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contexts

Check for updates

Hossein Azadmaleki1, Yasaman Haghbin1, Sina Rashidi1, Mohammad Javad Momeni Nezhad1,
Ali Zolnour1 & Maryam Zolnoori1,2

SpeechCARE is amultimodal transformer pipeline designed to detect cognitive impairment from brief
speech recordings through multiclass classification of Alzheimer’s Disease and Related Dementias
(ADRD), Mild Cognitive Impairment (MCI), and healthy controls. It integrates an advanced
preprocessing pipeline that includes LLM-based audio anomaly detection, speech-task identification,
noise reduction, and transcription. Its core architecture fuses mHuBERT (acoustic) and mGTE
(linguistic) embeddings with demographic information using a novel Adaptive Gating Fusion
mechanism. Additionally, a specialized encoding component further processesmHuBERT outputs to
capture global temporal patterns across segmented audio, addressing key limitations of speech
transformers in modeling long-range dependencies in extended recordings. Trained on the National
Institute on Aging’s PREPARE challenge dataset (1655 participants in English, Spanish, and
Mandarin), SpeechCARE achieved an average F1-score of 72.11% on the held-out test set (n = 412),
earning a special recognition award from NIA. Threshold optimization improved MCI recall. While
fairness analysis showed moderate disparities (particularly for Spanish speakers), the model
demonstrated strong multilingual generalizability. SpeechCARE complements blood-based
biomarkers by capturing functional speech deficits, supporting early, scalable detection.

Alzheimer’s disease and related dementias (ADRD) affect one in five adults
over 60, severely impactingquality of life, healthcare use, and costs1–3.Despite
nationwide efforts, over half of individuals with cognitive decline, including
mild cognitive impairment (MCI) and ADRD, remain undiagnosed due to
symptoms being unrecognized by patients, limited biomarker availability
(e.g.,MRI), andclinicians’ timeconstraints4–6.With11 to16millioncognitive
impairment cases projected by 2050, developing a robust screening tool that
can expand to diverse populations for early identification has been recog-
nized as a research priority by the National Institute on Aging (NIA)7.

Acoustic and linguistic cues in speech can indicate cognitive decline,
reflecting deficits in phonetic motor planning, linguistic organization,
executive functioning, and semantic memory. For example, compromised
vocal control may lead to difficulties with prosody, articulation, and speech
rhythm, while memory lapses can disrupt syntax, semantics, and con-
versational fluency8,9.

Existing speech-processing pipelines for detecting cognitive impair-
ment primarily rely on hand-crafted acoustic features (e.g., eGeMAPS10)
and general-purpose deep learning models (e.g., YAMNet11, VGGish12).
These approaches often yield suboptimal performance and limited gen-
eralizability, missing subtle nuances in patient speech or requiring extensive
labeled datasets to achieve reliable performance. Particularly, in cognitive
impairment research, assembling large training datasets is hindered by
privacy concerns, logistical barriers, and high associated costs. Speech and
linguistic transformer13 models have revolutionized speech processing by
leveraging attention mechanisms to capture long-range dependencies. Pre-
trained on large corpora, these models can be fine-tuned on relatively small
datasets (sometimeswithonly severalhundred samples) and learn to encode
acoustic subtleties (e.g., prosody, rhythm, verbal fluency) and linguistic
nuances (e.g., lexical richness, syntactic errors) to produce context-aware
representations14,15. Despite their potential, transformer models have not
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been fully explored in cognitive impairment-related studies, mainly due to
thedifficulty of collecting even small datasets in this domainand the absence
of fine-tuning pipelines capable of handling data scarcity.

One strategy to address data scarcity is consolidating small datasets
from studies where participants have consented to future use. These typi-
cally include speech from standard neurological tasks (e.g., picture
description, story recall, verbal fluency) across various languages. This
aggregation approach underlies theNIAPREPARE challenge16, launched in
2023 to create the PREPARE dataset, followed in 2024 by a challenge to
develop multilingual screening tools for early detection. Developing such
tools requires a pipeline capable of efficiently learning patterns and trans-
ferring knowledge across varied (neurological) speech tasks and languages.

In response, we developed SpeechCARE, a multimodal, multilingual
speech-processing pipeline for cognitive impairment detection, which
received NIA’s special recognition and explainability prizes. Inspired by the
Mixture of Experts paradigm17, SpeechCARE uses a novel fusion archi-
tecture that dynamically weights transformer-derived acoustic and lin-
guistic features, along with demographic features, to enhance detection
performance and generalizability across speech tasks and languages. This
study aims to (1) provide an overview of the NIA challenge dataset; (2)
outline the preprocessing pipeline for integrating speech data fromdifferent
sources, particularly in the absence of standardized collection guidelines; (3)
describe the SpeechCARE architecture for integrating linguistic, acoustic,
and demographic features; and (4) evaluate the model’s performance and
bias across languages and demographic subgroups.

Results
Performance analysis
Incorporating age solely as a demographic modality with the acoustic and
linguistic transformers resulted in the highest predictive accuracy, achieving
a micro Area Under the Curve (AUC) of 86.83 ± 0.46% and an F1-score of
72.11 ± 0.44%,with 95%confidence intervals across 10 runs. This highlights
age as a particularly relevant demographic factor in cognitive impairment
detection. We used this best-performing combination of modalities as the
final SpeechCARE setting, and all remaining analyses are based on this
setting.

Figure 1 illustrates the robust discriminative performance of Speech-
CARE, showing a micro AUC of 86.83 ± 0.46% and a weighted AUC of
80.67 ± 0.65% on the test set. Precision-recall analysis further validated
model performance, achievingmicro andweighted precision (AP) scores of

74.73 ± 1.21% and 73.50 ± 0.66%, respectively. These findings confirm the
model’s balanced effectiveness in accurately distinguishing cognitive
impairment, demonstrating its potential utility in clinical settings.

In comparison with the PREPARE Challenge Phase 2 results, the
PREPARE Phase 2 leaderboard was dominated by solutions that leveraged
large, pre‑trained speech transformer encoders (e.g., Wav2Vec 2.0,
HuBERT) to generate embeddings, followed by different classification
layers18. Some teams also combined these embeddings with traditional
acoustic features or machine learning algorithms like support vector
machine (SVM). Multi-class log-loss (cross-entropy) across 67 teams ran-
ged from 1.5151 (lowest) to 0.6299 (best), with the top three scores being
0.6299, 0.6343, and 0.6523. SpeechCARE achieved a log-loss of 0.6553,
ranking fourth on the challenge leaderboard19. However, for the finalModel
Report submission, SpeechCARE improved to 0.6460 after further hyper-
parameter tuning, earning special recognition formultiple contributions: (i)
a robust audio preprocessing pipeline with Large Language Model (LLM)-
based noise filtering and task-type identification; (ii) the SpeechCARE
architecture for adaptive multimodal fusion; and (iii) model outcome
highlighting modality importance across tasks.

Threshold optimization
Given the inherent difficulty in identifying MCI cases due to their subtle
clinical presentation compared to Alzheimer’s disease, we conducted
threshold optimization for themodel output probabilities to achieve a better
precision–recall balance across diagnostic classes (Control, MCI, AD). We
report threshold optimization results from the model checkpoint that
showed performance close to the average obtained from the 10 training
runs. As demonstrated in Table 1, this optimizationmodestly improved the
overall F1-score from 72.57% to 73.54% and achieved better alignment
between precision and recall across all diagnostic classes, particularly
strengthening the detection of early-stage cognitive impairment (MCI).

Specifically, the Control class exhibited a slight increase in precision
(from 72.60% to 73.82%), while recall remained consistently high (from
89.08% to 88.65%), reflecting fewer false positives without significant loss of
true positives. In theMCI class, recall substantially improved (from 43.14%
to 54.90%) with a slight increase in precision (from 61.11% to 62.22%),
greatly enhancing themodel’s ability to identifyMCI cases. For theADclass,
precision improved (from 76.84% to 78.26%), thus reducing false positives.
Conversely, recall slightly decreased (from 55.30% to 54.55%); however,
specificity remained strong, ensuring reliable AD identification. The

Fig. 1 | Model performance evaluated using AUC and precision–recall curves.
a AUC-ROC curves (micro vs. weighted averaging). The micro average aggregates
outcomes across all classes, yielding an AUC of 86.83%, while the weighted average,
reflecting class frequency, achieves anAUCof 80.67%. bPrecision–recall curves. The

micro average achieves an average precision of 74.73%, and the weighted average
yields an average precision of 73.50%. Overall, these metrics highlight how
SpeechCARE balances sensitivity and specificity (in AUC) as well as precision and
recall across the three diagnostic categories.
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confusionmatrices of classification outcomes before and after optimization
are illustrated in Fig. 2.

