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Reading and summarizing insights fromOptical Coherence Tomography (OCT) images is a routine yet
time-consuming task that requires expensive time from experienced ophthalmologists. This paper
introduces theMulti-label OCT Report Generation (MORG) model, a deep learning approach to assist
in the interpretation of OCT images. MORG employs dual image encoders to extract features from
OCT image pairs, fusing them through amulti-scalemodulewith an attentionmechanism, followed by
a sentence decoder to produce reports. Trained and tested on 57,308 retinal OCT image pairs,MORG
achieved high classification accuracy for 16 pathologies with 37 descriptive types. It also excelled in a
blind grading test against general large language models and other state-of-the-art image captioning
models, scoring 4.55compared toophthalmologists’4.63out of amaximumof 5. Furthermore,MORG
has the potential to reduce the report drafting time for ophthalmologists by 58.9%, significantly
alleviating their workload.

Globally, millions of people are suffering from various retinal diseases,
including age-related macular degeneration1 and diabetic retinopathy2,
which lead to significant visual impairment. The large number of patients
affected by these retinal conditions places a substantial strain on healthcare
systems and economies. Retinal optical coherence tomography (OCT)3, a
non-invasive imaging modality, offers detailed cross-sectional views of the
retina in vivo, becoming an indispensable tool in ophthalmology4.However,
the precise analysis of OCT images necessitates the specialized knowledge
and skill of seasoned ophthalmologists. Furthermore, ophthalmologists are
confronted with the challenge of managing an escalating patient load and
handling substantial volumes of data. The task of interpreting a large
number of OCT images is particularly laborious and time-intensive, with
the potential for subjective bias. The surge in patients with retinal diseases
has led to a heavy workload for ophthalmologists, which may adversely
affect the quality of health care. Additionally, the scarcity of experienced
ophthalmologists in numerous primary hospitals and medical facilities
exacerbates these challenges.

The rapid and successful evolution of deep learningwithin the realmof
computer vision5 has led to important advancements in ophthalmic auto-
mated diagnosis and analysis. Numerous studies have illustrated that deep
convolutional neural networks effectively extract intermediate and
advanced features from retinal OCT images6, achieving remarkable success
in disease classification7, image segmentation8, and lesion identification9.
However, given the complexity ofOCT imaging—where a single imagemay
exhibit multiple types of lesions with varying degrees of severity and sizes—
mere classification or lesion detection is insufficient to fully describe the
detailed information of the OCT images. To furnish amore comprehensive
understanding of the retinal diseases, a detailed description of these distinct
features is necessary.

Image captioning is a comprehensive task that involves image recog-
nition and comprehension, as well as the articulation of their content in
human language. It combines computer vision and natural language pro-
cessing techniques to understand images, that is much more challenging
than image classification and segmentation technically. Image captioning
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requires not only objects recognition but also the capability to grasp the
associations, properties, and activities. Conventionally, language processing
models are employed to convert the captured semantic information into
intelligible sentences. Applications of image captioning algorithms based on
deep learning are currently on the rise, and many high-performing models
have been described by illustrious research institutions such as Microsoft
and Google10. For medical image analysis, image captioning is widely used
for automatic report generation (ARG)11–14. An end-to-end semi-supervised
multimodal data and knowledge linking framework between CT volumes
and textual reports with attentionmechanismwas reported12. Generation of
unified reports of lumbar spinal MRIs in the field of radiology by a weakly
supervised framework can be automated that combines deep learning and
symbolic program synthesis theory13. A domain-aware automatic chest
X-ray radiology report generation system conditionally generated sentences
corresponding to the predicted topics, and then could be fine-tuned using
reinforcement learning to improve readability and clinical accuracy14. In
ophthalmology, a program consisting of retinal disease identifier, clinical
description generator, and visual explanation module for fundus images,
improved conventional retinal disease treatment15.Medical reports could be
generated through non-local attention-based multi-modal feature fusion
approach by introducing expert-defined unordered keywords16. However,
to the best of our knowledge, there is no existing system that can auto-
matically generate reports for retinal Optical Coherence Tomography
(OCT) images currently.

This study is the first attempt to address this gap, leveraging a large-
scale dataset encompassing 57,308 OCT images paired with reports
authored by ophthalmologists.We develop an efficient deep learningmodel
named Multi-label OCT Report Generation (MORG), which integrates a
multi-scale feature fusion network (MSFF) for encoding and a long short-
term memory (LSTM) unit for decoding. This architecture fuses informa-
tion from two representative OCT images per scan to generate timely and
precise reports. Extensive experimentation has demonstrated that MORG
surpasses other image captioning algorithms and large language models,
achieving comparable results with those clinical reports authored by oph-
thalmologists, and significantly reducing the time required for drafting
reports.

Results
Similarity metrics
We compared our method, MORG, with several state-of-the-art (SOTA)
image captioningmodels, includingNIC17, ProgressiveTransformermodel18,
SCA-CNN19, and Bottom-up-to-down20 in terms of the text-quality metrics
focused on measuring the similarity between the generated report and those
authored by ophthalmologists (see Table 1). Our proposed method out-
performed the others, achieving scores of 0.6099 for BLEU-1, 0.5409 for
BLEU-2, 0.4871 for BLEU-3, 0.4406 for BLEU-4, 0.6310 for ROUGE, and
3.4109 for CIDEr.

