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Evaluating clinical AI summaries with
large language models as judges
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ElectronicHealthRecords (EHRs) contain vast clinical data that are difficult for providers to synthesize.
Generative AI with Large Language Models (LLMs) can summarize records to reduce cognitive
burden, but ensuring accuracy requires reliable evaluation. Human review is the gold standard but is
costly and slow. To address this, we introduce and validate an automated LLM-based method to
assess real-world EHR multi-document summaries. Benchmarking against the validated Provider
Documentation Summarization Quality Instrument (PDSQI), our LLM-as-a-Judge framework
demonstrated strong inter-rater reliability with human evaluators. GPT-o3-mini achieved an intraclass
correlation coefficient of 0.818 (95%CI0.772–0.854), amedian scoredifferenceof 0 fromhumans, and
completed evaluations in 22 seconds. Overall, reasoning models excelled in inter-rater reliability,
particularly for evaluations requiring advanced reasoning and domain expertise, outperforming non-
reasoning, task-trained, and multi-agent approaches. By automating high-quality evaluations, a
medical LLM-as-a-Judge provides a scalable, efficient way to identify accurate, safe AI-generated
clinical summaries.

Electronic Health Records (EHRs) capture a large volume of clinical doc-
umentation, which can lead to information overload among clinicians. One
in five patients admitted to the hospital arrives with an EHR comparable in
length to Herman Melville’s classic novel Moby Dick (206,000 words)1.
While centralized documentation in EHRs has improved information
accessibility and workflow efficiency2, the volume of data limits the prac-
ticality of traditional manual review processes. Clinicians face the formid-
able task of navigating expansive patient records, thereby increasing the risk
of missing crucial clinical information3–5.

Generative Artificial Intelligence (GenAI), particularly through
advancements in Large Language Models (LLMs), has emerged as a pro-
mising solution for these challenges by automatically summarizing clinical
information. LLMs, such asOpenAI’sGenerative Pre-TrainedTransformer
(GPT)-4 with a context window capable of handling up to 128,000 tokens6,
enable comprehensive, multi-document patient summaries sparking the
integration ofGPT-4 into clinical workflows7–9. Recognizing the potential of
GenAI to improve clinical workflows, both established EHR vendors and
venture-backed start-ups have prioritized the development of

summarization capabilities. Nonetheless, summarization tasks in clinical
contexts require high precision to extract clinically relevant details for a
given clinician specialty, factual accuracy, and abstraction capabilities, and
these are areas where LLMs remain vulnerable to issues such as hallucina-
tions, omissions, and inaccuracies10–13. Other critical concerns that are a
unique component of multi-document clinical summaries with long inputs
are observed errors with lost-in-the-middle effects where performance
degradation occurs with missed details or chronological errors14,15.

Given the importance of healthcare delivery, health systems need
rigorous evaluation methodologies to implement LLM-generated summa-
ries safely. Human evaluation remains the gold standard for assessing the
accuracy, completeness, and clinical relevance of these summaries16, but this
reliance on clinical experts is resource intensive. Traditional automated
metrics like Recall-Oriented Understudy for Gisting Evaluation (ROUGE)
and Bidirectional Encoder Representations from Transformers (BERT)
Score were developed for natural language tasks with simple reference text
and inadequately capture the nuanced and contextual demands of clinical
language generation. Our prior work has also shown thesemetrics to poorly
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correlate with human evaluations in the medical domain17,18. Specifically,
they lack sensitivity to factual accuracy, logical coherence, and clinical
relevance, which are needed in healthcare applications. These metrics
typically rely on surface-level heuristics, such as lexicographic and structural
measures, which are inadequate to evaluate the complexities of medical
text18. Abstractive summaries are challenging to evaluate because the gen-
erated text might not directly correspond to any part of the original doc-
umentation. Automated metrics often fail to capture the inferences,
synthesis, and new language produced in abstractive summarization, lim-
iting their applicability to tasks like clinical documentation. These limita-
tionshighlight theneed for automatedevaluationmethodsbeyond semantic
and lexical similarity to better assess the quality and clinical relevance of the
generated text.

Recent systematic reviews highlight major gaps in current human
evaluation practices, noting a lack of psychometrically validated instru-
ments specifically designed for clinical summarization using real-world,
multi-document EHR data19. Tam et al. emphasized that only a small
minority of evaluation studies involve multiple clinician experts or psy-
chometric validation20.Historically, clinical documentation quality has been
assessed using instruments such as the Physician Document Quality
Instrument (PDQI-9)21. Although the PDQI-9 has been applied to LLM-
generated summaries22, it was not designed to capture LLM-specific phe-
nomena such as hallucinations. To address this gap, we previously devel-
oped and validated an LLM-centric adaptation of the PDQI-9 for evaluating
clinical summaries produced by LLMs from the EHR called the Provider
Documentation Summarization Quality Instrument (PDSQI)-923. Devel-
oped using a semi-Delphi consensusmethodology and adequately powered
at 80%, the PDSQI-9 instrument demonstrates excellent psychometric
properties, including high discriminant validity and inter-rater reliability
validated by physician raters. The instrument includesnine attributes:Cited,
Accurate, Thorough, Useful, Organized, Comprehensible, Succinct, Synthe-
sized, and Stigmatizing. During the development of the instrument, parti-
cular focus was placed on the vulnerability of the attribute Accurate to
hallucinations and the attribute Thorough to omissions to capture known
LLM summarization issues. The PDSQI-9 showed excellent internal con-
sistency, with an intraclass correlation coefficient (ICC) of 0.867 (95% CI:
0.867–0.868). However, the PDSQI-9 was validated with clinician evalua-
tors who averaged 10 minutes per evaluation. Thus, LLM summarization,

while intended to increase workflow efficiency, paradoxically requires sig-
nificant time, effort, and expertise to validate. To reconcile these competing
demands, innovative automated evaluation methods leveraging LLMs
themselves as evaluators, termed “LLM-as-a-Judge,” offer promise24. These
approaches harness LLMs’ contextual comprehension and reasoning cap-
abilities to automate evaluationprocesses traditionally conductedbyhuman
experts25,26. However, limited data exist for their performance in themedical
domain.

In this study, we propose and evaluate the efficacy of a medical LLM-
as-a-Judge framework using the PDSQI-9 instrument. This instrument
served as the benchmark to compare LLM-driven evaluations directly
against humanexpert assessments.Theprimaryoutcomeof the comparison
was the intraclass correlation coefficient (ICC), in line with the original
PDSQI-9 evaluation method. We systematically evaluated state-of-the-art
open- and closed-source LLMs as judges using different prompting strate-
gies, including zero-shot, few-shot, supervised fine-tuning (SFT), direct
preference optimization (DPO), and multi-agent frameworks (e.g.,
MagenticOne27) as illustrated in Fig. 1, we aimed to establish the reliability
and practicality of automating clinical summarization evaluations. We
hypothesize that the LLM-as-a-Judge framework will achieve inter-rater
reliability comparable to expert human evaluators, thus providing an effi-
cient, scalable solution to the evaluation bottleneck posed by GenAI-driven
clinical summarization. Cross-task validation was conducted on a separate
summarization task focused on diagnoses using another EHR with the
Problem List BioNLP Summarization (ProbSum) 2023 Shared Task28.

