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Neuropsychiatric disorders have complex causes and exhibit considerable individual variability as
they develop over time. This suggests the need for a shift from a focus on observable clinical
symptoms to a personalized trajectory monitoring paradigm that incorporates brain function
checkups into routine primary care to allow detection of risk prior to the emergence of distress and
impairment. A dynamical systems model of brain function enables quantitative snapshots of neural
circuit function to be derived from electrophysiological measurements. Latent neurodynamical
features can then be combined with personal and clinical data, enabling personalized
neuropsychiatric trajectory monitoring. We present a general framework with recommended methods
from dynamical systems theory to extract dynamical information from readily available EEG
measurements. The dynamical features can then be incorporated into machine or statistical learning
methods, where additional personal characteristics, experiences, and clinical data can be integrated

to create risk prediction models for psychiatric conditions.

The primary purpose of psychiatric evaluation in a clinical setting is to
determine a person’s mental health status to create a treatment plan that will
relieve undesirable symptoms and suffering and optimize health in some
way. The observed symptoms that define psychiatric diagnoses may be
considered the end product of a long neurodevelopmental process'”. Tra-
ditional classification systems are not well-suited to precision psychiatry
because they focus on a single, underlying dysfunction for each diagnosis,
which fails to acknowledge the complexity of psychiatric disorders and the
heterogeneous expression in individuals. This limits the development of
personalized therapies that consider the complex idiosyncrasies of each
person’s mental health journey through life. To move beyond current
clinical decision-making based on the Diagnostic and Statistical Manual
(DSM) or related International Classification of Disease 11 (ICD-11) cate-
gories, Flagel et al. have developed a statistical framework that intends to
incorporate multiple factors to produce a personalized, probabilistic
diagnosis’. The general outline of this approach was sketched for
schizophrenia® using a Bayesian statistical model that integrates five dif-
ferent elements: Putative causes (such as genetics, environment, trauma,
disease, medical history); “Hidden” brain physiology; latent Research
Domain Criteria dimensional constructs; DSM categorical diagnoses; and
measurable biomarkers, wearable data, or assessments. A key component of
this model is the assumption that the bridge between causes of psychiatric
disorders and the observed symptoms or behaviors are neural circuits.

While this model is conceptually rich, in practice the many potential cau-
sative factors are rarely recorded in the medical record. A snapshot of brain
function or the “hidden” neurophysiological bridge between putative causes
and observed behaviors and diagnostic categories may enable a practical
clinical implementation of this approach. Our perspective is that neural
circuits create an electromagnetic field that meets the definition of a
dynamical system. Direct measurements of this field using electro-
encephalographic (EEG) sensors enables information to be extracted as
quantitative values, using dynamical systems theory. These may then be
used in models of neural function to track changes that may indicate
changing risk for psychiatric disorders.

Mental and neurological disorders are ultimately neural circuit dis-
orders, with complex connections among physiology, anatomy, metabo-
lism, and behavior that develop and change over time. That is, the
pathological outcomes from brain dysfunction, whether mental or physical
disease symptoms, are the end product of a developmental neurophysio-
logical process'. Currently, psychiatric treatment typically begins near the
end of this process, when symptoms become acute and observable, and often
targets generic symptom clusters rather than incorporating idiographic
understanding of each patient.

A paradigm shift toward precision preventive healthcare, rather than
disease care, is possible if neurophysiological changes that occur in response
to underlying causes can be monitored. Causes of mental health changes
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may include genetic predisposition, social and environmental exposures,
trauma, injury, disease, and other factors that confer resilience or risk™®. For
most children and adults without overt symptoms, contact with the medical
system occurs only sporadically during routine checkups. It may be
impossible to monitor all the factors that affect an individual. Importantly,
the link between genetic or environmental causes to cognition and behavior
operates through neural circuits. Thus, monitoring neural circuit function
may provide important personalized information about emerging psy-
chiatric disorders in each individual without requiring knowledge or mea-
surement of the underlying etiologies’.

While it is widely assumed in a general sense that the brain is
responsible for all behaviors, and that observable behaviors must reflect
changes in the brain, the specific physical mechanisms may be less obvious.
We suggest that, fundamentally, bioelectrical forces are responsible for
cognition and behavior. Support for this concept can be found in the neu-
roelectric fields that coordinate engram complexes responsible for memory
representations’. More specifically, our hypothesis and the perspective
presented here, is that computable properties of the neuroelectric field are
associated with psychiatric diagnoses or symptoms that define psycho-
pathologies. To test this experimentally, methods are required to compute
appropriate properties of the neuroelectric field and statistically assess how
well they correlate with specific psychiatric diseases.

Thus, the primary purpose of this paper is to present a tractable and
extensible approach to incorporating measurements of neural circuit
function, the “hidden” bridge between causes and outcomes, into perso-
nalized schemes for computing risk of emerging mental disorders and
monitoring their course. We note that although our focus is on electro-
magnetic (EM) fields generated by neurons, contributions to the neuro-
electric field from other physiological generators or even exogenous sources
are implicitly incorporated into the measurements. Emerging evidence
suggests that bioelectric sources are found in all living cells and contribute to
signaling throughout the organism™".

A recently proposed approach to psychiatric clinical decision making
suggests that a person’s mental health may be conceptualized as a trajectory
through time’. From this perspective, the goal of therapy is to redirect that
trajectory toward more desirable outcomes. The foundation for this fra-
mework is a data-driven model that links “underlying dimensional con-
structs with categorical constructs and actions™. This model is sketched in
Flagel et al.” and presented again in an application to schizophrenia®.