Fairness analysis
We evaluated model fairness across demographic and linguistic sub-
groups—before and after applying bias mitigation strategies—using
Equality of Opportunity (EOO), which measures consistency in true
positive rates (TPRs), and Average Odds (AO), which captures dis-
parities in both true positive and false positive rates (FPRs). All results
were reported as averages with 95% confidence intervals across 10 runs
with different random seeds (see Fig. 3a, b). Prior to mitigation, age-
related disparities were the most pronounced: participants aged 80 and
older had the lowest fairness scores (EOO: 51.33%; AO: 37.13%), while
the 40–65 age group showed the highest (EOO: 80.04%; AO: 45.69%).
Education-based variation was also evident, with AO ranging from
36.65% to 42.51% and EOO from 47.12% to 63.20% across education
levels. Gender-based differences were relatively minor, with females
(EOO: 61.54%; AO: 39.44%) slightly lower than males (EOO: 61.65%;
AO: 40.36%). Linguistic disparities were notable: Spanish speakers
exhibited the lowest fairness scores (EOO: 50.14%; AO: 37.05%), while
Mandarin (EOO: 91.11%; AO: 45.56%) and English speakers (EOO:
62.86%; AO: 40.11%) had higher scores.

Following the application of frequency-based reweighting and
threshold optimization, we observed substantial reductions in subgroup
disparities. Among age groups, fairness improved for the 80+ group (EOO:
60.56%; AO: 41.37%), and the overall EOO range narrowed to
60.56–74.91%, reflecting more balanced TPRs. Education-level disparities
were also mitigated: AO scores increased and became more consistent
across levels (post-mitigation range: 40.59–44.28%), and EOO scores
became more aligned across education subgroups. Gender fairness
improved modestly, with AO rising to 42.78% for females and 41.63% for
males. Language-based improvements were limited; English speakers’ AO
improved to 42.58%, Mandarin speakers’ AO improved to 50.00%, and
Spanish speakers’AO decreased slightly to 34.25%. Overall, bias mitigation
strategiesweremost effective in improving fairness across age andeducation
groups, with moderate gains for gender and minimal impact for language
subgroups.

Modality weights analysis
To assess the relative contribution of each inputmodality, we computed the
average gatingweights assigned to the acoustic, linguistic, and demographic
streams—where demographic here refers specifically to participant age in
categorical form—across all speech tasks in the test set (Fig. 4).

Across the various speech tasks, the model dynamically shifted its
reliance on acoustic, linguistic, and demographic inputs in ways that
reflected the cognitive and structural demands of each task. For more
lexically driven tasks (e.g., semantic verbal fluency), linguistic features
dominated, indicating a strong dependence on vocabulary and semantic
organization. In contrast, tasks involving spontaneous speech and
structured narratives (e.g., picture description) showed a more balanced
contribution from both linguistic and acoustic features, suggesting that
prosodic cues and speech delivery complemented lexical content in these
contexts.

When speech content was relatively brief or highly constrained (e.g.,
voice assistant interactions), acoustic features became the primary driver,
and demographic input (participant age) also played a relatively larger role
—likely capturing speaker-specific vocal characteristics and traits in the
absence of rich lexical cues. Across most tasks, demographic input con-
tributed modestly beyond the combined acoustic and linguistic inputs,
highlighting how themodel weights eachmodality in direct response to the
communicative and cognitive demands of the task.

External generalizability evaluation- ADReSSo challenge 2021
Under the ADReSSo 2021 benchmark, SpeechCARE achieved an AUC of
91.93 ± 0.92%, an F1-score of 85.08 ± 1.24%, and an accuracy of
86.62 ± 0.86%, with 95% confidence intervals calculated across 10 training
runs, indicating stable performance and strong generalization on thiswidely
used English-language benchmark.

According to the ADReSSo-2021 Challenge report20, participants
employed a variety of acoustic, linguistic, and fusion strategies for cognitive
impairment detection. Acoustic features ranged from hand-crafted
descriptors (e.g., Mel-Frequency Cepstral Coeficients21, prosodic features)
to pre-trained transformer embeddings from models like Wav2vec 2.0,
which often outperformed handcrafted features. Linguistic features inclu-
ded both hand-crafted metrics (e.g., Linguistic Inquiry and Word Count22,

Table 1 | Effects of threshold optimization on precision and recall for Control, MCI, and AD classes

Result Precision Recall F1-score

Control MCI AD Control MCI AD

Original result 72.60 61.11 76.84 89.08 43.14 55.30 72.57

After threshold optimization 73.82 62.22 78.26 88.65 54.90 54.55 73.54

Fig. 2 | Confusion matrices before and after
threshold optimization. a Rows represent actual
class labels (Control, MCI, AD) and columns
represent predicted labels. The diagonal cells show
correct classifications for each diagnostic category,
with off-diagonal cells indicating misclassifications.
b Comparing panel a and panel b highlights how
adjusting classification thresholds improves MCI
detection rates while minimally affecting Control
and AD predictions.
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Part of Speech tags) and contextual embeddings from BERT-based models.
Fusion strategies included early fusion (feature concatenation), late fusion
(decision-level aggregation), and ensemble fusion (e.g.,majority orweighted
voting). Reported F1-scores ranged from 70.89% to 84.93%, and accuracies
from 67.61% to 84.93%20. However, as F1-score computations varied across
submissions, accuracy was viewed as a more consistent basis for
comparison.

Top-performing pipelines in the challenge employed various fusion
strategies and pre-trained transformers. Notable examples include: Pan
et al.23 achieved an F1-score of 84.93% and an accuracy of 84.51% by fine-
tuning a BERT-Large and employing automatic speech recognition (ASR)
confidence scores for final classification. Syed et al.24 extracted embeddings
(without fine-tuning) from five different BERT-derivative transformers
(e.g., RoBERTa25, DistilBERT) and used an SVM classifier. They combined
labels (using majority voting) derived from each transformer’s embeddings
and achieved an F1-score of 84.45% and an accuracy of 84.51%. Qiao et al.26

separately trained two logistic regression models on hand-crafted linguistic
features and fine-tuned BERT and ERNIE27 transformers. They then

ensembled all models using Stacked Generalization28 and achieved an
F1-score of 82% and an accuracy of 83%.

Additionally, several recent works have validated models on this
dataset. Examples of top-performing studies include: (1) Ilias and
Askounis29 proposed a multimodal approach by fine-tuning BERT and
DeiT30 (operating on audio spectrograms) transformer models. By incor-
porating context-based self-attention31, optimal transport domain
adaptation32, and label smoothing33, and integrating modalities using Co-
attention fusion34, they achieved an F1-score of 85.27% and an accuracy of
85.35%. (2) Bang et al. 35 extracted acoustic embeddings fromWav2Vec 2.0,
transcription-based embeddings from BERT, and used another BERT to
extract embeddings from opinions generated by ChatGPT as a third
modality. They used transformer blocks to enrich modality-specific
embeddings, fused the resulting embeddings by intermediate fusion, and
classified them using a single linear layer, achieving an F1-score of 87.25%
and an accuracy of 87.32%. (3) Shao et al. 36 (2025) achieved an F1-score of
84.27% and an accuracy of 84.30% using cross-modal attentions on
Wav2vec 2.0 and BERT transformers.

Fig. 3 | Fairness metrics by subgroup before and after bias mitigation. a Average
Odds (AO). Horizontal bars show average ± 95% CI (across 10 random seeds) for
each age, gender, education, and language subgroup before (left panel) and after
(right panel) frequency-based reweighting plus threshold optimization. Mitigation
narrows AO gaps—most noticeably across age (e.g., AO drops from 45.69% to
44.39% in the 40–65 age group and rises from 37.13% to 41.37% in the 80+ group)

and education levels—while language disparities persist, with Spanish remaining the
lowest. b Equality of Opportunity (EOO). The same subgroup layout is shown for
EOO. Post-mitigation, true-positive-rate differences shrink: the+80-age group rises
from 51.33% to 60.56%, and EOO values for all age brackets converge to the
61.56–75.91% range. Education and gender subgroups exhibit smaller—but still
positive—gains, whereas language subgroups show limited improvement.
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Compared to these studies, our results show that SpeechCARE offers
strong adaptability to small monolingual speech datasets, achieving per-
formance that matches or exceeds existing pipelines on the ADReSSo
benchmark.