Results
Study characteristics
To perform the LLM-as-a-Judge experiments, the original corpus of notes,
LLM-generated summaries, and physician expert evaluation scores were
utilized from the original PDSQI-9 study23. The PDSQI-9 instrument with
attributes and scoring rules is available at https://git.doit.wisc.edu/smph-
public/dom/uw-icu-data-science-lab-public/pdsqi-9. The LLM-generated
summaries were scored using clinical notes from the provider’s perspective
during an office visit (index encounter), representing a real-world clinical
situation where the provider utilized a summary of the patient’s prior
encounters. The original 200 summaries comprising 2200 questions were
split into a training/development set of 160 summaries and a test set of

Fig. 1 | Study overview. Five distinct training strategies for large language models
using the PDSQI-9 instrument were evaluated. The experiments comprised expert-
driven prompt engineering, supervised fine-tuning, direct preference optimization,

and multi-agent architectures, representing the LLM-as-a-Judge framework for
clinical summarization.
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40 summaries for the LLM-as-a-Judge experiments. The provider per-
spective for the index encounter representedmultiple specialties grouped as
Primary Care, Surgical Care, Emergency/Urgent Care, Neurology/Neuro-
surgery, and Other Specialty Care. Each patient had 3, 4, or 5 encounters
prior to the index encounter that the LLM summarized over. The char-
acteristics of the datasets are shown inTable 1.Nodifferenceswere observed
in the distribution of notes, token counts, or specialty types between train
and test datasets (p > 0.05 for all). To avoid over-representation of any
evaluator’s scores in the training set, we up-sampled evaluations from each
evaluator to ensure an even distribution across all seven evaluators.

Single LLM framework (LLM-as-a-Judge)
The LLM-as-a-Judge was provided with the same information given to
human evaluators with instructions regarding the original patient notes, the
generated summary, and thePDSQI-9 rubric. Figure 2 provides anoverview
of the complete input to the LLM-as-a-Judge, and an example of the full
prompt is available at https://github.com/epic-open-source/evaluation-
instruments/tree/main/src/evaluation_instruments/instruments/pdsqi_9.
The primary outcome of this studywas the agreement between the LLM-as-
a Judge and the seven human evaluators using the intraclass correlation
coefficient (ICC), which aligned with the original PDSQI-9 evaluation
methodology. This was assessed by comparing the median scores of the
seven human evaluators with themedian scores from seven iterations of the
LLM-as-a-Judge. TheWilcoxon signed-rank test was also used to assess the
median score difference between humans and LLMs as judges. The com-
plete set of experiments and hyperparameter tuning with Bayesian Opti-
mizations are described further in theMethods. Among the single LLM-as-
a-Judge results, GPT-o3-mini (2024-01-31) 5-shot demonstrated the
highest ICC reaching 0.818 (95% CI 0.772, 0.854) and had a median score
difference of 0 (IQR: 0,1; p-value < 0.001). In sensitivity analyses, the LLM-
as-a-Judge replaced a human evaluator or was added as an additional
reviewer. In both scenarios no significant change was noted in the ICC
scores usingGPT-o3-mini (p-values > 0.3).While the primary outcomewas
ICC, secondarymeasures of inter-rater agreement were also examined with
Krippendorf’s α and Gwet’s Ac2 and are reported separately in Supple-
mentary Table 1. These metrics were included to provide a more compre-
hensive assessment of inter-rater reliability, capturing different assumptions

Table 1 | Study corpus characteristics

Train/Development Test P-value

Summaries, n 160 40

Provider Specialty,n (%) 0.299

Primary Care 78 (48.76%) 14 (35.00%)

Surgical Care 39 (24.36%) 13 (32.50%)

Emergency/
Urgent Care

21 (13.12%) 4 (10.00%)

Neurology/
Neurosurgery

11 (6.88%) 3 (7.50%)

Other Specialty Care 11 (6.88%) 6 (15.00%)

Number of Notes, n (%) 0.078

Three 37 (23.12%) 16 (40.00%)

Four 45 (28.12%) 7 (17.50%)

Five 78 (48.75%) 17 (42.50%)

Length of Notes (words),
median (IQR)

3050 (2174, 4128) 2816
(2137, 4364)

0.931

Length of Notes
(tokens), median (IQR)

6445 (4366, 8665) 5845
(4428, 9086)

0.949

Length of LLM Input*
(words), median (IQR)

4746 (3871, 5831) 4788
(3782, 4788)

0.975

Length of LLM Input*
(tokens), median (IQR)

9681 (7448, 11704) 8920
(7398, 11850)

0.854

Length of Summary
(words), median (IQR)

328 (191, 498) 250 (179, 414) 0.418

Length of Summary
(tokens), median (IQR)

566 (368, 869) 425 (340, 787) 0.221

*Instruction + Rubric + Notes + Summary.
The study corpus consisted of 200 unique patient summaries split into development and test sets.
Provider specialties were grouped into five categories: Primary Care (Internal Medicine, Family
Medicine, Pediatrics); Surgical Care (General Surgery, Orthopedics, Ophthalmology, Urology),
Neurology/Neurosurgery, Emergency/Urgent Care, and Other Specialty Care (Gynecology,
Dermatology, Psychiatry, Sleep, and Anesthesiology). The median and inter quartile range (IQR) for
the length of the notes, summaries, and LLM input are provided for both the number fo words and
number fo tokens.

Fig. 2 | Single LLM and multi-agent framework overview. Conceptual diagram showing implementation and example input-output flows for each framework.
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about rater behavior and chance agreement that complement the ICC
results. Across measures, GPT-o3-mini was the top performing model (α =
0.677, Ac2 = 0.826). Of note, smaller open-source models with poor per-
formance had substantial gains with additional training with SFT using
Quantized Low Rank Adapters (QLoRA) and DPO, with Llama 3.1 8B
improving from an ICC of 0.332 to 0.560. This was less pronounced with
new, larger open-source models such as Mixtral 8 × 22B, which showed
competitive performance with zero-shot and had minimal gains with
additional fine-tuning. Table 2 demonstrates a subset of results for models
that exhibited the strongest performance or held particular interpretive
value. Full experimental results are provided in Supplementary Table 1,
including all few-shot and SFT results.

Multi-Agent Framework (LLMs-as-Judges)
In addition to the single LLM-as-a-Judge framework, several Multi-Agent
Frameworks (LLMs-as-Judges) were also evaluated. Using Microsoft’s
AutoGen implementation with the MagenticOneGroupChat setup27, sev-
eral LLMs-as-Judges participated in rounds of discussion. The orchestrator
created the initial plan, monitored discussion among judges, and reported
thefinal consensus on evaluative scores as visualized in Fig. 2. The LLMs-as-
Judges were selected from one of two groups of agentic personas. The first
group contained LLMs-as-Judges intended to represent personas that a
primary care physician might embody: the Analytical Perfectionist, the
Efficient Multitasker, and the Collaborative Team Player. Each agent was
tasked with prioritizing a specific aspect of high-quality summarization in
alignment with its assigned persona. The second group contained LLMs-as-
Judges intended to represent different perspectives along an ordinal scale—
high, low, and middle scoring—to simulate a range of reviewer stances. A
mixture of open- and closed-sourcemodels were incorporated in additional
trials, building on insights from the single-agent experiments. Initial testing
used GPT4o for all agents and either GPT4o or GPT-o3-mini as the
orchestrator, but later testing incorporated GPT-o3-mini as the orches-
trator, Mixtral 8 × 22B as the high-scoring agent, and GPT4o as the low-

scoring agent. The best multi-agent approach used GPT-o3-mini as the
orchestrator, high-scoring agent, and low-scoring agent demonstrating an
ICC of 0.768 (95%CI 0.710, 0.814) and amedian score difference of 0 (IQR:
-1,1; p-value = 0.353). The extended results can be found in Supplementary
Table 2.