We conducted additional experiments to evaluate the performance of
our proposed method by replacing the MSFF encoder with other popular
backbones, including RETFound21, ResNet5022, VGG1923, Res2Net24,
SeResNet25, and DenseNet26. The experimental results are presented in
Table 2. It was found that our proposed MSFF encoder achieved the best
performances in all the experiments, basedon the evaluationmetrics used in
this study except BLEU-1 and BLEU-2.1

Note that Transformer-based architectures (Progressive and
RETFound) have not outperformed our approach. First, Transformers
exhibit weaker inductive bias compared to CNNs and require extremely
large datasets27 for training such as ImageNet with over 10million images.
Therefore, on 57,308 OCT images—the largest OCT dataset currently
available for report generation—our CNN-LSTM-basedmethod provides a
distinct advantage. Second, although RETFound has been pretrained on
over one million OCT images, demonstrating strong inductive bias cap-
abilities, significant challenges remain in optimizing its integration with
language decoders. Techniques such as feature fusion28 and knowledge
distillation29 require further exploration, as direct embedding and fine-
tuning of the encoder and decoder fail to produce satisfactory diagnostic
reports.2

Blind grading test by retinal subspecialists
We invited two retinal subspecialists to perform a blind grading test with a
5-point scale on reports written by ophthalmologists and different models
on an independent set of 100 OCT cases, as shown in Fig. 1. The two-sided
FriedmanM test indicated that there is no significant difference between the

Table 1 | Performances comparison on test set of the proposed method with competing image captioning models in terms of
BLEU, ROUGE, and CIDEr

Models BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE CIDEr

NIC 0.3449 0.2766 0.2286 0.1906 0.4673 1.9603

Progressive Model 0.4255 0.3258 0.2427 0.1913 0.4305 0.7910

SCA-CNN 0.5548 0.4868 0.4345 0.3902 0.6033 3.1521

Bottom-up-top-down 0.6033 0.5298 0.4738 0.4258 0.6110 3.1844

MORG(Proposed) 0.6099 0.5409 0.4871 0.4406 0.6310 3.4109

Table 2 | Performance comparison on the test set of the proposed model with different backbones in terms of BLEU, ROUGE,
and CIDEr

Models BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE CIDEr

RETFound+ LSTM 0.3597 0.2892 0.2441 0.2104 0.4274 1.4662

ResNet34 0.6073 0.5346 0.4807 0.4352 0.6094 3.0563

ResNet101 0.5858 0.5176 0.4656 0.4216 0.6080 3.1049

ResNet50+ LSTM 0.6125 0.5412 0.4853 0.4369 0.6220 3.2607

VGG19+ LSTM 0.5300 0.4626 0.4114 0.3677 0.5853 2.8696

Res2Net+ LSTM 0.6083 0.5381 0.4835 0.4366 0.6255 3.3585

SeResNet50+ LSTM 0.6008 0.5321 0.4781 0.4315 0.6262 3.3524

DenseNet+ LSTM 0.6089 0.5378 0.4825 0.4349 0.6229 3.2689

MORG(Proposed) 0.6099 0.5409 0.4871 0.4406 0.6310 3.4109
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reports by MORG and these written by ophthalmologists (4.55 ± 0.46 vs.
4.63 ± 0.41, adjusted p = 1.000), and both are significantly better than the
reports generated by large language models (LLM) and other SOTA image
captioning models (all adjusted p-values are <0.001). GPT-4 with instruc-
tions received a score of 2.95 ± 0.92, which is mildly better than GPT-4
without instructions (2.52 ± 0.67) while MiniGPT-4 received the lowest
score of (1.12 ± 0.34). Other SOTA models scored only between
(2.24 ± 0.11) and (3.11 ± 0.11). There is moderate agreement between the
scores of these two retinal subspecialists (Linear weighted Kappa coefficient
is 0.556 ± 0.018 as shown in Supplementary Table 1. In addition, no dif-
ferencewas found in themanual scores between the twoOCTdevices (two-
sided Mann-Whitney U test, Z = -1.047, p = 0.295). Compared with 3D
OCT-2000, Triton had overall clearer imaging with a higher average image
quality score (median 50.5 vs 36.0), benefiting from its swept source
advantage. However, no correlation was found between manual scores and
image quality (Spearman Rank correlation, r = 0.184 in 3D OCT-2000 and
0.096 in Triton, p = 0.175 and 0.537, respectively). These results suggest that
the device and image quality did not affect our model’s performance.
Quantitative measures such as localization accuracy and semantic overlap
were shown in Supplementary Table 2.

Classification metrics
We assessed the algorithm’s performance in classifying 16 unique patho-
logical types, with the potential for further differentiation into 37 distinct
descriptive categories. This evaluation was conducted using metrics such as
accuracy, precision, recall, and the F1-score, with the outcomes presented in
Table 3. The “external limiting membrane” was excluded from the analysis
due to its inexistence in the testing set. The proposed method exhibits a
detectionF1-score exceeding0.8 for 2 types ofdescriptions and surpasses 0.7
for eight types. Following an exhaustive analysis of disease characteristics,
MORG more effectively identifies lesion categories with pronounced fea-
tures or ample training samples, such as “Retinal edema and thickening”
and “Neurosensory retinal detachment”, with all metrics consistently
exceeding 0.8. However, in 4 categories with a limited number of cases or
vague lesions, including “Vitreous opacification”, “IS/OS layer atrophy and
thinning”, “Indistinct boundaries between neural epithelial layers”, and
“Local absence of outer layer tissue”, the method demonstrates notable
errors – a common challenge for big data-driven deep learning algorithms.

Time-Efficiency assessment and Human-AI comparison
The time for human expert to read the volumetric scans and select the
appropriate horizontal and vertical meridian images to fed into MORG is
5.71 s on average. The two ophthalmologists spent an average of 38.36 and
51.21 s, respectively, writing a report manually. In contrast, when refining
reports autogenerated by MORG, the average time spent are 13.47 and
24.08 s, respectively. These results demonstrate that MORG has the
potential to reduce the report drafting time for ophthalmologists by an
average of 58.9%, significantly alleviating their workload.

In Human-AI comparison, a total of 217 cases were analyzed, with
detailed results presented in Supplementary Table 3. The ophthalmologist

and MORG achieved overall accuracies of 0.86 and 0.75, respectively, with
sensitivities of 0.72 and 0.59, and specificities of 0.77 and 0.72, respectively.

Qualitative analysis
Figure 2 illustrates three examples of descriptive reports produced by var-
ious models as well as by ophthalmologists. Please note that the original
reports, depicted in Supplementary Fig. 1, are in Chinese and have been
translated into English. Both the ophthalmologists’ reports and those gen-
erated by MORG provide precise descriptions of the OCT image
characteristics.

