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Current self-supervised learning (SSL) methods for 3D medical imaging rely on simple pretext
formulations andorgan- ormodality-specificdatasets, limiting their generalizability andscalability.We
present 3DINO, a cutting-edge SSL method adapted to 3D datasets, and pretrain 3DINO-ViT: a
general-purposemodel formedical imaging, on aultra-largemultimodal dataset of ~100,0003Dscans
from over 10 organs. We show 3DINO-ViT outperforms state-of-the-art pretrained models on
numerous downstream imaging tasks.

Main
Deep learning (DL)methods can enhance existingworkflows for a variety of
clinical tasks involving medical images1–3 including detection4–7,
diagnosis8–13, and risk profiling14–18. However, the data-hungry nature of
these methods poses practical challenges for training and generalizability.
Creating detailed labels for training DL models for 3D medical imaging
modalities is particularly time-consuming and expensive. To alleviate this,
self-supervised learning (SSL) approaches have been proposed to reduce
reliance on detailed ground truth annotations by leveraging unlabelled
datasets19–21. Yet, most existing approaches for 3D medical imaging mod-
alities train SSL methods using simple pretext formulations on unlabeled
datasets that are similar to their downstream applications. Employing SSL-
pretrainedmodels on downstreamdatasets from similarmodalities, organs,
image characteristics, and distributions limits their generalizability and
scalability. Notably, this single-distribution approach results in additional
training overhead, as separate models would need to be pretrained for each
downstream task for optimal performance. This can be further exacerbated
by several factors, including the rarity of the disease, the ability to acquire
high-resolution, multidimensional data, or the scarcity and cost of certain
imaging modalities. The availability of general-purpose pretrained weights
could facilitate more widespread adoption of DL in medical imaging
applications by greatly boosting the accuracy of DL models in these label-
scarce regimes.

Recent work in SSL has scaled to larger and highly diverse pretraining
datasets, with models able to create image representations that are gen-
eralizable to many downstream tasks22–26. While these pipelines are capable

of achieving state-of-the-art (SOTA) results for 2D benchmarks, scaling
them to 3D data is computationally prohibitive, requiring large datasets,
batch sizes (often ranging from 512-4096), and long train times to learn
effectively.Oneway to resolve these constraints is to cast the 3DSSL task as a
2D task by viewing 3D images slice-by-slice.However, previous studieshave
shown that keeping the full 3D anatomical context is important when
applying DL to medical images and clinical scenarios19,27. The recently
proposed DINOv228 SSL pipeline provides numerous improvements in
accuracy and computational efficiency relative to its counterparts,making it
a strong candidate for generating genuinely 3D image representations.

In thiswork,wedevelop3D self-distillationwithno labels v2 (3DINO): a
cutting-edge and memory-efficient framework adapting DINOv2 to 3D
medical imaging inputs and present the 3DINO-Vision Transformer
(3DINO-ViT): a general-purpose ViT29 model pretrained on an excep-
tionally large, multimodal, and multi-organ dataset of nearly 100,000
unlabeled 3D medical volumes curated from 35 publicly available and
internal data studies (Fig. 1). We specifically acquired datasets consisting of
MRI (N = 70,434) and CT (N = 27,815) volumes, with a small brain PET
(N = 566) dataset (Fig. 1b). 3DINO’s pretext formulation combines an
image-level objective and a patch-level objective, where original volumes are
augmented to generate two global and eight local crops (total of 10 aug-
mentations for the objectives per scan).Weadditionallymodify the 3DINO-
ViT model backbone to enhance its performance on downstream seg-
mentation tasks by converting an adapter module to 3D inputs (3D ViT-
Adapter). This module has been employed in 2D images to inject spatial
inductive biases into pretrained ViT models for dense (pixel-level) tasks30.
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To our knowledge, while several methods have been proposed to pretrain
natively 3D models for representation learning in 3D medical imaging21,31,
we introduce the first 3D SSL-based method that combines an image-level
and patch-level objective to extract salient features for both segmentation
and classification tasks across multiple modalities simultaneously. The full
3DINO pipeline along with our 3DINO-ViT weights is made available at

https://github.com/AICONSlab/3DINO to facilitate research towards 3D
medical imaging foundation models or further finetuning over a vast range
of medical applications across numerous organs and modalities.

We compare the efficacy of 3DINO-ViTweights on downstream tasks
against six other initialization methods. The first comparison randomly
initializes the ViT network and trains it end-to-end from scratch
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(‘Random’).As aSOTApretrainedmedical imagingbackbone,weutilize the
SlidingWindow (Swin) ViT from Tang et al.21 (‘Swin Transfer’). To further
compare against this method when trained on our Full, 100,000-volume
Dataset, we pretrain a Swin ViT (‘Swin Transfer-FD’). To account for dif-
ferences between model architectures (3DINO-ViT uses a vanilla ViT and
Swin Transfer uses a SwinViT), we also employ a randomly initialized Swin
ViT to evaluate the relative benefits of using pretrained weights (‘Swin
Random’). We perform a more direct comparison against the 3DINO
pretrainingmethodby adapting theSOTASwinViTpretraining framework
from Tang et al.21 for a vanilla ViT (‘MONAI-ViT’), and pretrain it on the
same unlabeled dataset. Finally, to compare against a related method that
does not employ an image-level objective, we pretrain using a 3D masked
image modeling (MIM) approach20 (‘MIM-ViT’) on our dataset.

