of emphysema on mortality increases. This is illustrated in Fig. 5b
where the LEP score emerges as a particularly significant determinant of
mortality impact when stratified by emphysema severity. Additionally,
SupplementaryFig. 4presents a survival analysis restricted to thepre-COPD
group (excluding PRISm) and GOLD 1–2 stages, in which the LEP score
remains significantly associated with mortality even after adjusting the cox
model for FEV1. This may appear to contrast with earlier analyses sug-
gesting that the prognostic performance of our model declines as emphy-
sema severity increases. Nevertheless, this can be explained by considering
both the structural limitations in advanced disease and the shifting con-
tributions of different risk factors to mortality. As baseline emphysema
severity increases, the amount of preserved lung tissue available for pre-
dictiondecreases. Severely emphysematous regions are less likely toundergo
further progression, meaning they contain less information about future
structural decline. As demonstrated in the local prediction analyses, this
reduction in viable tissue reduces the model’s precision for predicting local
emphysema progression, with the mean absolute error (MAE) increasing
from 1.6% in Prism participants (mean emphysema = 1.51%) to 10.7% in
GOLD4 participants (mean emphysema= 23%) (section “Local Prognostic
ModelPerformance andReproducibility”).Despite this decline inpredictive
precision, the LEP score remains associated with mortality in individuals
with greater emphysema burden, because the relative contribution of
emphysema to mortality increases as its extent grows. While spirometric
measures (such as FEV₁) generally have a stronger influence on mortality
than emphysema alone, in subjects withmore extensive emphysema—such

as those with %LAA-950 greater than 10% (mean emphysema values for
GOLD 3 and GOLD 4 in COPDGene are 13% and 23%)—emphysema
becomes a more prominent driver of mortality risk. In this setting, the LEP
score continues to reflect clinically meaningful risk, even if its ability to
predict future tissue destruction is reduced. To further support this point,
Fig. 6 presents the association between the LEP score and mortality speci-
fically in GOLD 4 participants. To ensure sufficient statistical power, we
defined the at-risk population as those with LEP scores above the mean,
identifying 42 high-risk individuals out of 84 GOLD 4 participants. Using a
higher percentile threshold (e.g., the 70th percentile) would have reduced
thenumber of events and limited the powerof theCoxproportional hazards
model.As expected, the results show that theLEPscore retains its prognostic
value, while FEV₁ loses its statistical significance—likely due to reduced
power—despite maintaining a high hazard ratio. These findings affirm the
prognostic significance of the LEP score in identifying patients at a higher
risk of adverse outcomes, thus offering a potent tool for personalized patient
management and intervention strategies.

Discussion
In this study,we introduce anovel LocalizedEmphysemaProgression (LEP)
model, utilizing a temporal autoencoder with an attention mechanism to
define and evaluate image embeddings, or “deep features”, as potential tools
for use in more advanced prognostic models to predict COPD outcomes,
such as changes in %LAA-950. Our model uses baseline CT images to
predict futureprogression, and it highlights thepotential of utilizingbaseline

Fig. 5 | Cox analysis of LEP risk and emphysema progression adjusted for cov-
ariates including FEV₁. Cox Proportional-Hazards analysis for high/low LEP risk
and fast/slow emphysema progression in (a) the COPDGene study (n = 3728) and
(b) on COPDGene participants with emphysema at baseline higher than 10%

(n = 576). The Cox model is adjusted for baseline covariates including FEV1,
showing the log(HR) formortality risk associatedwith fast progressors and high-risk
after adjustment for clinical and demographic factors.
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imaging data to anticipate disease trajectory. The LEP scoremay prove to be
an invaluable tool for monitoring disease progression and informing
treatment strategies for patients with COPD. The study’s findings also open
avenues for future research. For example, this approach can be integrated
with follow-up exams in future models to enhance monitoring capabilities
and treatment planning, representing a significant step towards more
sophisticated and practical prognostic tools in clinical settings.

