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Digital twin models for predicting
venetoclax and azacitidine-induced
neutropenia inpatientswithacutemyeloid
leukemia
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Therapeutic toxicity, which can be life-threatening, presents amajor challenge in treating patientswith
acute myeloid leukemia (AML). Medical digital twins, which are virtual representations of patient
disease, have the potential to forecast disease progression and simulate potential treatments. Using
neutrophil counts and blast percentages, we developed mechanistic models to predict toxicity
(neutropenia) in AML patients receiving combination venetoclax and azacitidine treatment. We
identified a best-fitting model, though patient-specific accuracy was highly variable. To address this
variability, we investigated subsets of patients based on their accordance with model assumptions,
and were able to identify features predictive of model fit. In addition, we found that continuous
updating over time improves model accuracy. The model evaluated in this study could be further
validated in a larger clinical setting and may support a digital twin for decision making in forecasting
therapeutic toxicity of venetoclax and azacitidine treatment.

Acute myeloid leukemia (AML) is a hematological malignancy with high
molecular heterogeneity and varied responses to treatment1,2. Resistance to
current standard therapeutic regimens and toxicity is an obstacle for the
successful treatment of patients with AML3–5, who have a low 5-year overall
survival rate (32.9% in the US from 2015–2021)6. Common adverse events
(toxicity) in AML treatment include neutropenia and thrombocytopenia7.
Neutropenia is often accompanied by recurrent infections,whichmay cause
physicians to modify or discontinue treatment. Neutropenia, which is the
main focus of this work, can be caused by AML, due to the disruption of
healthy bone marrow function, as well as by AML treatment8. Severe neu-
tropenia is defined as a circulating neutrophil count of less than 0.5 * 109

cells per liter9. Recently, the combination of the BCL-2 inhibitor venetoclax
with the hypomethylating agent azacitidine has become the standard of care
for AMLpatients unfit for intensive chemotherapy. However, the incidence
of febrile neutropenia is higher in patients treated with venetoclax-
azacitidine compared to those receiving azacitidine monotherapy7. Pro-
longed neutropenia often necessitates modifications or discontinuation of

the treatment7. To improve treatment outcomes, enhanced disease mon-
itoring and adjustable treatment schedules are needed.

A clinical trial (VenEx, NCT04267081)10,11 has been carried out by the
Finnish AML Group with comprehensive molecular and clinical data
generated for patients treated with venetoclax and azacitidine. This trial
includes two groups of patients: patients with de novo AML who were
ineligible for standard chemotherapy, and patients with previously treated
secondary AML or recurrent or relapsedAML. A key feature of this clinical
study is that beyond the measurement of genetic information at diagnosis,
the clinical study provides longitudinal measurements of clinical features
such as blast percentages, leukocyte and neutrophil counts, along with
corresponding treatment schedules and drug dosages. This dataset offers a
uniqueopportunity todevelopandfit patient-specificmathematicalmodels,
and to incorporate patient response and adverse events over time, providing
a rich resource to develop prototypes for AML digital twins.

The core components of a digital twin system are a set of predictive
mathematical models that are virtual representations of the structure,
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context, andbehavior of anatural, engineered, or social systems12,13.Adigital
twin model is continuously updated with data from its physical twin, and
has a predictive capability and the ability to inform decision-making12,13. As
applied to medicine, the digital twin is a virtual representation of a patient’s
disease that is updated using new patient data, for example fromwearables,
medical devices, diagnostic tests, and electronic health records, to adjust
treatment, monitor response, and track lifestyle modifications14,15. This
enables the prediction of disease progression, optimization of care delivery,
and improvement of outcomes16. Digital twin examples from the healthcare
domain include an artificial pancreas capable of forecasting hypo- and
hyperglycemic events17,18, a chronic wound management system19 and a
predictor for neurocardiac modulation20. Many other examples are pro-
vided in review papers21.

When constructing disease digital twins, key decisions include the
choice of virtual representation, model construction, and the method of
model update with new patient-specific data. Patient-specific models are a
key potential benefit of medical digital twins for diseases such as cancer,
where significant patient to patient heterogeneity can confound treatment
selection. In the context of AML, blast percentages and neutrophil counts
are critical clinical measurements to estimate the disease progression and
treatment toxicity, and thus models that incorporate these measurements
are advantageous as components in digital twins for AML patients for the
goal of predicting toxicity or disease progression. Many AML models have
been developed, such as the models of Stiehl et al. describing the growth of
healthy hematopoietic stem cells and leukemic stem cells22,23, the models of
Jost et al. for the effects of cytarabine in AML treatment on white blood cell
levels24,25, and the models for AML treatment and progression from Banck
et al.26 and Hoffmann et al.27 These models are semi-mechanistic and
employ ordinary differential equations (ODEs). They are a good choice for
thedigital twin system, as they can incorporate knownmechanisms inAML,
can be readily adapted to the current context (blast percentage, neutrophil
counts and patient-specific modeling), are able tomake predictions beyond
the data acquisition timeframe, and have computational runtimes that are
compatible with use in a clinical setting. Other models in the literature
involve hematopoiesis, leukemia, and chemotherapy dynamics and are
described by stochastic systems, partial differential equations, or delay dif-
ferential equations28–30.