MiniGPT-4 primarily focuses on color and the overall shape of bands,
failing to recognize detailed anatomical structures. It often generates content
unrelated to retinal OCT imaging, such as cellular components and body
tissues from other areas of the body. Furthermore, it frequently misses
identifyingabnormalities or lesions inOCTscans and insteadusesunrelated
terms like “rabbit”, “pus basin”, “radial light muscle”, and “black film”.
MiniGPT-4 also erroneously diagnoses eye diseases such as “corneal can-
cer”, “dry eye”, and “conjunctival calculus”, conditions that cannot be
detected through OCT images alone. Moreover, it mistakenly reports non-
ophthalmic conditions like “cerebral hemorrhage” and “lymphadeno-
pathy”. Additionally,MiniGPT-4 often produces fictitious disease names or
phrases such as “anterior anxiety”, “wet eye”, and “age-related lumbar
cerebrovascular disease”. Consequently, its reports are useless in practice,
resulting in low scores in the blind grading test.

Without specific instructions, GPT-4 tends to describe anatomical
structures vaguely, lacking specific information about important tissues and
retinal layers. It frequently provides correct but trivial information, such as
“the color is mainly blue and green, showing clear details” or “watch for
disease progression or changes” resulting in clinically correct but ultimately
useless reports. When provided with instructions and example reports
written by ophthalmologists, GPT-4 can generate reports with accurate and
informative descriptions of anatomical layers and pathological lesions in
OCT images. However, there are still numerous inaccuracies, and it often
misidentifiespathological conditions as normal, suggesting thatGPT-4does
not truly interpret the images but instead generates illusions.

Discussion
To the best of our knowledge, this is the first report on effective and reliable
automatic generation of descriptive reports using image captioning meth-
ods for retinal OCT images. OurMORGmodel outperformed state-of-the-
art algorithms in similarity with the ground truths. It also achieved high
classification accuracy for 16 pathologies and 37 types of descriptions. In the
blind grading test of medical correctness conducted by two retinal sub-
specialists, MORG is comparable with the report written by ophthalmolo-
gists and superior to generalized LLMs and other SOTA image captioning
models. In Time-Efficiency assessment, MORG has the potential to reduce
the report writing time for ophthalmologists by 58.9%, significantly alle-
viating their workload.

Generation of automatic report typically relies on natural image cap-
tioning technologies. However, in contrast to generic image captioning,
medical image captioning emphasizes the relationships between image
objects and clinical findings, rendering it a particularly challenging task11.
With the advancement of deep learning and graphic processing unit (GPU)
computing, recent research in image captioning has significantly benefited
from deep neural networks, especially the encoder-decoder model. This
model usually combines convolutional neural network (CNN)with recurrent
neural network (RNN) or LSTM model to extract image features using the
CNN structure in the encoder and generate a description for the image using
an RNN/LSTM network in the decoder. However, the original encoder-
decoder model17 has a limitation that the semantic encoding vector for each
decoding step was the same, while each word should depend on different
image regions. To address this limitation, attention mechanisms were
introduced into the encoder-decoder structure, as shown inXu et al.‘swork30,
where image features were weighted to align the semantic information with
image features. In ourMORGmodel, we proposed an innovativemulti-scale

Fig. 1 | Blind grading scores given by two retinal subspecialists for reports gen-
erated by ophthalmologists and different models. The score is presented as mean
and standard deviation. “w/ ins. “ refers to “with instructions”, while “w/o ins. “ refers
to “without instructions”. MiniGPT-4 is also operated without instructions.
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module with an attention mechanism to effectively fuse features from dif-
ferent levels in the image encoders. We extracted features from two retinal
OCT images taken with different perspectives and fused them at different
stages of the network. Based on the multi-scale feature fusion method, we
processed the fused features to form a feature weight map that guided the
shallow network to focus on regions of interest in the images. This may
explain why our method outperforms SOTA approaches on OCT images.

Recently, large language models (LLMs) such as ChatGPT have
attracted considerable attention and gained global popularity due to their
high capability and easy accessibility through a chatbot interface31. Wang
et al.32 proposed an interactive Computer-AidedDiagnosis system based on
ChatGPT (ChatCAD) formedical image applications. However, the system
only performs statistical analysis on classification or segmentation results

obtained fromdeep learningmodels, rather than conducting image analysis
or disease diagnosis. Antaki et al.33 demonstrated that Gemini Pro, a general
vision-languagemodel, can only achieve a 10.7%F1-score on 50OCT scans
in identifying macular diseases. GPT-431 and MiniGPT-434 are not open-
source and cannot be fine-tuned directly. Although we provided instruc-
tions and sample reports written by ophthalmologists to enhance their
performances, creating the instruction set is time-consuming, and the
performances of the enhancedmodels remain limited. For example, reports
generated by MiniGPT-4 and GPT-4 could have serious issues, like con-
fusing normal conditions with pathological ones. If employed clinically,
these models could pose significant risks.

Besides, fine-tuning LLMs for specific tasks remains a complex and
systemic engineering challenge, particularly for vision large language

Table 3 | Distribution of pathologies and performance metrics of MORG in testing set

Pathologies Descriptions Patient Eye Scan Precision Recall F1-score

1 Macular Hole Foveal tissue loss 377 386 406 0.755 0.554 0.639

Macular hole closure 159 159 178 0.669 0.579 0.620

A cover floating in front of the hole 32 34 35 1.000 0.114 0.205

2 Retinoschisis Retinoschisis 449 469 502 0.537 0.715 0.613

3 Macular Structure Normal fovea 1715 1810 1820 0.691 0.848 0.761

Retinal atrophy and thinning 1641 1723 1794 0.679 0.628 0.652

Retinal edema and thickening 2425 2605 2955 0.831 0.894 0.861

4 Epiretinal Membrane Proliferative membrane visible anterior to the retina 1640 1727 1870 0.633 0.783 0.700

High reflective signal visible anterior to the retina 49 50 51 0.800 0.078 0.143

5 Vitreous Body Vitreous opacification 17 17 17 0.000 0.000 -

Posterior vitreous detachment 165 173 179 0.778 0.235 0.361

6 Internal LimitingMembrane Abnormal reflective signal on the retinal surface 110 110 111 0.429 0.081 0.136

Inhomogeneous reflectionof Inner limitingmembrane reflection 557 573 586 0.500 0.012 0.023

