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Scalable home-based detection of isolated REM sleep behavior disorder (iRBD) is essential for early
care, prevention trials, and identifying candidates for neuroprotective interventions against
synucleinopathies. We previously showed that high-resolution wrist actigraphy (Axivity AX6) could
identify iRBD based on abnormal sleep (AUC of 0.916) and rest-activity-rhythms (RAR, AUC of 0.856)
using machine learning. Here, we aimed to assess generalizability across: (1) other actigraphs using
lower resolutions; (2) different populations.We tested the analysis pipeline directly in cohorts from the
International RBD Study Group using: Axivity AX6 (50–100 Hz), Philips Actiwatch (60-second epoch),
and MicroMini-Motionlogger (30-second epoch). The cohorts included a total of 352 iRBD and 258
non-RBD participants from 4 centers (Mount Sinai, Oxford, Hong Kong, and Innsbruck). Two
conversion pipelineswere created tomapactivity counts fromActiwatch andMicroMini-Motionlogger
to AX6 from 14 volunteers co-wearing two devices. In addition to the actigraphy analysis, four
synucleinopathy prodromes—RBD symptoms, hyposmia, constipation, orthostatic hypotension—
were tested in a two-stage screening approach. The sleep model achieved AUCs of 0.838–0.865
across centers, and the RAR model 0.520–0.818. Screening based on prodromes followed by
actigraphy achieved sensitivities, specificities, and positive predictive values (PPVs) of 59.4–78.3%,
84.1–98.2%, and 56.0–98.6% (RBD symptoms), 46.5%, 99.0%, and 98.9% (hyposmia), 25.8–43.3%,
95.5–98.8%, 96.3–98.0% (constipation), and 11.6–36.8%, 96.0–100%, and 96.2-100% (orthostatic
hypotension), respectively. Resolution (high versus low) did not affect theperformance. After adjusting
for a real-world iRBD prevalence of 1.5%, the corresponding PPVswould range from 6.3% to 100.0%
depending on the prodromes. This multicenter study shows that the original actigraphy-based
detection model of iRBD using sleep features but not RAR features generalizes well across
independent cohorts and devices. Combined with key prodromes of synucleinopathies, it could
enable precise, scalable population-level screening.

Isolated rapid eye movement (REM) sleep behavior disorder (iRBD) is a
parasomnia characterized by the loss of normal muscle atonia during REM
sleep due to the disinhibition ofmotor neurons, leading to repeatedmotoric
behaviors potentially causing injuries to both patients and their bed
partners1–4. Although its prevalence is 1–1.5% in the general population,
affecting 30–50 million individuals worldwide, only a small proportion is

diagnosed, to a large extent due to the cost and limited availability of the gold
standard diagnostic test, the in-lab polysomnography5–8. In most cases,
iRBD is an early manifestation of synucleinopathies, including Parkinson’s
disease, Dementia with Lewy bodies, and less commonly, multiple system
atrophy1,2. Early diagnosis of iRBD is needed for timely clinical intervention,
ensuring safety and symptom control, as well as enabling prevention trials
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and, eventually, the selection of suitable candidates for neuroprotective
interventions. The traditional diagnostic method and gold-standard, video-
polysomnography (vPSG), is resource-intensive and not always feasible for
widespread use.Despite the development of several questionnaires to screen
for and identify iRBD, there remain limitations ofmoderate specificity in the
context of low prevalence rate of iRBD in the community, resulting in
excessively low positive predictive value (PPV)9–12. Therefore, accurate yet
scalable detection methods are needed to enable broader and earlier diag-
nosis of these individuals.

Our previous work demonstrated that wrist actigraphy and machine
learning techniques could effectively identify iRBD through the automated
analysis of abnormal movement patterns in sleep based on patients-filled
sleep diaries, achieving very high accuracy13. A follow up study intended to
test a fully automated approach that would spare the need for sleep diaries,
and maintain the model’s accuracy by adding 24-h rest-activity rhythms
(RAR) features14. In this study, sleep and RAR features alone achieved areas
under the curve (AUC) of 0.916 and 0.856, respectively, and a higher AUC
of 0.954when combined14.However, the study had several limitations. First,
the iRBD sample was relatively small (n = 42) and drawn from a single
center,whichmay limit generalizability. Additionally, the control groupwas
derived fromadifferent dataset (UKBiobank), collected a decade earlier and
fromadifferent geographic population (UnitedKingdomvs.United States),
which might introduce bias into the RAR analyses. Second, it is not clear
whether the device used (AX3 or AX6, Axivity Ltd, Newcastle) including its
high-resolution capability (25–100Hz) is required to achieve similar per-
formance. In other words, the generalizability of the fully automatedmodel
across different wearable devices with varying resolutions remained
unknown.