Cross-task validation
Cross-task validation was conducted for the top-performing LLM-as-
a-Judge models using the Problem List BioNLP Summarization
(ProbSum) 2023 Shared Task28, one of the natural language generation
tasks designed for summarization in the medical domain. The objec-
tive of this task was to generate summaries of a patient’s active pro-
blems or diagnoses based on the Subjective, Objective, and Assessment
sections of daily progress notes. The Plan section was used to label the
gold standard diagnoses as references by expert medical annotators.
These progress notes were sourced from the Medical Information
Mart for Intensive Care (MIMIC)-III EHR database. The goal of the
cross-task evaluation was to assess the transferability of the LLM-as-a-
Judge framework when applied to a different evaluation rubric. We
applied the same prompt development strategy used for the PDSQI-9
instrument to a separate, previously published rubric designed for the
ProbSum task17. In this evaluation, the LLM-as-a-Judge, or LLMs-as-
Judges, were provided the same information as the human evaluators:
(1) patient note to be summarized; (2) generated summary; (3)
annotated gold standard; and (4) the ProbSum evaluation rubric(also
available in Supplementary Note 1). The final cross-task validation test
set comprised 31 summaries and 792 rubric attribute scores. No
training was performed, given the leading performance of zero & few-
shot single and multi-agent LLM-as-a-Judge frameworks. The median
length of the prompt was 1606 words (IQR 1545-1653), and the
median token count was 3224 (IQR 3115-3353). The top-performing
model remained GPT-o3-mini demonstrating an ICC of 0.710 (95%
CI 0.662, 0.752). The full set of results are presented in Table 2.

Table 2 | LLM-as-a-judge alignment with human reviewers

LLM-as-a-Judge Strategy ICC (95% CI) Median Difference (IQR) Wilcoxon P-Value

PDSQI-9 Internal Validation

GPT-o3-mini (2025-01-31) Zero-Shot 0.803 (0.753, 0.842) 0 (0,1) 0.007

GPT-o3-mini (2025-01-31) 5-Shot 0.818 (0.772, 0.854) 0 (0, 1) <0.001

GPT-4o (2024-08-06) Zero-Shot 0.730 (0.663, 0.784) 0 (0,1) 0.216

DeepSeek-R1 761B Zero-Shot 0.762 (0.703, 0.810) 0 (0,1) 0.063

DeepSeek Distilled Qwen 2.5 32B Zero-Shot 0.721 (0.651, 0.777) 0 (0,1) 0.001

Llama 3.1 8B Zero-Shot 0.332 (0.165, 0.465) 0 (−2,1) <0.001

Llama 3.1 8B 4-bit quantized/64 adapters SFT 0.356 (0.195, 0.485) −2 (−3,0) <0.001

Llama 3.1 8B 4-bit quantized/8 adapters SFT + DPO 0.560 (0.451, 0.648) 0 (0,2) <0.001

Mixtral 8 × 22B Zero-Shot 0.733 (0.667, 0.786) 1 (0,1) <0.001

Mixtral 8 × 22B 4-bit quantized/8 adapters SFT 0.740 (0.675, 0.792) 1 (0,1) <0.001

Mixtral 8 × 22B 4-bit quantized/8 adapters SFT + DPO 0.746 (0.683, 0.797) 1 (0,1) <0.001

Multi-Agent Framework: GPT-o3-mini orchestrator &
agents

Zero-Shot 0.768 (0.710, 0.814) 0 (-1,1) 0.353

ProbSum Cross-task Validation

GPT-o3-mini (2025-01-31) 5-Shot 0.710 (0.662, 0.752) 0 (0,0) 0.028

DeepSeek-R1 761B Zero-Shot 0.687 (0.634,0.732) 0 (0, 0.75) 0.835

DeepSeek Distilled Qwen 2.5 32B Zero-Shot 0.622 (0.554,0.679) 0 (0,2) <0.001

Mixtral 8 × 22B Zero-Shot 0.596 (0.527,0.654) 0 (0,0) <0.001

Mixtral 8 × 22B - SFT Zero-Shot 0.641 (0.578,0.705) 0 (0,0) 0.032

Mixtral 8 × 22B - DPO Zero-Shot 0.666 (0.607,0.726) 0 (0,0) 0.737

Subset of LLM-as-a-Judge approaches chosen based on superior performance or relevance to key evaluation findings, with intraclass correlation andmedian score difference from expert evaluators. The
complete set of experimental results are provided in the Supplementary Tables.
The bold values are meant to highlight the best performing models ICC values.
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Cost analysis
Table 3 presents the inference costs associated with each LLM-as-a-
Judge. In this study, GPT-4o, GPT-o3-mini and DeepSeek R1 were
operated within the secure environment of the health system’s HIPAA-
compliant Azure cloud. The smaller, open-source LLMs were down-
loaded from HuggingFace29 to HIPAA-compliant, on-premise servers.
GPT-o3-mini, using 5-shot prompting completed an evaluation in an
average of 22 seconds, a 96% reduction from the human average of
approximately 600 seconds. The cost for running a single evaluation,
including the Microsoft Azure cloud API fees, averaged 5 cents. The costs
associated with training Llama 3.1 8B andMixtral 8 × 22B using SFT and
DPO are presented in Table 3. Both instances of DPO training required
two-NVIDIA 80 GB H100 GPUs. Although Llama 3.1 8B saw large gains
in performance with training, Mixtral 8 × 22B saw only minimal gain
despite the over 24 hour training time across 50 and 15 epochs for SFT
and DPO, respectively. For the multi-agent workflows, the cost sub-
stantially increases given the multiple rounds of discussion and multiple
agents deployed.

Error analysis
The LLM-generated summaries being evaluated were a mix of generations
by GPT4o, Mixtral 8 × 7B, and Llama 3-8B. Previous literature has found
that LLMs favor their own generations30. To ensure that the validity of the
evaluations was not subject to the source of the generated summary, a
comparative analysis was performed when GPT4o or Mixtral 8 × 22B were
used as the LLM-as-a-Judge on each of the three possible sources. No
differenceswere foundbetween the two judges’ ICCswithhumanevaluators
(p-values > 0.2).When compared with each other directly, GPT4o LLM-as-
a-Judge is a harsher critic on summaries generated by itself thanMixtral 8 ×
22B LLM-as-a-Judge is, producing scores one or more points lower on the
5-point Likert scale in 55% of the evaluation attributes. To further examine
potential sources of bias, a linear mixed-effects model was fit to assess
whether differences between LLM and human scores varied by provider
specialty, model type, note length, or summary length. While there were
some small variations, all estimated effectswere less thanaquarter of a point.
Given that scoring was performed using 5-point Likert scales, differences
would need to exceed one point to meaningfully impact conclusions. This

suggests therewasnomeaningful or systematic bias inhowtheLLMs judged
the summaries.

When comparing scores produced by a reasoning model, GPT-o3-
mini, and a non-reasoning model, GPT4o, the advantages of a reasoning
model in the scoring across the PDSQI-9 attributes were apparent. This is
likely due to how reasoning models generate responses— by engaging in a
step-by-step thought process during inference (i.e., test-time computation,
or response generation). In this case, test-time computation refers to the
inference phase — when the model is generating outputs (as opposed to
training). Reasoning models often involve more extensive computation
during inference because they explicitly simulate intermediate reasoning
steps using chain-of-thought “thinking” steps. In contrast, non-reasoning
models produce outputs more directly, without these additional inter-
mediate steps. Figure 3 depicts the distribution of the score differences
between each LLM-as-a-Judge and the human evaluators. Each attribute of
the PDSQI-9 rubric is graded on a 5-point Likert scale, except for Stigma-
tizing, which is the only exclusion because of its binary scoring. Overall,
GPT-o3-mini aligned with human scores more closely than GPT-4o across
almost every PDSQI-9 attribute. Themost pronounced differences between
the models are for the Cited, Organized, and Synthesized attributes, which
reflect the ability of GPT-o3 as a reasoning model to present a compre-
hensive view and perform abstractive reasoning over the notes.