Although neural circuits are explicitly identified as the bridge linking
genetics and fundamental neurobiology to behavior, this neural circuit
bridge is thought to be forever hidden and thus not computable in models of
mental health or dysfunction®. Dynamical systems theory has been applied
to psychiatric disorders previously on several different scales. On a mac-
roscopic scale, dynamical systems concepts have been applied to the
development of observable psychiatric symptoms'""” or as a model of
interacting physiological and behavioral processes on several levels'"”. The
concept of a digital twin of the brain is also related to dynamical systems'*.
Multimodal imaging data, including MRI, fMRI, CT, EEG, and MEG data,
are fed into machine learning models, typically recurrent neural networks
(RNN ), and used to detect disease'’. At the neural or synaptic scale, con-
cepts from information theory that are related to dynamical systems have
been used to model how synapses utilize stochasticity to enable learning
despite ambiguous or uncertain inputs"’.

Our perspective is founded on a conception of the neuroelectric field,
which is generated by neural activity, with contributions from other bio-
electric sources, as the driver of all behavior and cognition. We are speci-
fically interested in the possibility of measuring the neuroelectric field on a
macroscopic scale using EEG devices. EEG and magnetoencephalography
(MEG) sensors measure the summed activity of many neurons and, as
mentioned previously, the contribution of any other sources to the location
of the sensor. A thorough discussion of clinical and research aspects of EEG
can be found in authoritative sources such as Niedermeyer’s Electro-
encephalography, now in its seventh edition'’. The primary tool for analysis
of EEG measurements has been the human eye: Visual analysis of EEG time

series reveals pathologies such as seizures and epileptiform spikes. The time
series measured by EEG may also be analyzed using dynamical systems
methods to infer dynamical properties of the neuroelectric source. In this
way, dynamical properties of the neuroelectric field created by neural circuit
activity can be used as a proxy for neural circuit function in the general
framework proposed by Flagel’. This approach has the distinct advantage of
being relatively easy and inexpensive due to the emergence of a commercial
market of portable and consumer EEG devices. Thus, the application of
dynamical systems theory to EEG measurements may enable neural circuit
function to be measured routinely and incorporated into clinical biomarker
models for psychiatric disorders.

Incorporation of functional neural information into trajectory models
of mental health may improve the ability of such models to detect patho-
logical changes prior to the emergence of observable symptoms and to
monitor the effects of therapy. With this goal in mind, a modified com-
putational pipeline is shown in Fig. 1 that is inspired by the framework
proposed by Flagel and Gordon™. Importantly, our framework explicitly
includes neural circuit functional information, derived from dynamical
analysis of EEG signals. We note specifically that inputs to the chosen
statistical or machine learning methods include, in addition to the dyna-
mical features from EEG signals, data that may typically be contained in the
patient’s electronic health record (EHR) or other data, such as patient
experiences, particularly trauma. Since the adoption of data standards for
the exchange of health information, particularly Fast Health Interoperability
Resources, incorporation of EHR data into personalized models has become
widespread and relatively easy to accomplish.

The (neural field of the) brain is a dynamical system
The brain has been called a complex dynamical system". This statement
typically refers to the topological complexity of the network of neurons that
comprise the brain. We suggest that the neuroelectric field produced by the
synchronized activity of neurons and related physiology is the complex
dynamical system that is the substrate for all neural systems’ functions'®. The
neuroelectric field is the receptor of all sensory input and the physical
effector of all movement and behavior. A simple illustration of this is pro-
vided by transcranial magnetic stimulation. A type of “magnetic wand” is
held above the scalp to change the neuroelectric field below the scalp,
resulting in movements or sensations appropriate to that region of the brain.
Change the neuroelectric field, change the mind itself. Each neuron is now
recognized as a complicated computing device, further supporting the
concept of the neuroelectric field as the substrate for all cognitive activity"”.
This field concept extends even to “simpler” organisms: The unicellular
Euplotes has been shown to regulate its membrane potential, an electric
field, to enable real-time control over its motor functions™.

If the neuroelectric field is a dynamical system, it can be analyzed and
quantified using methods from dynamical systems theory. Data from time
series measurements provided by scalp electroencephalogram (EEG)
recordings are sufficient to reconstruct the essential functional dynamics of
the system that produced those signals. The growing availability of easy-to-
use, high-quality portable EEG devices makes it feasible to collect brief EEG
recordings in routine care settings. Routine EEG measurements, analogous
to blood pressure measurements, may be a relatively simple and important
objective proxy for monitoring brain function related to emerging mental
dysfunction, for predicting future outcomes, and for monitoring treatment
effects”".

Dynamical systems are typically described by ordinary differential
(continuous time) or difference (discrete time) equations. Dynamical sys-
tems that are continuous in space, such as are found, for example, in
astrophysical plasmas or nuclear fusion reactors, are described by partial
differential equations. In many situations, mathematical models of system
dynamics are unavailable and cannot be inferred from measurements. If
time series measurements of system variables are available, it may be pos-
sible to deduce properties of unmeasured dynamical values. This kind of
model-free analysis of a dynamical system has been successfully applied to
physical systems™ and engineered control systems”. Our approach to
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Fig. 1 | A computational framework that incorporates explicit neural circuit measures derived from a dynamical systems analysis of EEG time series.

analyzing EEG time series uses a model-free approach to extract dynamical
information about neuroelectric field dynamics for input to statistical or
machine learning algorithms.

Many neurological, mental, and neurodevelopmental disorders
have been described as dynamical diseases, including, but not limited to,

epilepsy”* ™, schizophrenia and bipolar disorder”~", autism®~*, disorders
of consciousness®*, and Alzheimer’s Disease’” . The conceptualization of

neural circuit disorders as dynamical disorders is consistent with the view of
the neuroelectric field as the physical substrate of cognitive activity or the
mind. The neuroelectric field is a spatially continuous dynamical system***'.
The components that contribute to the neuroelectric field include
neurons***, glia, and other physiological processes that modulate bioelectric
fields*™*. This perspective is a theoretical framework that considers the
neuroelectric field, coupled with neurophysiology, sensory input, and motor
output, to be a dynamical system of embodied cognition from which
behavior is generated by activation patterns in the continuously evolving
neuroelectric field as it interacts with its environment, as well as by internal
neuronal interactions”. Neural activation patterns may be described
mathematically as a dynamical system as they evolve over time**™.