7 Photoreceptor Layer Photoreceptor layer atrophy and thinning 493 508 517 0.613 0.551 0.580

Photoreceptor layer reflection decreased 130 133 134 0.444 0.418 0.431

8 IS/OS layer IS/OS layer atrophy and thinning 8 8 8 0.000 0.000 -

Disruption of the continuity of the IS/OS layer 2067 2167 2345 0.817 0.734 0.773

Decreased IS/OS layer reflection 554 577 582 0.563 0.402 0.469

9 NSR detachment Neural epithelial layer is well-adhered 633 639 727 0.635 0.582 0.607

Neural epithelial layer detachment 1504 1548 1672 0.851 0.803 0.826

10 NSR reflectivity High reflective signal visible in the neural epithelial layer
and below

234 241 275 0.766 0.596 0.671

High reflective signal in the neural epithelial layer 1542 1701 1900 0.791 0.705 0.745

Abnormal reflective signal beneath the retina 429 430 455 0.630 0.699 0.663

Abnormal tissue reflection in the inner or outer neural
epithelial layer

429 431 468 0.691 0.534 0.602

11 NSR structure Indistinct boundaries between neural epithelial layers 20 20 20 0.000 0.000 -

Local absence of outer layer tissue 21 21 22 0.000 0.000 -

Local absence of inner layer tissue 217 223 227 0.463 0.410 0.435

Foveal structural abnormality 1911 2016 2033 0.701 0.780 0.738

12 RPE detachment Local detachment of the RPE layer 886 921 1024 0.738 0.688 0.712

13 RPE reflectivity Abnormal signals are visible near the RPE layer 62 66 66 0.455 0.379 0.413

RPE layer reflection uneven with visible small elevations 3064 3232 3421 0.643 0.633 0.638

14 RPE structure Atrophy and thinning of the RPE layer 158 163 164 0.613 0.348 0.444

Irregular RPE layer 300 308 318 0.763 0.182 0.294

Disruption of the continuity of the RPE layer 546 567 633 0.723 0.589 0.649

Abnormal reflective signal visible beneath the detached
RPE layer

337 350 390 0.627 0.708 0.665

15 Choroid Choroidal atrophy 584 637 679 0.861 0.611 0.715

16 External limitingmembrane Thinning of the external limiting membrane 0 0 0 - - -
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Fig. 2 | Sample reports generated by the proposedmodel (MORG), large language
models along with the corresponding ground truths written by ophthalmolo-
gists, translated from the original Chinese version. Manual scores by two retinal
subspecialists are provided for clarity. “w/ ins. “ refers to “with instructions”, while

“w/o ins. “ refers to “without instructions”. The reports were graded with a 5−point
scale: 1: Very poor/unacceptable error. 2: Poor/minor potentially harmful error. 3:
Medium/misinterpreted error. 4: Good/only minor harmless error. 5: Very good/no
mistakes.
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models, where the process is significantly more intricate than that of stan-
dalone language models35. From fine-tuning to clinical deployment, LLMs
encounter the following challenges: (1) Dataset Creation: Constructing
medical image-dialog datasets is highly challenging. Moreover, due to the
immensenumber of parameters inLLMs,fine-tuning themstill demands an
ample volume of high-quality data. (2)Trade-offs in Fine-Tuning: Existing
fine-tuning techniques often introduce inference latency36,37 by extending
model depth or reduce the model’s usable sequence length38–41, posing
challenges in balancing efficiency and model quality. (3) Resource Con-
straints: The fine-tuning and inference of LLMs require substantial com-
putational resources, hindering offline clinical deployment. Moreover, the
slow inference speed of vision large language models further limits their
clinical applicability. In contrast, our proposed MORG framework offers
advantages in efficient dataset creation, end-to-end training, and a compact,
practical design.

The clinical significance of this study lies in its ability to address
challenges facedbyophthalmologists inmanaging an escalatingpatient load
and the vast data associatedwith retinal imaging, potentially revolutionizing
eye care. The introduction of our MORG, a deep learning-based approach,
offers a transformative solution for generating reports directly from retinal
OCT images. Traditional automated diagnosis methods of retinal diseases
are mostly just a simple classification for OCT images. In contrast, our
MORGmodel stands out by automatically generating diagnostic reports for
OCT images with the same level of quality as those written by professional
ophthalmologists. By delivering standardized and referable diagnostic
reports, ourMORGmodel significantly expedites diagnostic procedures for
ophthalmologists, enhancing accuracy particularly in time-sensitive situa-
tions.Moreover, the application of our approach could play a pivotal role in
narrowing the gap inmedical services in remote areas with limited access to
ophthalmic resources, thereby promoting equitable distribution of medical
expertise and resources to improve healthcare outcomes. Our method can
assist ophthalmologists in diagnosis and further improve medical services,
especially in remote areas with limited ophthalmic medical resources. Our
model can be easily extended to other languages by either translating the
generated reports to the languageor by translatingour ground truth training
dataset and retraining our model. This is one of our planned future tasks.

We acknowledge some limitations in the current study. First, our pro-
posed approachused twocross-sectional imageswhich is a commonprotocol
in OCT, but not other medical image modalities. Therefore, our method is
applicable to OCT only, and cannot be generalized to other medical imaging
modalities at this stage. Second, objectively evaluating image captioning
systems presents a challenge. We employed text-quality metrics such as
BLEU, ROUGE, and CIDEr to evaluate our model’s performance. However,
our comparative analysis of human experts andMORGon a random sample
of cases revealed significant potential for enhancing sensitivity and specificity
when clinical reports serve as the benchmark, as detailed in Supplementary
Table 3. This shortfall could stem from three primary factors: (1) Clinical
reports may include details that extend beyond the two selected slices, and
secondly. (2)Minor difference and subtle lesions are not clinically significant
(Supplementary Fig. 2). (3) Our method is designed to generate diagnostic
reports from OCT images, with the output consisting of descriptive text
rather thanmere classification outcomes. As previous research has indicated,
commonly used classificationmetrics like precision and recallmay not be the
best indicators of a system’s performance in the context of image captioning
and report generation42. The complexity of medical reports goes beyond
simple classification; it entails grasping context, severity, and a spectrum of
conditions, aspects that traditional metrics like precision and recall may not
fully encapsulate. Therefore, it necessitates a medical expert assessment, like
the blinding grading byhuman experts using the Likert Scale. This qualitative
analysis provides a more comprehensive understanding of how our system’s
output aligns with clinical standards and expectations. Third, there may be
some subjective bias. Ophthalmologists refine their diagnostic acumen over
time, potentially leading to variations in their reporting styles, and there can
be inconsistencies across reports fromdifferentpractitioners due to subjective
factors or linguistic norms. Selection of two cross-sectional images from 3D