External generalizability evaluation- DementiaBank Chou Cor-
pus (Mandarin)
Using the transfer learning approach, fine-tuning SpeechCARE on the
Mandarin-speaking Chou dataset resulted in an AUC of 92.67 ± 4.54% and
an F1-score of 85.47 ± 3.65%, with 95% confidence intervals calculated
across 10 runs. These results demonstrate that SpeechCARE is capable of
generalizing to multilingual contexts when exposed to representative
training data. Thisfinding highlights the critical role of linguistic diversity in
model development to ensure robust and equitable performance across
languages in cross-lingual cognitive impairment screening applications.

Comparative and ablation analysis of SpeechCAREcomponents
Table 2 summarizes the results of all comparative and ablation studies
performed on SpeechCARE, evaluated on both the validation and test sets.

We began by examining acoustic-only refinements. According to
Table 2, adding a learnable [CLS] embedding to the mHuBERT baseline
increased the test F1-score from 66.80% to 67.77%. Introducing 5-s seg-
ments with 20% overlapping segmentation recovered the slight AUC loss
and yielded an additional ≈0.5-point F1-score increase (68.23%). Together,
these modifications confirm that global contextualization and audio seg-
mentation are both able to improve the performance of speech transformer
models.

We next evaluated single-modality baselines. On the official Test set,
the speech-only model achieved an F1-score of 68.23%, and an AUC of
84.85%, and the transcription-only model reached an F1-score of 68.88%
with an AUC of 85.00%. In contrast, the demographics-only model per-
formed substantially worse, with a reduction of about 13 points in F1-score
and AUC. These results indicate that while both speech and transcription
modalities independently capture meaningful information, demographic
features alone offer limited predictive utility (Table 2).

We then explored modalities integration. Fusing speech and tran-
scription using Adaptive Gating Fusion (AGF) improved the test F1-score
by ≈3 points over the best unimodal model, reaching 70.51%. Adding all
demographic variables diluted this benefit, but including age alone pro-
duced the highest overall performance: F1-score of 72.11% and AUC of
86.83%, indicating that age provides a complementary signal when dyna-
mically weighted by AGF (Table 2).

We further compared fusion strategies. AGF outperformed Inter-
mediate Fusion, Scaled Late Fusion, and Cross-Modal Attention by 1–2
points in F1-score, while maintaining comparable AUC, demonstrating

superior precision–recall trade-offs through adaptive modality weighting
(Table 2).

Finally, we assessed the impact of audio noise reduction. Relative to the
low-pass–filtered baseline (AUC = 86.83%a; F1-score =72.11%),
SpeechCARE-AGF trained on raw audio reduced AUC by ≈1.1 points and
F1-score by ≈3 points. Applying the CMGAN neural denoiser resulted in
comparable AUCbut the largest decline in F1-score (−3.1 points to 69.0%),
suggesting that aggressive enhancement can distort cognitively relevant
cues. In contrast, a simple 8 kHz low-pass filter—which attenuates only
high-frequency noise while preserving the human voice frequency com-
ponents—achieved the highest performance, underscoring that targeted
spectral trimming is more effective and less risky than either no filtering or
complex denoising in cognitive impairment studies (Table 2).

As shown in Table 3, paired t-tests across all ablation analyses confirm
that the performance gains (measured by F1-score) reported in Table 2 for
SpeechCARE components are statistically significant. The effect sizes
(Cohen’s d) further indicate that most differences across these comparisons
are of medium to large magnitude.

Discussion
In this study, we introduce SpeechCARE, a multimodal, multilingual
pipeline developed to detect cognitive impairment using brief speech
recordings. The system begins with an advanced preprocessing stage that
integrates demographic data preparation and imputation, noise reduction,
transcription, and LLM-based data anomaly detection and speech-task
identification (e.g., semantic fluency, sentence reading). The core archi-
tecture combines linguistic (mGTE) and acoustic (mHuBERT) transformer
models, enhancedby a specialized encoding component that captures global
temporal patterns across the input audio. A novel Adaptive Gating Fusion
(AGF) mechanism dynamically weights acoustic, linguistic, and demo-
graphic modalities, optimizing classification performance. When evaluated
on the NIA PREPARE challenge dataset—comprising multilingual speech
samples (English, Spanish, Mandarin) across diverse speech tasks—
SpeechCARE achieved an average F1-score of 72.11%, receiving a special
recognition prize from the NIA.

External validation demonstrated the generalizability of SpeechCARE
across datasets and languages.Without any architectural modifications, the
model achieved strong performance on the English‑only ADReSSo 2021
dataset (AUC= 91.93%; F1-score = 85.08%), performing comparably to or
better than previously published systems. On the Mandarin Chou Corpus,
where all Mandarin speech in the PREPARE dataset was labeled as MCI,
zero-shot inference initially failed due to a language–label confound.
However, after fine-tuning on the small Chou training set (n = 51), per-
formance was substantially recovered (AUC= 92.67%; F1-score = 85.47%).
These results indicate that SpeechCARE captures language-agnostic

Fig. 4 | Modality weights (acoustic, linguistic, demographic) assigned by the
SpeechCAREAdaptiveGating Fusion (AGF) network across various speech tasks
in the test set. Each cluster of bars represents one task, showing how the model

differentially weights acoustic (light blue), linguistic (dark blue), and demographic
(purple) features depending on the cognitive demands of the task.
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markers of cognitive impairment while maintaining the flexibility to adapt
to language-specific characteristics, supporting its applicability across
diverse clinical and linguistic settings.

Growing evidence indicates that subtle speech alterations are early
indicators of cognitive decline. However, assembling sufficient and
diverse speech data poses significant hurdles due to privacy constraints,
high costs, and logistical issues. Earlier competitions, such as the 2021
ADReSSo challenge, relied on just 237 English-only samples—limiting
wider applicability. In 2023, the NIA addressed these shortcomings by
curating a multilingual dataset of 2058 participants for the 2024 NIA
challenge, encouraging the development of generalizable algorithms.
Among the top ten submissions, classification losses ranged from 0.629
to 0.688, with our approach achieving a loss of 0.642. Teams employed
diverse methods, including LLM-based feature extraction, transformer-
based models, and hand-crafted acoustic features. Our analysis revealed
that purely LLM-based and hand-crafted approaches struggled with
limited datasets. Conversely, multilingual transformer models exhibited
greater robustness, superior generalization across languages, and sen-
sitivity to nuanced speech patterns.

Fairness in speech processing algorithms, especially for cognitive
impairment detection, is an essential consideration in healthcare applica-
tions. In our study, we explicitly measured potential biases using metrics
such as EOOandAverageOdds, revealingmodest but notable performance
disparities across language and demographic groups—particularly for
Spanish speakers, likely due to smaller sample sizes andhigher transcription
error rates. We also observed mild differences across gender subgroups,
which may reflect acoustic profile variations (e.g., pitch, phonation) or
disparities in sample sizes. Although bias measurement has been discussed
in prior machine learning work, standardized reporting remains uncom-
mon for healthcare-oriented speech processing systems, making our efforts
an important step toward transparency in such applications. Previous

studies have rarely reported these approaches in speech-based algorithms
for cognitive impairment detection, underscoring the novelty and clinical
relevance of our work. In ongoing work, we are incorporating clinically
accepted bias-mitigation strategies—such as oversampling, adversarial
learning, and post-hoc calibration—to further reduce demographic
disparities.

Recent regulatory advancements also highlight the growing impor-
tance of multi-modal approaches. In May 2025, the FDA approved Fujir-
ebio’s Lumipulse G pTau217/β-amyloid 1-42 blood test for Alzheimer’s
disease, offering a minimally invasive way to detect biological changes
associated with the condition.While this represents a significant advance, it
does not provide information about how cognitive decline affects a person’s
ability to communicate in daily life. Language and speech changes—such as
reduced fluency, disorganized sentences, or altered vocal patterns—often
emerge early and can reflect real-world functional decline that biological
tests alone cannot capture. SpeechCARE fills this critical gap by analyzing
short voice recordings to identify subtle communication changes in real
time. Its Mixture-of-Experts–inspired gating fusion is designed to incor-
porate additional inputs (e.g., age, brain imaging) to generate a more
complete clinical picture. By combining biological confirmation through
blood-based testing with speech-based insights, clinicians may gain a fuller
understanding of both the underlying disease and its impact on everyday
functioning—supportingmore informeddecisions about imaging, referrals,
and early intervention.