To evaluate the saliency and generalizability of 3DINO-VITpretrained
weights, we use popular medical image segmentation and classification
benchmarks/challenges. As segmentation benchmarks, we use the 2021
Brain Tumor Segmentation (BraTS) Challenge32 for MRI, and the Beyond
the Cranial Vault (BTCV) Challenge33 for CT abdominal organ segmen-
tation. We further evaluate the generalizability of 3DINO pretraining on
unseen (out-of-distribution) organs and 3D modalities with minimal pre-
sence in the pretraining dataset. Specifically, we evaluate 3DINO’s perfor-
mance on left atrium MRI segmentation (LA-SEG)34 and 3D breast
ultrasound tumor segmentation (TDSC-ABUS)35 tasks. For classification
tasks, we investigate brain age classification on theMRI ICBMdataset36 and
use the COVID-CT-MD lung CT dataset37 to classify between healthy
patients, those with community-acquired pneumonia (CAP), and indivi-
duals with Novel Coronavirus (COVID-19). We further perform experi-
ments using different amounts of labeled training data by randomly
subsampling a certain percentage of the full labeled dataset.

Segmentation was performed via appending convolutional decoder
heads to pretrained encoders (Supplementary Fig. 1). 3DINO yielded sig-
nificantly improved segmentation results relative to all SOTA techniques on
all evaluation metrics in most comparisons (p < 0.05; Fig. 2a, b, e). 3DINO-
ViTwas able to jointly improve representations for both segmentation tasks
in all percentages of labeled data, including when using the full labeled
dataset. The pretrained weights significantly improved performance at all
percentages of labeled data relative to the Random encoder (e.g., BraTSwith
10% data: 0.90 (0.88, 0.91) Dice for 3DINO-ViT vs 0.87 (0.85, 0.89) for
Random; BTCVwith 25%: 0.77 (0.72, 0.81) 3DINO-ViT vs 0.59 (0.53, 0.65)
for Random). The overall relative Dice improvement for the Swin Transfer
network versus Swin Random (maximum 5.1% on BraTS and 1.8% on
BTCV)wasmuch lower than3DINO-ViT’s improvementover theRandom
encoder (13.0% on BraTS and 55.1% on BTCV). We found the Swin
Transfer-FD pretraining baseline did not generalize or scale well to our
100,000-volume dataset, obtaining similar results relative to Swin Transfer
for segmentation. For both segmentation tasks, 3DINO-ViT trained using
less than 50% of all labeled data achieved statistically (Fig. 2) and visually
(Supplementary Figs. 2–8) comparable results to other baselines trained
using 100% of labeled data. However, when using 100% of the labeled
dataset, the relative improvements of 3DINO-ViT over the next best
baseline are reduced and are not always significant, with 0.8% Dice
improvement in BraTS and 0.9% in BTCV. Results across other evaluation

metrics are presented in the Supplementary Information, highlighting the
same trend of 3DINO-ViT’s improved segmentation results over other
SOTA pretrained models.

For classification tasks, we trained a linear classifier on top of all pre-
trained networks without finetuning the pretrained weights. We use
MONAI-ViT as one comparison and take the pretrained contrastive head
from the Swin Transfer and Swin Transfer-FD networks as two others.
Despite the tasks’difficulty and sparser ground truth, the proposed 3DINO-
ViT performs universally better than other models (p < 0.05; Fig. 2c-d).
Averaging over all dataset sizes, 3DINO-ViT obtained an 18.9% higher area
under the receiver operating characteristic curve (AUC) on COVID-CT-
MD,with a particularly notable increase of 23%AUCon classifying patients
with COVID-19 relative to the next best baseline. On ICBM, an average of
5.3% higher AUC was obtained with a 13.4% AUC improvement for clas-
sifying individuals aged [40, 50) years over the next best baseline (Fig. 2e–f,
example cases in Supplementary Figs. 9–10). Swin Transfer-FD traded off
performance compared to Swin Transfer weights for classification tasks.
This may also indicate the converged model did not scale well to the large
dataset, favoring generating features for only a subset of the pretraining
dataset. These experiments, conducted with completely frozen pretraining
weights, further highlight the saliency of the learned representations for
different downstream tasks.

Altogether, we observed that 3DINO improved the ViT’s data effi-
ciency and generalizability on downstream tasks. Transfer learning with
frozen 3DINO-ViT weights improved both segmentation and classification
performance over other SOTAmethods at all dataset sizes, including when
using the full labeled dataset. In line with other works in SSL, we found the
effect of pretraining was more pronounced when using less data for
finetuning.