A dynamical system is formally a mathematical system of continuous or
discrete equations that describe the evolution of a coupled set of variables over
time. The term may also refer to a physical, chemical, biological, or social
system that can be modeled by equations that meet the mathematical defini-
tion of a dynamical system™ . A dynamical system is capable of information
processing, and the information processing capacity of a dynamical system is
related to the complexity of the dynamical system™>***. This principle is now
being exploited to build a new generation of information processing or Al
systems in the form of physical reservoir computers™”. The analysis of
reservoir computing systems may provide additional theoretical concepts for

describing the neuroelectric field using dynamical system measures*'.

Phase space, trajectories, phase portrait

The state of a dynamical system at any given time can be represented
abstractly by a vector in a high-dimensional phase space. In the context of
dynamical systems, a phase space is an abstract, multidimensional space
where every possible state of the system is represented as a unique point.
Each axis in this space corresponds to one of the system’s variables, such as
position or velocity, allowing the system’s behavior over time to be repre-
sented as a trajectory through this space. The trajectory of points through the
phase space is called a phase portrait and represents the system’s dynamics
without equations. A simple example is shown in Fig. 2.

If we can measure system dynamics at a scale appropriate for psy-
chiatric (behavioral) patterns, then the sequence of state vectors through
time comprises the trajectory of the neural system. The set of all possible
trajectories through neural phase space is called the phase portrait of the
system and is an abstract representation of all the possible sequences of the
system. The phase portrait fully describes how the system may change over
time. The set of trajectories shows geometrically (abstractly, if the number of
dimensions exceeds three), without an explicit time variable, the progression
of states through which the system can change. It is like showing a series of
time-lapse photographs of the arm of a person throwing a ball. The arm
moves smoothly through a certain path and cannot just randomly jump
from place to place. The phase portrait is a structural or geometrical
representation that completely describes the dynamics of the system. The
phase portrait is a mathematical abstraction that can be analyzed and
quantified in more than three dimensions.

Applying these concepts to neurons, if the potential of every one of the
80 billion or so neurons in the brain was known at this moment, the set or
vector of 80 billion potential values represents the current state in the phase
space of all possible values of the neural system. A moment later, the
potential values of some neurons will have changed, and the new values
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Fig. 2 | A simple two-dimensional phase portrait
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represent another state. Although the neuroelectric field is continuous, a
fine-grained representation of the state of the entire neuroelectric field at, for
example, each neuron’s location, can be written as a vector of N real
numbers, where N may be ~80 billion. Fortunately, such a fine-grained
representation may not be necessary for capturing neural correlates of
behavior or markers of neuropathology. Various approaches have been used
to demonstrate that coordinated microscale dynamics can be measured as
macroscale dynamics. Microscopic neural activity patterns can be inter-
preted using many-body physics to bridge the gap between neuron activity
and microscopic brain functions that represent mental states™. Traditional
concepts from statistical physics, such as spontaneous breakdown of sym-
metry and phase transitions are used to analyze EEG signals. A similar
conceptual approach proposes that psychology and physiology provide two
different descriptions of the same system; that is, psychology and physiology
represent coarser- and finer-grained system states that are equally
adequate”. These suggest that while neurons display stochastic dynamics at
small scale scales, the larger scales measured by EEG display more coherent
behavior or high-dimensional chaos®.

An important mathematical theorem concerning time series mea-
surements was proved by Floris Takens in 1981°". In essence, the theorem
states that, given a smooth dynamical system and a generic observation
function, the state space of the system can be reconstructed from time-
delayed measurements of a single observable. The implication here is that,
by measuring even one variable of a high-dimensional system, the full
dynamics (up to a diffeomorphism) can be reconstructed using a compu-
tational method called time-delay embedding. This supports the idea that
time series data from a single sensor may be used to reconstruct the essential
features of the phase portrait of the entire system. It is important to note that
the theorem does not claim that all the specific details of every part of the
system can be reconstructed, but only the topological properties of the
system. These properties are called dynamical invariants. Soon after this
theorem was put forth, computational methods began to be developed for
computing dynamical invariants from recurrence plot images that were
derived from time series measurements’ ™. The implications of the
embedding theorems and computational methods are profoundly impor-
tant for EEG measurements but have yet to be fully exploited. EEG sensors
provide time series measurements of the neuroelectric field that, according
to Takens’ theorem, enable the phase portrait of the neural system to be
reconstructed and quantified. An open research question is to determine the

quantity and nature of the dynamical invariants derived from EEG mea-
surements and how well these can predict to detect macroscopic behaviors
or diagnoses. Figure 3 illustrates the idea of phase space reconstruction by
time series embedding.

Here, we review some current computational methods to derive
dynamical invariants from time series measurements. We emphasize that an
open research question is to determine a fundamental set of dynamical
measures that fully describes the essential dynamics of a system. The set of
measures described here are widely used but more continue to be developed.
It may be that new approaches using unsupervised machine learning
techniques may discover a different set, or additional dynamical measures,
that form a basis set for describing system dynamics. Whatever future
dynamical measures might be discovered, they can be incorporated into the
analysis framework outlined here. We describe how to extract latent
dynamical features from a larger set of multiscale dynamical invariants and
then map these to behavioral measures, neurological diagnoses, or psy-
chiatric constructs using machine learning. The resulting computed values
can be used and tested as digital biomarkers.