We also compared reasoning outputs ofGPT-4o andGPT-o3-mini. In
one illustrative example, GPT-o3-mini assigned a Synthesized score aligned
with thehumanmedian scoreof 2,whileGPT-4oassigneda scoreof 5.GPT-
4o’s reasoning was as follows: ”Synthesis: The summary demonstrates
excellent synthesis of information by grouping pertinent medical themes
and integrating them for an overall clinical synopsis. Grade: 5.” In contrast,
GPT-o3-mini reasons, “For synthesis, the summary provides several inde-
pendent assertions that are loosely grouped but does not generate an inte-
gratedunderstandingorprioritizationof the acuteproblemaimedat theEM
provider. This gives it a lower synthesis score of 2.” This contrast highlights
GPT-o3-mini’s ability to engage in deliberative reasoning closely mirroring
the human evaluators’ process, whereas GPT-4o’s reasoning appears more
superficial.

GPT-o3-mini also performs better as a standalone evaluator than
within amulti-agent framework, evenwhenall agents involvedareGPT-o3-

Table 3 | LLM-as-a-Judge Costs

Inference Costs

Judge Strategy Mean Inference Time (sec) Mean Cost ($)

Human — 600 50.00

GPT-4o (2024-08-06) Zero-Shot 12 00.03

GPT-4o (2024-08-06) Few-Shot 14 00.10

GPT-o3-mini (2025-01-31) Zero-Shot 16 00.02

GPT-o3-mini (2025-01-31) Few-Shot 22 00.05

DeepSeek-R1 761B Zero-Shot 35 00.02

DeepSeek Distilled Qwen 2.5 32B Zero-Shot 25 00.00

Mixtral 8 × 22B Zero-Shot 22 00.00

Mixtral 8 × 22B Few-Shot 25 00.00

Multi-Agent Framework: GPT-o3-mini orchestrator GPT-o3-mini agents Zero-Shot 69 00.16

Training Costs

Judge Strategy Training Time (hrs) GPUs (80GB H100)

Llama 3.1 8B SFT 2.5 1

Llama 3.1 8B DPO 6 2

Mixtral 8 × 22B SFT 24 2

Mixtral 8 × 22B DPO 60 2

The average inference time (in seconds) and average cost (in U.S. dollars) for a single evaluation from the top-performing LLM-as-a-Judge approaches compared to a single human evaluator. The cost for a
single humanevaluatorwas calculatedbasedon amedianminimumphysician consulting rate of $300/hour. Additionally, the training time (in hours) and the number of 80GBNVIDIAH100GPUs required for
parameter efficient fine-tuning and direct preference optimization of Mixtral 8 × 22B and Llama 3.1 8B are included.
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mini models. For instance, in evaluating the Organized attribute, GPT-o3-
mini independently aligns with the human median score of 3, whereas the
multi-agent setup assigns a score of 5. The reasoning outputs from the
individual agents elaborate on the scoring. The low-scoring agent states:
“The summary presents the information in chronological order and groups
events logically. I award a 5 here.”Meanwhile, the high-scoring agent states:
“The events are presented chronologically, and the progression of care is
clear, making the summary easy to follow. I assign a 5.”Because both agents
converge on the same assessment, the orchestrator concludes: “For Orga-
nized, the summary is presented in a clear chronological order that supports
understanding of the clinical course. Both agents agree on a perfect score, so
we assign a 5.” In contrast, GPT-o3-mini acting alone offers a more dis-
cerning evaluation: “In terms of organization, the summary follows a
chronological order, but the grouping is not completely coherent due to the
onemis-timed assertion, leading to a score of 3.”This comparisonhighlights
GPT-o3-mini’s capacity for a more analytical deliberation as a single judge
rather than relying on consensus within a multi-agent system that may
overlook subtleties by converging prematurely on higher scores.

Discussion
This study introduces a medical LLM-as-a-Judge, an automated approach
for evaluating the quality of clinical multi-document summaries generated
by LLMs. Using the validated PDSQI-9 human evaluation instrument as a
benchmark, the GPT-o3-mini model achieved strong inter-rater reliability
comparable to expert human evaluators (ICC= 0.818). IncorporatingGPT-
o3-mini as anadditional or substitute evaluatordidnot significantly alter the
reliability metrics previously established for the PDSQI-9 instrument.
Cross-task validation on the ProbSum task similarly confirmed high relia-
bility. Furthermore, GPT-o3-mini completed evaluations faster (average 22
seconds) than human evaluators (average 600 seconds), potentially trans-
lating into substantial reductions in labor within clinical workflows. By
automating high-quality evaluation of summarization outputs, a medical
LLM-as-a-Judge provides a scalable and efficient approach to rapidly
identify accurate and safe generative AI implementations in healthcare
settings.

The concept of LLM-as-a-Judge has shown strong performance in
general domain tasks, with benchmarks like AlpacaEval 2.031 and MT-
bench32 demonstrating that GPT-4 can effectively assess the output quality
of another LLM, maintaining a strong correlation with human judgments.

However, the clinical domain introduces unique challenges due to its
heightened sensitivity to hallucinations and omissions. As a result, it
requires a more specialized and nuanced approach to evaluation—one that
goes beyond the general-purpose queries addressed by these existing
benchmarks. To our knowledge, our study is the first to showcase the
application of LLM-as-a-Judge for clinical summarization tasks, testedwith
a validated human assessment instrument.

The LLMs tested encompassed state-of-the-art reasoning and non-
reasoning models, including GPT-4o, GPT-o3-mini, and DeepSeek R1, as
well as smaller, open-source models like Mixtral 8 × 22B and Llama 3.1 8B.
The study utilized a HIPAA-secure API available in the Azure AI Foundry
cloud environment, and this infrastructure may not be available at many
health systems. Other open-source models, including DeepSeek Distilled
Qwen 2.5 32B andMixtral 8 × 22B, also achieved high inter-rater reliability
(ICCs > 0.7), positioning them as viable alternatives to the larger GPT-o3-
minimodel that can be downloaded on to on-premise servers for free access
and use. Interestingly, few-shot prompting led to performance declines for
GPT-4o and othermodels. Thismay reflect that well-instructedmodels can
perform optimally with direct guidance, and additional examples may
introduce noise. In contrast, models like GPT-o3-mini benefited from
examples, suggesting that few-shot effectiveness is model-specific.

The benefit of DPO varied substantially betweenmodels, with LLaMA
3.1 8B improving from an ICC of 0.356 to 0.560, while Mixtral 8 × 22B
showed minimal gains (0.740 to 0.746). Several factors likely contribute to
this divergence. First, LLaMA 3.1 8B started from a significantly lower
baseline, suggesting greater capacity for improvement with preference-
based optimization. In contrast, Mixtral’s high starting performance may
reflect a ceiling effect. Second, LLaMA 3.1 8B is a dense transformermodel,
whereas Mixtral 8 × 22B is a sparse mixture-of-experts (MoE) model with
12.9B active parameters per forward pass but 46.7B total parameters. MoE
models are designed to scale efficiently by routing tokens through only a
subset of expert networks. MoEmodels may also exhibit greater preference
alignment if expert activation is inconsistent across training examples,
which likely happens with multiple human evaluators for training data.
Finally, Mixtral was released more recently with strong zero-shot and few-
shot reasoning capabilities across diverse benchmarks, suggesting that its
pretraining corpus and training objectives may have already encoded
alignment features that DPO aims to reinforce. These findings suggest that
the effectiveness of preference-based optimization is highly model-

Fig. 3 | Absolute differences between human evaluator and LLM-as-a-judge
scores. Absolute score differences between human evaluators and LLM-as-a-Judge
outputs (GPT-4o orGPT-o3-mini) across each attribute of the PDSQI-9 instrument.