As a standalone comparison of the effectiveness of 3DINO patch-level
representations for image segmentation, we performed experiments with a
lightweight segmentation decoder. We froze 3DINO-ViT’s pretrained
weights and finetuned a two-layer linear network on downstream tasks
(Methods—Linear decoder segmentation). We compared the performance
against Random, MONAI-ViT, and MIM-ViT networks (Fig. 2g), and
found 3DINO-ViT achieved a significant improvement of 46% Dice over
the next best baseline on BTCV (p < 0.05), and 10% on BraTS (p < 0.001).

On the out-of-distribution tasks, 3DINO-ViT significantly out-
performed other SOTA methods, with 1.8% improved Dice on left atrium
segmentation, and 24% in 3Dultrasound tumor segmentation over the next
best baseline, when finetuning with 25% of the labeled dataset (Fig. 3a–h).
Though this improvement drops to 0.9% and 0.8% respectively, 3DINO-
ViT maintains its advantage over other baselines even when tuning with
100% of the labeled dataset. This demonstrates the capability of 3DINO to
create generalizable weights that can be applied to image distributions
unseen during pretraining.

To visually investigate the saliency of 3DINO-ViT representations, we
generated principal component analysis (PCA) and multi-head self-atten-
tion (MHSA)-based visualizations of the representations (Figs. 1c, 3–h,
Supplementary Movie 1). PCA visualizations demonstrate that common
modes of variation for all datasets are between background versus fore-
ground, outlining the surface of the organ, and varying across anatomical

Fig. 1 | Overview of 3DINOmethodology and large pretraining dataset. a 3DINO
combines an image-level objective and a patch-level objective. Original volumes are
randomly augmented twice to create global crops, and augmented eight times to
yield local crops. The image-level objective is taken by distilling the token repre-
sentations between the student and exponential moving average (EMA) teacher
networks. The patch-level objective is computed between patch representations at
masked regions in the student network input and corresponding unmasked EMA
teacher representations. LCE indicates Cross-Entropy loss, with the final 3DINO loss
consisting of the summed image-level distillation and patch-level reconstruction
objectives. b Breakdown of large multimodal, multi-organ pretraining dataset of
100,000 3D scans with over 10 organs from 35 publicly available and internal studies

(the number of volumes per modality per anatomical location/organ; MRI = 70,434
volumes, CT = 27,815, and PET = 566). c Original image, principal component
analysis (PCA) on patch-level representations, and multi-head self-attention
(MHSA) attention map visualized for three image planes. Each row in order: BraTS
T1-weighted, T2-weighted, and two patients from BTCV. PCA visualizations are
obtained per image from patch-level representation vectors. The first (in terms of
explained variance) PCAcomponent is used tomask image background (white)with
a simple threshold, with the next three normalized and mapped to RGB channels.
MHSA attention maps are obtained from the token of final 3DINO-ViT layer.
Images were not registered to atlases for visualization or training/testing.
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axes. Notably for BraTS images, principal components found inside the
tumor extent were often distinct from other brain tissues.

We also consider 3DINO-ViT relative to recently proposed “founda-
tion models” in 3D medical image segmentation38, which build upon Seg-
mentAnythingModels (SAM)39. Since SAM-likenetworks are trainedusing
labeled data and 3DINO is a self-supervised pretraining method, both

methods are synergistic. The original SAM paper used weights from SSL
pretraining to initialize the image encoder network39. 3DINO thus repre-
sents a novel ViT pretraining method for 3D inputs that is able to act as an
initialization step for 3D SAM or other methods.

One limitation of this study is that it primarily uses MRI and CT data
for pretraining and the dataset does not encompass a balanced list of organs.
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Despite this, the out-of-domain generalizability of themethodwas explored
on cardiacMRI and breast ultrasound images, and found to be significantly
better thanother techniques (Fig. 3).While 3DINO-ViT is highly efficient in
the number of trainable parameters because it is frozen during finetuning,
the full segmentation pipeline is relatively high in runtime complexity.

The formulation of 3DINO addresses key prior limitations of SSL
pipelines for 3D medical imaging in terms of generalizability and compu-
tational complexity, leading to promising results in downstream tasks and
intuitive unsupervised representations. By leveraging 3DINO-ViT, we can
reduce the amount of labeled data needed for diverse downstream medical
imaging tasks without requiring expensive model retraining on in-domain
unlabeled datasets, enabling generalizable and data-efficient models. We
found that 3DINO is able to reduce the amount of labeled data necessary to
train models for diverse clinical applications by 4 to 10 times, with sig-
nificant improvements to performance even on the very-low data regime
(~10 scans). Unlike many existing SSL methods applied to medical images,
3DINO is entirely 3D, which permits it to consider the full spatial context in
a scan. 3DINOcould greatly improve on clinical applications ofDL in direct
prediction tasks or in pipelines using image segmentation40,41. Overall, the
presented pipeline and models could be highly beneficial when finetuned
across a wide variety of challenging applications and tasks in medical
imaging, especially in environments with limited access to detailed anno-
tations and resources.