Computing latent dynamical features

Multiscale and multifrequency decomposition

Physiological neural networks exhibit structure across many scales. Because
of this multiscale structure, the electrical fields generated by neural circuits
span many scales or frequency bands®'. Multiscale entropy analysis intro-
duces a scale-dependent approach to nonlinear analysis. Multiscale entropy
was first introduced to analyze physiological signals associated with heart
disease® . Although the use of entropy as a measure of physiological
complexity was not new, the primary innovation here was recognizing that
complexity across multiple scales contained important diagnostic infor-
mation not available in the raw signal. In general, complexity loss was
associated with aging or pathological conditions, with the degree of loss
varying across frequency bands or scales””". The scales produced by the
coarse-graining procedure in the multiscale entropy literature have been
shown to be identical to the approximations produced by the Haar wavelet
transform’”. This insight has shown the relation between coarse grain scales
and the standard frequency bands typically used for EEG spectral power
analysis (delta, theta, alpha, beta, gamma). The relation between spectral
decomposition and the low-pass filtering implemented by the coarse-
graining procedure is illustrated in Fig. 4.
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Fig. 3 | Takens’ embedding theorem guarantees that the dynamical invariants or topological (abstract geometrical) properties of a dynamical system can be
reconstructed from even a single time series measurement of the system. The full potential of this theorem for EEG measurements has yet to be fully explored.
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Fig. 4 | Spectral decomposition (a) and coarse graining (b) are illustrated. Band pass
filtering is commonly used to analyze EEG signals by first decomposing the signal
into distinct frequency bands using Fourier or related methods. Coarse-graining was
introduced in studies of multiscale entropy, where “multiscaling” was accomplished

by a coarse-graining algorithm. Coarse-graining is mathematically identical to the
“approximations” of the Haar wavelet transform and is a low-pass filter, eliminating
all frequencies above a specified cutoff.

EEG signals are often contaminated by various types of noise, including
physiological artifacts (such as muscle activity or eye blinks) and non-
physiological artifacts (including electrical interference and electrode
movement)””. Filtering EEG signals to remove artifacts may be necessary for
obtaining accurate and meaningful data. Common filtering techniques
include low-pass filters to remove high-frequency noise, high-pass filters to
eliminate slow drifts, band-pass filters to focus on specific frequency ranges,
and notch filters to remove narrow bands of interference, such as power line
noise’’. Some nonlinear measures, such as Kolmogorov-Sinai entropy, are
strongly affected by the presence of noise in signals, whereas others, such as
approximate entropy, are less affected by noise”. A challenge that has not
been adequately explored is to determine how these various filtering

techniques alter the nonlinear properties of the actual neurophysiological
signal. This is an important research topic in nonlinear signal analysis,
particularly for routine clinical applications of EEG.

Computing properties of dynamical systems: nonlinear time
series analysis

The term “quantitative EEG analysis” has traditionally been defined by the
neurology and neurophysiology communities as “the mathematical pro-
cessing of digitally recorded EEG to highlight specific waveform compo-
nents, transform the EEG into a format or domain that elucidates relevant
information, or associate numerical results with the EEG data for sub-
sequent review or comparison”’. Power on multiple frequency bands
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Fig. 5 | Recurrence plot examples. Recurrence plots derived from an EEG sensor placed on the right lateral prefrontal cortex (F8). Left panel is from an infant at age 3 months;
middle panel is from same infant at age 12 months; right panel is from same infant at age 36 months.

(“spectral power” or, equivalently, “multiscale power”) has been valuable for
inferring diagnostic information. It may be included in the list of signal
features. While the next sections review some of the currently most common
dynamical measures that may be computed from time series, the primary
perspective should be kept in mind: The neuroelectric field generated by
neural circuit activity is a dynamical system. If neural correlates of diagnostic
categories or behavioral measures are sought, they may be found in quan-
titative measures of the dynamical system, which can be derived from EEG
time series. This hypothesis can be tested empirically by computing dyna-
mical measures from EEGs and using machine learning methods to evaluate
their predictive value. The following sections review dynamical measures
that have been found to be useful as psychiatric biomarkers, but the catalog
presented here is almost certainly not complete.

One of the first applications of nonlinear signal analysis to a physio-
logical system was multiscale entropy to analyze electrocardiograms or heart
electrical signals™. The specific “entropy” value used was sample entropy,
related to the original information entropy proposed by Claude
Shannon’"”*. Since then, the number of different algorithms to compute an
entropy value has grown to dozens, including Sample, Approximate, Renyi,
and Fuzzy entropies, to name a few”’. Each has been used for many scientific
applications, adding to the confusion over what entropy means*~*’. Entropy
has a physical definition (i.e., the amount of energy in a system that is
unavailable to perform work) and a mathematical definition used in
information theory”, initially defined by Shannon”. The mathematical
definition has the same form as that used in thermodynamics, and both
represent a measure of randomness, although the thermodynamic and
mathematical applications are unrelated. In keeping with the goals of this
paper, we interpret signal complexity or entropy as a quantitative measure of
only one dynamical aspect of the system that produced the signal.

In addition to the many entropy variations, several other dynamical
properties can be computed from physiological signals. These include corre-
lation dimension®, Hurst Exponent, Lyapunov exponents, and Detrended
Fluctuation Analysis*™*. This is not an exhaustive list, nor should we assume
that all quantitative measures of dynamical system properties have been dis-
covered. A remaining challenge is determining the minimal, complete set of
measures to fully describe a complex system’s dynamics or phase portrait.

The many dynamical values described thus far are not entirely inde-
pendent, and more may yet be discovered. An important outstanding
research question is to determine a minimal set of measures needed to fully
characterize the properties of a dynamical system. The answer to this may
depend on the complexity of the dynamical system, which might suggest
that many measures are needed to characterize brain function. This set of
measures might be called a basis set for a dynamical system, borrowing the
term ‘basis set’ from linear or functional analysis, where a basis set is a
minimal set of vectors needed to represent all dimensions or functions in an

abstract space. The framework presented allows for any number of addi-
tional nonlinear measures to be included. Before presenting a preprocessing
method for extracting a set of latent factors from many multiscale dynamical
measures, a graphical approach to computing nonlinear properties called
recurrence plot analysis is presented.