The largest differences appear in the Cited, Organized, and Synthesized attributes,
highlighting GPT-o3-mini’s advantage as a reasoningmodel capable of presenting a
comprehensive view and performing abstractive reasoning over clinical notes.
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dependent, shaped by a combination of architectural complexity, pre-
training quality, and starting performance.

While DPO significantly improved LLaMA 3.1 8B’s performance, the
model’s inherent limitations prevented it frommatching the higher baseline
and ultimate performance of other models. Notably, across zero-shot, SFT,
and DPO reward scoring settings, LLaMA 3.1 8B consistently produced
polarized scores concentrated at the extremes of the scale,with limiteduse of
intermediate values. This lack of granularity not only reduced the fidelity of
evaluation scores across zero-shot and SFT settings but also impaired
contrastive learning during DPO by failing to capture subtle distinctions
between candidate responses. Additionally, frequent stability and format-
ting issues—including empty or malformed outputs and non-numeric
responses—introduced noise and complicated reliable evaluation and
training. While prompt formatting partially alleviated these issues, LLaMA
3.1 8B remained less consistent and less reliable than other models in
producing valid and meaningful scoring outputs. Together, these observa-
tions highlight that beyond model size and baseline capabilities, consistent
scoring behavior and output stability are essential for reliable performance
on this task.

In the error analysis comparing models used for LLM-as-a-Judge, the
strength of the reasoning models stood out. Both GPT-o3-mini and
DeepSeek R1 demonstrated the highest levels of inter-rater reliability with
expert human evaluators. This was especially clear when scoring attributes
that require advanced reasoning and expert domain knowledge from
human reviewers. Specifically, the attributes Cited, Organized, and Synthe-
sized showed themost substantial improvements in scoringby the reasoning
models over their state-of-the-art non-reasoning counterparts. These
attributes require a comprehensive evaluation of the notes to determine
whether the summary captures the appropriate breadth of information.
Additionally, notable gains were observed in theThorough attribute, further
illustrating the models’ ability to discern information most relevant to the
intended provider audience, rather than a generic clinical reader.

The prompt engineering process in this study revealed key insights for
deploying an LLM-as-a-Judge. At the core of this process is the importance
of a reliable evaluation rubric.Without awell-defined rubric, the LLM-as-a-
Judge’s performancewill be asflawedas that of a human judge under similar
conditions. In otherwords, the quality of the evaluation is directly tied to the
clarity and precision of the rubric. Each rubric attribute must have a well-
defined purpose, with explicit criteria outlining its meaning— these are
essential elements in the prompt design of the LLM-as-a-Judge. Each
attribute must be precisely named to reflect what is being assessed on the
associated Likert scale. For example, naming an attribute “Implausible” but
defining it such that a score of 5 represents high plausibility can undermine
the interpretability of the LLM-as-a-Judge’s results. Furthermore, the Likert
scale itself must be concretely and objectively detailed to prevent the LLM-
as-a-Judge from making assumptions that might not align with human
interpretation.When there are clear andprecise definitions for the attributes
and the rating scale, we showed that the LLM-as-a-Judge’s evaluations are
consistent and accurate compared with human evaluation. Additionally,
enforcement of output formatting rules is more effective when the LLM-as-
a-Judge is instructed to verify the formatting before generating a response.
The final prompt design is a result of 1) establishing an evaluation instru-
mentwith strong construct and content validity and 2) performingmultiple
experiments in both prompt engineering and judge performance against a
high quality dataset of human expert evaluations. The final prompting
framework for both single LLM-as-a-judge and the more expensive multi-
agent framework using Microsoft’s MagenticOne framework are available
for health systems at https://git.doit.wisc.edu/smph-public/dom/uw-icu-
data-science-lab-public/pdsqi-9. We recommend health systems follow the
prompt design we share and only remove attributes as needed for the task,
without changes in language or format to maintain the results we demon-
strated in this work.

Recent advances in multi-agent LLM workflows have demonstrated
several advantages over single-model systems. Multi-agent architectures
enhance reasoning and factual accuracy33, promote divergent thinking34,

and leverage the complementary strengths of multiple LLMs35. Beyond
general-purpose frameworks, clinical domain-specific multi-agent systems
have also shown significant promise. MDAgents36 introduces a dynamic
collaboration structure that adapts to the complexity of each clinical ques-
tion, enabling either solo reasoning or group deliberation among LLMs.
This approach draws inspiration from real-worldmedical decision-making,
where task complexity determines whether decisions are made individually
or collaboratively. While multi-agent frameworks offer clear benefits over
single-LLM methods, they also increase computational and operational
costs as the number of agents grows. Additionally, they require careful
tuning of multiple parameters, including agent personas, interaction pro-
tocols, and conversation length, which adds further complexity to their
design and implementation.

While the multi-agent frameworks tested in this study did not out-
perform single-agent systems in terms of the primary outcome measure
(ICC), they demonstrated a notable advantage in aligning with human
evaluators compared with single-LLM approaches. A single GPT-o3-mini
LLM-as-a-Judge has high correlation with human evaluators but typically
produced scores that matched or exceeded human scores by one point on
the Likert scale. In contrast, amulti-agent framework composed ofmultiple
GPT-o3-mini agents had lower correlation with human evaluators, but the
positive and negative score differences were distributed more evenly. This
highlights how assigning distinct personas to evaluator agents, such as high
and low scorers, within a multi-agent setup can more faithfully mimic the
variability found among human reviewers, effectively harnessing the com-
plementary perspectives of the system.

Several limitations occurred in this study. The clinical notes used to
validate LLM-as-a-Judge came exclusively from UW Health and the
MIMIC-III corpus, which may limit the generalizability of the findings
across different health systems and clinical specialties. To address this
limitation, external validation studies are needed to evaluate performance
across diverse healthcare systems. While the test set size was limited to
40 summaries, eachwas evaluatedby sevenphysicians andanalyzed across 9
rubric dimensions, resulting in over 2500 data points across all model
comparisons. The ICC metric used is well suited to this setting, and the
narrow confidence intervals support the reliability of the observed agree-
ment. In addition, both tasks used to validate the approach are
summarization-based tasks, with inputs capped to stay within the context
window limits of someopen-source LLMs.While this design choice enabled
direct prompting, it limits applicability to larger, more heterogeneous
clinical records that can also be seen in practice. Exploring the scalability of
this approach to larger clinical datasets remains a subject for future work.
Moreover, extending the approach to other clinical language generation
tasks, such as medical question answering, will require further validation. It
is also important to note that this study did not include an analysis of
potential biases in model scoring related to patient characteristics. Future
work should explore these fairness considerations to better understand how
LLM-as-a-Judge may behave across diverse clinical contexts. Finally, the
SFT,DPO, andmulti-agent LLMs-as-Judges had significant costs associated
with their experimentation. For Mixtral 8 × 22B, a single SFT training run
took 24 hours and a single DPO training run took 60 hours using 2-H100
NVIDIAGPUs. As a result, hyperparameter tuning was limited to a subset.
To conserve computational resources, we report one complete test run for
the resource-intensive multi-agent framework rather than multiple itera-
tions like those performed for the single-agent approaches.