Our intent is not to provide themost finely tuned prognostic model or
an activity map of lung destruction. The necessity of ourmodel being a true
auto-encoder is crucial; it must have a bottleneck to ensure that the encoded
information of the evolution of emphysema progression (EP) is entirely
encapsulated in the latent space (image embeddings) rather than being
distributed across multiple layers. The U-Net architecture does not adhere
to this requirement, as information flows through the skip connections at
various levels, which coulddilute the purpose of encodingprogression into a
compact latent representation.

The model’s ability to accurately predict 5-year local emphysema
progression from baseline CT scans underscores its potential in early
identificationof patients at elevated risk. Its capacity to localize the evolution
of emphysema and detect subjects on a rapid progression trajectory is a
distinctive feature, offering invaluable insight not easily attained by other
methodologies30. However, to the best of our knowledge, there are currently
no existing models specifically designed to predict regional or lobar
emphysema progression without follow-up imaging, and therefore no
established baseline for direct comparison. We acknowledge this as a lim-
itation. Nonetheless, the proposed LEP model may serve as an initial
reference framework for future research aiming to develop and validate
standardized benchmarks. Establishing such benchmarks will be essential
for enabling comprehensive evaluation and comparison of emerging
methodologies in this field.

We propose an emphysema risk score—referred to as the LEP score—
by aggregating localized progressiondata generated byourmodel to provide
a subject-level risk score. A key finding of our study is that high LEP scores
are associated with both increases and decreases in %LAA-950 over five
years, reflecting the underlying heterogeneity of COPD phenotypes. Spe-
cifically, a high LEP score accompanied by an increase in %LAA-950 is
indicative of true emphysema progression, likely driven by localized par-
enchymal destruction and consistent with biological mechanisms such as
protease-antiprotease imbalance, oxidative stress, and chronic inflamma-
tion. In contrast, a high LEP score accompanied by a decrease in%LAA-950
may reflect airway-predominant phenotypes or PRISm, non-parenchymal
remodeling, underlying inflammation, or technical factors such as varia-
bility in lung inflation during image acquisition. This seemingly counter-
intuitive finding is consistent with emerging theories that emphasize disease
activity and unregulated inflammatory responses as central to emphysema

progression24,31. In such cases, increased inflammation may transiently
elevate lung density, thereby reducing %LAA-950 and potentially masking
true structural decline on longitudinal imaging32,33. Notably, the LEP score
appears capable of identifying these individuals despite misleading imaging
trends. Integrating additional clinical and imaging biomarkers—such as gas
trapping, airway wall thickness, and spirometry—may further improve the
interpretability of LEP-based predictions and enhance our ability to dis-
tinguish between emphysema- and airway-predominant phenotypes.

Our findings also suggest that in high-risk individuals, a lung
function decline which is more pronounced in high-risk groups identi-
fied by the LEP score compared to slow and fast progressors identified by
Δ%LAA-950 (−46.1 vs.−38.2 and−38.5). While some changes may not
indicate clinical improvement per se, they can reflect an underlying trend
toward worsening condition—such as dyspnea—particularly when
evaluated across groups stratified by risk. For example, in Table 2, the
mMRC change from Q1 to Q4 of the LEP score (from −0.1 to 0.2)
suggests a progressive increase in perceived breathlessness. This supports
the notion that higher LEP scores are associated with a trajectory of
worsening respiratory symptoms, even if the magnitude of change falls
below the MCID threshold. These findings underscore the nuanced
capability of our model in differentiating progression trajectories in
COPD patients and highlight the potential of the LEP model in recog-
nizing patients who might benefit from early interventions.

