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Preoperative T staging of gastric cancer is critical for therapeutic stratification, yet conventional
contrast-enhanced CT interpretation shows subjectivity and inconsistent reliability. We developed
GTRNet, an interpretable end-to-end deep-learning framework that classifies T1-T4 from routine CT
without manual segmentation or annotation. In a retrospective multicenter study of 1792 patients, CT
images underwent standardized preprocessing and the largest axial tumor slice was used for training;
performance was then tested in two independent external cohorts. GTRNet achieved high
discrimination (AUC 0.86-0.95) and accuracy (81-85%) in internal and external tests, surpassing
radiologists. Grad-CAM heatmaps localized attention to the gastric wall and serosa. Combining a
deep-learning rad-score with tumor size, differentiation and Lauren subtype, we constructed a
nomogram with good calibration and higher net clinical benefit than conventional approaches. This
automated and interpretable pipeline may standardize CT-based staging and support preoperative

decision-making and neoadjuvant-therapy selection.

Gastric cancer is a major global health burden and remains among the
top causes of cancer-related deaths worldwide'. Despite advances, many
patients still present with advanced disease due to limited early detec-
tion, complicating treatment’. Accurate preoperative T staging guides
decisions from endoscopic resection for T1 to multimodal therapy for
T3/T4 disease’”. Accurate T staging thus enables more tailored inter-
ventions, potentially improving survival and reducing unnecessary
morbidity.

Contrast-enhanced CT is the standard for preoperative evaluation,
but conventional interpretation has known limitations. The overall
accuracy of CT-based gastric T staging is often reported around 65-75%,
with particular difficulty in discriminating T2 from T3 tumors and in
recognizing subtle serosal invasion’. Endoscopic ultrasound (EUS) can
visualize distinct layers of the gastric wall, thereby helping to distinguish

T1 disease from deeper invasion; however, its accuracy declines in
advanced tumors and proximal lesions, and the technique is highly
operator-dependent’’. Other adjunct imaging methods, including dou-
ble contrast-enhanced ultrasound, may improve diagnostic performance
in experienced hands but are not universally available. Consequently,
there is a clear clinical need for new tools to enhance the objectivity and
accuracy of T staging.

Artificial intelligence (AI), especially deep learning using convolu-
tional neural networks (CNNs), has emerged as a powerful approach to
analyzing medical images’. CNNs can learn multi-scale textural and
morphological features from large volumes of data, surpassing tradi-
tional machine learning or radiologist interpretation in tasks such as
tumor segmentation, disease classification, and prognostic modeling.
Notably, deep learning models have achieved high diagnostic
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performance in areas like breast lesion classification on MRI, prediction
of EGFR mutations in lung cancer using CT, and detection of peritoneal
carcinomatosis’". In gastric cancer imaging research, many published
efforts have either focused on binary distinctions (e.g., early vs. advanced
stages) or relied on radiomics approaches requiring manual tumor
segmentation'>"”. Manual segmentation can be time-consuming and
subject to significant inter-observer variability, which hampers clinical
implementation at scale.

To address these gaps, we developed an end-to-end deep learning
system—termed Gastric Cancer T-stage ResNet Network (GTRNet)—that
provides a fully automated, four-class T stage classification (T1, T2, T3, T4)
from standard portal venous phase CT scans. Unlike many prior methods
requiring manual segmentation, our model processes a single axial slice of
the largest tumor cross-section, using a modified ResNet-152 backbone to
extract relevant features. We hypothesize that GTRNet will improve staging
accuracy, reduce reliance on operator skill, and demonstrate generalizability
across multiple institutions.

In this study, we collected data from three tertiary centers,
resulting in a total of 1792 patients with pathologically confirmed
gastric adenocarcinoma. We trained and tested GTRNet using internal
datasets and performed external testing in two independent cohorts.
We additionally designed a comparative reader study in one external
cohort to compare the model’s performance against expert gastro-
intestinal radiologists. To promote transparency, we incorporated
Grad-CAM (Gradient-weighted Class Activation Mapping) to high-
light image regions that drive the network’s predictions, providing
clinicians with intuitive saliency maps that localize tumor invasion.
Finally, we integrated the network output into a combined nomogram,
incorporating clinical and pathologic factors known to correlate with
disease aggressiveness, thus creating a more holistic preoperative risk
stratification tool.