In thiswork, we implementedODE-based dynamicalmodels as part of
an AML digital twin system tomonitor and predict the toxicity (in terms of
neutropenia) resulting from treatment with venetoclax and azacitidine and

from AML progression. The dynamic models were fitted on longitudinal
measurements (both neutrophil counts and blast percentages) from the
VenEx clinical trial. Themodels showedutility in both representingpatterns
present in the neutrophil/blast trajectories and in predicting future trajec-
tories for neutrophil counts during the course of venetoclax/azacitidine
treatment. In addition, we identify the clinical features that are most pre-
dictive of the ability of models to fit the data. These models provide key
elements for a future AML digital twin system.

Results
Overview of the mathematical models
The models were primarily adapted from the mathematical models devel-
oped by Jost et al.24,25, which were in turn adapted from a model developed
by Friberg et al. in 200231. The Jost et al. models investigated individualized
predictionofwhite bloodcell (WBC)countdynamicsduring treatmentwith
cytarabine inAML24,25. In thiswork,wemodifiedandextended thesemodels
to predict blast percentage and neutrophil counts during the treatment of
venetoclax and azacitidine using time course measurements for AML
patients in the VenEx clinical trial (NCT04267081)10,11. This trial includes
two groups of patients: patients with de novo AML who were ineligible for
intensive chemotherapy, and patients who had recurrent, relapsed, or pre-
viously treated secondary AML. Data from this trial include treatment
schedules for the administration of venetoclax and azacitidine, and long-
itudinal neutrophil and bone marrow blast measurements.

We explored a set of models which varied in three ways: (1) how drug
effects are represented, (2) what affects neutrophil populations, and (3) how
blast growth is modeled (see columns in Table 1). Figure 1a illustrates the
model components and interactions in the models. These are semi-
mechanistic models that aim to simulate the effect of venetoclax and aza-
citidine on the percentage of blast cells in the bone marrow and neutrophil
counts in circulating blood. The key assumption of all of the models is that
venetoclax/azacitidine treatment inhibits the production of neutrophils by
inhibiting the proliferation of healthy hematopoietic cells. Another
assumption shared by some of the models is that blasts in the bonemarrow
also inhibit the proliferation and differentiation of healthy hematopoietic
cells. The three components of the models are described below.

Drug effects were modeled using two different approaches. The
first approach involves a simple proportional effect during venetoclax
and/or azacitidine treatment cycles. For venetoclax, the drug effect is
constant during the treatment cycle and proportional to the drug
dosage, and zero outside the treatment cycle. For azacitidine, the drug
effect is activated and proportional to the dosage for a portion of each
day during the treatment cycle to represent the subcutaneous injection
and rapid decay, and zero outside the treatment cycle. The second
approach involves pharmacokinetic models of both drugs. The vene-
toclax component was based on the three-compartment model of Dave
et al.32, with the parameters set to the population medians from this
model. Drug administration is modeled with a single oral dose per day
of the treatment cycle. The azacitidine component is a one-
compartment model based on the parameters of Macbeth et al.33.

For theneutrophil component,we startedwith themodel of Jost et al.24,
which has three compartments representing stages of hematopoiesis—
healthy proliferating cells, transitional cells, and white blood cells in circu-
lating blood. We used neutrophils in place of circulating white blood cells.
The first compartment contains proliferating cells in the bonemarrow (that
is, cells capable of self-renewal, including hematopoietic stem cells and
granulocyte progenitor cells, the latter of which are known to be negatively
affected by venetoclax34). Transitional cells represent precursor cells com-
mitted to neutrophil fate. In some models, we also added components to
represent inhibitory effects of leukemic blasts on neutrophil production—
either a direct inhibition effect where high blast counts inhibit transition
through theneutrophil lineage, or a carrying capacity effectwhere there is an
inhibition effect dependent on the sum of healthy proliferating cells and
blasts (based on themodel of Stiehl et al.18).We included these components
after observing a negative correlation between neutrophil count and blast

Table 1 | Overview of mathematical models

Model Drug component Neutrophil
component

Blast component

M1 Pharmacokinetic Baseline drug
effect model24

Baseline model for
leukemic cells25

M1a Pharmacokinetic Carrying
capacityc

Carrying capacityc

M1b Pharmacokinetic Direct inhibitionb Carrying capacityc

M1b_w Pharmacokinetic Direct inhibitionb Interpolated datad

M1c Pharmacokinetic Direct inhibition Logistic growth

M2a Simplifieda Baseline drug
effect model

Baseline model for
leukemic cells

M2b Simplifieda Direct inhibitionb Carrying capacity

M2c Simplifieda Direct inhibitionb Logistic growth

M2d Simplified, venetoclax only,
same effects on blasts and
healthy cells

Direct inhibitionb Logistic growth

M2b_w Simplifieda Direct inhibitionb Interpolated datad

aThe drug effect is proportional to its dosage (or 0 when not in treatment).
bBlast cells inhibits neutrophil lineage.
cCancer and normal cells compete for space as there is a maximum number of cells in the bone
marrow.
dPopulation of blast cells are interpolated and used as inputs in the model of neutrophil lineage.
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Fig. 1 | Overview of the model and predictions. a A simplified overview schematic
of the ODE toxicity models. Each dotted line box represents a compartment; black
arrows represent growth or transitions, while red square-ended arrows represent
repression. The labels (1), (2), and (3) indicate the drug effect, healthy neutrophil,
and blast components, respectively (described in themain text). bAn example of the
results of fitting Model 2c (M2c) on the data for one patient. The blue curves
represent the model simulation, while the blue points represent measurements.