Online methods
Unlabeled multimodal pretraining dataset
We constructed our multimodal 3D medical imaging pretraining dataset
from a variety of publicly available datasets and one internal dataset shown
in Supplementary Table 1. The Sunnybrook Health Sciences Centre pro-
vided research ethics approval for the internal Acute Stroke dataset (REB
#2430). We filtered pretraining datasets for excessively few DICOM slices
(>24 slices) to avoid overly pixelated volumes in the cross-slice dimension
(lower z-axis resolution). To reduce redundancy and perform a naive form
of deduplication, we took random subsets of a few exceptionally large
datasets. Subsets were taken from the FastMRI Knee dataset42,43 and the
RSNA Intracranial Hemorrhage Detection44 dataset by randomly sampling
half of the dataset. A subset of NLST45,46 was taken by randomly sampling
500 patients, and a subset of 4D-Lung47,48 was taken by sampling 30-40
volumes per patient. After deduplication and filtering for slice counts, we
created a 3D medical imaging dataset of 98,815 unlabeled volumes. The
high-resolution adaptation (Methods - DINOv2 pretraining objective)
dataset was created by filtering for >48 DICOM slices, which resulted in a
higher resolution 53,758 volume subset of the original data.

Image-level pretraining objective
The original DINO24 method is a self-supervised self-distillation method
consisting of a teacher, gθt and studentnetwork, gθs parameterized by θt and
θs respectively. Froman unlabeledmedical image sampled from the dataset,
x, two randomly augmented "global crops", xg1 and x

g
2, as well as L randomly

augmented "local crops", fxl1; xl2; . . . ; xlLg are generated to create a set of
crops C. The global crops are passed through the teacher network, and all
crops are passed through the student network. Given a global crop passed
through the teacher, x1 2 fxg1; xg2g, the overall task of the student network is
to predict the teacher representation using all other crops, x2 2 C; x2≠x1.

The feature representation output from the student and teacher are
converted into probability distributions via a softmax function, σð�Þ, and
sharpened via a temperature parameter, τ. The student probability dis-
tribution is defined as Ps xð Þ ¼ σ gθs xð Þ=τs

� �
, with the same formula using

Pt and τt for the teacher network.
Equation (1) describes the image-level loss function and summarizes

the objective of DINO:

Limage ¼
X

x12fxg1 ; x
g
2g

X
x22C; x2≠x1

H Pt x1
� �½CLS�

; Ps x2
� �½CLS�� �

ð1Þ

whereH �ð Þ is the cross-entropy function. Rather than explicitly training the
teacher in this framework, it is obtained as an exponential moving average
(EMA) of the student model: θt  λθt þ 1� λð Þθs. The original DINO
method learns image-level representations by taking features learned from
the classification26 token of aViTnetwork,which is representedby the ½CLS�
superscript. Hence, this task forms the "image-level objective".

DINOv2 pretraining objective
DINOv228 makes several key improvements beyond the original DINO
method thatmake itmore scalable and efficient for learning representations
from large (medical) images. Firstly, it introduces aMIMobjective originally
from the iBOT work26. This method masks patch regions for global crops
passed to the student using a binary mask,m 2 0; 1f gN over theN patches
comprising the crop.Using themasked crop, x̂g , the studentmodel is tasked
with predicting the teacher representations at themasked regions, leading to
the loss function described in Eq. (2).

Lpatch ¼
XN
i¼1

mi � H Pt xg1
� �½i�

; Ps x̂g1
� �½i�� �

þ H Pt xg2
� �½i�

; Ps x̂g2
� �½i�� �h i

ð2Þ

Wheremi is the binarymask value, andP �ð Þ½i� is the patch token output
by the encoding model, both enumerated by patch location, i. By introdu-
cing this objective, the iBOT paper improved patch-level representation
quality and robustness to image corruption26. This is key for dense down-
stream tasks like segmentation and improving representations in the pre-
sence of out-of-sample distribution shifts and corruptions/artifacts, which
are abundant in medical imaging due to differences in scanners, imaging
hardware, acquisition parameters and sequence design49. The final loss
function adds patch-level loss to the image-level loss.

Additionally, DINOv2 introduces several improvements on compu-
tational and memory efficiency that enable larger batch training. These
include improving the efficiency of computing self-attention, allowing
nested tensors in self-attention, saving memory in the stochastic depth
operation, and taking advantage of the new Fully-Sharded Data Parallel
modules in PyTorch. Relative to iBOT, their code runs approximately 2
times faster with 1/3 of the GPU memory usage28. Finally, they introduce
several regularization methods including Sinkhorn-Knopp centering50 and
the KoLeo regularizer51 that stabilize training progress at scale and reduce
the likelihood of model collapse.