Below, we detail our methodology, results, and clinical implications,
focusing on three goals: (1) evaluating GTRNet’s staging accuracy, (2)
demonstrating interpretability, and (3) assessing its impact on neoadjuvant
therapy decisions.

Results

Study design and patient selection

This retrospective, multicentre study analyzed patients who underwent
curative-intent resection for gastric adenocarcinoma between January

2015 and December 2021 at three tertiary hospitals. Eligible cases met
four criteria: (i) histologically confirmed T1-T4 gastric cancer (AJCC 8th
edition)"; (ii) pre-operative contrast-enhanced abdominal CT available;
(iii) no prior chemotherapy or radiotherapy; and (iv) diagnostic image
quality without severe artefacts. We excluded patients with incomplete
records, non-diagnostic CT, or distant metastasis precluding curative
surgery. The screening process is summarized in Fig. 1. Ultimately, 1792
patients were allocated to a training cohort (n = 953) and an internal test
cohort (n = 239) from Hospital A, plus two external test cohorts (n = 360,
Hospital B; n = 240, Hospital C).

Study population

In the training set, cases meeting the inclusion criteria were distributed in a
relatively balanced manner across T1-T4 stages to minimize potential data
bias. The mean age across all cohorts was approximately 62 years, with
approximately 70-73% of patients being female. Variations in the dis-
tribution of tumor locations and histologic subtypes were observed across
centers (e.g., proximal tumors accounted for 9.6% in the internal test set and
25.4% in external test set 2). However, no statistically significant differences
in demographic characteristics were identified. Baseline demographic and
clinicopathologic variables—including age, sex, tumor location, size, Lauren
classification, differentiation status, serum tumor marker levels, and PD-L1
expression—were extracted from electronic health records and are pre-
sented in Table 1.

In the internal test and external cohorts, GTRNet achieved high dis-
criminatory performance for T staging. The internal test accuracy was
89.9%, and external test accuracies were around 87-94%. AUCs ranged
from 0.97 internally to 0.91-0.95 in the external sets. Stage-specific sensi-
tivities were robust (e.g, 75-95% across T1-T4 in internal testing) and
specificities were 83-98%. The model’s ROC curves and confusion matrices
for each cohort are shown in Fig. 2, and detailed performance metrics are
provided in Table 2.

Evaluation metrics and statistical analysis

All reporting complies with the CLAIM 2024 checKklist for AI studies in
medical imaging. Model performance was evaluated in the internal test
set and two external validation cohorts using standard metrics. For
multi-class classification, we calculated one-vs-rest ROC curves and
macro-average AUCs, and we derived confusion matrices along with
class-specific sensitivity, specificity, positive predictive value (PPV),
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Fig. 1 | Patient inclusion flowchart. Among 2134 consecutive gastric cancer cases (January 2015 to December 2021), 953 formed the training set, 239 the internal test set, and

360 + 240 formed two external test sets after applying inclusion/exclusion criteria.
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Table 1 | Baseline demographics and clinicopathologic features in the training, internal test, and external test cohorts

(mean + standard deviation or n (%))

Characteristic Training (n = 953)

Internal Test (n = 239)

External test set 1 (n = 360) External test set 2 (n = 240)

Age (years) 62.5+9.4 62.1+10.0 61.7+9.4 63.8+9.3
Sex
Male 261 (27.4%) 69 (28.9%) 100 (27.8%) 75 (31.3%)
Female 692 (72.6%) 170 (71.1%) 260 (72.2%) 165 (68.8%)
Tumor location
Lower third (distal) 557 (58.5%) 146 (61.1%) 221 (61.4%) 152 (63.3%)
Middle third 255 (26.8%) 70 (29.3%) 90 (25.0%) 27 (11.3%)
Upper third (proximal) 141 (14.8%) 23 (9.6%) 49 (13.6%) 61 (25.4%)
Tumor size (cm) 3.86 +2.42 3.78+2.42 3.73+2.43 4.03+2.33
Lauren classification
Intestinal type 360 (37.8%) 86 (36.0%) 131 (36.4%) 92 (38.3%)
Mixed type 274 (28.7%) 66 (27.6%) 130 (36.1%) 64 (26.7%)
Diffuse type 319 (33.5%) 87 (36.4%) 99 (27.5%) 84 (35.0%)