Therefore, this study aimed to assess the generalizability of our original
fully automatedactigraphy-basedmodel fordetecting iRBDby: (1) assessing
the model’s performance across diverse clinical cohorts with varying
demographics; (2) testing its replicability across different wearable devices
with lower sampling resolutions.

Methods
Study participants
This is a multi-center study involving 4 independent cohorts from the
International RBDStudyGroup (IRBDSG), includingMount Sinai,Oxford,
Hong Kong, and Innsbruck (Fig. 1: Schematic diagram of this study). All
centers received approval from respective Institutional Review Boards. The
inclusion criteria of iRBD patients were: 1) diagnosis of RBD confirmed by
vPSG; 2) absence of overt neurodegenerative disease; 3) absence of other
apparent causes such as narcolepsy. The control subjects were free of RBD
diagnosis and any neurodegenerative disorders.

Synucleinopathy prodromal features measures
RBDsymptoms. RBDwas screened using the Innsbruck RBD Inventory
summary-question (RBD-I-1Q) in the Mount Sinai cohort15, Innsbruck
RBD Inventory 5-item Version (RBD-I-5, total score ≥0.25) in the
Oxford and Innsbruck cohorts15, and RBD questionnaire-Hong Kong
(RBDQ-HK, total score ≥19) in the Hong Kong cohort16.

Constipation. At Mount Sinai, constipation was assessed by one-item
question (“Do you experience constipation [difficulty having a bowel
movement every day or having to strain hard to pass stools] OR need to use
laxatives or other treatments to improve your bowel transit”)13. In Oxford,
constipation was measured by MDS-UPDRS-part I17. In Hong Kong,
constipation was defined as use of laxatives ≥1 times per week or bowel
frequency ≤2 times per week, as measured by the SCOPA-AUT
questionnaire18.

Hyposmia. At Mount Sinai, was evaluated by a subjective one-item
question (“Have you been told, or have you noticed that your sense of smell
or taste is reduced compared to others or to what it used to be?”)13, while
olfactory function was measured by objective olfactory tests in Oxford

(Sniffin 16-item odor identification test, different cutoffs based on age)
and Hong Kong cohorts (Olfactory Identification test, total score <3)19,20.

Orthostatic hypotension. Orthostatic hypotension is defined across
cohorts as a drop in systolic blood pressure of ≥ 20 mmHg or diastolic
blood pressure of ≥ 10 mmHg after 2 or 3 min of standing, compared to
blood pressure measured in the supine position.

Actigraphy data
Actigraphy data were collected across four centers using three different
devices (Supplementary Table 1).
• Axivity AX6 (Mount Sinai and Oxford). Participants wore an AX6

device (Axivity, Ltd, Newcastle, UK) on one hand for at least 2 weeks.
The device was set at a resolution of 50 or 100Hz and worn on the
dominant handor non-dominant hand in theMount Sinai andOxford
cohorts, respectively.

• Philips Actiwatch (Hong Kong). Participants wore an Actiwatch
Spectrum Plus (Philips Actiwatch Spectrum PRO, Philips Respironics,
UK) for 1 week on their non-dominant hand. The device was set at a
resolution of 60 s per epoch.

• MicroMini-Motionlogger (Innsbruck). Participants wore aMicroMini-
Motionlogger (Ambulatory Monitoring, NY) on their dominant hand
for one week. The device was set at a resolution of 30 s per epoch.
Proportional Integrating Measure data was used for further analysis
and non-wear time was defined as more than 60min of consecutive
zeros21,22.

Sleep and RAR features
The details of sleep andRAR features analysis were provided in the previous
work13,14. In brief, sleep features were extracted based on a previously
developed sleep analysis pipeline that automatically detects sleep periods,
extracts sleep activity features, and outputs an iRBD score based on these
features. The pipeline was developed to analyze activity counts summarized
in epoch sizes of 1-, 30-, or 60 s. Following automatic sleep detection,
extracted features (total n = 119) describing various activity features across
both the full sleep period andwithin timewindows of interest (e.g., past first
hourof sleep for increasing theprobability ofREMsleep)8. The featureswere
fed to our machine learning model using boosted decision trees, which
provides for each subject a per-night prediction score, which is then aver-
aged across all available nights.