DINOv2 also introduces a secondary high-resolution adaptation stage
to the pretraining process. In segmentation tasks, maintaining image

Fig. 2 | Evaluation and comparison to SOTApretrainedmodels on the BraTS and
BTCV segmentation, and ICBM and COVID-CT-MD classification tasks.
a BraTS segmentation Dice scores and 95th percentile Hausdorff Distance (HD95).
b BTCV segmentation Dice scores and HD95. c ICBM classification AUC and
F1 scores. d COVID-CT-MD classification AUC and F1 scores. a–d Finetuning
results with multiple sizes of labeled dataset, x-axis displays training dataset size in a
percentage of the full dataset, with actual number of labeled samples in parentheses.
Bar plots compare the third-largest and largest training dataset sizes with error bars
in (a, b) from the 95% bootstrapped confidence interval (CI) of item-wise metrics

and error bars. Bar plots in (c, d) are obtained from 95% bootstrapped CI of metrics
obtained from five separate experiments with randomly subsampled training sets
(100% data comparison is equivalent to adjusting experiment seed). Statistical sig-
nificance in (a, b) is computed via a paired nonparametricWilcoxon test on metrics
per item. Significance in (c, d) are computed via an unpaired Welch’s t-test against
metrics per experiment. e Plots comparing per-class Dice/AUC scores for seg-
mentation/classification experiments using the third-largest training dataset size.
f Normalized and averaged classification confusion matrices using the third-largest
training dataset size. g Dice scores for linear decoder segmentation experiments.
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resolution is important for extracting smaller objects and features. However,
training self-supervised methods from scratch with high-resolution inputs is
highly computationally expensive. Instead, the authors found that

introducing a short adaptation period using high-resolution inputs at the end
of pretraining yields comparable results compared to full training using high-
resolution28. We similarly introduce this adaptation stage into our method.

Fig. 3 | Model evaluation on out-of-distribution tasks: left atrium segmentation
(LA-SEG; unseen organ) and 3D breast ultrasound tumor (TDSC-ABUS; unseen
modality). a, e Dice and HD95 scores for the LA-SEG and TDSC-ABUS segmen-
tation tasks, respectively. b, c, f, g Original image, ground truth segmentation, and
visualized segmentation per pretrainingmethodology using third-largest and largest
finetuning dataset subsets. Yellow arrows indicate degraded model outputs relative
to ground truth segmentations. The numbers above images are Dice segmentation

scores obtained on the full 3D volume. b LA-SEG visualization when finetuning using
25% of the full labeled dataset. c) LA-SEG visualization when finetuning using 100% of
the full labeled dataset. f TDSC-ABUS visualization when finetuning using 25% of the full
labeled dataset. g TDSC-ABUS visualization when finetuning using 100% of the full
labeled dataset. d, h Unsupervised visualizations on random volumes sampled from the
LA-SEG and TDSC-ABUS datasets respectively. Ordering and visualization methods are
analogous to Fig. 1c.
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3DINO
Toadapt theDINOv2model architecture for 3D inputs,we adjusted theViT
encoder network to flatten and project 3D input patches. To permit
variable-sized inputs, we implemented 3D interpolation of the learned
position encoding vectors. To simplify the 3D masking operation, we ran-
domly sample masking locations uniformly over all patches instead of
blockwise masking52. Proper selection of data augmentation methods used
to create global and local views is critical for generating salient image
representations in SSL53. Thus, we took particular care to select data aug-
mentations for 3D adaptation.

Since the pretraining dataset includes non-quantitative imaging
modalities, image normalization is conducted by linearly mapping the
0.05th and 99.95th percentiles of intensity to −1 and 1, respectively. Ran-
dom image augmentations used for pretraining on RGB images include
flipping, blurring, converting to grayscale, solarization, and color jitter. Since
the color-related augmentations cannot be implemented for 1-channel
inputs, we instead utilize medical imaging-related augmentations that may
produce robust representations to domain shift, including random contrast
adjustment, additive noise, Gibbs noise, and histogram shift.We found that
the intensity augmentations, combinedwith the diversity of the large dataset
in pretraining, were sufficient to help the model adapt to different nor-
malization conditions for CT scans, with our image normalization per-
forming similarly to standard window-level normalization on BTCV at
large dataset sizes.

The RandomResizedCrop augmentation used in the original DINOv2
randomly crops a portion of an image and resizes it to a specified size,
keeping the crop within a range of aspect ratios (ensuring that a crop is not
too long or wide). This could not be directly adapted to 3D, as the images
that form our pretraining dataset have highly variable slice thicknesses and
voxel sizes. For example, the Healthy-Total-Body-CTs54,55 dataset contains
on the order of ~1000CT slices across a single image.On the other hand, the
NYU fastMRI knee42,43 dataset contains ~30 slices per image.Maintaining a
reasonable aspect ratio between the in-plane image dimensions and the out-
of-plane (depth) image dimension would be difficult for both datasets
simultaneously. Thus, rather than enforcing approximately isotropic spa-
cing and an aspect ratio near one on a randomly cropped and resized
volume, we crop the two in-plane image dimensions using the standard 2D
RandomResizedCrop, and independently sample the cross-slice dimension
crop size. Though this may mean that the cropped volume resulting from
this data augmentation can be stretched or squashed in the out-of-plane
axis, we expect that using a large variety of pretraining datasetswill allow the
model to learn to generalize to various volume sizes. This formulation
additionally preserves the “local-to-global” correspondences that were
relevant in the original DINO24, where global views take up a larger portion
of the original volume than local views.