Recurrence plot analysis

Recurrence plots (RPs) were first introduced as a means to visualize the
phase portrait of a dynamical system projected onto a two-dimensional
plane”. In principle, the RP contains all the essential dynamical system
properties from which it was derived®. The availability of desktop com-
puters allowed numerical computations that soon resulted in recurrence
quantitative analysis (RQA), which was an attempt to quantify the essential
properties of a dynamical system from a reconstructed (abstract) phase
portrait. The development and application of RQA to various physical and
biological systems suggested that RPs contained essential information to
enable quantitative descriptions of dynamical system properties™. Examples
of recurrence plots derived from time series produced by several different
dynamical systems are shown in Fig. 5. The RP is a two-dimensional pro-
jection of the phase portrait of the system. In principle, it contains all of the
fundamental dynamics of the measured system down to a scale presented by
the sampling rate of the time series™. The RP might be considered a type of
Quick Response (QR) code for brain function.

An advantage of recurrence plot analysis is that it can provide dyna-
mical information even for short, noisy, non-stationary time series***. For
EEG analysis of brain function, Takens” Theorem (one of the embedding
theorems) has been shown to be a special case of a more general recon-
struction process from multiple time series, which may result in a more
accurate reconstruction when time series are digitized or noisy. The results
apply to situations having parallel time series measurements for variables
related to the same dynamical manifold”. This is precisely the situation with
multiple scalp sensors on a typical EEG recording.

A consequence of the embedding theorems is that the embedding
dimension for the system is determined by the dimension of the system
attractors, not by the frequently much higher dimensionality of the
microscopic degrees of freedom™. Rather, this is a mathematical description
of the neurophysiological phenomenon of many neurons synchronizing
and firing together to accomplish a given task or behavior. Dynamical
properties of a system can be computed from a recurrence plot by statisti-
cally characterizing the various lines and structures in the plot” . The most
common measures and their meaning are summarized in Table 1.

Recurrence network analysis (RN)
A related approach to quantifying the recurrence plot is based on network
analysis, where the recurrence plot is interpreted as the adjacency matrix of a
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Table 1 | A summary of the most common dynamical features computed from time series

Nonlinear invariant variable Description

Power Poweris ameasure of how large the waves in asignal are. Specifically, itis the mean of the squared amplitude over any
interval. Spectral power is a common measure of the mean power within defined frequency bands.

Recurrence Quantitative Analysis values computed from Recurrence Plots
Python software: pyunicorn package, http://www.pik-potsdam.de/~donges/pyunicorn/

Recurrence rate (RR) Recurrence rate is the density of recurrence points in a recurrence plot and corresponds with the probability that a
specific state will recur. An option used for our calculations is to set a constant RR (typically 0.05, which was used for
calculations presented in this paper) rather than a threshold for coloring points to create the recurrence plot.

Determinism (DET) Determinism is related to dynamical system predictability and is derived from diagonal lines in the recurrence plot as
an indicator of deterministic behavior, with a value between 0 and 1. A purely sinusoidal signal will have a value of 1,
and a purely stochastic signal will result in a value close to 0.

Laminarity (LAM) The concept of laminarity is a generalization of laminar flow in fluid dynamics. It is related to the amount of laminar or
smooth phases in the system and intermittency or alternation between periodic and chaotic regimes.

Line length entropy (Lentr) Line length entropy is the Shannon Entropy of the diagonal line lengths in the recurrence plot and reflects the
complexity of the deterministic structure in the system. Although not identical, it represents a similar measure to
Sample Entropy, described below.

Mean line length (Lmean) Mean Line Length is the time that two segments of the recurrence plot trajectory are close to each other and can be
interpreted as the mean prediction time of the signal, a measure of chaos or divergence from an initial point.

Maximal line length (Lmax) Maximal Line Length is the length of the diagonal lines related to how long segments of the phase space trajectory run
parallel, i.e. on the divergence behavior of the trajectories. This concept is related to the maximum Lyapunov
exponent, but the two are not exactly equivalent. Lmax describes the divergence of trajectories with small differences
in initial states. The higher Lmax, the greater sensitivity to initial conditions, and the less predictable signal behavior.

Trapping time (TT) Trapping time is an estimate of the time that a system will remain in a given state, such as the length of transition states,
as opposed to the time for the transition to take place.

Vertical entropy (VertEnt) Vertical Entropy is defined as the entropy of the probability to find a vertical line of exactly length lin the recurrence plot.
It reflects the complexity of the recurrence plot with respect to vertical lines.

Average vertical entropy of white lines Average Vertical Entropy of White Lines is another sample entropy value computed from the average white vertical line

(AvgWhiteVertEnt) length distribution, also called Mean Recurrence Time. The relationship or correlation in specific datasets between

AvgWhiteEnt, Lentr, and the entropy values discussed below have not yet been studied.

Complexity measures computed directly from a time series
Python software: nolds package (https://pypi.org/project/nolds/)

Entropies Sample entropy, perhaps the most used entropy measure in physiology, measures the “complexity” of a time series,
though the meaning of this is elusive. It is defined as the negative natural logarithm of the conditional probability that
two sequences similar for m points remain similar at the next point, where self-matches are not included in calculating
the probability. Its computation is based on approximate entropy, but reduces bias and relative consistency, while
being largely independent of signal length. A lower value of sample entropy indicates more self-similarity in a signal
and lower complexity. Algorithms for computing these may be found in the publicly available nolds package. Python
packages for three other entropy measures that have been found useful as epilepsy biomarker candidates, fuzzy
entropy®®, permutation entropy®’, and approximate entropy® (EntroPy), are readily available and will also be included.

Correlation dimension (CD) Correlation dimension is a measure of the fractal dimension of the phase space of a dynamical system, derived using
the Grassberger—Procaccia algorithm. It gives an estimate for the number of active degrees of freedom, which is
difficult to ascertain from other quantities®. Physiological data generally are aperiodic, which can be caused by
chaotic deterministic dynamics. Low dimensional strange attractors are one possible signature of deterministic
chaos. Such systems are often characterized by only a very few degrees of freedom, even if the true phase space may
possess a very high dimension.