scan is based on the selection of the clinicians. Usually, the horizontal and
vertical meridian images are automatically selected by the OCT inbuilt
algorithm, unless the ophthalmologists found there is an anomaly elsewhere
that requires documentation. This standardized approach minimizes the
need for subjective selection. Fourth, ourmodel, which is end-to-end trained,
currently lacks interpretive capabilities. Specifically, while the diversity of
anatomical features anddescriptive elements inour outputs introduces a level
of complexity that heatmaps struggle to capture in a clear and effective
manner, some key words—such as “macular” in Supplementary Fig. 3 (a),
“serous” in (b), and “edema” and “cystic cavities” in (c)—still correspond to
specific image regions to a certain extent. However, given intricate relation-
ships between OCT images and diagnostic content, further research is still
required to develop more effective interpretability methods. However, the
limitations of heatmaps in conveying the nuanced interpretability of our
model within the unique context of our study highlight the need for
improvement. Therefore, seeking alternative methods to enhance our mod-
el’s interpretive capability is a priority for future research. Fifth, the perfor-
mance of our methods may deteriorate when applied to different OCT
models due to domain shift. In the next step, we will expand our training
dataset to include data from various imaging devices and centers, which will
help themodel generalize better across different domains. Sixth, our method
cannot recognize the anomalies or pathologies that were not adequately
covered in the training data. We have included 57,308 retinal OCT image
pairs in the current study, but there may still some rare anomalies not
included. In our previous study, we developed the UIOS model for uncer-
tainty estimation in the classification of fundus photography, which has
provided us with valuable experience in this area43. We will enhance the
MORG model with robust uncertainty estimation capabilities in further
study. Seventh, although our model has demonstrated promising perfor-
mance on the current dataset, it is important to acknowledge that the eva-
luation has primarily relied on images with predefined benchmarks. This
approach, while valuable for initial validation, may not fully capture the
model’s robustness and clinical applicability in real-world scenarios, where
benchmarks are often not available. Future work will focus on testing the
model on images without predefined benchmarks to better understand its
performance in more diverse and uncontrolled settings. This will provide a
more comprehensive assessment of the model’s ability to generalize and
adapt to new, unseen data, thereby enhancing its clinical relevance and
practical utility. Eighth,we excluded imageswith extremely lowquality due to
severe media opacity, as even experienced doctors struggle to extract useful
information from such images. Therefore, the current version of MORG
cannot be applied to these images. This limitation applies not only to our
model but is also a common challenge in OCT-based diagnostics. Future
work will explore methods to enhance the model’s robustness against such
artifacts. This may include the development of advanced preprocessing
techniques to mitigate the effects of artifacts or the incorporation of artifact-
affected images into the training process with appropriate annotations.

In summary, we propose a novel report generation model for retinal
OCT images based on large scale data. Ourmodel could effectively generate
interpretative reports with a level of quality equivalent to those written by
professional ophthalmologists and superior to other imaging caption
models and large language models. Our method is poised to enhance the
diagnosis level of retinal diseases, alleviate the workload of ophthalmolo-
gists, and overcome the challenge of limited medical resources in
remote areas.

Methods
Overview of flowchart
Image captioning models typically followed the encoder-decoder frame-
work, which was first proposed by Vinyals et al.17. Figure 3 shows the
diagramof the proposedmodel in this study. The encodermodule extracted
semantic features inOCT images,while thedecodermodule translated these
features into corresponding descriptions. To tackle the situation where
multiple lesions scattered in various slices in an OCT volume, two repre-
sentative imagesXv1 andXv2 fromdifferent angles in each casewere selected
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by trained ophthalmologists, which have included most of abnormalities.
These two images in pair then go through feature extraction andmulti-scale
feature fusion with attention to form effective semantic features for report
generation as described below.

Encoder
We utilized the Densenet121 architecture26 without the fully connected
layers as the backbone for the encoder as shown in Fig. 4. Densenet121 is a

deep convolutional neural network with four dense convolution blocks to
alleviate the gradient vanishing problem while make full use of shallow
features. However, it was still challenging to efficiently integrate features
from images with different views in our experiment. To tackle this obstacle,
we proposed a novel multi-view feature learning strategy based on weight
sharing backbone network, MSFF, to fuse semantic features. Weights were
shared by the two encoders for feature extraction, ensuring effective feature
fusion and avoiding over-fitting.

Fig. 3 | Schematic diagram of the proposed model. It consisted of an image encoder and a sentence decoder. The encoder extracted semantic features in OCT images,
while the decoder translated these features into a professional diagnosis report in Chinese.

Fig. 4 | Structure of the image encoder in the proposedmodel.Two retinalOCT imageswith different viewswere fed into the image encoder, and the extracted featureswere
fused for report generation.
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Feature extraction
Recent studies indicate that integration of features from different levels in
deep models can significantly improve model performances44–46, where
features extracted at different layers correspond to different levels of
abstraction for the input image47. For instance, shallow features contain rich
local spatial information but lack global context awareness, while high-level
features have rich global semantic information but lack local spatial details.
By integrating these features from different levels, we can effectively locate
local salient features, infer global relationships among objects, highlight
target regions and dilute out background. Therefore, we applied an inno-
vative feature fusion strategy in this study to improve our method.

Wefirst performedelement-wise additionof the features extracted from
imagesXv1 andXv2 in eachof the four “DenseBlocks” as shown inFig. 4.We
then utilized a convolutional layer with a kernel size of 3 × 3 followed by a
batch normalization (BN) layer and a ReLU layer to enlarge the receptive
field and enhance global information of the features as,

F1
ff ¼ BNðReLUðConv3 × 3ðXD1

v1 þ XD1
v2 ÞÞÞ; F1

ff 2 RB×C ×H ×W

F2
ff ¼ BNðReLUðConv3 × 3ðXD2

v1 þ XD2
v2 ÞÞÞ; F2

ff 2 RB× 2C ×H=2 ×W=2

F3
ff ¼ BNðReLUðConv3 × 3ðXD2

v1 þ XD2
v2 ÞÞÞ; F3

ff 2 RB× 4C ×H=4 ×W=4

F4
ff ¼ BNðReLUðConv3 × 3ðXD2

v1 þ XD2
v2 ÞÞÞ; F4

ff 2 RB× 4C ×H=8 ×W=8

ð1Þ

where XDi
v1 and XDi

v2 (i = 1, 2, 3, 4) represent features extracted by the i th
“DenseBlock” fromthe imageXv1 andXv2, respectively, andF

i
ff (i = 1, 2, 3, 4)

denote the fused features in the i th dense block that were subsequently
processed by themulti-scale feature fusionmodule.B,C,HandWdenote the
batch size, number of channels, height and width of the feature map,
respectively.