Modelperformancedeclinedwith increasingCOPDseverity asdefined
by GOLD stages. Although this may appear counterintuitive, advanced
COPD—particularly at GOLD 4—is characterized by extensive par-
enchymal destruction andmarkedly reduced lung tissue density. This loss of
density limits the information available for prediction, making it more
difficult for themodel to correlate LEP scores with emphysema progression.
The non-linear trend in correlations across disease stages reflects the pro-
gressive degradation of lung structure and the resulting loss of distinct
density patterns essential for accurate predictions. Despite the reduced
predictive precision at later stages, the LEP score remains associated with
mortality in individuals with greater emphysema burden, as the impact of
emphysema on mortality increases with disease extent. To enhance model
performance in advanced disease, we are investigating an extension of our
local foundationalmodel to a fully 3D representationof the lung,whichmay
better capture the spatial complexity of severe emphysema.However, such a
transition would require a larger sample size to avoid overfitting and ensure
generalizability.

Fast-slow and high-low risk categories for emphysema progression
were initially defined at the 70thpercentile of participants in the “LEP score”
test, though alternative thresholds are possible. We decided to use this
percentile rather than the median value (50%) for two main reasons: (1) to
define apopulation at higher risk than just themeanvalue and (2) todefine a

Fig. 6 | Kaplan–Meier and Cox Proportional-Hazards analysis for high/low LEP risk in COPDGene participants with GOLD stage 4 (n = 84).
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population with a reasonable prevalence of 30%. However, the 75th per-
centile with a lower prevalence (25%) is also a valid approach.Using the 75th

percentile we observed a decline in the model’s performance by approxi-
mately 3% due to the reduced prevalence of subjects in the fast-low and
high-low risk categories for emphysema progression.

Effects of variability, such as CT scanner type, acquisition and
reconstruction, will influence our method to predict emphysema pro-
gression. Our findings indicate that reduced dose impacts the accuracy of
the method by approximately 10%. To address the variability introduced
by different CT scanner types, we trained our model using a multicenter
cohort. This approach helps to mitigate this issue by encompassing a
diverse range of scanner types and settings, enhancing the generalizability
and robustness of our model across different clinical environments. The
method used for co-registration was specifically designed to be robust
against large deformations, with an error below 1.3 mm on the DIR-Lab
dataset (expiration to inspiration)34. Additionally, our registration is
inherently less challenging since we are aligning longitudinal inspiration
images, where the degree of lung volume change is less significant than in
expiration to inspiration. Evaluating all possible confounders is challen-
ging, as it would require scanning several patients with varying COPD
statuses on different scanners and using different kernels. To overcome
this limitation, we studied the effect of high and low doses to provide an
idea of the impact of these confounders on our method. The data pre-
sented on reproducibility under significant changes in protocol show that
the model is robust to changes in noise. To further investigate the impact
of variability due to CT scanner type, we evaluated the model’s perfor-
mance across different scanner brandswithin theCOPDGene cohort. The
correlation between the LEP score and Δ%LAA-950 varied by approxi-
mately 12% relative to the correlation computed across all COPDGene
participants. However, because the same subjects were not scanned across
different scanner manufacturers, definitive conclusions regarding the
effect of scanner type on variability cannot be drawn. Nonetheless, this
comparison provides useful insights into the potential influence of
scanner-related variability on model performance.

Clinical implications and integration into practice
Risk Stratification and Prognosis: The LEP score offers an objective,
imaging-based biomarker for identifying individuals at elevated risk of
emphysema progression without the need for longitudinal studies. This is
particularly important in early stagesofCOPD(GOLD1–2) andPre-COPD
(excluding PRISm), where traditional spirometry may not fully capture the
risk of structural lung damage. By quantifying the likelihood of progression
before significant lung function decline occurs, the LEP score enables early
identification of high-risk individuals who may benefit from closer mon-
itoring and earlier intervention.

PersonalizedTreatment Planning: The LEP activitymaps generated by
our model offer valuable insight into the spatial distribution of emphysema
progression, thus offering a more comprehensive understanding of the
disease. These maps could help clinicians understand lobe-specific patterns
of disease progression, potentially enabling thedevelopment of personalized
treatment strategies before irreversible damage occurs—for example, lobe-
targeted interventions such as lung volume reduction. Additionally, our
model opens new avenues for the mechanistic understanding of emphy-
sema progression through imputed phenotypes. While new molecular
platforms, such as spatial transcriptomics, are offering unique insights into
the mechanisms underlying various diseases35 destructive nature of long-
itudinal sampling. However, our model circumvents this limitation by
providing an alternative, non-invasive means of assessing emphysema
progression, leveraging spatial data without the need for repeated lung
biopsies.