For RAR features, the raw accelerometer data from AX6 were pro-
cessed using the biobankAcclerometerAnalysis software package, then
cosinor and nonparametric analysis performed with “cosinor” and “npar-
ACT” R packages23,24. The parameters, including mesor, amplitude, acro-
phase, interdaily variability, intradaily variability, L5 start time and count,
and M10 start time and count, were generated for RAR model
validation23–26. For theActiwatch andMicroMini-Motionlogger devices, the
24-h physical activity level were directly used to generate the RAR features
with the “cosinor” and “nparACT” R packages. Non-wear time was
excluded from the analyses. Datawere excluded at the daily level if invalid or
non-wear data exceeded 20%.

Conversion pipeline for sleep model
Our analysis pipeline was developed to summarize raw accelerometer data
into activity counts at 1-, 30-, and 60-second epochs (details were provided
in the previous work)13,14. However, different actigraphy devices compute
activity counts using proprietary algorithms, such as those used in the
Actiwatch and MicroMini-Motionlogger. To enable cross-device applica-
tion of our iRBD detection algorithm—which was originally developed
using AX6 data—we sought to harmonize activity counts across devices via
conversion models.

To do so, we recruited eight healthy volunteers (mean age ± SD:
28.4 ± 4.0 years, 37.5% male) who wore both the Actiwatch and AX6 con-
currently on the samewrist over a 3-day period. Similarly, we collected data
from another six healthy volunteers (29.8 ± 10.7 years, 12.5% male) co-
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wearing the MicroMini-Motionlogger and AX6 over a 6-day period (Sup-
plementary Table 2).

Thenwefitted separate conversionmodels tomap activity counts from
each low-resolution device (MicroMini-Motionlogger and Actiwatch) to
those of the AX6 in 30- and 60-second epochs. These models were trained
using data from co-worn devices, ensuring aligned conditions across
recordings. Prior to model fitting, we temporally aligned the activity count
signals using cross-correlation within a ± 5-min window to correct for
potential time shifts between devices.

The conversion models were developed using a consistent methodol-
ogy in a leave-one-subject-out cross-validation setup. We evaluated two
types ofmodels: isotonic regression and polynomial regression of degrees 1,
3, and 5 (without a constant term). For polynomial models, we considered
two input variants: (i) using the current activity count alone, and (ii)
including the current and adjacent counts to account for local temporal
context. To ensure a physiologically plausible, monotonically increasing
mapping, the 3rd- and 5th-degreemodels were constrained to have positive
derivatives, optimized using an interior-point algorithm. For the Micro-
Mini-Motionlogger, activity counts were divided by a factor of 10,000 to
provide a more similar range for fitting the polynomial models.

Following conversion, the harmonized activity counts were passed
throughour standard iRBDdetectionpipeline, allowingus toevaluate cross-
device generalizability of the classifier without retraining.

Statistical analyses
Continuous variables were summarized asmeans and SD, while categorical
variables were presented as number and percentages. Conversion model
performance was assessed using two metrics: mean absolute error (MAE)
and Spearman correlation. These were calculated both for the aligned
activity counts and for the resulting iRBD score output by our classification
model when applied to the converted activity counts. Conversion model
evaluationmetrics were computed usingMatlab R2024b (TheMathWorks,
Natick,Massachusetts,USA). Finally, the best conversionmodelwas chosen
for each device based on the output iRBD score MAE. In case of ties, the
simplest conversion model was selected.

Performance was evaluated separately for the classifiers using sleep
features alone, RAR features alone, or combined sleep and RAR features,
based on areas under the curve (AUC), sensitivity, specificity, accuracy, and
PPVwithin each cohort. The 95%confidence intervalswere estimatedusing
Wald method. We also evaluated the performance of actigraphy-based

Fig. 1 | Schematic diagram of this study. AUC area under the curve, iRBD isolated rapid eye movement sleep behavior disorder, RAR rest-activity rhythm.
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classifiers combined with synucleinopathy prodromal features (two-stage
model), in which subjects were stratified based on both prodromal symp-
toms and actigraphy classifier.