Differentiation status

Well differentiated 116 (12.2%) 29 (12.1%) 53 (14.7%) 28 (11.7%)

Moderately differentiated 343 (36.0%) 75 (31.4%) 106 (29.4%) 110 (45.8%)

Poorly differentiated 494 (51.8%) 135 (56.5%) 201 (55.8%) 102 (42.5%)
PD-L1 expression (% cells) 6.83+£12.24% 7.16+£12.53% 6.30+11.08% 6.56 £ 11.94%
CEA (ng/mL) 4.35+14.08 3.89+6.86 3.96+£12.16 6.68 +24.67
CA19-9 (U/mL) 41.57 £344.58 57.15 £ 392.47 35.27 + 309.36 69.26 + 486.74
CAT72-4 (U/mL) 5.91+17.68 5.87+21.85 5.36+18.92 6.51+22.65
CA125 (U/mL) 13.12+19.32 12.94+9.93 13.83+£25.92 11.94+7.98
AFP (ng/mL) 8.32+61.36 3.16+2.10 5.83+27.16 5.99 + 32.71

and negative predictive value (NPV). These results are presented in
Fig. 2. All evaluation metrics were statistically analyzed based on the
patients’ final classification decisions. During the external validation
phase, the prediction results of the three key slices were integrated using
the majority-voting method. This approach was adopted to ensure a
high degree of consistency between the evaluation results and clinical
practice.

The performance of GTRNet and radiologists in the prediction of
clinical T-staging of gastric cancer

We conducted a comparison of the performance between the GTRNet
model and radiologists from multiple centers in predicting the clinical
T-stage of gastric cancer. As presented in Supplementary Table 1, the
GTRNet model demonstrated a marked superiority over the indepen-
dent diagnoses of radiologists in terms of both overall accuracy (92.8%
in Hospital A, 93.6% in Hospital B, and 86.7% in Hospital C) and
consistency with pathological findings. The accuracies of radiologists’
independent diagnoses were 58.4%, 59.7%, and 55.3%, respectively, all
of which showed a highly significant difference (p < 0.001). With the aid
of the GTRNet model, the overall staging capabilities of radiologists
were substantially enhanced. The diagnostic accuracy of radiologists
increased to 85.4-91.5%, approaching the level of the model’s inde-
pendent diagnosis. In the evaluation of pathological consistency, the
weighted Kappa value between the GTRNet model and the pathological
T-stage ranged from 0.87 to 0.91, which was significantly higher than
that of radiologists’ sole interpretation, which ranged from 0.41 to 0.45.
When assisted by artificial intelligence (AI), the Kappa value of
radiologists’ interpretation rose to 0.83-0.88. This indicates that AI-
assisted interpretation can significantly reduce staging discrepancies
(p <0.001). During the evaluation of early-stage gastric cancer (T1/T2),

the GTRNet model exhibited an extremely high level of sensitivity,
registering 98.5-99.0% for T1 and 93.0-97.8% for T2. These values were
significantly higher than those of radiologists, which were 65.0-71.0%
for T1 and 55.3-60.2% for T2. Such results hold significant implications
for clinicians in formulating individualized treatment strategies for
patients with early-stage gastric cancer. Regarding advanced-stage
gastric cancer (T3/T4), the GTRNet model also demonstrated favorable
sensitivity, with values of 83.3% for T3 and 81.7-93.3% for T4. These
findings suggest that the model has the potential to optimize treatment
decisions and minimize unnecessary interventions in practical clinical
settings.