High-quality speech data are essential to detect subtle acoustic and
linguistic cues of early cognitive decline, particularly for MCI detection.
However, non-stationary background noise—such as overlapping con-
versations—complicatedmodel training in theNIAPREPARE challenge, as
most recordings were collected in uncontrolled clinical settings. Although
sophisticated noise reduction systems exist, removing overlapping speech
without affecting nuanced participant cues remains challenging and can

Table 2 | Results of comparative and ablation analysis of SpeechCARE components

Model Validation Test

AUC F1-score AUC F1-score

Acoustic-only refinements

mHuBERT (Base Model) 84.03 ± 1.09 66.78 ± 2.27 84.07 ± 0.60 66.80 ± 1.25

mHuBERT + CLS Embedding 84.92 ± 1.23 68.06 ± 1.83 84.99 ± 0.60 67.77 ± 1.06

mHuBERT + CLS Embedding + Segmentation 84.55 ± 1.14 67.60 ± 1.56 84.85 ± 0.70 68.23 ± 1.11

Single-modality baselines and modalities integration

All Demographics (Age, Gender, Education) 72.78 ± 0.79 55.82 ± 0.80 72.31 ± 0.71 55.70 ± 0.43

Voice (mHuBERT + CLS Embedding + Segmentation) 84.55 ± 1.14 67.60 ± 1.56 84.85 ± 0.70 68.23 ± 1.11

Transcription (mGTE) 81.26 ± 1.17 63.70 ± 1.26 85.00 ± 0.40 68.88 ± 0.78

Fusion-AGF: Voice + Transcription 84.42 ± 1.95 67.57 ± 2.36 86.57 ± 0.45 70.51 ± 0.93

Fusion-AGF: Voice + Transcription + All demographics 83.49 ± 0.96 66.14 ± 1.74 85.49 ± 0.69 68.42 ± 0.78

Fusion-AGF: Voice + Transcription + Education 83.19 ± 2.09 66.02 ± 2.87 85.99 ± 0.68 69.20 ± 1.00

Fusion-AGF: Voice + Transcription + Gender 84.02 ± 1.67 66.78 ± 2.18 86.35 ± 0.45 69.95 ± 0.68

Fusion-AGF: Voice + Transcription + Age 84.97 ± 1.57 68.12 ± 2.69 86.83 ± 0.46 72.11 ± 0.44

Fusion strategies

Intermediate Fusion 85.07 ± 1.35 67.94 ± 2.09 86.28 ± 0.48 70.10 ± 0.78

Scaled Late Fusion 85.19 ± 1.38 68.62 ± 2.77 86.21 ± 0.57 70.29 ± 1.13

Cross-Modal Attention (+Intermediate Fusion) 85.49 ± 1.50 68.58 ± 2.05 86.61 ± 0.56 70.51 ± 0.71

Adaptive Gating Fusion (AGF) 84.97 ± 1.57 68.12 ± 2.69 86.83 ± 0.46 72.11 ± 0.44

Noise reduction (audio preprocessing)

SpeechCARE-AGF: Raw Audio 84.25 ± 1.33 85.76 ± 0.80 85.76 ± 0.80 69.15 ± 1.01

SpeechCARE-AGF: CMGAN-Enhanced Audio 83.22 ± 1.89 65.34 ± 2.26 85.80 ± 1.10 69.00 ± 1.12

SpeechCARE-AGF: Low-Pass Filtered Audio 84.97 ± 1.57 68.12 ± 2.69 86.83 ± 0.46 72.11 ± 0.44

best F1-score of each category is presented in bold.
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impair algorithm performance. Therefore, using overhead microphones
and minimizing background speech are recommended for this task.

Additionally, although tasks like picture description and reading elicited
spontaneous speech, theywereoftenpromptedbyclinicians andmaynot fully
capture cues present in naturalistic communication. Previous research indi-
cates that communication cues such as disrupted turn-taking, delayed
responses, and repair sequences, which are strongly associated with cognitive
impairment. In our ongoing research, we audio-record naturally occurring
patient–nurse interactions in home healthcare settings, enabling the use of
speech-processing algorithms without requiring structured prompts. This
work aims to integrate real-world communication datawith homehealthcare
workflows, clinical records, and social determinants of health to support
automated identification of speech-related impairments and associated clin-
ical and social risk factors. This approachnot only improves early detection of
MCI and early dementia but also enhances clinical documentation and
enables automated notifications to clinicians regarding patients’ potential
cognitive impairment—facilitating timely decision-making and more tar-
geted interventions.Together, these elements support the real-world adoption
of automated speech-based screening tools in home healthcare settings.

Despite these promising findings, several limitations should be
acknowledged. SpeechCARE was developed to distinguish among healthy
controls, individuals withMCI, and those with Alzheimer’s disease, as these
were theonlydiagnostic categories available in theNIAPREPAREchallenge
dataset. Other neurological or psychiatric conditions that may exhibit
similar cognitive or speech-related symptoms, such as depression, delirium,
or vascular dementia were not included. This restricted diagnostic scope
limits the generalizability of our findings to real-world clinical populations.
Future work should consider incorporating datasets with a broader range of
diagnostic categories or applyingmulti-task learning approaches to improve
differential diagnosis across overlapping cognitive conditions.

While the PREPARE challenge dataset included English, Spanish, and
Mandarin speech samples, it lacked systematic representation of dialectal

variation within each language, such as regional accents or race-associated
vernaculars for the English language. Thesewithin-language differences can
influence both transcription accuracy and model performance, potentially
introducing bias, particularly for underrepresented dialects. Addressing this
limitationwill requiremore granular subgroup analyses and the inclusion of
additional speech data reflecting diverse dialects to ensure equitable per-
formance across sociolinguistic subgroups.

Speech samples in this study were collected through structured tasks
(e.g., picture description, sentence reading), which may not fully reflect the
dynamics of naturalistic conversation or capture spontaneous commu-
nication challenges encountered in everyday settings. Additionally, varia-
bility in recording quality—such as backgroundnoise and inconsistencies in
speaker diarization—was observed across speech corpora of the NIA
PREPARE challenge dataset, potentially affecting the reliability of acoustic
and linguistic analyses. Future studies should prioritize collecting speech
data in real-world clinical environments using standardized recording
protocols and task-free interactions to improve ecological validity and
robustness of speech processing algorithms.

Overall, this work demonstrates that SpeechCARE’s multimodal,
multilingual pipeline offers a practical and accurate approach to cognitive
impairment screening. By intelligently fusing acoustic, linguistic, and
demographic features, along with adopting robust data preprocessing and
threshold calibrationmethods, our system achieved high performance even
with limited training samples. These findings pave the way for broader
clinical applications, including remote screening and telemedicine plat-
forms, which may facilitate earlier detection and intervention for MCI and
dementia in diverse populations.

Methods
Figure 5 presents an overview of the study’s methodology.

Data: PREPARE challenge dataset
The PREPARE challenge dataset includes 2058 participants, of whom 1646
were assigned to training and 412 to testing, drawn from 10 speech corpora
featuring various tasks across three languages. English accounted for 80.42%
(n = 1655) of the recordings, Spanish for 17.49% (n = 360), and Mandarin
for 2.09% (n = 43). Clinically, 1140 participants were cognitively healthy,
268 had MCI, and 650 had Alzheimer’s disease. Female participants com-
prised 58.2%, and ages ranged from 46 to 99 years (mean = 75.13, SD =
8.65). Education was recorded either numerically (1–20 years) or cate-
gorically (e.g., elementary school, associate degree), with 35.2%missing (see
section “Demographic information preparation”). Race was reported for
fewer than 8% of participants, resulting in 92.61% of entries missing (see
Table 4 for further details).

Audio recordings averaged 27 s in length. Most recordings (66.5%)
were exactly 30 s, followed by 20.7% between 20 and 30 s, 11.9% between 10
and20 s, and0.9%under 10 s. Thedistributionwas similar across diagnostic
classes. According to the challenge guidelines, all recordings were truncated
to a maximum of 30 s, but the specific truncation procedure was not
described. Very short recordings were mostly due to issues such as missing
audio or technical failures.