Additionally, we calculated projected real-world PPVs for all models.
The adjusted PPVswere calculated using reported sensitivity and specificity
estimates along with an assumed population prevalence of 1.5% based on
the latest population-based study in which all subjects underwent PSG
assessment5. The PPV was adjusted according to the following formula:

PPV ¼ ðSensitivity× PrevalenceÞ=ðSensitivity × Prevalence
þ ð1� SpecificityÞ× ð1� PrevalenceÞÞ

Confidence intervals for the adjusted PPVwere computed by applying
this formula to the lower and upper bounds of the sensitivity and specificity
95% confidence intervals, providing a range of plausible PPV values given
the uncertainty in the test parameters. These statistical analyses were per-
formed using SPSS version 27.0 (IBM, Armonk, NY) and R software (ver-
sion 4.4.0).

Results
A total of 352 vPSG-confirmed iRBD patients and 258 controls across
sites––Mount Sinai (29 iRBD and 41 controls), Oxford (69 iRBD and 25
controls), Hong Kong (234 iRBD and 123 controls), and Innsbruck (20
iRBD and 69 controls)––were included in the analysis (Table 1).

Validation performance in cohorts using AX6 (Mount Sinai and
Oxford)
In the Mount Sinai cohort, sleep and RARmodels achieved AUC values of
0.861 (0.774–0.948) (Fig. 2a) and 0.818 (0.707–0.929) (Fig. 2b, respectively.
The sensitivity, specificity, and accuracy for the sleep model were 72.4%,
80.5%, and 77.1%, while for the RARmodel, the sensitivity, specificity, and
accuracy are 80.0%, 61.3%, 69.6% (Supplementary Table 4). When com-
bining the sleepandRAR features, themodel achieveda sensitivity of 72.0%,
specificity of 83.9%, and an accuracy of 78.6%. The PPVswere 72.4% for the
sleepmodel, 62.5% for the RARmodel, and 78.3% for the combinedmodel.
After adjusting for a population prevalence of 1.5%, the PPVs were 5.4%,
3.1%, and 6.4% for the sleep, RAR, and combined models, respectively.

In theOxford cohort, our sleep and RARmodels achievedAUCvalues
of 0.838 (0.742–0.933) (Fig. 2a) and 0.587 (0.458-0.716) (Fig. 2b),

respectively. The performance metrics are summarized in Table 2. The
sensitivity, specificity, accuracy, and PPV for the sleep model were 84.1%,
64.0%, 78.7%, and 86.6% respectively, 6.2%, 100.0%, 29.9%, and 100.0% for
RARmodel, and 39.1%, 91.3%, 52.9%, and 92.6% for the combined model.
After adjusting for a population prevalence of 1.5%, the PPVs were 3.43%,
100%, and 6.4% for the sleep, RAR, and combined models, respectively.

SupplementaryTable 3 shows the comparisons ofRAR features among
Mount Sinai andOxford cohorts. In theMount Sinai cohort, iRBD patients
showed significant differences from controls in mesor, amplitude, acro-
phase, relative amplitude, and M10. However, within the Oxford cohort,
only relative amplitude and L5 significantly differed between groups.

Validation performance in cohorts using other devices
Conversionmodels. All conversion models were fitted and evaluated in
a leave-one-subject-out cross validation scheme. The comparison of
activity counts and resulting iRBD prediction score can be seen in Sup-
plementary Tables 5–8.

For the Actiwatch, the MAE of activity counts was lowest at
0.014 ± 0.004 g for the 5th degree polynomials with and without neigh-
boring context. However, for the iRBD prediction score, the lowestMAE at
1.41 was found using isotonic regression and a 1st degree polynomial
without neighboring context. Therefore, the simple conversion with a 1st
degree polynomial as âAX6 ¼ 0:0014 � aActiwatch, where aActiwatch ismeasured
activity count from the Actiwatch and âAX6 is the estimated AX6
activity count.

For the MicroMini-Motionlogger, the MAE of the activity counts was
similarly lowest at 0.009 ± 0.004 g for the 5th degree polynomials with and
without neighboring context. For the iRBD prediction score, the isotonic
regression provided a better fit with aMAEof 2.24. Therefore, it was chosen
as the conversion model for this device with the curve as displayed in
Supplementary Fig. 1.