Detrended fluctuation analysis (DFA) Detrended Fluctuation Analysis is amethod for determining the statistical self-affinity of a signal. That is, DFA is useful
for analyzing time series that appear to be long-memory processes or 1/f noise. The obtained exponent is like the
Hurst exponent, except that DFA may also be applied to non-stationary signals. This method has been used on control
time series that consist of long-range correlations with the superposition of a non-stationary external trend and has
been successfully applied to detect long range correlations in highly heterogeneous DNA sequences and other
physiological applications®.

Hurst exponent The Hurst exponent is a statistical measure of long-term memory of time series, like DFA. The Hurst exponent is a
statistical measure used to characterize the self-similarity and long-term memory properties of time sequences. H is
directly related to fractal dimension, D, and is a measure of a data series’ “mild” or “wild” randomness'®’. As a general
rule for interpretation, value of H = 0.5 corresponds to a random walk, H < 0.5 indicates a time series with long-term
switching between high and low values, and H > 0.5 indicates a time series with long-term positive autocorrelation'®.
In the context of physiological signals, it can help in understanding the patterns and predictability of biological
processes over time'®. In the analysis of EEG signals, the Hurst exponent has been used to characterize the signal as
either mean-reverting, trending, or a random walk’®.

i

Lyapunov exponent The Lyapunov exponent provides insights into the stability of dynamical systems by quantifying how quickly nearby
trajectories in the phase space diverge or converge over time. A positive Lyapunov exponent indicates chaotic
behavior (divergence), where small initial differences grow arbitrarily large. Conversely, a negative exponent suggests
convergence to periodic trajectories (an attractor). The Lyapunov exponent is typically computed from the Jacobian
matrix, which describes how small perturbations evolve in the system'°.

Each measure may be computed for the time series from each EEG sensor and may also be computed for sub-signals that represent defined frequency bands, such as the traditional delta, theta, alpha, beta,
and gamma bands used in clinical neurophysiology.
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complex network’**”. Recurrence network (RN) analysis exploits an

analogy between complex network theory and nonlinear time series
analysis™. This approach is complementary to RQA, resulting in additional
nonlinear information that is not extracted by RQA methods™. In parti-
cular, the RN approach extracts information regarding the structure of the
underlying chaotic attractors, which are not available using the conventional
algorithmic methods of nonlinear time-series analysis”™’. Values computed
from a recurrence network assess properties of system attractors using
network measures, including the e-clustering coefficient; mesoscopic mea-
sures, such as e-motif density; path-based measures, such as e-between-
nesses; and global measures, such as e-efficiency™”.

Emerging time series processing methods

Foundation models have very recently achieved remarkable success in
natural language processing and image analysis, but this success has not yet
been demonstrated for EEG signal analysis. EEG signals are more irregular
and dynamic than the structured relationships found in language or images
and are thus more difficult to capture through attention mechanisms”.
Some potential has been demonstrated for detecting short-term changes
associated with seizures or sleep stages, or tasks that might be performed
through brain-computer interfaces™. While promising, it is not yet clear if
the dynamical system properties associated with mental health and disease
can be discovered by these methods.

Neuromorphic computing has been attracting attention as an alter-
native to the deep learning paradigm, in part because it offers comparable
performance at far less energy cost'”. Reservoir computing (RC) is a rela-
tively new and rapidly evolving machine learning approach that exploits
dynamical systems’ information processing and adaptability capability. RCs
are related to RNNs but are much faster to train because they utilize a fixed,
high-dimensional dynamical system, known as the reservoir, to map input
data to a simple output layer. This enables efficient pattern recognition with
areadout layer that only requires minimal training, making it faster and less
computationally expensive than traditional neural networks, especially for
time-series data analysis. The fixed nature of the reservoir allows for
implementation on diverse hardware platforms, including but not limited to
optical systems and electronic circuits™'*"'*,

Another aspect of RC for EEG analysis is that the reservoir can learn
dynamical properties not included in the training data, a remarkable
property that is believed to be related to the conjugacy between the source as
a dynamical system (such as the neural circuits of interest in this paper) and
the reservoir itself. The reservoir essentially learns the source dynamics from
the time series, and these properties are simply read from the output layer'”.
Compared to deep learning and transformer methods, theory and appli-
cation of RC is still in early stages. However, it is quite promising for
incorporation into the framework presented here because it is completely
consistent with a dynamical systems perspective on neural circuit
function'”.

Tensor representation of multiscale EEG features

The dynamical analysis described results in hundreds or thousands of values
derived from each EEG recording. Typical values are 19 or more sensors, 6
frequency bands, and 15 dynamical measures (shown in Table 1), which
yield 1710 dynamical values. High-density EEG nets used in research may
have as many as 256 sensors, which would result in tens of thousands of
dynamical values. These values are likely not entirely independent. For
example, nearby sensors are likely to have some sources in common.
Adjacent frequency bands are likely to have more in common than those
farther apart. Moreover, the minimum set of dynamical measures necessary
to characterize a system is not yet known. A reservoir computing device will
produce a set of values in the output layer which may also be larger than
desired for input into machine learning models. Latent features extracted by
tensor analysis can be used as dynamical biomarkers in machine learning or
regression models. This presents a computational approach to discovering a
basis set of measures for characterizing the brain dynamical system from
EEG signals.

The set of EEG measures described above can be arranged into a tensor,
i.e, a 3-dimensional data structure (sensor, frequency band, nonlinear
measure). The data from multiple patients or research participants can be
represented as a fourth axis, creating a fourth-order tensor of dimensions N
x Ns x Nf x Nm, where N is the number of participants. Tensors have been
used to represent EEG features recently'”, but supervised tensor factoriza-
tion has not been proposed in this context previously. Supervised tensor
factorization can be used as a preprocessing step to extract latent dynamical
values that are related to the training construct or diagnosis of interest. These
then become input to the statistical or machine learning algorithm as illu-
strated in Fig. 6.