Multi-scale feature fusion
Addition and concatenation are the most common methods for feature
fusion. However, as the features extracted by the four dense blocks had
different scales and resolutions, we proposed an attention-basedmulti-scale
feature fusion module to effectively integrate these features for report
generation.

As shown in Fig. 5, we applied pooling with different sub-sampling
rates and convolution operation with a kernel of 3×3 to F1

ff ; F
2
ff and F3

ff ,
respectively, so that their sizes were the same of F4

ff . We then fused all the
four feature maps by element-wise concatenation to obtain global semantic
information as,

F
01
ff ¼ BNðReLUðPoolingðConv33ðF1

ff ÞÞ; F
01
ff 2 RB× 4C ×H=8 ×W=8

F
02
ff ¼ BNðReLUðPoolingðConv33ðF2

ff ÞÞ; F
02
ff 2 RB× 4C ×H=8 ×W=8

F
03
ff ¼ BNðReLUðPoolingðConv33ðF3

ff ÞÞ; F
03
ff 2 RB× 4C ×H=8 ×W=8

Fconc ¼ ConcatðF4
ff ; F

01
ff ; F

02
ff ; F

03
ff Þ; Fconc 2 RB× 16C ×H=8 ×W=8

ð2Þ

Based on the feature fusion methods in ref. 40, we proposed an
attention module to fuse these high- and low-level features to help the
model focus on relevant contexts in the input images for report gen-
eration. First, we fed the fused feature map Fconc three convolutional
kernels of size 1×1 followed by a Sigmoid layer to generate three
attention maps FwðiÞ, i = 1, 2, 3, as shown in Fig. 5 and Eq. 3. With the
semantic information in the high-level features, these attention maps
can help guide the low-level features to focus on relevant areas in the
images. We then applied element-wise multiplication to the three
attention maps with the corresponding low level features, as shown in
Eq. 4. Finally, we concatenated the weighted feature maps Fw1; Fw2 and
Fw3 and F

4
ff element-wise followed by a convolution kernel of size 1×1 to

reduce number of channels, as shown in Eq. 5.

FwðiÞ ¼ BNðReluðConv1 × 1ðiÞðFconcÞÞÞ 2 RB× 3×H=8 ×W=8; i ¼ 1; 2; 3

ð3Þ

Fwi ¼ FwðiÞ× F
0 i
ff ; i ¼ 1; 2; 3 ð4Þ

F
0
conc ¼ ConcatenationðFw1; Fw2; Fw3; F

4
ff Þ

F ¼ BNðReLUðConv1 × 1ðF
0
concÞÞÞ

ð5Þ

Fig. 5 | The proposed attention mechanism in the
multi-scale feature fusion module. The semantic
information of deep features was used to guide the
model to focus on regions of interest.
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Decoder
The decoder module is responsible for generating a report based on the
image features extracted by the encoder. We used the Long Short-Term
Memory (LSTM) network as the backbone for the decoder. Inspired by the
visual attention mechanism described in ref. 30, the output of the LSTM at
the current time step enhanced the weights of the image features, allowing
thenetwork to focusondifferent regions in the imagesat differentmoments.
Figure 6 shows the architecture of the decoder. We fused the enhanced
feature weights zt with theword embedding vector et to form the next input
to the LSTM model. The output ht of the LSTM at time step t was then
mapped to the word vector space and normalized to obtain the probability
map yt for each word in the vocabulary, as shown in Eq. 6. Finally, we
selected the word with the highest probability as the predicted word at the
current time step. As demonstrated in Fig. 6, the red box in OCT images
highlights the area of “Local Cystoid Edema”. Utilizing fused features and
the “macular” output from the previous LSTM sequence, the decoder pre-
dicts the term “Cystoid Edema” at the subsequent step as,

yt ¼ Soft maxðMLPðhtÞÞ ð6Þ

Dataset
In this study, we collected retinal OCT image pairs at the Joint Shantou
International Eye Center between 2016 and 2020. Data were excluded
according to the following criteria: scans not centered in themacular region,
scan modes other than macular cube or radial scan, use of OCT angio-
graphy, and image quality scores below30/100.After applying these criteria,
we established a dataset of 57,308 image pairs from 57,308 OCT volumes,
derived from34,100patients and50,436 eyes (disease distribution is listed in
Supplementary Table 4). The distributions of pathologies and descriptions
are listed in Table 3 as well as in Supplementary Fig. 4, comprising pseudo-
color OCT images in pair. TheOCT images were captured using either 3D-
OCT 2000 or DRI OCT Triton (Topcon, Japan). Two common scanning
protocols were used to obtain OCT images: the 3D macular cube and the
radial scan. And the OCT reports include two selected 2D images for each
exam. In the 3Dmacular cube protocol, one is a horizontal B-scan, and the
other is a reconstructed vertical section. The 3DOCT-2000 device captures
imageswith 512A-scans per sliceanda total of 128 slices, covering an areaof
6*6 mm2. In contrast, the DRI OCT Triton captures images with 512
A-scans per slice and a total of 256 slices, covering a slightly larger area of
7*7 mm2. There is no averaging in the 3D macular cube protocol. In the
radial scan protocol, 12 radial slices with varying scanning angles are
obtained, eachconsisting of 1024A-scans andcovering a circular areawith a
diameter of 12mm in both devices. The number of B scans averaged is
4 scans in 3D-OCT 2000 and 16 in DRI OCT Triton. The horizontal and