Validation performance in Actiwatch (Hong Kong)
After convertingActiwatch data, our sleepmodel achieved anAUCvalue of
0.857 (0.818-0.933) (Fig. 2a) with a sensitivity of 63.2% and specificity of
90.2% in theHongKong cohort (Table 3). Due to the significant differences
in the magnitudes of the mesor, amplitude, L5 count, and M10 count
features between the Actiwatch and AX6 devices, we averaged the ratios
from data collected from eight healthy subjects. These averaged ratios were

Fig. 2 | Sleep and RAR features predictive performance across cohorts. AUC area under the curve, iRBD isolated rapid eye movement sleep behavior disorder, RAR rest-
activity rhythm.
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then used to convert the raw RAR features for the RAR model. The con-
verted RAR features showed comparablemagnitude to those obtained from
the AX6 device, with significant differences between iRBD patients and
controls in mesor, amplitude, Interdaily stability, L5 start time and count,
and M10 start time and count (Supplementary Table 3). Leveraging the
converted RAR features, the RAR model achieved an AUC value of 0.534
(0.466-0.602) (Fig. 2b) with a sensitivity of 37.9%, specificity of 58.3%, and
an accuracy of 44.7% (Table 3). The combined model achieved a sensitivity
of 49.3%, specificity of 73.0%, and an accuracy of 57.3%. The PPVs and
adjusted PPVs were 92.5% and 8.9% for sleep model, 64.2% and 1.37% for
the RARmodel, and 78.3% and 2.7% for the combinedmodel, respectively.

Validation performance in MicroMini-Motionlogger (Innsbruck)
Our sleepmodel achieved anAUCof 0.865 (0.778–0.948) (Fig. 2a) with a
sensitivity of 90.0%, specificity of 65.2%, accuracy of 70.8%, PPV of
42.9%, and an adjusted PPV of 3.8% in the Innsbruck cohort (Supple-
mentary Table 9). Similar to the Actiwatch, significant differences were
also observed in the magnitudes of the mesor, amplitude, L5 count, and
M10 count features between the MicroMini-Motionlogger and AX6
devices. Thus, we applied the same conversion of RAR features for
Motionlogger using data from six healthy subjects. Supplementary
Table 3 shows comparable magnitude for the converted mesor, ampli-
tude, L5 count, and M10 count features between the MicroMini-
Motionlogger and AX6 devices. No significant differences were found
among RAR features between iRBD patients and controls. Leveraging
the converted RAR features, the RAR model alone achieved an AUC
value of 0.520 (0.379–0.661) (Fig. 2b), with a sensitivity of 31.6%, spe-
cificity of 55.7%, accuracy of 50.0%, PPV of 18.2%, and an adjusted PPV
of 1.08% (Supplementary Table 9). Themodel combining sleep andRAR
achieved a sensitivity of 57.9%, specificity of 59.0%, accuracy of 58.8%,
PPV of 30.6%, with an adjusted PPV of 2.1%.

Performance of a two-stage screening approach based on pro-
dromal synucleinopathy features and wearable data
In participants endorsing RBD symptoms, the two-stage screening method
resulted in a raise in specificities up to 95.5% in the Oxford cohort, 98.2% in
the Hong Kong cohort, and 84.1% in the Innsbruck cohort, with corre-
sponding PPVs of 97.9%, 98.6%, and 56.0%, respectively. After adjusting for
general population prevalence, the PPVs ranged from 6.3% to 33.4% across
the three cohorts, with sensitivities ranging from 59.4% to 78.3%.

In those with constipation, the specificity, PPV, and adjusted PPV
increased to 95.5%, 96.3%, and 12.8% in the Oxford cohort, and to 98.8%,
98.0%, and24.7% in theHongKongcohort,with corresponding sensitivities
of 43.3% and 25.8%, respectively.

In participants with orthostatic hypotension, the specificity, PPV, and
adjusted PPV reached to 100% in the Hong Kong cohort, though the sen-
sitivity reduced to 11.6%. In the Oxford cohort, the specificity, PPV, and
adjusted PPV were 96.0%, 96.2%, and 12.3%, respectively, with a sensitiv-
ity of 36.8%.

In terms of hyposmia, data were available only in the Hong Kong
cohort, showing a specificity of 99.0%, PPV of 98.9%, and adjusted PPV of
41.5%, with a sensitivity of 46.5%. Due to the limited sample size for
synucleinopathy prodromal features in the Mount Sinai cohort, we could
not perform a two-stage analysis.