Green and Yellow colors represent azacitidine and venetoclax treatment cycles,
respectively. This example has a FVU (fraction of variance unexplained) of about
0.23. c The distributions of FVU values for different models after fitting to 71 AML
patients. d FDR-corrected p values for differences in FVU between models, calcu-
lated using a one-sidedWilcoxon signed-rank test, testing for the row being less than
the column in FVU.

https://doi.org/10.1038/s41746-025-01978-4 Article

npj Digital Medicine |           (2025) 8:596 3

www.nature.com/npjdigitalmed


percentage inmost patients. Previous experimental results also indicate that
leukemic blasts can inhibit healthy hematopoiesis28.

The blast component is based on another model of Jost et al.25, which
was in turn based on the “cytokine-dependent”model of Stiehl et al.22. This
component has two compartments, blasts in the bonemarrow and blasts in
circulating blood. We also implemented a blast component with a carrying
capacity based on the sum of healthy proliferating cells and leukemic blasts,
as well as a more explicit logistic growth model.

Table 1 lists all themodels that have been implemented and theirmain
characteristics. A detailed description of the models including their math-
ematical formulation can be found in the “Methods” section.

In order to establish a baseline comparison to our ODE-based dyna-
micalmodels, we also implemented a linear regressionmodel for predicting
the neutrophil count at the next time point given the measurements at the
current time point. This model takes into account the same basic assump-
tions as the ODE models, that both venetoclax treatment and blast levels
have an effect on neutrophil counts. Details about the regressionmodel and
its variables are described in the “Methods” section.

Model fitting results
First, we selected all patients with at least three treatment cycles for mod-
eling, resulting in 71 patients (see "Methods" for patient selection). For each
model, we attempted tofit themodel to eachpatient’s neutrophil counts and
blast percentages. Models were fit using a maximum a posteriori approach
in order to find the parameter estimates with the greatest log-likelihood of
the observed data. More details on model fitting are described in the
“Methods” section. An illustration of fitted results from one AML patient is
shown in Fig. 1b.

To compare the results across different models and patients, we used
twometrics: the fraction of variance unexplained (FVU),which is calculated
as 1� R2, where R2 is the coefficient of determination between the model
prediction and the observed data, and the root mean square error (RMSE),
which is calculated as the square root of the sum of squared differences
between the model prediction and the observed data (see the “Statistical
analysis” subsection in “Methods” for more details). Because patients have
different ranges for their neutrophil counts, FVU can be a better control
compared to using RMSE when making comparisons across patients.

Of all the models that we compared, including the linear regres-
sion model, M2c had the best performance across all patients for the
prediction of neutrophil counts based on the FVU (Fig. 1c), with a
median FVU of about 0.46. This model had a simplified (on-off) drug
component, a neutrophil component that included direct inhibition
from blasts, and a simplified blast model with logistic growth. M2b_w
had a similar overall performance asmodelM2c, with a non-significant
difference in performance. The other models had higher errors, with
the median FVU around 0.7–0.8. To compare performance across
models, we used a one-sided pairwise Wilcoxon signed-rank test of
FVUs for all patients with each pair of models followed by a false
discovery rate correction (Benjamini–Hochberg procedure). The
results showed that models M2c and M2b_w had significantly lower
FVUs compared to all other models (Fig. 1d). Results for RMSE
comparisons are shown in Supplementary Fig. 1. In terms of RMSE, we
found that M2c, M2b_w, and M1b_w had similar performances, and
were significantly better compared to other models. Comparing M2c
with the linear regression model, we found that M2c had significantly
lower FVU and RMSE (Supplementary Fig. 2). We used M2c for fur-
ther analyses in this paper. We expect that the M2c model could serve
as part of an AML patient digital twin, helping to forecast therapeutic
toxicity.

Patient characteristics affect model goodness of fit
Although theM2cmodel shows the highest accuracy among all the models
we investigated, the performance of the model varies greatly across patients
(Supplementary Fig. 3). In order to better understand why certain patients
had better model fit and to stratify patients who could be better represented

using different models, we investigated a number of clinical factors and
model assumptions, and built additional statistical models to predict ahead
of time whether or not our model would be a good fit for a given patient.

One of the most important assumptions behind the ODE models for
toxicity is what we call Assumption 1, which is that treatment with vene-
toclax and azacitidine causes neutrophil count to decrease during treatment,
while neutrophil counts will recover after the end of a treatment cycle. For
some of the models, another key assumption isAssumption 2, which is that
leukemic blasts have an inhibitory effect on the production of neutrophils.
This assumption is rooted in the fact that AML is known to cause neu-
tropenia, with inhibition by blasts being one potential mechanism35. Since
some of these assumptions are not necessarily true for all patients, we tested
whether these hypotheses are true for individual patients, and compared
model accuracy for groups of patients stratified by the hypotheses.