vertical meridian images are usually automatically selected by the OCT
inbuilt algorithm (Supplementary Fig. 5), unless the ophthalmologists
found there is an anomaly elsewhere that requires documentation. The
images were in pseudocolor as it is the default format and is automatically
processed by the built-in algorithms in Topcon OCT-2000 and Triton
(Supplementary Fig. 6). These paired images were used to develop our
MORG model. On the same day as the patient’s visit, each received a
descriptive report in Chinese, written by the same ophthalmologists who
performed the examination (A.Z. and S.C.). These reports served as the
ground truth for training and evaluating the proposedmethod. Examples of
the reports can be found in Fig. 2 and Supplementary Fig. 2. This study was
approved by the Institutional Review Board at Joint Shantou International
Eye Center (JSIEC) and adhered to the principles of the Declaration of
Helsinki.Additionally, the requirement for informedconsentwaswaivedby
the Institutional Review Board at JSIEC, and the approval number for this
waiver is EC 20190911(4)-16. This decision due to the retrospective nature
of this study, which involved the analysis of de-identified retinal OCT
images and corresponding reports that were collected as part of routine
clinical care. The waiver was granted because there was no interaction or
intervention with the patients, and the data used in our study were desen-
sitized and could not be linked back to any individual patient, ensuring their
anonymity and privacy.

We had reviewed the ophthalmologist-authored descriptive reports
from our patients and eliminated certain redundant statements not deri-
vable from theOCT images, such as remarks on patient cooperation during
the examination. Subsequently, we distilled and categorized the retinal
characteristics documented in the reports into 16 broad categories,
including conditions like macular hole, retinoschisis, macular structure,
epiretinal membrane, vitreous body, internal limiting membrane, external
limitingmembrane, photoreceptor layer, inner segment/outer segment (IS/
OS), neurosensory retina (NSR) detachment, NSR reflectivity, NSR struc-
ture, retinal pigment epithelium (RPE) detachment, RPE reflectivity, RPE
structure, and choroid, as outlined in Table 3. Building upon this founda-
tion, these 16 categories can be further detailed into 37 specific descriptions.
For example, within the NSR reflectivity category, our reports encompass
descriptions of the varied locations of abnormal reflective signals. Similarly,
the NSR structure category includes information about the absence of
certain tissue layers and their morphological attributes. Specifically,
regarding the description of “Disruption of the continuity of the IS/OS
layer”, the Chinese reports offer a spectrum of qualitative descriptions, such
as discontinuity, interrupted continuity, local absence, and large area
absence. Although these descriptions are qualitative and difficult to quan-
tify, they are semantically analogous, and thus, they have been collectively
classified under the “Disruption of the continuity of the IS/OS layer” cate-
gory. Finally, the Jieba word segmentation tool (https://github.com/fxsjy/
jieba) was used to segment each descriptive report into its corresponding

Fig. 6 | The detailed architecture of the decoder. A
report in Chinese was automatically generated by
the decoder based on the image features extracted by
the encoder. The red box in OCT images highlights
the area of “Local Cystoid Edema”. LSTM fused
features from the image with the feature from the
previous LSTM sequence of “macular”, the decoder
then predicted the term “Cystoid Edema” at the
subsequent step.
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category. As a result, a total of 323 Chinese phrases were added into our
vocabulary which can be further translated into labels in respective
categories.

Implementation details
The final dataset consisted of 57,308 sets of OCT scans with corresponding
descriptive reports. Each patient was assigned a unique identifier, and the
dataset was divided into training, validation, and test sets based on these
patient identifiers,with a ratio of 0.6 for the training set, 0.2 for the validation
set, and 0.2 for the test set. Therefore, the scans of the same eye are not used
for both training and testing. The OCT scans were resized to (448,448)
before being inputted to the encoder. We set the number of units in the
hidden layers of LSTM to 512, the dimension of the word embedding vector
to 512, and thefinal number of feature channels generated by the encoder to
1024. The “early stop”mechanismwas used during training, which stopped
the training when the BLEU metric did not improve after 20 epochs. The
proposedmodel was implemented on the Pytorch platformandwas trained
with an NVIDIA 2080Ti graphics card with 12 G memory. We used the
Adam optimizer with an initial learning rate of 0.0001 and set the batch
size to 8.

Similarity metrics
We adopted the widely used Bilingual Evaluation Understudy (BLEU)48,
Recall-Oriented Understudy for Gisting Evaluation (ROUGE)49, and
Consensus-based Image Description Evaluation (CIDEr)50 to evaluate the
performance of our developed model.

The BLEU metric was originally proposed for machine translation
evaluation, measuring the accuracy of the prediction of N-grams in sen-
tences. It has the advantages of long-distance matching and efficient com-
putation. Let ci denote the sentence generated by themodel and Si represent
the target sentence, which consists of N tuples such that
Si ¼ fsi1; si2; . . . ; simg. The BLEU metric can be expressed as follows,

Pn ¼
P

i

P
k
minðhkðciÞ;minj2mhkðsijÞÞP
i

P
k
minðhkðciÞÞ

;

θ ¼ e
1� ls

sp ; 1s ≤ 1p1;

1s > 1p

(

BLEU�N ¼ θ × exp
PN

n¼1

1
n logðPnÞ

� �

ð7Þ

wherePn is themodifiedprecision forN-gram,hkðciÞ andhkðsijÞ indicate the
number of times the ith N-gram appears in the generated sentence and the
target sentence, respectively. ls and lp indicate the length of the predicted
texts and the effective reference corpus length, and θdenotes brevitypenalty.
BLEUhas somedrawbacks, including its inability to consider the position of
N-grams in the predicted texts, its disregard for grammatical accuracy, and
its inability to accurately judge the importance of words.

ROUGE is ametric designed to evaluate the quality of a summary or an
abstract. The basic concept is to use the longest common subsequence
between the predicted text and the target text as a baseline for calculating the
similaritybetween the twobyF1-score. The formula for calculatingROUGE
can be written as,

Rlcs ¼
LCSðci; SiÞ

f
ð8Þ

Plcs ¼
LCSðci; SiÞ

g
ð9Þ

ROUGE ¼ ð1þ β2ÞRlcsPlcs

Rlcs þ β2Plcs

ð10Þ

where ci denotes the sentence generated by the model, Si represents the
target sentence, LCSðci; SiÞ denotes the longest common subsequence

between the ci and Si, f denotes the length of the target sentence and g the
length of the predicted sentence, β is generally set to a very big number, such
as 8, in the Document Understanding Conference (DUC)51.