The goal of tensor factorization is to identify a small number of latent
variables within the EEG data that explain most of the variation in the data.
Importantly, the predominant variations in the data may not be the most
highly correlated with target conditions of interest. Thus, supervising on a
primary target can improve the value of the identified factors. Further, in
clinical contexts, the latent variables often are influenced by additional
variables, such as environmental exposures or sex assigned at birth.
Supervising on a primary target variable and additional covariate variables
can improve the accuracy and usefulness of the discovered latent
variables'”.

A supervised tensor decomposition algorithm, such as the Canonical
Polyadic (CP) regression algorithm in the Tensorly Python package'” or the
SupCP described in the literature'”, can extract latent features that are most
aligned with the target and covariate variables. Tensor factorization is
analogous to Singular Value Decomposition (SVC) for matrices but gen-
eralized to multiple dimensions and supervised, allowing the target out-
comes to influence the factor extraction process. The extracted latent factors
are analogous to principal components found by Principal Components
Analysis used for matrix analysis. The result of supervised tensor factor-
ization is the reduction of 1710 (or more) dynamical values to a much
smaller set of perhaps 3 to 20 factors relevant to the condition of interest.
These factors may be used as the fundamental features to train a machine
learning model or statistical forecast model.

An important feature of tensor factorization is that the latent factors are
interpretable. Supervised tensor decomposition can extract latent features
and explore the underlying neurophysiology relevant to the labels or cate-
gories used for the supervised factorization'**'”. Like the SVC for matrices, a
tensor decomposition will find a reduced dimensionality feature set'”™""".
The canonical polyadic (CP) decomposition of a rank R tensor factorizes the
tensor into a sum of R rank-1 tensors'"”. The supCP'” tensor factorization
method implements a supervised version of the CP factorization algorithm
in which covariates inform the latent variables. The covariates include the
outcomes of interest, extracting latent structures—biomarkers—that are
more accurate and interpretable than unsupervised factorization provides.
Moreover, these latent factors represent dynamical information that is
derived from the dynamical neuroelectric field, thus representing the
underlying brain physiology.

Application roadmap and illustrations of dynamical correlates

Nonlinear analysis of EEG time series is proving to be a promising approach
to functional brain analysis and biomarker discovery'”™'"". As mentioned
previously, an outstanding challenge is to determine how much clinically
useful information can be extracted from EEG time series by phase space
reconstruction analysis. Currently, this can only be accomplished through
empirical testing. The basic scheme for doing so, as illustrated in Fig. 6, is as
follows: First, the raw EEG signals are decomposed into standard frequency
bands. “Scales” derived from the coarse-graining procedure have been used
in multiscale entropy studies; as we illustrated, these can be understood as
frequency bands. Dynamical invariants can be computed from the signals
using the algorithms described for entropy, Lyapunov exponents, and RQA.
A promising new approach for computing these dynamical invariants is
reservoir computing. Further research is needed to determine how dyna-
mical invariants computed by reservoir computing compare to those
computed by time delay embedding methods. Regardless of the method,
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Fig. 6 | A. EEG recordings (1) are used to compute latent dynamical factors by either
multi-frequency decomposition and nonlinear feature calculation (A.2 and A.3) or
reservoir computing (B.3). Output from either method is input to a (4) supervised
tensor factorization algorithm to extract latent dynamical features or “hidden

neurophysiology.” Other available data, such as putative causes, patient history, or
lab tests, may be input as covariates to supervised tensor factorization. Resulting
latent dynamical factors are input to learning models, as in Fig. 1.

these dynamical invariants can be mapped as quantitative features to clinical
diagnoses or behavioral measures using standard machine learning meth-
ods. Given that there are many dynamical variables, feature reduction
methods may be applied to reduce the number of features. We discussed
tensor factorization as a promising approach, but many other approaches
commonly used in machine learning methods may be used.

Our own studies have found promising correlations between dyna-
mical measures and emerging autism spectrum disorder'*"**'"”, childhood
anxiety'*'*, and attention deficit disorders'*"'* as well as detection of
epilepsy'*”'*, monitoring the effects of anti-seizure drugs'®’, and sleep
disorders'”. Further, a review of several studies showed that those with
schizophrenia exhibit altered EEG complexity, as characterized by increased
entropy signals'”. Individuals with major depressive disorder display dis-
tinct nonlinear EEG patterns, such as decreased fractal dimension and
reduced complexity, which are thought to indicate impaired neural con-
nectivity and information processing'**'**'*’. Research on bipolar disorder
has identified unique nonlinear EEG markers, including variations in
Lyapunov exponents, which reflect the chaotic nature of mood fluctuations
in these patients""'. Mood disorders associated with underlying neurological
pathology, such as Parkinson’s Disease, offer another avenue for studying
the correlation of neuroelectric field and psychiatric symptoms. High-
resolution intracranial recording techniques have the potential to under-
cover the network dysfunction and cognitive processes that drive these
symptoms toward a principled re-tuning of circuits'”. While these studies
suggest correlations between dynamical properties of the neuroelectric field,
as derived from EEG analysis, and psychiatric phenotypes, we suggest that
more research using comprehensive dynamical feature sets may result in
more accurate biomarkers and, perhaps more importantly, be useful for
understanding overlap and commonalities among the neural foundations
for psychiatric and neural disorders.

Discussion

Our primary goal in this paper was to present a dynamical systems per-
spective on the neuroelectric field generated by neurophysiology and to
present a computational approach to extracting dynamical features that
might be useful in predictive or classification models of psychiatric disease.

The fundamental conception of the neural field as a dynamical system, and
the consequent approach to computing system properties using readily
measured time series using EEG recordings, may be applicable to any
approach to computing digital biomarkers for psychiatric disease or
symptoms. Quantitative measures of brain function can be derived from
time series (EEG) measurements of the neuroelectric field to compute
dynamical properties or ‘invariants’ that can be used as diagnostic, prog-
nostic, or monitoring biomarkers, or incorporated into trajectory models
that predict changing risk for psychiatric disorders over developmental
time. Supervised tensor factorization is a general methodology for orga-
nizing these EEG-derived values and for extracting latent features associated
with specific disorders. Our goal here is clinically pragmatic: The neuro-
electric field can be measured routinely by a new generation of portable EEG
sensors relatively easily and inexpensively, characterized by the tools of
dynamical systems analysis, and mapped to cognitive constructs, develop-
mental behavioral milestones, or psychiatric conditions using supervised
tensor factorization and machine learning. That is, the presented perspective
on the brain as the source of the neuroelectric field is presented as the
foundation for a general computational approach to incorporate functional
neural circuit information in neuropsychiatric biomarker discovery and
evaluation.