ForAssumption 1, operationalizing this hypothesis on the data, we say
thatAssumption 1 is true for a given patient if there is a positive correlation
between the time since the end of the last treatment cycle and the neutrophil
count. Looking at patients with enough data for ODE modeling (71
patients), we see that 73%of the patients have a positive correlation between
time-since-treatment and neutrophil count, with the average correlation
coefficient being 0.19 and themedian being 0.21 (Fig. 2a). Using a two-sided
binomial test, this percentage of patients is significant with p < 0.01.

ForAssumption 2, we stratify patients depending on whether there is a
negative correlation between the bone marrow blast percentage and the
contemporaneous neutrophil count for a given patient.Where data was not
available,weusedPCHIP interpolation to impute blast percentages. Because
of the potential noise introduced by interpolation, we also calculated this
correlation solely using matched neutrophil and bone marrow blast mea-
surements that were takenwithin a fixed timewindow of each other (2, 5, or
10 days). For the interpolated data, we see that 73% of patients have a
negative correlation between bonemarrow blast percentage and neutrophil
count (Fig. 2b). With a two-sided binomial test, again, this percentage of
patients is significant with p < 0.01. For the non-interpolated data, the
number ofmatchedmeasurements per patientwasmuch smaller, impeding
the ability to calculate correlations. Among the patients with more than 5
matched measurements, 67–70% of such patients (depending on matching
window) have a negative correlation between bonemarrowblast percentage
and neutrophil count, with p < 0.05 with a two-sided binomial test. Results
with different matching windows are shown in Supplementary Fig. 4.

Weexpected that for allmodels, the FVUwouldbe lower ifAssumption
1were true, and that the FVUwould be lower ifAssumption 2were true only
for the models that implement a direct inhibition component. Figure 2c
shows the FVU for eachmodel groupedbywhetherAssumption 1 is true for
each patient. This shows that the median FVU is lower whenAssumption 1
is true for almost every model, with a particularly pronounced effect for
M2c, the overall best-performingmodel. This is what we expected based on
the model structure and the data. However, as Fig. 2d shows, the FVU of
almost every model seems to be higher in the cases where Assumption 2 is
true, including the models with a direct inhibition component (M1b-c,
M2b-d). This could indicate that for these patients, the relationship between
blasts and neutrophils contain sources of variation that are not adequately
captured by the model structures.

Since the hypotheses are not fully adequate in predicting the goodness
ofmodelfit, we constructed a LASSO regressionmodel for predicting ahead
of time the goodness of fit with features that are available upon patient
intake, such as demographics, initial blood counts, and genomic/mutation
features. These results are shown in Fig. 2e, f. Our predictivemodel shows it
is possible to predict the model fit goodness using only the genomic and
clinical features (Fig. 2e). The key predictive features include the mutation
status of frequently mutated genes in AML such as NRAS, DNMT3A and
NF1, and chromosomal aberrations such as complex karyotype anddeletion
of chromosome 5q (Fig. 2f).

Wealso compared themodel goodness offit tovarious clinical features,
such as progression-free and overall survival time, and survival status at the
end of the trial. We found that patients with longer survival times tend to
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have somewhat worse model fit (Supplementary Fig. 5b, c). This suggests
that in surviving patients, there are significant factors affecting neutrophil
levels that are currently unmodeled.

Data frommultiple cycles improve predictions of toxicity
In a clinical setting, the utility of a digital twin model is in predicting
future patient trajectories with dynamic updating ofmodel parameters.
In order to test how the model would work in a digital twin setting, we
fit the model on some “training” cycles and tested it on the following
“test” cycles. We tested the model with between one and five training
cycles, and two test cycles, with all following cycles being considered as
“additional” cycles. There were a total of 33 patients who had sufficient
data (7 treatment cycles) for the train-test split. The clinical char-
acteristics for these patients are shown in Table 2. They tended to have
substantially longer survival and better drug responses than the overall

set of patients. Moreover, most of these patients go into a remission
period and some experience relapse (Table 2).

We divided the “test” cycles into short and long-term tests. Short-term
tests were defined as the next two cycles after the training cycles, while long-
term tests were defined as all cycles after the two cycles immediately fol-
lowing the training cycles. This corresponds to a categorization of future
events based on a specific time horizon (short term vs. long term).

Figure3 shows the results ofmodelpredictions fordifferentnumbersof
training/treatment cycles. These results were obtained using model M2c
which generated the best fit as described in the previous sections. Figure 3a
shows the RMSE between the neutrophil counts generated by model M2c
and observations from patients. We observe that as the number of training
cycles increases, the training error increases, while the short-term testing
error significantly declines (with a Pearson correlation coefficient of−0.28
and p = 0.0021, Fig. 3b). The variance in the RMSE also declines

Fig. 2 | Patient characteristics that affect themodel goodness offit. aAssumption 1
(A1)—this shows the correlation between time elapsed since the end of the last
treatment cycle and the neutrophil counts, among the 71 patients used formodeling.
b Assumption 2 (A2)—correlation between interpolated bone marrow blast per-
centage and neutrophil counts for the same 71 patients. c Fraction of variance
unexplained for all models, separated into patients for whomA1 is true and patients

for whomA1 is false. d Same as previous, but forAssumption 2. eThe actual FVU vs.
predicted FVU for M2c, where the predicted FVU was calculated using a LASSO
linear regression model based on the clinical and genomic features upon patient
intake. f The top positive and negative coefficients for the previous LASSO model.
Positive coefficients indicate that a variable is predictive of a high FVU, while
negative coefficients are the opposite.
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substantially. A similar behavior is observed for long-term testing; however
the RMSE and its variance are always larger than the short-term testing.
Figure 3c–e illustrates the model fitting with different training treatment
cycles for a particular patient. These figures illustrate that accuracy increases
with additional treatment cycles used for training.