Clinical Trials and Drug Development: In research and drug devel-
opment contexts, the LEP score could serve as an enrichment tool for
clinical trials targeting emphysema-modifying therapies. By selecting par-
ticipants with higher predicted progression rates, trials can improve statis-
tical power and evaluate therapeutic effects more efficiently. Additionally,

the score could potentially serve as a surrogate endpoint to assess treatment
response in early-phase studies.

While our study benefits from a large sample size that includes a
substantial proportion of African American participants (30%), other racial
and ethnic groups remain underrepresented. Moreover, our replication
cohort consists predominantly of Non-Hispanic White individuals. These
factors may limit the generalizability of our findings, particularly to popu-
lations not adequately represented in our training and validation cohorts.
Future studies should aim to include more diverse populations to ensure
equitable applicability of predictive models across all patient groups.

In addition, while our findings support the clinical potential of the LEP
score, it is important to note that the model was trained and evaluated
primarily on cohorts of smokers. As such, its applicability to non-smoker
phenotypes—such as those observed in individuals with Alpha-1 anti-
trypsin deficiency or biomass exposure—remains to be validated. Ensuring
relevance across the full spectrum of COPD phenotypes will require
extending model development to include a broader range of exposure
profiles and clinical characteristics.

Variability introduced by technical factors—such as differences in CT
scanner type, acquisition protocols, and reconstruction algorithms—may also
influence our model’s ability to predict emphysema progression. Addressing
these sources of heterogeneity will be critical for translating our findings into
clinical practice—for example, through image harmonization techniques.

The heterogeneity and often non-linear nature of COPD progression
underscore the importance of incorporating both imaging and functional
markers when interpreting model predictions. Future work will aim to
further investigate the biological mechanisms underlying our findings by
integrating additional imaging features—such as gas trapping and airway
wall metrics—alongside molecular and clinical data, to more precisely
characterize the pathophysiological basis of the model’s predictions across
diverse COPD phenotypes. Expanding the size and diversity of the study
population will also create opportunities to extend our local foundational
model to a fully 3D representation of the lung. This advancement could
enhance predictive accuracy, particularly in individuals with advanced
disease (e.g., GOLD 4), by capturing the complex spatial patterns of par-
enchymal destruction that are often missed in lower-dimensional models.

Methods
Local emphysema progression (LEP) definition and ground truth
generation
The method proposed was designed to identify local deep phenotypes by
learning the local emphysema evolution according to the percentage of low-
attenuation area (%LAA-950). In this way, we defined the Local Emphy-
sema Progression (LEP) as those pixels that change from lung tissue at
baseline CT scan to air at a 5-year follow-up co-registered CT scan, i.e. the
pixel density decays from a value of > −950 HU at baseline to a value of
≤−950HUat 5-year follow-upco-registeredCTscan. SupplementaryFig. 5
shows an example of the LEP definition where the pixels that change from
lung tissue at baseline (a) to air (b) areplotted in greenover the follow-upco-
registered CT scan (c).

Deep local emphysema progression model
The method proposed for predicting the local evolution of the emphysema
at 5-years combines a local foundational model of density evolution with a
multilayer perceptron (Fig. 1)36. The local FM is fitted to encode useful
information about the evolution of the local density patterns at a 5-year
follow-up co-registered CT scan. In particular, the local FM is trained in a
neighborhood of 32 by 32 pixels (0.64 mm2) to reconstruct the same
neighborhood in a 5-year follow-up co-registered CT scan. Using 2D pat-
ches instead of 3Dpatches allowed us to leverage a larger amount of training
data, which is crucial for building a robustmodel. The trade-off between the
complexity of predicting local 3D volumes and the training data require-
ments was carefully considered. Given the current computational con-
straints and the complexity of 3D reconstruction over a five-year period, we
determined that a 2D approach would be more effective and stable for our
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purposes. It is worth noting that our results based on a 2D local autoencoder
are quite promising. Once the foundational model was successfully trained
(examples of the reconstruction can be seen in Supplementary Fig. 2), a
multilayer perceptron (MLP) was trained to regress the local emphysema
progression or LEP, according to the%LAA-950. This process is carried out
using a conditional strategy in three stages, i.e., for each batch in a particular
epoch, the whole model is fitted in three sequential steps as follows:
– First, the MLP is fitted with the embeddings from the local FM, i.e., the