Finally, we ensured that 3D adaptation code was written withminimal
adjustments to low-level modules to integrate and take advantage of all
efficiency improvements introduced by the original DINOv2. We term the
finalmodel obtained after 3DINOpretraining the 3DINO-ViT. Pseudocode
describing the 3DINO pretraining algorithm can be found in Supplemen-
tary Fig. 14.

3DINO pretraining implementation details
Our implementation uses PyTorch (https://pytorch.org/) and builds on the
GitHub repository released by the original DINOv2 authors (https://github.
com/facebookresearch/dinov2). We use MONAI (https://monai.io/) for
data loading and implementations of data augmentations. SSL pretraining
was conducted on four A100-SXM4-80GB GPUs. All experiments used a
ViT-Large29 and a patch size of 16×16×16. Standard pretraining experi-
ments used a batch size per GPU of 128 (512 total), a global crop size of
96×96×96, a local crop size of 48 × 48 × 48, and a base learning rate of 0.002.
The EMAparameter λ is increased from 0.992 to 1.000 in a cosine schedule.
Pretraining progresses for 125,000 iterations over approximately nine days.

We implemented the high-resolution adaptation stage as per the
recommendations of the original work, by keeping parameter scheduling

the same as pretraining but compressed to progress over 12,500 training
iterations instead of the original 125,000 iterations. High-resolution adap-
tation used a batch size per GPU of 64 (256 total), a global crop size of
112 × 112 × 112, a local crop size of 64 × 64 × 64, and a base learning rate of
0.001. Adaptation began from the weights learned in the 112,500th pre-
training iteration and took approximately two days. Additional hyper-
parameters can be found in Supplementary Table 26-27.

SOTA pretraining comparisons
Tang et al.21 proposed a SSL pretraining method for 3D medical images,
specifically for CT data, using a Swin Transformer56 backbone. Their
method was trained on 5050 publicly available CT images. We use their
publicly released pretrained weights as one baseline comparison
against our proposed pretraining method (‘Swin Transfer’), and take
a randomly initialized Swin Transformer (‘Swin Random’) to deter-
mine the relative benefit of using their pretrained weights. We also
train a Swin Transformer using their proposed SSL method on our
100,000-volume dataset to yield a fair comparison against their full
pipeline (‘Swin Transfer-FD’).

However, since the SwinTransfer network differs from3DINO-ViT in
both model architecture and pretraining dataset, we take the Swin pre-
training implementation, and reimplement it for a vanilla ViT.We then use
the reimplemented method to pretrain a vanilla ViT on the 3DINO-ViT
pretraining dataset. This forms a separate comparison that specifically
investigates the difference in quality of pretraining algorithms (‘MONAI-
ViT’). The original Swin ViT pretraining method uses the inpainting,
contrastive coding, and rotational prediction tasks jointly. Similarly to the
original method, the inpainting task is performed by upsampling the ViT
patch tokens using transposed convolutions and comparing the recon-
structed output to the original image via an L1 loss. The contrastive and
rotational tasks are image-level tasks, hence we pass the output of the ViT
½CLS� token to the contrastive coding and rotation prediction linear heads.
By doing so, we are also able to more explicitly train an image-level repre-
sentation for classification experiments.

To compare 3DINO against a related methodology that does not have
the efficiency and stability improvements introduced in DINOv2 or use an
image-level objective, we use the MIM-based methods from Chen et al.20

(‘MIM-ViT’). Specifically, we use the SimMIM method which performed
best in their experiments.

SOTA pretraining comparison implementation details
The Swin ViT pretraining code was taken from the original work3. We
minimally adjusted the data loading code provided, and only added addi-
tional transforms to change intensity scaling to the percentile-basedmethod
used for 3DINO-ViT. This was done because the original work was only
pretrained on CT images, and thus the scaling range in Hounsfield Units
(HU) could be fixed between images. When adding additional non-
quantitative scans like relaxation time-weighted MRI sequences to the
dataset, the intensity scaling method must also be adjusted. To create a fair
comparison, SSL pretraining for all comparisons were also conducted on
four A100-SXM4-80GB GPUs. For MONAI-ViT, we pretrained a ViT-
Large on the same pretraining dataset that was used to train 3DINO-ViT.
The method was pretrained using a patch size of 16×16×16 and an image
size of 96 × 96 × 96. We used a batch size per GPU of 16 (64 total) and
pretraining ran for 100,000 iterations over approximately 10 days. For Swin
Transfer-FD, we pretrained a Swin Transformer with an equivalent archi-
tecture to the publicly released Swin Transfer weights. This model was
pretrained with an image size of 96 × 96 × 96 and a batch size per GPU of 8
(32 total). Pretraining was conducted for 100,000 iterations over 8 days.
Where possible, all key hyperparameters in these experiments were kept the
same as in the original work. The MIM-ViT pretraining code was taken
from the public codebase from the original work20. We adjust data loading
the same way as for MONAI-ViT and Swin Transfer-FD. Pretraining was
conductedwith abatch sizeof 128perGPU(512 total) for 100,000 iterations
over 7 days.
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Brain tumor segmentation (BraTS) finetuning dataset
The BraTS 2021 training dataset32 is a widely-usedMRI brain segmentation
benchmark. This dataset consists of 1251 patients, each with four types
routinely requiredMRI scans:T1-weighted,T2-weighted,T1-weightedwith
gadolinium contrast, andT2 Fluid-attenuated Inversion Recovery (FLAIR).
These scans were skull-stripped and coregistered. For each patient, medical
experts manually generated pixel-level segmentation labels that were
combined into Whole Tumor (WT), Tumor Core (TC) and Enhancing
Tumor (ET) regions. To formourfinetuning dataset, wefirst removed scans
in the dataset taken from TCGA-GBM57 or TCGA-LGG58 (which are pre-
sent in the pretraining dataset) to avoid unfair bias in evaluation. This
resulted in 1084 patients that we randomly split into train (N = 758), vali-
dation (N = 108) and test (N = 218) sets.