These results highlight one key characteristic of digital twin models,
which is the ability to recalibrate with the addition of data points. With
added data from further cycles, the digital twin models will have optimized
model parameters, allowing them to make predictions more accurately.

Discussion
In a digital twin system, digital twinmodels are intended to faithfullymirror
crucial aspects of their physical twin. Over time, as additional data is col-
lected, the twin models are also updated and continuously compared to the
state of the physical twin. In the current study, we aimed to develop digital
twin componentmodels for AML patients to reflect the toxicity effects with
drug treatment.Themodels are testedusing theVenEx clinical trial data (see
“Methods”).

Overall, the best models were able to recapitulate the neutrophil counts
forAMLpatientsduring the treatmentof venetoclaxandazacitidine relatively
well, despite thedatabeing relatively sparse.Thebest performingmodel,M2c,
had a median fraction of variance unexplained of about 0.46 across all
patients. We observed that the simplified models, with only a proportional
description for the drug effect, performed as well or better, than the models
with complex pharmacokinetics. Comparing themodel performance against
the model assumptions, we see that patients whose data was in accordance
withAssumption 1 (venetoclax/azacitidine effect onneutropenia) have better
modelfit than thosewhodonot,while patientswhose datawas in accordance
with Assumption 2 (blast effect on neutropenia) do not have a lower model
error. This seems to suggest that our models are better at capturing toxicity
due to the drug effect than toxicity due to AML itself, and suggests that more
exploration should be done to better understand the mechanisms by which
leukemic blasts cause neutropenia.

Fig. 3 | Benefit of additional data on predictive performance. a Distribution of
RMSE (33 patients) between the neutrophil counts obtained frommodel simulations
and those observed from patient data, for different numbers of treatment cycles for
training. Short-term indicates the next two cycles after the training cycles, while
long-term indicates all of the cycles after the training and short-term test cycles.

b Pearson Correlation between the number of cycles used for training and the RMSE
for the short-term test from the neutrophil count prediction. The solid line shows the
relationship between the number of treatment cycles used for training and the RMSE
from the short-term test. c–e Examples of the neutrophil count predictions for a
single patient with one, three, and five training cycles, respectively.

Table 2 | Patient characteristics

Ven-Aza
treated
patients

Model fitting
patients

Train/test
patients

# Patients 92 71 33

# Male 53 (58%) 40 (56%) 20 (61%)

# Age ≤75 61 (66%) 47 (66%) 22 (67%)

# Alive 31 (34%) 30 (42%) 20 (61%)

# De Novo AML 48 (52%) 40 (56%) 25 (76%)

# Recurrent, relapse, or
secondary AML

44 (48%) 31 (44%) 8 (24%)

# Achieved remission 74 (80%) 66 (93%) 33 (100%)

# Relapsing 42 (46%) 35 (49%) 14 (42%)

Median progression-free
survival

232.5 days 329 days 533 days

Median overall survival 395 days 466 days 585 days

Median neutrophil
measurements

14.5 19 33

Median bone marrow
measurements

5 6 8
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The best-performing models showed significant variation in perfor-
mance across patients, withmany longer-surviving patients havingworsefit
(Supplementary Fig. 4). This could indicate that there are additional sources
of variation in longer-surviving patients that our present models fail to
capture, whichwould be an interesting topic for further study. Alternatively,
the model could simply be overfitting in the cases where the patient has few
data points. It is also possible thatmeasurements of neutrophil counts show
increasing stochasticity or noise for the longer-surviving patients.

In addition to fitting the model on patient-specific data, we were also
able to test the models using an individualized train-test approach, in a
manner akin towhat would be seen in a clinical “digital twin” setting, where
the predictions of a digital twinmodel should improve with newly collected
patient data.We found that asmore cycleswere used for training, the testing
error on the following cycles declined. These results suggest that observa-
tions from multiple treatment cycles of venetoclax and azacytidine are
needed after diagnosis to obtain predictions of neutrophil counts with a
good level of accuracy, and according toour results, 5 cycles are needed after
diagnosis to obtain good accuracy.

Although the level of accuracy obtained by the best performing model
is comparable to previous studies, such as Jost et al.24,25, we observed a high
inter-patient error variability of the model output. One potential source of
the this variability is the frequency of the longitudinal data in the VenEx
trial; compared to the previously published models of Jost et al., we had
substantially sparser data to train and test our models, with typically just a
few neutrophil measurements per cycle. More densely sampled data, with
multiple neutrophil measurements during treatment cycles, would be of
great utility in further developing models for future medical digital twins.