In conclusion, this study introduces and validates an automated
method to evaluate clinicalmulti-document summaries using anLLM-as-a-
Judge. Leveraging the PDSQI-9 instrument as a benchmark, the medical
LLM-as-a-Judge framework demonstrates strong inter-rater reliability with
human evaluators. This approach provides an efficient and scalable solution
for assessing clinical summaries, significantly reducing the time and cost of
thorough evaluations while maintaining high reliability. An important next
step is integrating LLM generation and evaluation in a closed-loop system,
where the LLM-as-a-Judge provides feedback to iteratively refine summa-
ries until a quality threshold is met. While beyond the scope of this study,
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such an approach could enable automated, real-time quality control in
clinical summarization.

Methods
Study design and data corpus
The data used in this study comes from the original PDSQI-9 study23,
including the original corpus of notes, LLM-generated summaries, and
scores from physician evaluators. The corpus of notes was designed for
multi-document summarization and evaluation using inpatient and out-
patient encounters from the University of Wisconsin Hospitals and Clinics
(UW Health) in Wisconsin and Illinois between March 22, 2023 and
December 13, 2023. The evaluation was conducted from the provider’s
perspective during the initial office visit (the ’index encounter’)—the clinic
appointment where the provider would benefit from a summary of the
patient’s prior visits with outside providers. Other inclusion and exclusion
criteria were the following: (1) patient was alive at time of index encounter
with provider; (2) patient had at least one encounter in 2023; and (3)
excluded psychiatry notes. Psychotherapy notes were excluded due to their
highly sensitive nature and additional regulatory protections under HIPAA
and 42 CFR Part 2, which require approvals beyond the minimal necessary
standard for research. Each patient had multiple encounters (3, 4, or 5) for
which the LLM was tasked to generate a summary. To stay within the
context window limitations of available LLMs during experimentation, we
selected patients with 3 to 5 prior encounters for summarization. This range
preservedmeaningful longitudinal informationwhile ensuring the full input
(notes + summary + rubric) remained within the token limits of models
likeLlama3.1 (8000-tokenmaximum).Themediannumberof tokens in the
concatenated notes was 5101 (IQR: 3614–7464). This also allowed for fea-
sible manual review by clinician evaluators. This study was reviewed by the
University Wisconsin-Madison Institutional Review Board (IRB; 2023-
1252) and determined it to be exempt human subjects research. The IRB
approved the studywith awaiver of informed consent. The summaries were
evaluated using the perspective of the provider whose perspectives ranged
across five different groups of specialties: Primary Care, Surgical Care,
Emergency/Urgent Care, Neurology/Neurosurgery, and Other Specialty
Care.The original 200 summarieswere split into a training/development set
of 160 and a test set of 40 for all LLM-as-a-Judge experiments. The char-
acteristics of each set are shown in Table 1. The test set of 40 summaries was
selected to ensure detailed expert evaluation across all PDSQI-9 attributes
while maintaining feasibility. Each summary was reviewed by seven phy-
sicians, resulting in 280 attribute-level scores and allowing for robust
reliability estimation.

The LLM-as-a-Judge approach outlined in this study was tested using
several top-performing large language models (LLMs) from both open-
source and closed-source categories, including reasoning and non-
reasoning models. The open-source models used in this study were Mix-
tral 8 × 22B, Llama 3.1 8B, DeepSeek R1, DeepSeek Distilled Qwen 2.5 32B,
DeepSeek Distilled Llama 8B, and Phi 3.5 MoE, while the closed-source
models tested were GPT-4o with the 128K context window (version as of
2024-08-06) and GPT-o3-mini (version as of 2025-01-31). To assess model
performance, we implemented five prompt engineering strategies: (1) Zero-
Shot, (2) Few-Shot, (3) Supervised Fine-Tuning (SFT), (4)Direct Preference
Optimization (DPO), and (5) Multi-Agent using MagenticOne. For GPT-
4o and GPT-o3-mini, we used Zero-Shot and Few-Shot prompting for
single LLM-as-a-Judge as well as for within the Multi-Agent framework.
The DeepSeek models (R1 760B, Distilled Qwen 2.5 32B, and Distilled
Llama 8B)were restricted to Zero-Shot prompting per recommendations in
their GitHub model cards37. Mixtral 8 × 22B and Llama 3.1 8B were eval-
uatedwith a broader range of approaches—Zero-Shot, Few-Shot, SFT, and
DPO—due to their smaller computational requirements,whichmake them
more amenable for customizations compared with larger models.

GPT-4o, GPT-o3-mini, and DeepSeek R1 were operated within the
secure environment of the health system’s HIPAA-compliant Azure cloud.
No PHI was transmitted, stored, or used by OpenAI for model training or
human review. All interactions with proprietary closed-source LLMs were

fully compliant with HIPAA regulations, maintaining the confidentiality of
patient data. The smaller, open-source LLMs were downloaded from
HuggingFace29 to HIPAA-compliant, on-premise servers. The on-premise
servers were equipped with two NVIDIA H100 80GB GPUs and were
supported by an NVIDIA AI Enterprise software license. We followed the
transparent reporting of a multi-variable model for individual prognosis or
diagnosis (TRIPOD)-LLM guidelines, and the accompanying checklist is
available in Supplementary Note 2.

Expert human evaluation rubric and scores
Human evaluations using the Provider Documentation Summarization
Quality Instrument (PDSQI-9) were used to benchmark the LLM-as-a-
Judge frameworks. The instrument consists of grading rubrics for nine
attributes: Cited, Accurate, Thorough, Useful, Organized, Comprehensible,
Succinct, Synthesized, and Stigmatizing. These attributes and their associated
Likert or binary scales were developed using a semi-Delphi consensus
methodology and validated across multiple psychometric properties. The
instrument demonstrated strong internal consistency (Cronbach’s α =
0.879, 95% CI: 0.867–0.891), high inter-rater reliability (ICC = 0.867, 95%
CI: 0.867–0.868), and moderate agreement by Krippendorff’s α = 0.575.
Seven physician raters from varied specialties and levels of seniority eval-
uated a total of 779 summaries, scoring over 8000 items, achieving over 80%
power for inter-rater reliability. No significant differences were observed in
scoring between junior and senior raters, supporting reliability across
experience levels23. The dataset spanned the full range of PDSQI-9 scores
across all attributes. Although not every rater evaluated all 200 summaries,
all human evaluations were included for training or validation of the LLM-
as-a-Judge frameworks.

Single LLM design and implementation (LLM-as-a-Judge)
The task prompt used was iteratively designed to replicate the information
provided to human reviewers during their evaluations. For each evaluation,
reviewers received the full set of patient notes, the corresponding summary,
and the specialty of the physician for whom the summary was intended
(https://git.doit.wisc.edu/smph-public/dom/uw-icu-data-science-lab-
public/pdsqi-9). In addition, the human evaluation rubric was reformatted
for compatibility with LLM-as-a-Judge, following industry-standard
prompting conventions. This included clearly marking each attribute with
specific tags, such as < accurate > , and using uppercase text to distinguish
attribute descriptions fromgradedefinitions.Detailed instructionswere also
provided to the LLM-as-a-Judge regarding the task and expected output
format. The LLM-as-a-Judge was instructed to return scores as a JSON-
formatted stringwhere each key corresponded to an attribute of thePDSQI-
9. These instructions were human-drafted and refined through multiple
iterations, informed by rounds of beta testing and output verification. They
were also passed through the CliniPrompt software7 and GPT4o for addi-
tional refinement. Manual prompts are designed using four key compo-
nents: minimizing perplexity, in-context examples, chain-of-thought
reasoning, and self-consistency. Prompts were iteratively refined through
zero-shot (no examples) to few-shot (up to five examples) learning
approaches, with random sampling from the training data. Full examples of
the prompt are available at https://github.com/epic-open-source/
evaluation-instruments/tree/main/src/evaluation_instruments/
instruments/pdsqi_9. The same prompt was used for every model, except
for theDeepSeek-basedmodels,whichhada ”< think> ” token appended to
align with their recommended usage settings37. Additionally, inference
parameters were fine-tuned for optimal performance across models. The
numberof shots for few-shotpromptingwasdeterminedby testingwith 1, 3,
and 5 shots and selecting the configuration that yielded the best perfor-
mance. The final hyperparameter settings for both zero-shot and few-shot
prompting are detailed in Table 4.