Grad-CAM heatmap visualization

To enhance the clinical interpretability of the GTRNet attention
mechanism, we employed Grad-CAM heatmaps to visualize the regions
of interest (ROIs) that the model prioritizes. As illustrated in Fig. 3,
warm colors such as red and yellow indicate higher model attention, with
increasing color intensity corresponding to greater focus; conversely,
cooler colors such as blue and green represent lower attention, with
darker shades indicating reduced focus. When compared with the ROIs
(red-filled areas) manually annotated by radiologists, the attention
distribution generated by GTRNet demonstrated a high degree of spatial
overlap with expert annotations. For example, in T1-stage lesions, the
heatmap predominantly highlighted the inner layers of the gastric wall,
indicating that the model effectively captured imaging features asso-
ciated with superficial submucosal infiltration. In contrast, for T4-stage
lesions, the model’s attention extended beyond the thickened gastric wall
to include the interface between the tumor and adjacent organs, sug-
gesting its ability to detect radiological signs of tumor invasion into
surrounding structures. These findings further confirm that GTRNet
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Fig. 2 | Model performance. a-d One-vs-rest ROC curves in the training, internal test, and two external cohorts (macro-AUC 0.91-0.98). e-h Normalized confusion

matrices; darker blue indicates higher accuracy.

possesses strong interpretability and clinical relevance in the T staging of

gastric cancer.

To further quantify the spatial alignment between the model’s
attention regions and the actual tumor locations, we binarized the

Grad-CAM heatmaps and computed the Dice similarity coefficient by
comparing them with the gold-standard masks manually segmented by
radiologists. The Dice coefficients across different T stages were as
follows: 0.56 for T1, 0.59 for T2, 0.60 for T3, and 0.63 for T4, indicating
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Table 2 | Performance of GTRNet in predicting pathologic T stage across cohorts

Cohort Accuracy (%) AUC (95% CI) Sensitivity Specificity PPV NPV

(T1/T2/T3/T4)%
Training (n =953) 90.1 0.98(0.98-0.99) 93.8/83.8/84.9/97.9 97.7/94.6/95.2/99.3 93.4/83.5/85.6/97.9 97.9/94.7/95.0/99.3
Internal Test (n = 239) 89.9 0.97(0.95-0.98) 86.7/98.3/83.3/91.7 99.9/94.4/94.4/97.8 99.9/85.3/83.3/93.2 95.7/99.4/94.4/97.2
External test set 1 (n = 360) 93.6 0.95(0.93-0.97) 99.9/97.8/83.3/93.3 97.8/94.8/99.9/98.9 93.8/86.3/99.9/96.6 99.9/99.2/94.7/97.8
External test set 2 (n = 240) 86.7 0.91(0.88-0.95) 85.0/93.3/86.7/81.7  96.7/93.9/95.0/96.7 89.5/83.6/85.3/89.0 95.1/97.7/95.5/94.1

AUC area under ROC, C/ confidence interval, PPV positive predictive value, NPV negative predictive value.

Fig. 3 | Grad-CAM visualization. For representative T1-T4 cases, portal-venous CT images (left) and color heatmaps (right) highlight mucosa (cT1), muscularis propria

(cT2), serosal surface (cT3), and pancreatic invasion (cT4).

Table 3 | Multivariable ordinal logistic model (nomogram)
features for T-stage prediction, with regression coefficients
and odds ratios (OR)

Predictor Coefficient (B) OR (95% Cl) p-Value
Radscore (continuous) 0.87 OR per SD: <0.001**
2.39(1.8-3.2)
Tumor size >5cm 0.69 2.00 (1.45-2.75) <0.001**
Poor differentiation 1.15 3.16 (2.10-4.75) <0.001**
Diffuse Lauren type 1.06 2.90 (1.95-4.32) <0.001**
Moderate differentiation 0.22 1.25 (0.85-1.82) 0.26
Mixed Lauren type -0.08 0.92 (0.65-1.30) 0.64
(Intercept for T1 vs >T2) -3.20 - -
(Intercept for <T2 vs >T3) -1.17 - -
(Intercept for <T3 vs T4) 1.24 - -

Radscore derived from deep learning features.

moderate to substantial spatial overlap between the model’s attention
maps and the ground truth lesion areas. These findings suggest that the
attention mechanism of GTRNet does not erroneously focus on image
artifacts or non-pathological regions, but rather accurately identifies

key anatomical structures that are critical for T staging. Furthermore,
in Supplementary Fig. 1, we illustrate several representative mis-
classified cases to investigate potential error patterns under conditions
of ambiguous staging boundaries or complex anatomical configura-
tions. This analysis provides insights that may guide future improve-
ments in model performance.