A future goal would be to test our models on new sets of patients,
including patients who were not part of this clinical trial. Themodel itself is
generic, and can be applied to AML patients treated with venetoclax/aza-
citidine in different disease settings. However, the data used for our model
fitting and testing is from a specific cohort, which includes patients who
were either not eligible for traditional AML chemotherapy, or had recur-
rent/relapsed AML. This may affect the model accuracy if it is applied to
another cohort where the clinical characteristics are different. Additional
datasets that include time-course treatment and cell count data should be
considered in the future to evaluate model generalizability.

One limitationof ourmodelfittingprocess is that currently, identifying
patient-specific model parameters requires some longitudinal observations
for that patient; our results suggest at least data of 5 cycles are needed to
predict neutropenia. Ideally, for new patients, patient-specific model para-
meters should be estimated using (1) patient data available at diagnosis,
including genomic and clinical data and (2) model parameters and data
from previously characterized patients. This would require additional
patients for whom we are able to get time courses, genomic data, and
clinical data.

To summarize, a keycomponentof adigital twin system is the crosstalk
between the digital twin and the physical system (i.e. the AML patient). In
this work, we updated the model with additional data corresponding to a
new treatment cycle and then made short- and long-term predictions of
neutrophil counts and blast percentages. This exercise demonstrated that
after 5 cycles, themodel canbe continuously updatedwith additional data to
generate predictions with a good level of accuracy, comparable to the
training errors. These predictions can be used to design new individualized
treatment schedules for AML that reduce the occurrence of neutropenia
while maintaining the same level of inhibition of leukemic blasts. Moreover
it is possible to test different patient-specific treatment schedules and drug
dosage, and select one thatminimizes side effects for aparticular patient. In a
future medical digital twin these predictions could be used by a doctor to
support informed decisions about patient treatment.

Methods
Clinical and cellular data
All data used in this study originated from the VenEx trial11. This trial
includes two groups of patients: patients with de novo AML who were

ineligible for standard chemotherapy, and patients with previously treated
secondary AML or recurrent or relapsed AML. Clinical data was available
for 92 patients treated with venetoclax/azacitidine treatment. The char-
acteristics of these patients are shown in Table 2.

Among these patients, there were 71 patients with enough data for
modelfitting (as shown inFig. 1), and33patientswith enoughdata for train/
test splitting across treatment cycles (as shown in Fig. 3). The characteristics
of all of these subgroups of patients are described in Table 2. For the train/
test patients, a much greater proportion of patients had a good response to
venetoclax/azacitidine treatment, and generally had higher survival.

Implementation
The ODE models were implemented in Python using the Tellurium
library36. After implementing the ODE models, we used them with the
PyMC library for Bayesian parameter estimation37. We considered using
both truncated Gaussian priors and uniform priors for the parameters;
most of the presented results are using uniform priors, as truncated
Gaussian priors resulted inworse performance in some experiments. The
likelihood functions were defined as Gaussian distributions centered
around the observed values for neutrophils and blasts.

Model personalization
Inorder tofind theoptimalmodel parameters for specificpatients,weused a
Bayesian approach based on finding themaximum a posteriori estimate for
the parameters (the set of parameter valueswith the highest likelihood given
the data). The find_MAP function in PyMC was used to estimate the
parameters that maximize the posterior likelihood. Uniform distributions
were used as priors, using the parameter ranges shown in Table S2. The
find_MAP function is capable of using custom optimization functions for
finding the maximum a posteriori parameters; the optimization method
used here is Py-BOBYQA, used with global optimization38,39.

Parameter update
We implemented a computational model tailored to individual patient data
using a multi-cycle learning approach. The ODE-based model was devel-
oped in Python (version 3.10.6), leveraging the Tellurium (version 2.2.8)
and PyMC (version 5.10.3) libraries for model construction and Bayesian
parameter estimation, respectively. For our analysis we focused on patients
with at least six treatment cycles and at least one blast measurement within
the first cycle reducing our patient pool to 33 patients.

We systematically evaluated the model’s performance by splitting
patient data into training and testing sets across varying treatment cycles:
starting with 1 training+ 2 testing cycles, then 2 training+ 2 testing cycles,
and so forth, up to 5 training+ 2 testing cycles. For patients withmore than
7 treatment cycles or those with blast values beyond the 7th cycle, we
calculated an RMSE value that evaluates the model’s predictive accuracy at
these extended time points without additional training. This approach tests
themodel’s robustness in predicting patient outcomes beyond the initial set
of treatment cycles, serving as a measure of how well the model generalizes
to future, unseen data.

Statistical analysis
We conducted statistical analyses in Python, using the numpy (version
1.26.2), pandas (version 2.2.3), scipy (version 1.11.2), and statsmodels
(version 0.14.0) packages. The pairwise Wilcoxon tests for the model
comparisons used the scipy.stats.wilcoxon function. For the false discovery
rate correction, we used the Benjamini–Hochberg procedure as imple-
mented in scipy.stats.false_discovery_control.

For interpolating blast percentages (as with the M1b_w and M2b_w
models and for testing Assumption 2 in the data), we used scipy.interpo-
lation.PchipInterpolator. In order to assess the accuracy of the bonemarrow
blast interpolation, we performed a direct comparison of interpolated bone
marrow blast percentages and true bone marrow blast measurements by
artificially setting some bone marrow blast measurements as hidden. For
every patient, we withheld one bone marrow blast measurement at a time
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(not including the first or last measurements) and computed a PCHIP
interpolation using every remaining bone marrow blast measurement. We
thencompared the interpolated value to the actual value.Doing this resulted
in a mean absolute error (MAE) of 5.8% between the interpolated blast
measurements and actual blast measurements. This suggests that the
interpolation method provides reasonable estimations of missing blast
measurements.