Discussion
This study is the first to demonstrate generalizability of a fully automated
algorithm for detecting iRBD across clinical cohorts with different ethni-
cities, geographical backgrounds, and wrist-worn accelerometer devices.
Our model using sleep movement data achieved good performance with
AUCs ranging between 0.838 and 0.865—only modestly reduced from its
initial performance (AUC: 0.916), independent of high (50−100Hz) versus
low (30–60 s) resolution. This highlights the model’s robustness not only
across cohorts with varying demographic and clinical characteristics, but
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also across device brands, using different resolution and proprietary
methods for measuring activity.

Our results show that strongmodel performance can be achievedwith
as little as 7 nights of data, even when using low-resolution devices with 60-
second sampling rates. Notably, the highest performance was observed in
the Innsbruck cohort using a different device (MicroMini-Motionlogger),
while the lowest was in the Oxford cohort using the same device (AX6, as
used to train the original model). Although customized conversion models
for activity counts may be required, these findings support the feasibility of
applying the model across diverse research-grade and possibly consumer
devices—potentially enabling scalable RBD detection in broader
populations.

When testing a two-stage screening considering synucleinopathy
prodromal features, as expected, sensitivities generally reduced; however,
specificity and resulting PPVs increased. The sleep-based classifier yielded
sensitivities and specificities as high as 78.3% and 98.2%, respectively, in
individuals reporting RBD symptoms, and even higher specificity in those
with hyposmia (99.0%), constipation (up to 98.8%), and orthostatic hypo-
tension (up to 100%). Because RBD questionnaires lack specificity in
community settings, efforts to improve their predictive value have included
follow-up structured phone interviews or clinical evaluations by sleep spe-
cialists. In a recent study, a sequential screening protocol—starting with a
single-item screen, followed by a phone interview, and then clinical eva-
luation in selected cases—achieved a final PPV of 33.3%27. In the largest
Hong Kong cohort, combining actigraphy with RBD questionnaire yielded
a comparable projected real-world PPV of 33.4%. These findings support
the feasibility and rationale of a staged screening strategy that leverages both
wrist movement data and synucleinopathy prodromes for cost-effective,
scalable early detection of high-risk individuals.

In comparison to the sleep-based detection model, the RAR model
showed significantly lower performance, with AUCs ranging from 0.520 to
0.818, and poor generalization. This could be due to heterogeneity in
individual rest-activity patterns, the influence of comorbid conditions, or
variability in daily routines that obscure disease-specific alterations28,29. Our

findings also revealed inconsistent differences in RAR features between
iRBD patients and controls across cohorts. In contrast to relatively stable
sleep-based features, which are assumably related to the neurophysiologic
hallmark of RBD (loss of the REMsleep atonia), rest-activity patterns can be
influenced bymultiple other factors (socioeconomical, cultural, seasonality,
the mere influence of weather) with a significant global disparity limiting
their utility for individual-level iRBD detection30.

In summary, our findings support the use of wearable devices for a
scalable, non-invasive screening in the community or at-risk populations,
and offers greater accuracy than RBD questionnaires alone. Going forward,
actigraphy could be integrated in population screening to enhance
recruitment pipelines in neuroprotective trials and accelerate drug
discovery31. Further, earlier diagnosis of individuals with RBD can facilitate
access to symptomatic care and reduce the risk of injuries4. In the clinical
setting, individuals endorsing RBD symptoms and screening positively on
actigraphy could be prioritized for vPSG assessments, potentially mini-
mizing diagnostic delays3,20,32.

Several limitations need to be acknowledged. First, this is a retro-
spective study involving sites and cohorts that differed in research protocols
related to wearable data collection, clinical assessments and questionnaire
administration. As a result, there was significant data heterogeneity and
incomplete availability of certain prodromal features across some cohorts.
Second, although the sleep model generalized well, its performance still
varies across cohorts with different cultural or environmental contexts, with
sensitivities ranging from 63.2% to 90.0% and specificities from 64.0% to
90.2%. This variability underscores the need for threshold optimization
tailored to the specific application and the desired balance between sensi-
tivity and specificity. Third, it remains unclear whether our models can
effectively capture the prodromal stage of iRBD, which is defined as the
phase inwhich symptoms and signs of evolving RBD are present but do not
yet meet the behavioral or polysomnography diagnostic criteria for
iRBD5,33–35. Future studies focusing on prodromal RBD are needed. Finally,
although we adjusted PPVs for estimated general population prevalence,
these values may not fully generalize to real-world settings where disease