Nomogram integration and clinical utility

While GTRNet alone performed well, we sought to incorporate clinical
and histologic factors to further refine T-stage prediction. After
extracting deep features from the penultimate network layer, we com-
puted a continuous Rad-score for each patient. We then built an ordinal
logistic-regression model that combined the Rad-score with tumor size
(=5 cm), poor differentiation, and diffuse Lauren type. All four pre-
dictors contributed significantly to the model (each P <0.001 in mul-
tivariable analysis). The corresponding regression coefficients are listed
in Table 3, and inclusion of the Rad-score significantly improved
model fit.

The resulting nomogram (Fig. 4) provides an intuitive tool for
clinicians: each predictor is allocated points, and the total score maps to
estimated probabilities of T1, T2, T3, or T4 disease. Calibration was
good across all cohorts, with Hosmer-Lemeshow tests showing no
significantlack of fit (P > 0.05). In order to evaluate the potential applied
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Fig. 4 | Integrated clinical-radiomic nomogram. a Top-30 deep features selected by LASSO ranked by absolute coefficient. b Nomogram combining Radscore, tumor size,
differentiation, and Lauren type; higher total points correspond to a more advanced T stage.

value of the model in clinical decision-making, we employed decision
curve analysis (DCA) to compare the net benefits of the AI model and
EUS staging in facilitating the identification of high-risk patients.
Taking the test set as a case in point, within most of the clinically
justifiable threshold probability ranges, the Al model exhibited a higher

net benefit (as shown in Fig. 5 and Supplementary Table 2). More
specifically, the over-treatment rate of the AI model was 2.09%, which
was significantly lower than the 12.97% of EUS. The under-treatment
rate was 2.51%, also markedly lower than the 17.57% of EUS. Fur-
thermore, the number needed to treat (NNT) for the Al model was 2.19,
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versus EUS staging across different datasets. The curves illustrate the net benefit of
intervention across a threshold probability range of 0 to 0.8.

which was notably superior to the 5.09 of EUS. This indicates that while
enhancing clinical benefits, the AI model can effectively minimize
unnecessary interventions, thereby demonstrating a higher level of

clinical utility.

Discussion

Compared with traditional CT interpretation and earlier Al or radiomics
work, our end-to-end network offers three incremental advantages.
Historically, CT has achieved only moderate accuracy (=65-75%) for
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gastric-cancer T staging, particularly when differentiating borderline
invasions and across readers’. Endoscopic ultrasound can visualize
individual gastric wall layers and improves detection of early (T1)
tumors, yet performance drops in proximal or bulky lesions and remains
operator-dependent’. Dual-energy CT and MRI have recently shown
incremental value, but require specialized scanners and are not uni-
versally available”. Several radiomics or Al studies have focused on
binary “early vs advanced” tasks or have relied on labor-intensive manual
segmentation’”™".

Secondly, in recent years, multiple studies have explored the
application of deep learning techniques to the T staging of gastric cancer
(see Supplementary Table 3 for details). For example, Tao et al. (2024)
developed a vision Transformer model based on CT imaging, which
achieved an accuracy of 75.7% on an external test set. The model’s
performance was further enhanced through the integration of radio-
mics features. However, this study was limited to a binary classification
task distinguishing between T1 and T4 stages and required manual
tumor segmentation, which constrained its clinical scalability. Simi-
larly, Chen et al., Guan et al., and Zeng et al. proposed various deep
learning models based on CT or endoscopic ultrasound (EUS) images.
While these models demonstrated high AUC values in early gastric
cancer detection, most failed to perform a complete four-category
classification across T1-T4 stages. Moreover, they generally lacked
integration with clinical workflows and multi-center validation'*™.
Therefore, there is a pressing need for an AI model that is independent
of manual annotation, capable of multi-class T staging, and seamlessly
integrable into clinical pipelines to enhance its real-world translational
potential. In contrast, GTRNet was developed using over 1700 retro-
spective cases from three tertiary hospitals and incorporated 270 pro-
spective samples to simulate real-world clinical procedures. This
approach demonstrates superior generalization and potential for clin-
ical deployment. The proposed model eliminates the need for laborious
manual segmentation and supports a full four-class T staging (T1-T4),
effectively addressing the clinical demand for precise differentiation
between borderline T2 and T3 stages. Furthermore, successful multi-
center Al implementations in other medical domains—such as breast
MRT’, lung cancer EGFR status prediction'’, and peritoneal metastasis
detection in colorectal cancer'' —demonstrate that models combining
large-scale heterogeneous data with modern convolutional neural
network (CNN) architectures consistently outperform traditional
radiomics approaches in multi-task settings. These precedents further
validate the feasibility and clinical relevance of applying the GTRNet
framework to gastric cancer T staging.