Beyond the cranial vault (BTCV) finetuning dataset
The BTCV dataset is a commonly employed CT abdominal organ seg-
mentation benchmark33. This dataset consists of abdominal CT scans taken
from 30 healthy patients with manual labels generated of 13 organs. These
were randomly split into train (N = 20), validation (N = 4) and test
(N = 6) sets.

International consortium for brain mapping (ICBM) finetuning
dataset
We employed the publicly released ICBM dataset as an MRI brain age
classification benchmark36. This dataset consists of T1-weighted brainMRI
scans of 639 healthy patients with 1339 scans from a variety of ages between
18 and 80. To maintain a reasonably balanced dataset, we binned data into
four bins of width 10 between 20 and 60 years of age, discarding scans that
did not fall into this range. We split randomly on the patient level to obtain
train (N = 756), validation (N = 151) and test (N = 233) scans. Only skull-
stripping was performed for data preprocessing using the iCVMapp3r
pipeline59. For the four bins: [20, 30), [30, 40), [40, 50), [50, 60], the train set
contains 335, 199, 108, 144 volumes, the validation set contains 63, 25, 39, 24
volumes, and the test set contains 110, 49, 21, 53 volumes respectively.

COVID-CT-MD finetuning dataset
Weused theCOVID-CT-MDdataset as a lungCTclassificationbenchmark
betweenCOVID-19,CommunityAcquiredPneumonia (CAP), andhealthy
patients37. This dataset consists of 305 patients with one lung CT scan each
that we split randomly into train (N = 214), validation (N = 30) and test
(N = 61) scans. For the three classes,Healthy, COVID-19, CAP, the train set
contains 54, 121, 39 scans, the validation set contains 7, 15, 8, and the test set
contains 15, 33, 13 scans respectively.

Left atrium segmentation challenge (LA-SEG) finetuning dataset
We took the LA-SEG challenge dataset as a left atrium MRI segmentation
benchmark34. The heart makes up a very small subset of the pretraining
dataset, hence this data is used to evaluate the generalizability of themethod
to an out-of-domain organ. This dataset consists of 154 heart MRI scans
from 60 patients and segmented for the left atrial cavity. The challenge
dataset was originally split on the patient level-into training (N = 100) and
test (N = 54) sets.We randomly split the training dataset further into subsets
used to train (N = 80) and validate (N = 20) finetuning networks.

Tumor detection, segmentation and classification challenge on
automated 3D breast ultrasound (TDSC-ABUS) finetuning
dataset
We used the TDSC-ABUS training dataset as a 3D breast US lesion seg-
mentation benchmark35. Ultrasound images have a very different appear-
ance toMRI and CT images andwere not present in the pretraining dataset
at all.Hence,weuse this data to evaluate the generalizabilityof themethod to
a completely out-of-domain downstream task. The dataset consists of 100
breast US scans from an unreleased number of patients, with expert seg-
mentations for lesions. We split the data randomly into train (N = 70),
validation (N = 10), and test (N = 20) sets.

3D ViT-adapter
ViTs are typically more difficult to train relative to convolutional neural
networks (CNNs), especially in a supervised setting with limited training
data.This hasbeenattributed to the lackof inductive biases inViTs and their
larger number of trainable parameters60. In 3D medical imaging, this has
been partially overcome using vision-specific transformer networks, such as
the SwinUNETR21, which currently represents a state-of-the-art (SOTA) in
image segmentation. However, the formulation of vanilla ViTs enables
many of the improvements introduced in DINOv2 (such as the patch-level
objective, their version of FlashAttention, and sequence packing28), and has
been shown to scale well with dataset sizes61. Hence, instead of using a
vision-specific network, we convert the ViT-Adapter30,61–a popular
pretraining-free module that injects spatial information into standard ViT
networks–to 3D medical imaging inputs.

The ViT-Adapter was originally proposed for 2D pretrained ViT
networks as a way to introduce image-based inductive biases into the net-
work. By building on top of a vanilla ViT, the method is able to take
advantage of large-scale pretraining methods30. This method uses a simple
convolutional network called a Spatial Prior Module to extract local multi-
scale spatially relevant features from the original input. It uses a Spatial
Feature Injector (‘Injector’) to introduce the extracted multi-scale spatial
features into the features obtained from the pretrained ViT. A Multi-Scale
Feature Extractor (‘Extractor’) is then used to adapt the multi-scale features
based on the pretrained ViT features. Importantly, by using multi-scale
features, the method is able to output a feature pyramid much like typical
convolutional encoder networks62. Overall, the ViT-Adapter is able to
greatly improve vanilla ViTs for dense segmentation tasks and was used in
the original DINOv2 work as well.