For the training phase of the experiments, both SFT and DPO were
implemented using Hugging Face’s TRL library, with SFTTrainer for SFT
and DPOTrainer for DPO38. The datasets for each approach were prepared
according to the specifications of their respective trainer implementations.
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Specifically, SFT required a dataset of prompt-completion pairs, while DPO
required a dataset consisting of prompt-response pairs, including both a
”chosen” and a ”rejected” response. The prompt used for SFT was identical
to that used in the zero-shot and few-shot prompting setups. Each com-
pletion for SFT consisted of a single JSON string representing the evaluation
of a summary by one of the expert human reviewers. During training,
evaluation scores from all human reviewers were included to fine-tune the
model based on the collective feedback for each summary. Since DPO was
applied to the already fine-tuned SFT version of the LLM, the chosen and
rejected response pairs were constructed using the median response from
the seven human reviewers. The chosen response was represented by a
single JSON string reflecting this median, while the rejected response was a
JSON stringwhere each corresponding attribute gradewas increased by one
point on the Likert scale. The rationale behindmaking the rejected response
have a higher Likert score than the chosen one was to encourage the model
to be more conservative in its evaluations, rather than overly lenient.

To reduce computational costs while maintaining model accuracy, we
employ quantization techniques that lower numerical precision from
floating-point (e.g., float32) to fixed-point (e.g., int8)39. We also utilize
Quantized Low-Rank Adapters (QLoRA), which combine quantization
with low-rank adaptation to optimize efficiency40. QLoRA fine-tunes only
selected layers while keeping the base LLM frozen, significantly reducing
resource demands. QLoRA was employed for both SFT and DPO, with all
training conducted using 4-bit quantization of the respective models
through a BitsAndBytes configuration. The LoRA parameters, including
rank and alpha, were optimized using a quasi-Bayesian approach imple-
mented viaOptuna41. Due tomemory constraints, the LoRAparameters for
Mixtral 8 × 22B in both SFT and DPO were restricted, and similar limita-
tions were encountered with Llama 3.1 8B for DPO. The final QLoRA
parameters are detailed in Table 5.

Table 6 presents the final settings for the remaining training hyper-
parameters. The batch size for each setup was chosen based on our com-
putational limitations, with the largest feasible batch size being selected. For
SFT, the learning rate was determined through a quasi-Bayesian optimi-
zation approach implemented via Optuna until training and evaluation
losses exhibited convergencewithout overfitting. In contrast, DPO involved
tuning both the learning rate and the beta parameter, the latter being part of
the DPO optimization algorithm. These hyperparameters were optimized
based on the evaluation rewards/margins metric, which was automatically
logged during DPO training.

Multi-agent design and implementation (LLMs-as-Judges)
In addition to the prompt engineering techniques employed for single-agent
implementations of LLM-as-a-Judge, additional refinement was required
for themulti-agent approach used in theMagenticOne orchestrator, as well
as for crafting the personas of each agent. Initially, a human-drafted prompt
was created for the orchestrator, designed for basic debugging and initial
testing. This promptwas then fed tomultiple LLMs, includingGemini Flash
2.0, GPT4o, Grok3, and DeepSeek R1, with the instruction: “Please write a
prompt forMagenticOne that takes as input extractive summarization from
LLM agents, analyzes the inputs, and determines which summarization is
the most accurate.” These four LLM-generated prompts were manually
combined into one,whichwas then further refined based on testing. During
this process, it became evident that the orchestrator struggled with varia-
tions in wording related to the concept of extraction, as well as with
determining the correct number of discussion rounds. The final prompt to
the MagenticOne orchestrator was ”You are a clinical documentation
evaluation expert that specializes in text analysis and reasoning. Your task is
to analyze and reasonovermultiple evaluations generated by different Large
Language Model (LLM) agents that you will create for the same text input
and follow the provided rubric and instructions to determine the final score
for each attribute in the rubric. Indicate the start and end of each round of
discussion with the LLM agents. Please enforce the LLM agents are fol-
lowing the rubric grades as outlined. After hearing input from the other
agents, you will make the final decisions. Provide your reasoning when
generating thefinal output, and ensure that youhave assessed the arguments
from the agents into your own reasoning. Do not take an average of the
scores, but instead critically analyze each input before determining a final
score. Always include a JSON-formatted string that represents your final
grading results. Here is the rubric and the note text: {rubric and note text}”.

Table 4 | Single LLM-as-a-Judge Inference Settings

Model Quantization Few-Shots Temperature Top P Max New Tokens

GPT-4o (2024-08-06) – 5 0.01 0.95 400

GPT-o3-mini (2025-01-31) – 5 0.01 0.95 400

DeepSeek-R1 761B – – 0.01 0.95 400

DeepSeek Distilled Qwen 2.5 32B 8-bit – 0.7 1.0 1000

DeepSeek Distilled Llama 8B 8-bit – 0.7 1.0 1000

Mixtral 8 × 22B 4-bit 1 1.0 1.0 512

Llama 3.1 8B 4-bit 1 1.0 1.0 512

Phi 3.5 MoE 4-bit – 1.0 1.0 1000

Table 5 | QLoRA settings for training

Model Strategy Quantization LoRA Rank LoRA Alpha LoRA Drop-Out

Mixtral 8 × 22B SFT 4-bit 8 8 0.1

Mixtral 8 × 22B DPO 4-bit 8 8 0.1

Llama 3.1 8B SFT 4-bit 64 256 0.0

Llama 3.1 8B DPO 4-bit 8 8 0.1

Table 6 | Final training parameter settings

Model Strategy Batch Size Learning Rate Beta

Mixtral 8 × 22B SFT 16 1e-7 –

Mixtral 8 × 22B DPO 1 1e-7 0.7

Llama 3.1 8B SFT 32 1e-4 –

Llama 3.1 8B DPO 1 1e-7 0.5
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We experimented with two schema designs for establishing personas
among the three agents in the discussion. The first schema aimed to
represent distinct personas that a primary care physicianmight embody: the
Analytical Perfectionist, the Efficient Multitasker, and the Collaborative
Team Player. Each agent was tasked with prioritizing a specific aspect of
high-quality summarization in alignment with its assigned persona. The
second schema framed the agents as representing different perspectives
along an ordinal scale—high, low, andmiddle scoring—to simulate a range
of reviewer stances. In both cases, we manually drafted an initial system
message for each agent and refined it iteratively based on a beta set of
reviews. The final descriptions and system messages for each agent are
presented in Table 7.