We created a validation set by randomly selecting 20% of the training
data (329 participants), whilemaintaining a stratified split across diagnostic
classes (Control, MCI, AD) and demographic variables (age, gender, edu-
cation). This ensures fair performance evaluation and prevent overfitting.
This approach preserved the overall distribution of key characteristics
present in the original training set. Throughout the training process for all
experiments, we used this validation set for early stopping and hyperpara-
meter tuning to avoid data leakage from thefinal test set (see section “Model
training and hyperparameter tuning” for details).

Preprocessing components
To incorporate demographic variables into our model and enable bias
analysis across demographic groups, we applied the following procedures.
Age was grouped into mid-life adults (46–65 years, 12%), older adults

Table 3 | Statistical comparisons of SpeechCARE model
variants using paired t-tests on F1-scores

Comparison Mean SD P-value Effect sizeb

Acoustic-only refinements

mHuBERT (Base Model) vs.
mHuBERT + CLS
Embedding +
Segmentation

68.23
vs. 66.80

1.55
vs. 1.74

0.0358a 0.78
(medium)

Single-modality baselines and modalities integration

Fusion-AGF: Voice +
Transcription + Age vs.
Transcription-mGTE (best
unimodal model)

72.11
vs. 68.88

0.62
vs. 1.10

0.0000a 2.619 (large)

Fusion strategies

Adaptive Gating Fusion vs.
Intermediate Fusion

72.11
vs. 70.10

0.62
vs. 1.10

0.0006a 1.627 (large)

Adaptive Gating Fusion vs.
Scaled Late Fusion

72.11
vs. 70.29

0.62
vs. 1.59

0.0068a 1.105 (large)

Adaptive Gating Fusion vs.
Cross-Modal Attention

72.11
vs. 70.51

0.62
vs. 0.99

0.0003a 1.79 (large)

Noise reduction (audio preprocessing)

SpeechCARE-AGF: Low-
Pass Filtered Audio vs.
SpeechCARE-AGF:
Raw Audio

72.11
vs. 69.15

0.62
vs. 1.42

0.0003a 1.77 (large)

SpeechCARE-AGF: Low-
Pass Filtered Audio vs.
SpeechCARE-AGF:
CMGAN-Enhanced Audio

72.11
vs. 69.00

0.62
vs. 1.56

0.0004a 1.721 (large)

aStatistically significant difference at p < 0.05.
bEffect sizes are reported as Cohen’s d, calculated as the mean of the paired differences relative to
their standard deviation.
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(66–80 years, 52.7%), and elderly individuals (80+ years, 35.3%) to reflect
key stages of cognitive aging37,38.

Education was categorized into four levels: elementary, high school,
technical/undergraduate, and advanced/graduate, approximately corre-
sponding to the International Standard Classification of Education
ISCED–11 levels 0–1, 2–3, 4–6, and 7–839. These categorieswere designed to
capture differences in cognitive reserve, a known modifier of dementia
risk40. Because 35.23% of the education data was missing, we used the
Iterative Imputer method41 (available in the Scikit-learn package), which
models each incomplete variable as a function of other features and itera-
tively estimates missing values. Using age, gender, and language as pre-
dictors, this approach helped preserve the integrity of the education data by
leveraging relationships among observed variables.

To evaluate and improve data quality, we assessed noise in the PRE-
PAREdataset to guide preprocessing and ensure real-world generalizability.
Recordings contained both stationary (device hum) and dynamic (back-
ground chatter) noise, varying across the 10 corpora. To evaluate perceived
noise severity, we computed metrics like Signal-to-Noise Ratio42 and
Spectral Flatness Measure43. However, inconsistent preprocessing by var-
ious corpus developers led to outcomes not strongly correlated with human
perception of noise. Consequently, we performed a Mean Opinion Score44

assessment on a 5% stratified subset (N = 103), balancing diagnosis, lan-
guage, and corpus. Two expert raters (HA, MZ) independently used a 1–5
Likert scale, finding 62.4% severely noisy recordings (scores 1–2), 14.7%
moderately noisy (score 3), and 22.9% slightly noisy (scores 4–5).

For noise reduction, we applied a uniform low-pass filter at 8 kHz to
eliminate high-frequency noise while preserving speech components45.
Although advanced neural speech enhancement models can handle more
complex noise patterns (e.g., human conversation noises), they may com-
promise critical acoustic cues vital for detecting cognitive impairment by
introducing artifacts or over suppress frequency and spectral features.
Therefore, we chose more reliable techniques. To empirically demonstrate
the limitations of neural enhancement models, we conducted an ablation
study (see Results: Comparative and Ablation Analysis of SpeechCARE
Components) assessing their impact on SpeechCARE’s performance.

We transcribed audio data usingWhisper-Large46, a multilingual ASR
systemwith state-of-the-art performance among open-sourcemodels. This
allows us to integrate linguistic cues into the SpeechCARE pipeline. To
evaluate Whisper’s transcription accuracy, we measured the word error
rate47 (WER) on a stratified random sample (by diagnostic class, corpus,
gender, and age), comprising 5% of English (N = 83), 10% of Spanish
(N = 36), and 15% of Mandarin (N = 9) recordings. Comparing Whisper’s

Table 4 | Summary of participant characteristics of the PREPARE dataset shared by the challenge organizers

Attribute Training set Test set

Control MCI AD Control MCI AD

Cognitive status 911 (55.3%) 217 (13.2%) 518 (31.5%) 229 (55.6%) 51 (12.4%) 132 (32.0%)

Gender-Female 540 (59.3%) 123 (56.7%) 297 (57.3%) 150 (65.5%) 29 (56.9%) 80 (60.6%)

Age category

–65 111 (12.2%) 40 (18.4%) 57 (11.0%) 25 (10.9%) 4 (7.8%) 10 (7.6%)

65–80 362 (39.7%) 121 (55.8%) 214 (41.3%) 93 (40.6%) 26 (51.0%) 65 (49.2%)

+ 80 438 (48.1%) 56 (25.8%) 247 (47.7%) 111 (48.5%) 21 (41.2%) 57 (43.2%)

Language

English 760 (83.4%) 115 (53.0%) 456 (88.0%) 184 (80.3%) 20 (39.2%) 120 (90.9%)

Spanish 151 (16.6%) 68 (31.3%) 62 (12.0%) 45 (19.7%) 22 (43.1%) 12 (9.1%)

Mandarin 0 (0.0%) 34 (15.7%) 0 (0.0%) 0 (0.0%) 9 (17.6%) 0 (0.0%)

Education level

No/Elementary 92 (10.1%) 52 (24.0%) 39 (7.5%) 29 (12.7%) 18 (35.3%) 9 (6.8%)

High school 276 (30.3%) 40 (18.4%) 92 (17.8%) 72 (31.4%) 10 (19.6%) 24 (18.2%)

Technical/ Undergraduate 157 (17.2%) 38 (17.5%) 38 (17.5%) 44 (19.2%) 10 (19.6%) 20 (15.2%)

Advanced/Graduate 132 (14.5%) 21 (9.7%) 49 (9.5%) 22 (9.6%) 2 (3.9%) 10 (7.6%)

Missing 254 (27.9%) 66 (30.4%) 263 (50.8%) 62 (27.1%) 11 (21.6%) 69 (52.3%)

Fig. 5 | Overview of the SpeechCARE Screening Pipeline. a The pipeline begins
with multilingual speech data from the NIH/NIA PREPARE dataset, including
English, Spanish, and Mandarin recordings from various sources; b Preprocessing
involves demographic data extraction, noise reduction, automatic speech recogni-
tion, and LLM-assisted detection of anomalies and task types; c The core model

combines acoustic, linguistic, and demographic features using transformer-based
encoders and an adaptive gating mechanism to classify cognitive status; dModel
decision analysis includes performance evaluation, fairness assessment, and analysis
of modality contributions.
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output with human transcriptions yielded WERs of 0.12 (English), 0.27
(Spanish), and 0.32 (Mandarin), indicating high accuracy for English but
more challenges for Spanish and Mandarin, likely due to phonetic and
grammatical variations and limited training data in those languages.