CIDEr was designed to evaluate the performances of image captioning
systems, measuring the Cosine Angle of the term frequency–inverse
document frequency (TF-IDF) vectors of a predicted sentence and the target
sentence. IDF was used to reduce N-grams that occur frequently in all
sentences,whileTF isproportional to the frequencyofN-gramsoccurring in
the target sentence. The CIDEr metric is calculated as,

CIDErnðci; SiÞ ¼
1
m

X

j

gnðciÞTgnðsijÞ
kgnðciÞk � kgnðsijÞk

ð11Þ

where gnðciÞ is a vector that corresponds to all N-grams of length n, and
‖gnðciÞ ‖ is the magnitude of the vector gnðciÞ. The same holds true for
gnðsijÞ. The above three metrics all focus on measuring the similarity
between a generated sentence and the target sentence.

Blind grading test by retinal subspecialists
We compared the reports generated by our model with those produced by
recent large languagemodels (namelyGPT-431 andMiniGPT-434) andother
SOTA image captioning models (NIC, Progressive Model, SCA-CNN and
Bottom-up-top-down), using an evaluation dataset comprising 56 images
collected by 3D-OCT 2000 and 44 images by DRI-OCT Triton in 2021.
These images were inputted into our model, MiniGPT-4, GPT-4 with
instructions, GPT-4 without instructions and other SOTA models,
respectively, to generate diagnosis reports for eachOCT image.To assess the
performance of different models, two retinal subspecialists (H.C. and D.F.)
independently and blindly graded these reports in random order using a
5-point scale, ranging from1 (very poorwith unacceptable errors) to 5 (very
good without any errors). The agreement between the two graders was
evaluated using the linear weighted Kappa coefficient, and the grading of
different reports was compared using the Friedman test to identify potential
significant differences. Reports written by ophthalmologists for the 100
cases in the evaluation dataset were also blindly graded for comparison.

Classification metrics
Furthermore, additional experiments were conducted to evaluate the
algorithm’s efficacy in pathology classification, utilizing accuracy, precision,
recall, and F1-score. We had systematically categorized 16 distinct anato-
mical types, which can be further divided into 37 pathological descriptions.
The reports, whether generated by our proposed method (MORG) or
authored by ophthalmologists, had been classified in accordance with these
descriptions. We awarded a score of 1 for reports where the semantics
closelymatch the original clinical descriptions, and a score of 0 for those that
deviate or are lacking, followed by a comprehensive computation of multi-
label classification metrics, as outlined in Table 3.

Time-Efficiency assessment and Human-AI comparison
In the Time-Efficiency assessment, we invited two experienced ophthal-
mologists (H.C. andD.F.) to independently write or review 100 reports and
record the time taken. Specifically, they were provided with 100 cases, each
consisting of two representativeOCTslices as like the inputs ofMORG, and
asked to draft reports independently, with the total time spent being
recorded. After a 1-week washout period to eliminate recall bias, these 100
cases were paired with reports generated byMORG, randomized, and then
presented to the same ophthalmologists again for proofreading and cor-
rection, with the total time spent once more being recorded.

In the Human-AI comparison, an independent and experienced
ophthalmologist (A.L.) was invited to participate in a direct competition
with our MORG system. A random selection of 217 OCT cases from 2021
was included in the study. The ophthalmologists were provided with two
representative OCT slices from each case and asked to write reports based
on these images, whichwould serve as a control to comparewith the reports
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generated by MORG. Clinical reports, which served as the gold standard,
were used to categorize and summarize the descriptions as shown in Sup-
plementary Table 3. Several examples were shown in Supplementary Fig. 2.
Each report was evaluated based on semantic consistency, with a value of 1
assigned for consistency and 0 for inconsistency or missing descriptions.
Subsequently, we tallied the true positives, false positives, true negatives, and
false negatives, and calculated the accuracy, sensitivity, and specificity of
both the human reader and our MORG system.

Reports generation using MiniGPT-4 and GPT-4
GPT-4 and MiniGPT-4 were not fine-tuned on OCT images. The
MiniGPT-4 model is not open source, hence we implemented it on a local
server using the publicly available code from Deyao Zhu’s team34. Then we
directly input images for questioning, as shown in Supplementary Fig. 7.On
the other hand, we purchased a GPT-4 premium membership and con-
ducted experiments via API service. The following prompts were given to
GPT-4 and MiniGPT-4, along with 100 OCT images: “These are a pair of
cross-sectional images from a retinal optical coherence tomography scan.
Please answer the following three questions in Chinese: 1. Describe its
structure and form. 2. Indicate any abnormalities or lesions that may be
present. 3. Give the most likely diagnosis of eye disease.” To enhance the
performanceofGPT-4,we strategically employedprompt engineering,fine-
tuning it with specific instructions and sample data52,53. Before taskingGPT-
4 with generating reports from a patient’s OCT images, we curated a subset
of 4–10OCT image pairs, along with their corresponding ophthalmologist-
authored reports from our training data, to educate the model. Given the
constraints on GPT-4’s input capacity, we were unable to load further
training data for its learning process. To overcome this, we introduced an
additional prompt urging GPT-4 to leverage the insights gained from the
sample reports, stating, “Please apply the knowledge you’ve acquired from
these exemplar reports.”

Data availability
The whole dataset supporting the findings of the current study are not
publicly available due to the confidentiality policy of the National Health
Commission of China and institutional patient privacy regulation. We will
release 100 paired of OCT images, together with the reports written by
ophthalmologists, generated by MORG and LLMs, and their scores graded
by two retinal specialists. This data is available at (https://github.com/
Poizon1213/Retinal_OCT_Report_Automatic_Generation/tree/master/
data/100crop).

Code availability
All experiments were conducted using Python 3.9.17, with PyTorch 2.0.1
(compiled with CUDA 11.8) for GPU acceleration. NumPy 1.22.4 was used
for data preprocessing, and the system was run on a machine with CUDA
12.2 installed. The source code formodel training and evaluation, alongwith
the specific software versions, is available at (https://github.com/
Poizon1213/Retinal_OCT_Report_Automatic_Generation).
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