A significant challenge remains. Nonlinear analysis of EEG time series
has been used for several decades to compute signal properties to be used as
biomarkers for psychiatric disorders. However, a comprehensive perspec-
tive that seeks to find a minimal set of measures, a basis set in mathematical
terms, that comprehensively characterizes (brain) system dynamics has yet
to be presented. As we described above, the number of nonlinear measures
that can be computed continues to increase, with more than 20 different
entropies alone being defined””. We present a flexible framework that allows
new nonlinear measures to be added, with the same supervised tensor
factorization scheme, to extract a smaller latent set of factors most correlated
with a chosen target, such as a specific disease or psychiatric construct.
Identification of a minimal comprehensive set of measures that should be
computed from every EEG recording would establish a common set of
measures for use by the entire neurophysiology community to create a
shared learning neuropsychiatric data system. This is a task for the
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computational psychiatry community, as different sets of factors are likely
needed for predicting not only different disorders but also a given disorder at
various stages of development.

Artifacts and noise in EEG measurements are known to affect spectral
power values. For example, eyeblinks and facial muscle movements cause
large deviations in signals from sensors near the activity from these non-
neural sources. Noise introduced to the measurement and digitization
process may significantly affect power values. An important question yet to
be answered is how much these artifacts affect nonlinear measures. It may be
that some dynamical measures are relatively immune to transient, large-
amplitude muscle artifacts. On the other hand, small amplitude noise, which
may have little effect on power, may significantly alter values of entropy or
other dynamical measures. Importantly, the effects of filtering for noise,
artifacts, or frequencies on the various dynamical measures is unknown.
Since filtering is commonly applied to EEG signals, a systematic study of
these effects is important for further development of dynamical analysis to
neural biomarker applications.

Correlating dynamical values with specific psychiatric conditions
presents several related challenges. The first is simply to find clinically useful
digital biomarkers that correlate with some diagnostic label or predict later
emergence of such a condition. This problem can be solved using basic
machine learning algorithms, as illustrated in Fig. 1. The term ‘digital bio-
markers’ is used to distinguish a weighted combination of many, multi-
modal input values from a single scalar value, such as fasting blood glucose
level (a scalar number) as a biomarker for diabetes. Complex digital bio-
markers that are output by a machine learning algorithm may be difficult or
impossible for a human to review visually and interpret, but an algorithm
can map these numbers to a binary outcome. A more challenging problem is
to determine what outcome labels to use. The commonly used diagnostic
labels found in the Diagnostic and Statistical Manual of Mental Disorders
(DSM 5)'* or the International Classification of Disease'™* attach a diag-
nostic label to symptom clusters. This approach has been criticized as not
being based on neurobiology. Alternative nosologies that focus on under-
lying biological and psychological processes rather than symptom-based
categories receive increasing attention' . Determining the proper targets for
mapping dynamical values may require empirical research to solve.

The mathematical theory of dynamical systems guarantees that the
phase portrait of a dynamical system can be reconstructed by a time series
from any component of the system'*. The theorems do not say how fine-
grained of a reconstruction is possible. As discussed previously, EEG time
series are composed of the action potentials of many neurons. It is likely that
the sampling rate of the measuring device, the degradation of the cortical
signals as they pass through the skull and scalp, and corruption of the signal
by noise and artifacts will all impose limits on how precisely individual
differences can be detected. If macroscale differences can be detected in
neuroelectric field dynamics that distinguish major categories of mental
disorders, this may be clinically useful in itself. Combining dynamical
measures with genetic, historical, or other clinical data may enable more
refined and personalized patient or disease characteristics to be detected.
This must be determined empirically by analysis of larger clinical datasets.

Psychiatric disorders emerge over developmental time, which has led
to the recommendation that a “a patient’s experience is a trajectory, and the
goal must be to shift that trajectory”. If our fundamental hypothesis is
correct, that is, that changes in behavior reflect changes in neural circuit
dynamics or, equivalently, neuroelectric field dynamics, then changes in
dynamical measures derived from EEG time series should detect changes in
the patient’s trajectory, whether from emerging disease or from the effects of
therapy or medication. In the latter case, routine monitoring of neural
function with EEG measurements, from which dynamical invariants can be
computed, may provide a tool for monitoring therapeutic progress. This
perspective is grounded on the assumption that there is a causal correlation
between the electrical field that neural circuits generate and the behaviors
that define psychopathological symptoms. Previously cited examples
demonstrated correlations between some dynamical measures and psy-
chiatric disorders. Inclusion of dynamical invariants in predictive or

monitoring algorithms can be done with the measures discussed here, or
with new measures, perhaps from new approaches such as reservoir com-
puting, enabling characterization of neuroelectric fields with more com-
prehensive dynamical measures and disease.

Preliminary evidence suggests that the computational tools presented
are useful for discovering potential digital biomarkers for many neu-
ropsychiatric disorders, some of which we have explored in our own
research'”!"*"**"** Application, analysis, and clinical testing are needed for
specific disease cases to build machine learning models derived from
training data. This will require specialists from many fields, using their
knowledge to properly train as well as upgrade the model framework as
needed. We believe that the theoretical perspective on neuroelectric fields
and the computational framework for deriving dynamical invariants from
short EEG measurements will provide an important record of brain func-
tion that can be incorporated into machine learning or statistical models,
including developmental trajectory models, to enable clinically useful bio-
markers for monitoring many neuropsychiatric disorders to be discovered.
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