We employed an open-weight LLM (LLaMA-3.1-70b-instruct48) for
data anomaly detect. While evaluating Whisper transcriptions, we found
some audio files contained only clinician speech, likely due to speaker-
diarization errors by corpus developers. To identify these systematically, we
employedLLaMA-3.1-70b-instruct using prompt engineering and few-shot
learning. We began by selecting and labeling a random sample comprising
100 transcripts from participants and 10 transcripts containing only clin-
ician speech. From these, 50 participant and 5 clinician-only transcripts
were used as candidate examples for few-shot prompt construction, while
the remaining 55 served as a validation set to evaluate prompt performance.
We then iteratively refined and validated our prompt until the LLM
achieved 100% accuracy on the validation set.

Applying the final prompt (available in this GitHub link) to the
remaining dataset revealed 12additional clinician-only transcripts, bringing
the total to 22. These were removed from the data for model training to
prevent confusion during model learning.

We employed an open-weight LLM (LLaMA-3.1-70b-instruct) for
speech task identification. The PREPARE dataset features speech samples
derived from multiple speech tasks; however, it lacks metadata specifying
which task each recording represents. Identifying the task type thus helps
clinicians contextualize model outputs and understand the cognitive pro-
cesses behind observed speech changes. For instance, picture description
tasks reveal deficits in semantic and syntactic organization, reading tasks
expose articulation and prosodic patterns, and verbalfluency tasks highlight
lexical access and executive function.

To classify the task type of each sample, we used LLaMA-3.1-70b-
instruct with prompt engineering and few-shot learning49. We began by
creating an annotated dataset of 150 randomly selected recordings, stratified
by language, corpus, and gender. Two experts in cognitive assessment
manually labeled each recording by task type. Fifty samples were used for
selecting few-shot demonstrations, and the remaining 100 formed the
validation set for evaluating prompt performance.We iteratively refined the
prompt and demonstrations (few shots) by reviewingmisclassifications and
adjusting the instructions after each round. For example, we introduced an
“uncategorized” label for transcripts that were too short to interpret, often
due to recording errors. After each update, we evaluated the prompt on the
validation set and continued refining until the model achieved 100%
accuracy on the validation dataset.

When applied to the entire dataset, the final prompt (available in this
GitHub link) labeled six task types: personal narrative, story recall, picture
description, semantic verbal fluency, sentence reading, and voice assistant
interactions (seeFig. 6).Only 2%of recordingswere labeled “unrecognized”.

Model architecture
Given the multilingual and multi-task nature of the PREPARE challenge,
SpeechCARE core architecture is built on multilingual transformer models
and has two core components:
1. Featurenetwork:Generates representations frompre-trained linguistic

and acoustic transformers and can incorporate additionalmodalities—
such as demographic information in this study.

2. Fusion network: Combines these features using a novel integration
method that enhances overall prediction accuracy.

Feature network
Pre-trained linguistic transformers (e.g., BERT50) have often been used in
cognitive impairment research, achieving variable results depending on
dataset size, language, speech task, and fine-tuning strategies51–53. In this
study, SpeechCARE’s core architecture includes mGTE54 (multilingual
Generative Text Encoder), an encoder-only transformer with 305 million
parameters released byAlibaba in 2024. Pre-trained on roughly 1028 billion
tokens across 75 languages, mGTE produces 769-dimensional embeddings

and can process sequences up to 8192 tokens—roughly equivalent to
20–30min of transcribed speech— well beyond BERT’s 512-token limit.
This extensive context length allows mGTE to effectively encode the dis-
fluencies and syntactic errors often associated with cognitive decline.

To extract linguistic features, we followed standard transformer fine-
tuning practices and used the [CLS] embedding frommGTE’s last layer as a
summary representation of each transcript. Specifically, given a tokenized
sequence of N tokens L ¼ ftCLS; t1 ; t2; . . . tNg, mGTE produces con-
textualized embeddings feCLS ; e1 ; e2; . . . ei; . . . ; eNg 2 R768, where ei
corresponds to the embedding vector of token ti. The embedding associated
with the special [CLS] token, eCLS, was used as the linguistic representation
from the feature network:

mGTE : eCLS ! �xL

Recent self-supervised speechmodels (e.g.,Wav2vec 2.055, HuBERT56)
have delivered state-of-the-art results on various speech tasks, but they
remainunderutilized in cognitive impairmentdetection for twokey reasons:
(1) Issues with long audio. These transformer models are typically trained
on short audio segments, and their performance degrades when processing
longer recordings than those seenduringpre-training.Additionally, because
they generate embeddings every 20ms, even short recordings result in very
long sequences. Therefore, fine-tuning speech transformer models on
longer inputs (e.g., 30 s or more) becomes computationally intensive and
memory-demanding. (2) Lack of global representation. These speech
transformer models lack a dedicated global representation, such as the
[CLS] embedding used in many linguistic transformer models that can
summarize the entire sequence. This absence limits their ability to capture
long-range temporal dependencies across the full recording, which is
essential for detecting patterns associated with cognitive decline.

In SpeechCARE, we used mHuBERT57 (with 98 million parameters,
released in 2024) as the base model because of its extensive multilingual
pretraining (90,000 h of speech in 147 languages), leading to robust, lin-
guistically diverse phonetic representations, making it particularly well-
suited for cognitive impairment detection in multilingual speech data. To
address the challenges offine-tuning acoustic transformermodels including
mHuBERT on longer audio, we introduce two key modifications: (1) a
segmentation strategy that handles 30-s recordings in shorter segments, and
(2) a learnable [CLS] embedding to capture global context.

Segmentation step. Let A denote the raw audio waveform, up to 30 s in
length (shorter recordings were zero-padded to 30 s). We split A into 5 s
segments with 25% overlap: s1 ; s2; . . . s7

� �
. Each segment si is processed

by mHuBERT to produce 250 frame-level embeddings corresponding to
a 25-ms window:

f mHubert si
� � ¼ fei1 ; si2 ; . . . si250g 2 R768

The segment embeddings are concatenated into a unified sequence of
1750 vectors:

e11 ; . . . e
250
1 ; e12 ; . . . e

250
2 ; . . . ; e17 ; . . . e

250
7

� �! fekg1750k¼1

This segmentation strategy was motivated by architectural constraints
of mHuBERT. Similar to other speech transformer models (e.g., Wav2vec
2.0, HuBERT), mHuBERT applies convolutional positional embeddings to
encode the position of each unit in the encoder input sequence. This design
enables the model to extrapolate to audio sequences longer than those seen
during pre-training. However, such extrapolation is inherently limited and
may distort attention patterns and reduce precision. The segmentation
strategy ensures that input audio remains within the temporal range of the
pre-training audio data, enabling more effective and reliable fine-tuning.
Additionally, since the complexity of the self-attention mechanism in
mHuBERT grows quadratically with input length, shorter input segments
reduce both memory usage and processing time.
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Incorporating CLS embedding. To summarize the full audio and
capture dependencies across segments, we introduce a learnable [CLS]
embedding into the mHuBERT output. Specifically, we prepend a ran-
domly initialized embedding vector eCLS to the concatenated sequence of
segment embeddings:

½CLS� þ fekg1750k¼1 ! feCLS; e1; e2; . . . ; e1750g

This sequence was then passed through a Customized Self-Attention
Encoder (CSE), consisting of two stacked blocks with four attention heads,
dropout, residual connections, and normalization (see Fig. 7). In our pre-
liminary analysis, this architecture performed well on the relatively small
PREPARE challenge dataset (~10 h training data). During training, the

[CLS] embedding evolves to encode a global summary of the input, cap-
turing temporal dependencies across segments and local frames. The output
[CLS] embedding eCLS servedas the acoustic representation from the feature
network:

mHuBERT : eCLS ! �xA

To evaluate the contributions of segmentation and the [CLS] embed-
ding, we conducted an ablation study to measure their impact on Speech-
CARE performance (see Results: Comparative and Ablation Analysis of
SpeechCARE Components).