output of the encoder (see Fig. 1).
– Second, the encoder part of the local FM is fine tunned to improve the

embeddings representation of emphysema progression. In this step, the
decoder part of the FM and the MLP model are not trained; they
remain fixed.

– Third, the local FM is re-trained to maintain an acceptable local
reconstruction. In this step the MLP model remains fixed.

The conditional training strategy allows the LEP model to keep a
balance between encoding useful information of the emphysema progres-
sion into the embeddings, z, the local density reconstruction in the follow-up
CT scan, and the predicted LEP. The reconstruction loss function, i.e., the
local FM loss, is defined to incorporate information about the emphysema
measured at the 5-year follow-up, the emphysema progression and the
emphysema subtypes measured at baseline. The rationale for introducing
emphysema subtyping is to acknowledge that different subtypes exhibit
distinct patterns of progression based on their severity. The subtype masks
are pre-computed at the pixel level using a local histogram-based emphy-
sema (LHE)method described in refs. 37,38. These masks are only used for
computing the loss function and are not involved in the inference process.

Model Architecture
TheMLP is defined as a sequence of four dense blockswith 300neurons and
one with 200 neurons. Each block consists of a dense layer, a batch nor-
malization and a dropout strategy with a ratio of 40%. According to the
results described in ref. 39wedecided to use the swish function as activation.
The output of the MLP corresponds to a sigmoid function, and the mean
absolute errorwas proposed as a loss function to regress the LEP. In contrast
to the simplicity of theMLPmodel, the autoencoder proposedmakes use of
twoKernel SharingAtrous Convolution (KSAC)26 with rates of 2 and 4, and
five Convolutional Block Attention Modules (CBAM)25 with different
strides. These attention blocks are critical for capturing detailed information
about emphysema progression and lung density decline. Thismechanism is
not required in the decoder path because our primary objective is not image
reconstruction or segmentation but rather encoding useful information
about density evolution and emphysema progression. This design choice
allows us to focus on capturing detailed information about the formation
process of parenchymal destruction without the influence of global features
that could bias the results and reduce interpretability. A detailed description
of this architecture can be found in the Supplementary Table 1. Like the
MLP, the local FM uses the swish function as activation for all the layers
except for the embeddings, z, and the output, where a linear activation is
used. After each convolution, including those in KSAC and CBAM, a batch
normalization strategy is applied.

Emphysema subtype specific loss function
The reconstruction loss function, i.e. the FM loss, is defined to incorporate
information about the local emphysemameasured at the 5-years follow-up,
its subtypesmeasured at baseline and its progression. Let y(i) a patch of 32 by
32 pixels in a 5-years co-register follow-up scan, and ŷ (i) its predicted
reconstruction. Then, the FM loss is defined as follows:

LFM ¼ 1
N

P
j λ0Lrjjlep y ið Þ; ŷ ið Þ� �þ λ1Lrjje y ið Þ; ŷ ið Þ� �þ λ2LrðyðiÞ; ŷðiÞÞ

þ λ3Lrjjlung y ið Þ; ŷ ið Þ� �

þ λ4Lrjjepr y ið Þ; ŷ ið Þ� �þP
s λ5SwðsÞLrjjs y ið Þ; ŷ ið Þ� �

ð1Þ

where Lr corresponds to the mean absolute error

Lr y; ŷ
� � ¼

X

j

yj � ŷj

�
�
�

�
�
� ð2Þ

And Lrjjð:Þ corresponds to the mean absolute error of the pixels with
emphysema progression (Lrjjlep), emphysema at 5-year (Lrjje), lung tissue
(Lrjje), i.e., > -950HU, pixels predicted as emphysema (Lrjje), i.e. ≤ -950HU,
or pixels with a particular emphysema subtype (Lrjjs).Wepropose to use the
emphysema subtype37,38 to weight each patch, y ið Þ, according to the weights,
Sw, as follows: 0.4, 0.8, 1, 0.3, 0.2 and 0.2 for paraseptal emphysema,
centrilobular emphysema (mild, moderate, and severe), panlobular
emphysema and normal parenchyma respectively. The notion for
introducing emphysema subtype is to acknowledge that different subtypes
have different patterns of progression based on their severity. The weights
were set a priori to reflect that severity, sodifferent local patches belonging to
different emphysema subtypes would be a different evolution.

Training
Ourmodelwas trained using 6.888millon of lung patches of 32 by 32 pixels
(0.64 m2) from 984 COPDGene participants randomly selected from our
cohort (only 7000 patches by participant) keeping a balance between
neighborhoods with a high/low number of pixels with emphysema pro-
gression (high > 25%). A z-score normalization was applied to the lung
regions according to the mean and std values of the training dataset. The
optimization was performed using a stochastic gradient descent (Adaptive
MomentEstimation)with a learning rate of 5×10−5 for pre-training training
the AE, and the learning rates used in the conditional training strategy were
set to 1 ×10−4, 1 ×10−5, and 1 ×10−5 for theMLP (stage 1), the encoder (stage
2) and the AE (stage 3) respectively.

Data augmentation was used to teach the model the desired
invariance and robustness properties. Heterogeneity in the neighbor-
hoods is needed for the network to learn flips and rotation. With this
intention, the input of the network was randomly deformed by means of
spatial flips (both axes) and a rotation of ±90°. One or more deformation
can be sequentially combined during the training and no interpolation is
needed.

Local emphysema progression activity map
The inference of the LEP activitymap is done by sliding the encoder plus the
MLP across the whole lung with a stride of 4 pixels and aggregating the
predicted probabilities. Finally, the local emphysema activity map is nor-
malized according to the overlapping due to the sliding process.

Local emphysema progression (LEP) risk score
The LEP risk score is defined according to the following procedure: (1) the
local emphysema progression at 5-year is estimated across the entire lung
parenchyma with a stride of 4 pixels using the temporal encoder; (2) each
region is defined as stable or progressing according to the threshold that
maximizes the Youden’s index on the training population (probability
th = 0.158); (3) The LEP score is computed as the number of regions within
the lung parenchyma predicted to progress at 5 years, as defined in (2),
normalized by the total number of regions in the lung. This value ranges
from 0, indicating that no regions are predicted to progress, to 1, indicating
that all regions are predicted to progress. It represents the proportion of lung
tissue at risk of future emphysema progression.

Data and statistical analyses
Multivariate linear models were used to explore the association of the
LEP risk score and the change of the %LAA-950 (Δ%LAA-950) in
relation to various COPD outcomes. The linear models were adjusted
using baseline covariate variables commonly applied in studies of
emphysema progression, such as the one described in10: age, gender, race,
emphysema, BMI, TLC, smoking status, and packs per year. Results were
reported as the adjusted covariance means and the ordinary least square
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difference (Diff.) for each group (low/high risk of LEP, and slow/fast
progressors according to Δ%LAA-950). Statistically significant results are
considered with p-value ≤ 0.05 on a Student’s t-test. All data are pre-
sented as the mean (SD).

Data availability
The data that support the findings of this study are not openly available
because they are the property of the COPDGene study. However,
researchers can request access to the data upon request.

Code availability
The source code for deep-phenotypes detection and validation will be
incorporated into the Chest Imaging Platform (www.
chestimagingplatform.org) –the open-source software library that we
have developed in our group over the last ten years and continue to support.
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