For the FVU calculations, Pearson correlation coefficients (R) were
calculated using the np.corrcoef function, while the scipy.stats.pearsonr
function if a p value was calculated (as in the comparison of errors across
training cycles). Regressionanalyses (as inpredictingpatient goodness offit)
were done using the OLS module from statsmodels. Multiple ways of cal-
culating fraction of variance unexplained were explored, including mean
squared error divided by the data variance as well as 1� R2. Ultimately,
1� R2 was used because the range would be between 0 and 1, making
comparisons easier. In these calculations,we set theR2 to 0 if themodel-data
correlation was negative. The overall ranking of methods did not change
depending on how the model goodness of fit was calculated (including
RMSE and the two differentmethods of calculating FVU). For the train-test
analysis, we used RMSE instead of FVU; there were often too few test data
points to calculate a meaningful variance.

Model of venetoclax and azacitidine effect
To model the effect of venetoclax and azacitidine we used two strategies.
First we developed a Pharmacokinetic (PK) model for both drugs, and
second we developed a simplified model that assumed a direct effect of
venetoclax and azacitidine on the differentiation of neutrophils.

For the pharmacokinetic model, we used a three-compartment PK
model for oral administration of venetoclax and a two-compartment PK
model for subcutaneous administration of azacitidine. The PK model for
venetoclax is based on the model found in Dave et al.32. The PK model for
azacitidine is based on the PK parameters found in MacBeth et al.33.
Equations (1)–(5) define the dynamics of venetoclax and azacitidine con-
centrations.

X0
ven;depo ¼ �KAXven;depo ð1Þ

X0
ven;central ¼ KAXven;depo � ðCL� QÞ=V2Xven;central þ Q=V3Xven;peripheral

ð2Þ

X0
ven;peripheral ¼ Q=V2Xven;central � Q=V3Xven;peripheral ð3Þ

X0
aza;depo ¼ �KA;azaXaza;depo ð4Þ

X0
aza;central ¼ KA;azaXaza;depo � ðCLaza=V2;azaÞXaza;central ð5Þ

WhereXven;depo,Xven;central , andXven;peripheral represents the concentration of
deposited venetoclax, the concentration of venetoclax in the central com-
partment (typically the location of direct drug interaction), and the con-
centration of venetoclax in the peripheral compartment. Similarly, Xaza;depo
and Xaza;central represent the concentration of deposited azacitidine and
concentration of azacitidine in the central systems. The parameter values
used in these equations are specified in Supplementary Table 1.

The effect of the two drugs on neutrophils is then characterized by the
following equations:

Even;wbc :¼ slopeven;wbclnð1þ Xven;centralÞ ð6Þ

Eaza;wbc :¼ slopeaza;wbclnð1þ Xaza;centralÞ ð7Þ

The effect of the two drugs on blast cells is characterized by:

Even;blast :¼ slopeven;blast lnð1þ Xven;centralÞ ð8Þ

Eaza;blast :¼ slopeaza;blast lnð1þ Xaza;centralÞ ð9Þ

The simplified direct drug effect model is implemented in the M2
models (M2a, M2b, M2b_w, andM2c). For the simplified model, the effect
of the two drugs on neutrophils are characterized by two variables:

Even;wbc :¼ Ivenslopeven;wbc ð10Þ

Eaza;wbc :¼ Iazaslopeaza;wbc ð11Þ

Where slopeven;wbc and slopeaza;wbc are proportional parameters and Iven and
Iaza are the doses of venetoclax and azacitidine respectively, and are set to 0
during the times in which the patient is not undergoing treatment with
venetoclax or azacitidine. It is worth noting that slopeven;wbc and slopeaza;wbc
arefitted parameters thatwe estimated for eachpatient. The effect of the two
drugs on cancer cells are modeled similarly Even;blast :¼ Ivenslopeven;blast
and Eaza;blast :¼ Iazaslopeaza;blast :

Wealso tested a simplifiedmodel (M2d)which only includes the effect
of venetoclax, and assumes that venetoclaxhas the same effects onblasts and
healthy cells (Even;wbc ¼ Even;blast).

Neutrophil differentiation
We implemented three models of neutrophil dynamics. The first was
adapted from a model developed by Jost et al.24,25. The second model
includes a carrying capacity of blast and neutrophils to model competition
of space between these two cell populations, and the third model includes a
direct inhibition of neutrophil production by blast cells. The following
equations describe the dynamics of neutrophil differentiation that is com-
posed of three compartments—proliferating cells in bone marrow
(including stem and granulocyte-monocyte progenitor cells) (Xpr), transi-
tion cells (Xtr) and mature neutrophils (Xwbc), in the blood :

X0
pr ¼ XprðF � G� dcÞ ð12Þ

X0
tr ¼ GXpr � GXtr ð13Þ

X0
wbc ¼ GXtr � kwbcXwbc ð14Þ

Where F, G, and dc are functions that take specific forms for the three
models. F represents the proliferation rate, G represents the differentiation
rate, and dc represents the rate of cell death due to the effects of leukemic
blasts. The list of parameters and their values are specified in Supplementary
Table 1, while the fitted parameters are in Supplementary Table 2. The
specific assumptions forF,G, and dc and the resultingmodels are as follows.