Control
56%

MCI
13%

AD
31%

English
46%

Spanish
10%

English
7%

English
28%

Picture Description
44%

Personal 
Narrative/

Story Recall
0.4%

Sentence Reading
10%

Picture Description
5%

Personal 
Narrative/

Story Recall
0.3%

Personal Narrative/
Story Recall

2%

Picture Description
25%

Sentence Reading
3%

Fig. 6 | Dataset distribution by diagnosis (center), language (middle ring), and
speech task (outer ring). The center circle shows the proportion of participants
diagnosed as Control (56%), MCI (13%), or AD (31%). Each slice then expands into
language groups—English, Spanish, and Mandarin—and further into specific

speech tasks (e.g., picture description and sentence reading). Percentages at each ring
reflect the relative share within that category, illustrating how participants are dis-
tributed across clinical status, language, and task types.

https://doi.org/10.1038/s41746-025-02026-x Article

npj Digital Medicine |           (2025) 8:677 10

www.nature.com/npjdigitalmed


Fig. 7 | SpeechCARE architecture and data preprocessing pipeline. The diagram
shows how SpeechCARE processes raw audio (up to 30 s) via low-pass filtering (8
kHz cutoff) and segmentation (5-s chunks, 25% overlap), followed by automatic
speech recognition (ASR) to produce text. The acoustic pathway (blue boxes) uses a
multilingual HuBERT encoder plus a Customized Self-Attention Encoder to extract

a global [CLS] embedding. Meanwhile, the linguistic pathway (green boxes) pro-
cesses the transcript using the multilingual GTE encoder. Demographic data (e.g.,
age, gender, education) enters as a thirdmodality (pink). Eachmodality’s embedding
passes through its own fully connected layer, and the Gating Network (red box)
adaptively fuses these representations before the final softmax prediction.
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We treated age, gender, and education as categorical variables and one-
hot encoded them to form �xD. Preliminary experiments showed that cate-
gorizing age performed better than using it as a numeric value. We then
explored thesedemographics both individually and in combination, treating
them as a third modality within SpeechCARE.

Fusion network: adaptive gating fusion (AGF)
Fusion networks underpin multimodal systems, particularly in cognitive
impairment studies integrating acoustic, linguistic, and other signals.
Existing fusion methods range from intermediate fusion58–60 (simple con-
catenation of feature vectors) to advanced cross-modal attention36,61, yet
they are typically not able to dynamically assess eachmodality’s importance
in final predictions. Suchmodality-level weighting is vital in speech datasets
involving heterogeneous tasks (e.g., picture description vs. sentence read-
ing), where distinct cognitive demands differentially affect acoustic and
linguistic cues. Thus, selectively emphasizing eachmodality becomes critical
for accurate cognitive impairment detection.

Inspired by the Mixture-of-Experts (MoE) paradigm, we developed a
novel fusion approach—the AGF network—that dynamically weights
modalities by adaptively attending to the most informative feature vectors
(Fig. 7).

AGF operates on three feature vectors (see section “Feature network”):
linguistic (�xLÞ, acoustic (�xAÞ; anddemographic (�xDÞ, collectively denoted�xm
form 2 fL;A;Dg.

Each feature vector passes through modality-specific fully connected
layers with a Tanh activation function to yield a hidden representation hm:

hm ¼ tanh Wm�xm þ bm
� �

; 8m 2 L;A;Df g

These hidden representations are processed in three stages, which
occur concurrently:

StageOne (GatingNetwork). To dynamically assignmodality weights,
hidden representations are concatenated and passed through a gating net-
work (Fig. 7). The gating network employs a soft-attention mechanism,
projecting the concatenated vector onto a three-dimensional space (corre-
sponding tomodalities) via a linear transformation and a Softmax function.
This produces modality attention weights αm for eachm 2 fL;A;Dg:

fαL; αA; αDg ¼ softmax ðWg ½hL; hA; hD� þ bg Þ

Stage two (modality-specificscore). Concurrently with stage one, each
modality’s hidden representation separately passes through a fully con-
nected layer to compute the modality-specific score om:

om ¼ Wohm þ Bo; 8m 2 L;A;Df g
Stage three (model’s prediction). Finally, the model classification
probabilities ŷ are computed as the weighted sumof themodality-specific
outcome om, using their corresponding attention weights αm:

ŷ ¼ Softmax
X

m2fL;A;Dg
amom

 !

We evaluated the performance of AGF in comparisonwith commonly
used fusion strategies, including intermediate fusion, scaled late fusion, and
cross-modal attention62. For details, refer to the “Comparative andAblation
Analysis of SpeechCARE Components” subsection in the Methods and
Results sections.

Model training and hyperparameter tuning
To train the SpeechCARE multimodal model, both the mHuBERT and
mGTE transformer encoders were fine-tuned concurrently within a unified
architecture (Fig. 7). To better control the optimization process, we adopted
a multi–learning rate strategy: one learning rate was assigned exclusively to

mGTE parameters, and a separate learning rate was used for the remaining
components of the model, including mHuBERT, the Customized Self-
Attention Encoder (CSE; see section “Acoustic Features”), the gating net-
work, and fully connected layers. Preliminary experiments indicated that
this strategy improved model performance compared to using a single
learning rate for the entire model.

To achieve optimal model performance, we conducted a hyperpara-
meter search that included both optimization-related parameters (e.g.,
learning rate, weight decay) and model-specific settings (e.g., number of
hidden neurons, number of CSE attention heads). Each configuration was
trained for 15 epochs, and model performance was evaluated on the vali-
dation set after each epoch. The checkpoint with the highest validation F1-
score was selected for final evaluation on the test set.

Under the best hyperparameter setting, we used a learning rate of
1 × 10−6 for mGTE and 1 × 10−5 for the remaining components of the
model,with aweightdecayof 1 × 10−3 andabatch sizeof 4.TheCSEmodule
comprised twoblockswith four attentionheads andadropout rate of 0.1.All
fully connected layers used to encode input feature vectors employed 128
neurons with Tanh activation. The gating network included a fully con-
nected layer with 384 neurons (corresponding to three modalities × 128
neurons each).

Model evaluation
We began our evaluation by analyzing model performance. Following
training, we selected themodel checkpoint that achieved the highest micro-
averaged F1-score on the validation set and used this checkpoint to evaluate
performance on the official Test set released by the PREPARE challenge
organizers.

Due to the inherent randomness in deep learning training, we eval-
uated model stability by training SpeechCARE under 10 distinct random
seeds. For each run, the official Test set remained fixed, while the random
seed controlled the train–validation split, data loading order, and model
weight initialization. This approach provided insight into the variability
introduced by stochastic processes during training. We report the average
evaluationmetrics across the 10 runs on the official Test set, alongwith 95%
confidence intervals, reflecting variation in model initialization and data
sampling.

To assessmodel effectiveness, we employed several evaluationmetrics.
Evaluation metrics included the area under the receiver operating char-
acteristic curve (AUC-ROC), computed using a one-vs-rest scheme across
the three diagnostic classes (Control, MCI, and AD), with both micro-
average and weighted-average scores.We additionally computedmicro F1-
score, aswell as class-specific precision and recall capturing both overall and
per-class performance. To further assess class separability, we computed
precision–recall (PR) curves using the same one-vs-rest approach.

To further refine class-specific predictions, we applied a post hoc
threshold adjustment to themodel’s predictedprobabilities. Insteadof using
the defaultmaximumprobability rule, we independently calibrated decision
thresholds for each diagnostic class (Control, MCI, AD). Thresholds were
optimized on the validation set to maximize the class-specific F1-score,
aiming to improve precision-recall balance, particularly forminority classes.
This adjustment was performed after model training and did not affect the
model parameters.

Fairness analysis
We also conducted a fairness analysis to examine potential bias across
demographic and language subgroups. We assessed potential model bias
across demographic (age, gender, and education) and language subgroups
using two fairnessmetrics: EOO63,which comparesTPRsacross groups, and
AverageOdds (AO)64, which compares both TPRs and FPRs. Thesemetrics
were selected because they explicitly capture disparities in correctly identi-
fying positive cases (true positives) and incorrectly classifying negative cases
as positive (false positives), both critical in clinical settings. Other metrics,
such as demographic parity andpredictive equality,were not usedas theydo
not distinctly measure disparities in these clinically important error types.
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To reduce potential disparities, we applied three widely used bias
mitigation strategies frequency-based reweighting65, calibration66, and
threshold optimization67, applied both individually and in combination.
Frequency-based reweighting is an in-processing method that adjusts the
importance of subgroups (e.g., age, education) by accounting for disparities
in the joint distribution of sensitive attributes and class labels. This approach
enhances the representation of underrepresented groupswithoutmodifying
the original features or labels. Calibration and threshold optimization are
post-processing techniques designed to improve fairness by refining the
model outputs. For calibration, we trained group-wise isotonic regression
models in a one-vs-rest setup, allowing predictedprobabilities to better align
with empirical likelihoods and improving subgroup-level calibration.
Threshold optimization, in contrast, adjusts decision boundaries using
group- and class-specific TPR and FPR thresholds to reduce disparities in
fairness metrics.