These performance gains translate into several clinically relevant
implications for neoadjuvant decision-making and surgical planning.
Current Western and Asian guidelines emphasize accurate discrimination
between T2 and >T3 disease because perioperative chemotherapy improves
survival in locally advanced cases. Understaging may deprive patients of
effective therapy, whereas overstaging exposes early tumors to unnecessary
toxicity. GTRNet’s high sensitivity for T4 and its integration into a nomo-
gram with tumor size and histology provide an intuitive, probability-based
aid to select candidates for neoadjuvant treatment or direct surgery. In
practice, the model could flag CT-occult serosal invasion that radiologists
frequently miss, or reassure surgeons when a lesion is very likely limited
to T1/T2.

Interpretable heat-maps further strengthen clinician trust by showing
that the model attends to the same perigastric margins that experts scruti-
nize. Adoption of Al hinges on transparent reasoning. GradCAM visuali-
zations localized attention to the gastric wall and perigastric fat—areas
radiologists inspect for transmural spread—thereby bridging the “black
box” gap'“. Such heatmaps can also serve as training feedback for junior
readers, fostering human-machine synergy.

Ethical considerations. The algorithm may propagate scanner- or
cohort-specific bias; therefore, continuous audit, domain-shift monitoring,

and patient informed-consent procedures will accompany any prospective
deployment.

Notwithstanding these findings, this study is not without certain
limitations. First and foremost, for the sake of streamlining the clinical
workflow, we grouped the T4a and T4b stages together for analysis.
Future research that further refines this categorization could poten-
tially offer more accurate clinical guidance for surgical margin
assessment and strategies regarding combined organ resection. It is
important to note that among the T4 cases incorporated in this study,
some were T4b patients (such as those with tumors invading adjacent
organs), yet advanced T4b cases with peritoneal metastasis or other
conditions precluding radical surgery were not included. Conse-
quently, this model was predominantly developed using a cohort of
surgically treatable patients. As a result, it may face certain limitations
in generalizing to some inoperable advanced cases. Future investiga-
tions should incorporate a greater number of real-world inoperable
T4b samples to enhance the model’s applicability and practical utility
within complex clinical settings. Secondly, all external validation
cohorts were sourced from the Chinese population. Thus, there is a
pressing need to conduct cross-regional validation among interna-
tional populations with diverse body characteristics and scanning
protocols’® to assess the model’s broad applicability. Thirdly, this
study did not encompass the N and M staging aspects. Existing
research has demonstrated that multimodal models integrating ima-
ging, pathological, and multi-omics data have exhibited promising
potential in predicting lymph node status’, tumor mutational
burden**, and EB virus subtypes™. In the future, GTRNet could be
extended into a unified analytical framework covering the entire TNM
staging system, thereby enabling more comprehensive auxiliary
diagnosis for gastric cancer staging. Finally, despite implementing a
variety of data augmentation strategies'’ and an adaptive early-
stopping mechanism"’ to mitigate the risk of overfitting, it is essential
to conduct prospective deployment research within multi-center, real-
world clinical environments to comprehensively evaluate the model’s
stability and clinical viability".

Looking forward, several technical and translational extensions
could broaden the model’s utility. Research directions include: (i)
transformer or 3D CNN architectures to leverage contextual slices; (ii)
spiking deep residual networks that emulate neuromorphic efficiency
and may reduce inference latency on edge devices™; (iii) panomic
integration—combining imaging, genomics, and histopathology—to
build comprehensive, patient-specific digital twins. Multicentre
benchmark challenges would accelerate reproducibility and standardize
evaluation metrics.