The baseline drug effect model was our first model of drug effects on
neutrophils. In this model the effects of venetoclax and azacitidine on the
proliferating cells are included with an overall multiplier (based on the
model of Jost et al.24) that includes Xpr and Xwbc. Here, increased levels of
venetoclax and azacitidine have the effect of increasing proliferating cells’
death rates. ðB=XwbcÞγ represents a feedback term by which lower levels of
mature neutrophils (Xwbc) lead to higher proliferation. This is shown inEqs.
(15)–(17):

F ¼ ktrðB=XwbcÞγð1� Even;wbc � Eaza;wbcÞ ð15Þ

G ¼ ktr ð16Þ

dc ¼ 0 ð17Þ
The carrying capacity model also implements a carrying capacity

mechanism to model an indirect competitive interaction between cancer
and healthy stem cells by adding a functional form for dc, the carrying
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capacity, that includes dependence on Xpr as follows:

F ¼ ktrðB=XwbcÞγð1� Even;wbc � Eaza;wbcÞ ð18Þ

G ¼ ktr ð19Þ

dc ¼ 0 if Xpr þ Xl1 < 4Bkwbc=ktr; ðXpr þ Xl1 � 4Bkwbc=ktrÞ otherwise
ð20Þ

The last function implies that Xpr will diminish if the combination of
Xpr and Xl1(bone marrow blasts, see below) exceed a threshold value
(proportional to the equilibrium number of proliferating cells).

The direct inhibition model additionally includes an inhibition
mechanism in which the differentiation rate is decreased by the population
of observed blast cells. The main difference between this model and the
baseline drug effect model is setting in the function G to be a function of
observed blasts in the bone marrow Xblast;obs. This is shown in Eqs.
(21)–(23):

F ¼ ktrðB=XwbcÞγð1� Even;wbc � Eaza;wbcÞ ð21Þ

G ¼ ktr=ð1þ biXblast;obsÞ ð22Þ

dc ¼ 0 ð23Þ

Blast populations
We adopt three models of cancer cells, with two compartmentsXl1 andXl2
which represent leukemic blasts in the bonemarrow and blasts in the blood,
respectively.

The models, described below, use a parameter klc:

klc :¼ 1=ð1þ c1Xwbc þ c2Xl2Þ ð24Þ

that amounts to suppressive influence from neutrophils and blast24 in the
blood, a signaling effect that may be conveyed by cytokines22.

The baseline model for blasts is described in Eqs. (25) and (26). This is
similar to the model developed by Jost et al.25

X0
l1 ¼ ð2a1klc� 1� Even;blast � Eaza;blastÞXl1p1 ð25Þ

X0
l2 ¼ 2ð1� a1klcÞp1Xl1 � d2Xl2 ð26Þ

The carrying capacity model additionally includes an indirect com-
petitive interaction through a carrying capacity in the bone marrow. The
following are the equations that describe this model.

X0
l1 ¼ ð2a1klc� 1� Even;blast � Eaza;blastÞXl1p1 � Xl1dc ð27Þ

X0
l2 ¼ 2ð1� a1klcÞp1Xl1 � d2Xl2 ð28Þ

In the logistic growth model, an extra term is added to the baseline
model for leukemic cells25 to model a logistic growth kind of population
dynamics for cancer cells.

X0
l1 ¼ ða1klc� Xl1 � Even;blast � Eaza;blastÞXl1p1 ð29Þ

X0
l2 ¼ 2ð1� a1klcÞp1Xl1 � d2Xl2 ð30Þ

Linear regression model
The linear regression model is intended to predict the neutrophil count at
the next time point given the measurements at the current time point, and
the treatment cycle between current and next time points. There are five

independent variables: (1) current neutrophil count measurement, (2) time
elapsed between the two measurements that are within venetoclax treat-
ment, (3) time elapsed between the two measurements that are not in
venetoclax treatment, (4) venetoclax dosage for the cycle between the cur-
rent time point and next time point, and (5) interpolated bonemarrow blast
measurement at the current time point. There is also a constant term for the
intercept. Results are shown in Supplementary Fig. 2. As with the ODE
models, the linear regression model was fitted for each patient separately,
using all pairs of adjacent neutrophil measurements for the comparison in
Supplementary Fig. 2a, b, and all pairs of adjacent neutrophilmeasurements
in the first 5 cycles for the comparison in Supplementary Fig. 2c.

Data availability
The clinical trial data (clinical trial ID: NCT04267081) that support the
findings of this study are available fromUniversity of Helsinki. Restrictions
apply to the availability of the data, which was used under an agreement for
the current study, and so is not publicly available.Data arehowever available
from the authors upon reasonable request and with permission. Requests
should be directed to principal investigatorM.K. (mika.kontro@helsinki.fi).
The Github repository as shown in the “Code availability” section includes
the subset of the data used in this work.

Code availability
The underlying code for this study is available in Github at https://github.
com/AMLDT/Venex_Neutropenia_Models.
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