Modality weights analysis
To understand how the model integrates acoustic, linguistic, and demo-
graphic inputs, we analyzed the AGF weights assigned to each modality for
different speech tasks. Specifically, we grouped the test set samples by task
type and computed the average gating weight for each modality. By com-
paring these averages across tasks, we could see which tasks relied more on
acoustic cues (e.g., articulation or prosody), linguistic content (e.g., syntax or
semantics), or demographic factors (e.g., age or education). This analysis
provides insight into the model’s adaptive strategy for weighting each
modality based on the cognitive demands of the task.

External generalizability evaluation- ADReSSo challenge 2021
To evaluate SpeechCARE’s generalizability beyond the multilingual, three-
class PREPARE setting, we conducted external validation using the Pitt
corpus68 fromDementiaBank69, the dataset used in the ADReSSo challenge
2021. This corpus differs from PREPARE in three key ways: (i) it features a
single speech task (Cookie‑Theft picture description), (ii) all recordings are
in English, and (iii) the diagnostic labels are binary: cognitively impaired
(AD and MCI) vs. control (cognitively normal).

The ADReSSo dataset comprises 237 participants—122 with cognitive
impairment (ADRD or MCI) and 115 control. The training (n = 166; 87
cognitive impairment, 79 control) and test (n = 71; 35cognitive impairment,
36 control) splitswere predefinedby theADReSSo challenge organizers.We
stratified 20%of the training set for validation to support early stopping and
hyperparameter tuning.

Since the ADReSSo dataset is about ten times smaller than the PRE-
PAREdataset and contains onlyEnglish speakers,we replacedmGTEwith a
more lightweight linguistic transformer model, DistilBERT70, which out-
performedmGTE on the validation set. The acoustic transformer remained
mHuBERT with a learnable [CLS] embedding and 5-s/20% overlap seg-
mentation. Demographic features were excluded due to missing data. The
model was fine-tuned with multiple learning rates (2 × 10−⁶ for DistilBERT
and 1 × 10−⁵ for other parameters) and early stopping based on F1-score on
the validation set.

Given the binary classification task, we report the AUC and F1-score
for the cognitive impairment class. Results were averaged over 10 runs with
different random seeds and reported with 95% confidence intervals,
reflecting variability due to randomness in model initialization and data
sampling.

To ensure a fair comparison with prior studies on the ADReSSo
challenge, wefine-tuned SpeechCARE exclusively on theADReSSo training
set without transfer learning, following the official challenge protocol.

External generalizability evaluation- DementiaBank Chou Cor-
pus (Mandarin)
We further evaluated SpeechCARE on the Chou71 corpus from Demen-
tiaBank. This corpus includes: (i) three picture description tasks—a father
taking care of his baby, a night market, and park activities, (ii) recordings in
Mandarin Chinese, and (iii) binary labels: MCI vs. control. The dataset

includes 87 participants (47MCI, 40 controls), with no information on age
or education.

We performed a participant-level split, assigning ~60% of speakers to
training (n = 51), ~20% to validation (n = 17) and the remaining ~20%
(n = 19) to a held-out test set, ensuring all recordings from an individual
appear in only one partition.

To adapt SpeechCARE for the ChouCorpus, we used two approaches.
(1)Zero-shot inference.Wefirst ran the SpeechCAREcheckpointfine-tuned
on the PREPARE dataset directly on the entire Chou Corpus. Because all
Mandarin recordings in the PREPARE dataset belonged to the MCI class,
the model labeled every Chou sample as MCI, illustrating a language–label
confound in the source data. (2) Transfer learning. SpeechCARE (without
demographic modality) was first fine-tuned on the PREPARE dataset, then
further fine-tuned on the Chou training set using the same hyperpara-
meters. The F1-score on theChou validation setwas used for early stopping.
AUC and F1-score were computed on the held-out Chou test set, with
confidence intervals obtained from 10 runs with different random seeds.

Comparative and ablation analysis of SpeechCAREcomponents
To quantify the contribution of each modality, we compared the multi-
modal SpeechCARE model—which integrates acoustic, linguistic, and
demographicmodalities via theAGFnetwork—against unimodal baselines.
Each unimodal model was fine-tuned separately on the training set, with
hyperparameters optimized based on performance measured using the
validation set. Specifically, we tested:
1. Acoustic-only model. We implemented three versions of the acoustic

model to isolate the effect of themodificationswe applied to the speech
transformer:

a. First, as a baseline model, we fine-tuned mHuBERT by averaging its
embedding vectors (each representing 25ms of audio) and passing the
resulting vector into an MLP with one fully connected layer (128
neurons, Tanh activation), omitting both segmentation and the
learnable [CLS] embedding. The learning rate was set to 1 × 10−5.

b. Second, we fine-tuned mHuBERT by incorporating the Customized
Self-AttentionEncoder (CSE,with twoblocks and four attention heads
and a dropout rate of 0.1) module and a learnable [CLS] embedding.

c. Third, we split the input audio into 5-s segments with 20% overlap,
processed segments with mHuBERT, concatenated the resulting
embeddings, prepended a [CLS] embedding, and processed the
sequence using the CSE and finally passed the processed [CLS] to an
MLP—replicating the full configuration used in SpeechCARE for
generating acoustic features.

1. Linguistic-only model. We fine-tuned mGTE by passing its [CLS]
embedding to anMLP (128neurons, Tanh activation), using a learning
rate of 1 × 10−6.

2. Demographic-onlymodel.Weone-hot encodeddemographic features
(age, gender, and education), fed them into anMLP, and trained itwith
a learning rate of 1 × 10−3.

To assess the added value of each modality in a multimodal config-
uration, we conducted the following analyses:
1. We combined acoustic and linguistic modalities using the AGF net-

work to evaluate the benefit of integrating voice and transcription data.
2. To further evaluate the contribution of demographic features, we

separately integrated age, gender, and education into the
acoustic–linguisticmodel, and then combined all three, using the same
network architecture and training setup.

To illustrate the effectiveness of our AGF network, we also compared
its performance with the widely used fusion strategies:
1. Intermediate fusion. This is one of themost common fusion strategies,

where feature vectors from each modality are concatenated into a
single representation that is then used for classification.
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2. Scaled late fusion. It employs learnable scalar weights for each mod-
ality. Prediction scores are computed independently for eachmodality
and subsequently combined via a weighted sum, where the weights
remain fixed during inference.

3. Cross-modal attention. This is a more complex, two-stage fusion
strategy. In thefirst stage, eachmodality’s representation is enrichedvia
multi-head cross-attention, where embeddings from one modality
attend to those of another; no fusion occurs at this stage. In the second
stage, the enriched embeddings are concatenated to form a
representation for classification. The complexity of the multi-head
attention mechanism demands large datasets for effective fine-tuning,
limiting its utility for small datasets.

Finally, to evaluate low-pass filtering as an effective noise reduction
method, we tested its impact on SpeechCARE’s performance against two
alternatives:
1. Raw audio files without any noise reduction were used for both tran-

scription and model training.
2. Audio files were processed using CMGAN72 (Conformer-based

Metric-GAN), aneural speech enhancementmodel that operates in the
time-frequencydomain and ranks among the topperformers in speech
enhancement benchmarks, and then used for both transcription and
model training.

To evaluate the statistical significance of differences in model perfor-
mance across ablation analyses, we conducted paired t-tests between the
performance of individual SpeechCARE components and their corre-
sponding baseline or comparative variants. Effect sizes were reported as
Cohen’s d, calculated as the mean of paired differences relative to their
standard deviation.

Data availability
The data used in this research is from the 2024 NIA PREPARE challenge,
provided exclusively to our team as participants in the challenge. This
dataset is not publicly available, and participants are prohibited from
sharing it. To request access, please contact the challenge organizers [[here]
(https://www.drivendata.org/competitions/group/nih-nia-alzheimers-
adrd-competition)]. Additionally, the data is now part of DementiaBank;
access may also be requested by contacting the DementiaBank adminis-
trators directly.

Code availability
The code used in this study is available at: https://github.com/SpeechCARE/
SpeechCARE-NIA-Phase2.
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