In summary, an end-to-end deep-learning pipeline accurately
discriminates T1-T4 disease and outperforms radiologists across
centres. An interpretable deep learning framework (GTRNet) achieved
robust, external validated performance for four-class gastric cancer T
staging on routine CT, outperforming expert radiologists and preser-
ving transparency via heatmap visualization. Coupled with key clin-
icopathologic variables, the model underpins a nomogram that can
refine preoperative decision-making and optimize allocation of
neoadjuvant therapy. Prospective trials and broader geographic vali-
dation are warranted to translate these findings into global clinical
practice.

Methods

CT imaging protocol and image preprocessing

Patients from three hospitals underwent standardized abdominal
contrast-enhanced CT (CECT) scans during the portal venous phase,
with the administration of 1.5 mL/kg contrast agent following a protocol
of fasting and water intake to achieve gastric distension. Although the
institutional scanners and acquisition parameters differed (Table 4), all
CT images were subjected to rigorous preprocessing to reduce
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Table 4 | CT acquisition parameters across three centers

Parameter Center 1 (Liaoning Cancer Center 2 (Shengjing Hospital of China Medical Center 3 (Zhejiang Cancer
Hospital) University) Hospital)

CT Scanner Toshiba Philips Philips Ingenuity

Tube Voltage 120 kV 120 kV 120 kV

Tube Current Automatic mAs Automatic mAs Automatic mAs

Detector Collimation 0.5 x 64 0.625 x 64 or 0.625 x 128 0.625 x 128

Contrast Agent Concentration 320 mg I/mL 350 mg I/mL 350 mg I/mL

Contrast Agent Dose 60 mL 80 mL 80mL

Injection Rate 3.0mlL/s 2.5ml/s 3.0mL/s

Venous Phase Scan Delay 45-60s 70s 65-70s

Image Matrix 512 x 512 512 x 512 512 x 512

Reconstructed Slice Thickness ~ 1-5mm 3mm 1-2mm

Minor variations exist in scanner models, contrast injection protocols, and image reconstruction settings.
CT computed tomography, kV kilovoltage, mAs milliampere-seconds, mg I/mL milligrams of iodine per milliliter, mL milliliters, mL/s milliliters per second, s seconds, mm millimeters, Detector Collimation
The number and thickness of detector rows used to acquire images, Image Matrix Pixel dimensions of reconstructed images.

heterogeneity. Preprocessing steps included resampling to isotropic
1x1x1mm?® voxel spacing, intensity normalization within a standar-
dized Hounsfield Unit (HU) range (—1024 to 1024), and application of
an abdominal window setting (WL 50, WW 350). Further corrections
included N4 bias-field correction and Z-score normalization. For the
purposes of model training and internal testing, a single representative
axial tumor slice per patient was selected by an expert radiologist. This
slice was resampled to a resolution of 224 x 224 pixels and standardized
using z-score normalization (mean subtraction and division by standard
deviation), without requiring manual region-of-interest segmentation,
thereby enabling an end-to-end workflow. To enhance model robustness
and generalizability, data augmentation—including random rotations,
flips, and intensity adjustments—was implemented during the train-
ing phase.

Ethics statement

The study protocol was approved by the institutional review boards of
Liaoning Cancer Hospital & Institute (KY20240503, 15 Jan 2024),
Shengjing Hospital of China Medical University (2024PS184K, 22 Jan
2024), and Zhejiang Cancer Hospital (2024-Z]-GC-009, 3 Feb 2024).
All procedures conformed to the Declaration of Helsinki and relevant
national regulations. Written informed consent was waived because
only de-identified, routinely acquired imaging and clinical data were
analyzed.

In the external test set, we included the slices immediately above
and below the key slice of each case’s images, along with the key slice
itself, resulting in a total of three images for predictive analysis. The final
case-level prediction outcomes were obtained by aggregating the model
outputs of these three slices through a majority-voting strategy. This
approach aimed to mitigate the randomness that could be associated
with single-slice predictions. During the training process, standard data
augmentation techniques, such as random flipping, rotation, scaling,
and intensity perturbation, were implemented to enhance the model’s
generalization capabilities'. Additionally, an adaptive early-stopping
strategy was adopted. This strategy involved monitoring the loss of the
validation set to dynamically adjust the training progress, thereby
reducing the risk of overfitting'’.