All the multi-agent frameworks were built using Microsoft’s AutoGen
implementationwith theMagenticOneGroupChat setup27. The participants
in the group chat were assigned as one of the two groups of agentic personas
outlined previously. Additionally, exploratory analysis was conducted on
tunable parameters—max_turns and max_stalls—to optimize the balance
between inference time, cost, and overall human alignment. The selection of
LLMs for the orchestrator and the three agents was also varied to achieve
similar trade-offs. Initial testing used GPT-4o for all agents in the multi-
agent framework. Further experimentation was conducted using a more
expensive reasoning model, GPT-o3-mini, for the orchestrator and for all
agents. Building on insights from single-agent experiments, additional trials

incorporated a mix of closed- and open-source models, leveraging the top-
performing LLM-as-a-Judge models from the single LLM framework.
Mixtral 8 × 22B was deployed as the high-scoring agent due to its con-
sistently lenient evaluation scores. Meanwhile, the low and middle-scoring
agents remained GPT-4o, with GPT-o3-mini serving as the orchestrator.
Complete results for each approach are available in Supplementary Table 2.
However, only the top-performing method was reported in the results
section of this study.

Statistical analysis
Baseline characteristics of the corpus notes and evaluators were analyzed.
Token counts were derived using the Mixtral 8 × 22B tokenizer. P-values
were generated using a chi-square test for categorical variables and a t-test
for continuous numerical variables.

The LLM-as-a-Judge was evaluated using multiple metrics to validate
its ability to produce scores aligned with human judgments and serve as a
substitute for time-intensive human reviews. The primary outcome was
inter-rater reliability, assessed using the Intraclass Correlation Coefficient
(ICC) to ensure that the LLM-as-a-Judge generated results consistent with
expert human reviewers. ICC, derived from analysis of variance (ANOVA),
has different forms tailored to specific contexts42. For this study, a two-way
mixed-effects model was used, specifically ICC(3,k), which accounts for
consistency among multiple raters43. A 95% confidence interval was

Table 7 | System Messages for LLM agents in Multi-Agent Workflows

Name Description System Message

perfectionist An agent that prioritizes details in a patient’s notes to ensure
that summaries don’t miss anything.

You are The Analytical Perfectionist. You are a Primary Care Doctor. You
meticulously go through every detail in the patient’s visit notes. You cross-reference
data andmakesdetailed annotations to ensure nothing is overlooked. Youare always
anxious that something important might be missed. This means that you are often
inefficient. ALWAYS include a JSON-formatted string that is the results of your
grading in your output.

multitasker An agent that prioritizes efficiency when evaluating summaries
and prefers a high-level overview relating only to day-to-
day tasks.

You are The Efficient Multitasker. You are a Primary Care Doctor. You prefer a quick,
high-level overview of the patient’s chart, focusing on key points such as recent lab
results, current medications, and major health concerns. You value speed in quickly
identifying critical information. You often think that other doctors are too in-the-
weeds, and aren’t focusing on the most important priorities. As such, you will
challenge other doctors to be more efficient. You focus on the scope of your day-to-
day tasks, and don’t want to see information you don’t need in the
CLINICAL_SUMMARY. ALWAYS include a JSON-formatted string that is the results
of your grading in your output.

collaborative An agent that prioritizes collaboration with other specialists and
prefers a wholistic view of the patient in a summary.

You are The Collaborative Team Player. You are a Primary Care Doctor. You review
the patient’s chart with an emphasis on notes from other healthcare providers and
specialists. You value collaborative insights and like to discuss complexities with
other doctors. You often think beyond the scope of your day-to-day tasks, for amore
wholistic view of the patient. ALWAYS include a JSON-formatted string that is the
results of your grading in your output.

high-scoring An agent that prioritizes optimistic evaluations always in favor of
being lenient when it comes to scoring.

You are a Primary Care Doctor with expertise in evaluating text quality, and your
evaluations typically suggest that scores are set too high. You must use the same
rubric during each round of discussion where 5 is the best score and 1 is the worst
score, except for abstraction. Your role is to present a clear, evidence-based
argument to the orchestrator regarding your scoring. In your discussion with the
orchestrator, outline why you believe the scores should be higher. Your response
should include a detailed, professional analysis of the note text, clearly presenting
your arguments as a case to the orchestrator. Always include a JSON-formatted
string that represents your final grading results.

low-scoring An agent that prioritizes pessimistic evaluations always in favor
of being harsher when it comes to scoring.

You are a Primary Care Doctor with expertise in evaluating text quality, and your
evaluations typically suggest that scores are set too low. Your role is to present a
clear, evidence-based argument to the orchestrator regarding your scoring. In your
discussionwith the orchestrator, outline why you believe the scores should be lower.
Your response should include a detailed, professional analysis of the note text,
clearly presenting your arguments as a case to the orchestrator. Always include a
JSON-formatted string that represents your final grading results. Here is the
note text:

middle-scoring An agent focused on moderating the discussion amongst a
team to reach a consensus, but always lets others have a
chance to contribute.

You are a moderator, helping a team of doctors review a CLINICAL SUMMARY of
someCLINICALNOTES. Your goal is to get all of the doctors to come to a consensus
about their final rating of the CLINICIAL SUMMARY, using the RUBRIC SET. You
must let the doctors talk, have a chance to respond to each other, and reach a
consensus. Once consensus is reached, end the discussion by sayingCONSENSUS
and repeating the final categories.
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calculated using the Shrout & Fleiss procedure44. In addition to ICC, eva-
luation scores were analyzed using the Wilcoxon Signed Rank test, suitable
for non-normal paired data, to assess themedian differences between scores
produced by the LLM-as-a-Judge and human reviewers. For both outcome
metrics, themedian score of seven human reviewers was compared with the
median scoreof seven iterations fromthe sameLLM-as-a-Judge. In addition,
the LLM-as-a-Judge was evaluated both as an 8th evaluator and as a direct
substitute for eachof the sevenhumanevaluators. The change in ICCamong
the group of evaluators, before and after the LLM-as-a-Judge was added as a
substitute, was assessed using bootstrappingwith 1000 iterations, and a two-
tailed p-value was calculated to determine statistical significance. Secondary
metrics included Gwet’s AC2 and Krippendorf’s α. Gwet’s AC2 and Krip-
pendorf’s α assess the agreement between raters while taking chance
agreement into account. 95% Confidence Intervals (CI) were provided for
both coefficients and calculated using Gwet’s associated procedure45 and the
bootstrap procedure respectively. In additional error analyses, a linear
mixed-effects model was used to assess the influence of provider specialty,
model type, note length, and summary length on the difference between
LLM and human scores, with random intercepts accounting for variability
across physicians and evaluation components. Analyses were performed
using Python (version 3.10) and R Studio (version 4.3).

Data Availability
Three exemplar encounters with the EHR notes used, the LLM summary,
and the human evaluation score are available at https://git.doit.wisc.edu/
smph-public/dom/uw-icu-data-science-lab-public/pdsqi-9/. The com-
plete train/dev/test datasets and trained models are available upon
request due to ethical and legal restrictions imposed by the University of
Wisconsin-Madison Institutional Review Board. The data are derived
from the institution's EHR and contain patients' protected health
information on patients, so the data are not publicly available. Data are
available from the University of Wisconsin-Madison for researchers who
meet the criteria for access to confidential data and have a data usage
agreement with the health system. Please contact M.A. for access
requests. With a data use agreement, a limited dataset can be made
available in response to an inquiry. Please note that the time frame for
responding to requests is approximately 2 weeks. The cross-task vali-
dation data from MIMIC-III along with annotations for the train/dev/
test datasets are available at https://physionet.org/content/bionlp-
workshop-2023-task-1a/2.0.0/.

Code availability
The repository at https://git.doit.wisc.edu/smph-public/dom/uw-icu-data-
science-lab-public/pdsqi-9/ includes notebooks, prompt templates, and
scripts for implementing automated evaluations using the PDSQI-9
instrument with an LLM-as-a-Judge. These resources support workflows
for local and cloud-based models, multi-model evaluations, and training
customized judges, following the evaluationmethods described in this article.
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