Table 2 | Performance of iRBD classifier in Oxford cohort

Sensitivity (95% CI) Specificity (95% CI) Accuracy (95% CI) PPV (95% CI) Adjusted PPV (95% CI)

Actigraphy sleep features only 84.1 (75.4, 92.7) 64.0 (45.2, 82.8) 78.7 (70.4, 82.8) 86.6 (78.4, 94.7) 3.43 (2.05, 7.58)

Actigraphy sleep features + symptoms

RBD symptoms 78.3 (67.9, 88.8) 95.5 (86.8, 100.0) 82.9 (74.8, 91.1) 97.9 (93.9, 100.0) 20.9 (7.3, 100)

Constipation 43.3 (30.8, 55.9) 95.5 (86.8, 100.0) 57.3 (46.6, 68.0) 96.3 (89.2, 100.0) 12.8 (3.4, 100)

Orthostatic hypotension 36.8 (25.3, 48.2) 96.0 (88.3, 100.0) 52.7 (42.5, 62.8) 96.2 (88.8, 100.0) 12.3 (3.2, 100)

Actigraphy RAR features only 6.2 (0.3, 12.0) 100.0 (100.0, 100. 0) 29.9 (20.3, 39.5) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)

Actigraphy sleep + RAR features 39.1 (27.1, 51.0) 91.3 (79.8, 100) 52.9 (42.4, 63.4) 92.6 (82.7, 100) 6.4 (2.0, 100)

iRBD isolated rapid eye movement sleep behavior disorder, RAR rest activity rhythm, CI confidence interval, PPV positive predictive value.

Table 3 | Performance of iRBD classifier in Hong Kong cohort

Sensitivity (95% CI) Specificity (95% CI) Accuracy (95% CI) PPV (95% CI) Adjusted PPV (95% CI)

Actigraphy sleep features only 63.2 (57.1, 69.4) 90.2 (85.0, 95.5) 72.5 (67.9, 77.2) 92.5 (88.4, 96.6) 8.9 (5.5, 19.0)

Actigraphy sleep features + symptoms

RBD symptoms 59.4 (53.1, 65.7) 98.2 (95.8, 100) 72.0 (67.3, 76.8) 98.6 (96.6, 100) 33.4 (16.1, 100)

Constipation 25.8 (19.6, 31.9) 98.8 (96.6, 100) 48.2 (42.4, 54.1) 98.0 (94.2, 100) 24.7 (8.1, 100)

Orthostatic hypotension 11.6 (7.2, 16.0) 100 (100, 100) 36.9 (31.3, 42.5) 100 (100, 100) 100 (100, 100)

Hyposmia 46.5 (39.6, 53.4) 99.0 (97.2, 100) 64.6 (59.2, 70.0) 98.9 (96.9, 100) 41.5 (17.7, 100)

Actigraphy RAR features only 37.9 (31.6, 44.2) 58.3 (49.2, 67.3) 44.7 (39.5, 50.0) 64.2 (56.1, 72.3) 1.37 (0.94, 2.02)

Actigraphy sleep + RAR features 49.3 (42.8, 55.8) 73.0 (64.9, 81.2) 57.3 (52.1, 62.6) 78.3 (71.6, 85.1) 2.7 (1.8, 4.3)

iRBD isolated rapid eye movement sleep behavior disorder, RAR rest-activity rhythm, CI confidence interval, PPV positive predictive value.
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prevalence varies, especially in populations with different demographic or
clinical characteristics. This highlights the need for validation of predictive
models in diverse cohorts and implementation in the community setting to
ensure reliable estimation of PPV.

Conclusion
Our study supports the utility and generalizability of an actigraphy-based
machine learning model for the early and scalable detection of iRBD, par-
ticularly when combinedwith prodromal features of synucleinopathy (two-
stage model). Sleep-based features demonstrated robust generalizability
with only 7 nights of data, whereas the original RAR-based model showed
lower and more variable performance, highlighting the need for further
refinement and alternative approaches. Continued model development
leveraging large and diverse datasets is warranted, as are studies evaluating
how combinations of prodromal features followed by actigraphy can be
operationalized in a staged screening strategy for RBD and early
neurodegeneration.

Data availability
The data supporting the findings of this study are available from the cor-
responding author upon reasonable request.
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