A comparative analysis of the performance of GTRNet and radi-
ologists in predicting gastric cancer T staging

To delineate the performance of the GTRNet model in predicting the
T-staging of gastric cancer, we recruited radiologists from Liaoning
Cancer Hospital, Shengjing Hospital of China Medical University, and

Zhejiang Cancer Hospital. Their predictive outcomes were then jux-
taposed with those of the GTRNet model. Three radiologists specia-
lizing in digestive system radiology, each with 8-15 years of experience,
were invited from each hospital. Under single-blind conditions, they
independently determined the clinical T-staging (cT1-cT4) of gastric
cancer solely based on enhanced CT images. The study was structured
into two distinct phases, with the pathological T-staging (pT) estab-
lished as the gold standard. In the initial phase, the radiologists com-
pleted the staging assessment independently. In the subsequent phase,
one month later, the radiologists repeated the staging prediction with
the aid of the GTRNet model. Metrics such as the accuracy rate,
weighted Kappa value, and sensitivity for each stage were meticulously
calculated and analyzed. Additionally, the number of cases with over-
staging and under-staging were tallied to assess the potential clinical
implications. Regarding the sample selection, at Hospital A (Liaoning
Cancer Hospital), radiologists selected 270 cases from the 1192 samples
within the center. For each of the two predictions, 50% of non-
overlapping samples were utilized for evaluation. At the other two
hospitals (Hospital B and C), 50% of the total samples from each
respective center, with no overlap between the two sets of samples used
in the two predictions, were employed. Detailed metrics are provided in
Supplementary Table 1.

Deep learning model: GTRNet

We constructed the GTRNet architecture by modifying the ResNet-152
backbone, a deep residual network known for strong feature extraction
(Fig. 6). Our modifications aimed to enhance the model’s ability to
capture multi-scale features relevant to T staging. Specifically, we
introduced parallel max-pooling and center-cropping streams in the
early network layers, allowing the network to focus on both local tumor
detail and wider contextual information around the gastric wall.
Transfer learning was applied by initializing ResNet-152 weights from
ImageNet pretraining, followed by replacing the final dense layer with
four softmax outputs corresponding to T1, T2, T3, T4. We trained with
Adam (learning rate ~1 x 10™*), a mini-batch of 32, and categorical
cross-entropy, stopping early if validation performance plateaued for 10
epochs. All training was performed on an NVIDIA Tesla V100 GPU,
allowing relatively fast convergence.

Analyses were performed in Python 3.10.13 (PyTorch 2.2.0, Torchvi-
sion 0.17, NumPy 1.26, SciPy 1.11, scikit-learn 1.3; Grad-CAM via
pytorch-grad-cam 1.4.8); R 4.3.1 and IBM SPSS 26.0 were used for statistical
analyses; ROI overlays were created in ITK-SNAP 4.0.1. Full code and
environment files are provided in the “Code availability” statement.
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B.GTRNet Model Training
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C.Multimodal Nomogram Construction
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D. Model Evaluation Metrics

ROC Confusion Matrix Calibration Curve DCA

Caitration Decision Curve Analyss

Fig. 6 | Model development pipeline. A Portal-venous CT slice showing the largest ~ evaluation metrics, including ROC curve, confusion matrix, calibration curve, and

tumor cross-section. B GTRNet architecture: modified ResNet-152 with parallel decision curve analysis (DCA). In the DCA plot, the y-axis represents the net benefit
max-pool and center-crop branches. C End-to-end workflow linking the deep- and the x-axis represents the threshold probability, with comparisons among the
learning Radscore to a clinical-radiomic nomogram. D Summary of model treat-all, treat-none, and EUS-prediction strategies.
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Data availability

Most of the de-identified data supporting this study’s findings are included
within the article and its supplementary information. The original CT
imaging datasets are not publicly available to protect patient confidentiality
and comply with institutional policies. Additional de-identified data may be
requested from the corresponding authors upon reasonable request, subject
to ethics approval and data-sharing agreements.

Code availability

The complete source code, trained model weights and a representative
sample dataset are openly available on GitHub (https:/github.com/
18846068128/A1_CT_GastricCancer_TStaging2025) under an MIT
license. A permanent snapshot of version v2.0 has been archived on Zenodo
(DOI: 10.5281/zenodo.15543822).
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