To convert thismethod to 3D inputs, we first adjusted the Spatial Prior
Module to use 3D convolutions for extractingmulti-scale features in 3D. To
avoid resampling errors with the input sizes of the pretrained ViT network
(112×112×112), instead of using featuremapswith 1/8, 1/16 and 1/32 of the
original spatial input size (as 32 does not divide 112 evenly), we instead used
the scales 1/4, 1/8 and 1/16. Thus, the output of the spatial prior module is

F sp 2 R
HWD
43
þHWD

83
þHWD

163

� �
× F , for height, H, width, W, and depth, D, of the

input volume and the Transformer feature size, F.

The Injector and Extractor networks both rely on the Multi-Scale
DeformableAttention (MSDA) formulation of sparse attention63. Instead of
havingbothquery and keys in standard self-attention enumerate all possible
spatial locations in an input image, each query in MSDA only attends to a
fixed, small number of keys (K ¼ 4). Then, the value features are obtained
by sampling the feature map at learnable offset locations. We converted
MSDA to 3D inputs by inputting 3D feature maps, and learning an addi-
tional deformable offset for the depth axis. We adapted the core 3D
deformable attention operation to permit 3D inputs, and enabled non-
integer deformable offsets by performing trilinear interpolation on 3D
feature maps.

Our implementation makes key changes from the original MSDA
when initializing bias parameters for the linear projection predicting the
deformable offset. The original 2D work offsets bias for each attention head
so that the initial offsets have equal angular separation. For example, with 8
attention heads, the initial offset per head, Oinit�2D, is described in Eq. (3).

Oinit�2D ¼ �k; �kð Þ; �k; 0ð Þ; �k; kð Þ; 0; �kð Þ; 0; kð Þ; k; �kð Þ; k; 0ð Þ; k; kð Þ� �

ð3Þ

For each key, k 2 f1; 2; . . . ;Kg, making the angular separation for
each offset vector 45 degrees. The key intention of this form of initialization
is to ensuremore even coverage of the featuremapwhen sampling for value
features. With no direct way to extend this into 3D without introducing an
intractable number of attention heads, we fix the attention heads to 8, and
initialize the bias to have initial offsets pointing towards each 3D octant.
Concretely, the initial offset per head in 3DMSDA,Oinit�3D, is described in
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Eq. (4).

Oinit�3D ¼ fð�k; �k; �kÞ; ð�k; �k; kÞ;
ð�k; k; �kÞ; ð�k; k; kÞ; ðk; �k; �kÞ;
ðk; �k; kÞ; ðk; k; �kÞ; ðk; k; kÞg

ð4Þ

Per key, k. The difference between 2D and 3D initialization is visually
demonstrated in Supplementary Fig. 11.

Multi-channel finetuning inputs
Pretraining experiments were conducted on single-channel input images.
During pretraining,multi-channel unlabelled inputswere split into separate
input images. However, some downstream tasks in medical imaging (such
as BraTS) benefit from using multiple co-registered modalities to provide
complementary information and contrast. The issue of adapting a single-
channel pretrained network to multi-channel inputs rarely arises for large
2D natural image datasets, as pretraining and all downstream tasks tend to
remain in RGB color space (3 channels).

We adopted a simple channelmixingmethod to address this. Tomake
full use of the pretrained weights, which have been specifically tuned on
single-channel inputs, we did not adjust the patch embedding layer of the
ViT. Instead, we passed each image channel through the network indivi-
dually andobtained a feature vectorper channel. Specifically,we converted a
single input with C channels, RC ×H ×W ×D, into C single channel inputs,
RC × 1 ×H ×W ×D. These channels were individually passed through the
pretrained model to obtain patch-level representations per channel of size:
RC ×Np × F , where Np is the total number of patches comprising the input,
and F is the ViT feature dimension. These features were then concatenated
along the feature dimension, R1 ×Np × FCð Þ, and finally passed through a
linear layer mapping back to the original transformer feature size, and a
Gaussian error linear unit (GELU)64 activation function. The resulting
patch-level feature vectors,R1 ×Np × F , are passed to the decoder network for
downstream dense segmentation tasks.

In practice, we can parallelize the operation passing each channel
through the network independently by reshaping the input so that channels
form part of the mini-batch (i.e. an input of shape RB×C ×H ×W ×D is
reshaped to RðBCÞ × 1 ×H ×W ×D for batch size, B). Generally, we expect the
spatial information of multi-channel inputs to be relatively similar between
co-registered channels. Thus, to maintain tractability and reduce redun-
dancywhen training theViT-Adapter, themulti-channel features output by
the frozen pretrained Transformer blocks were averaged along the channel
dimension before being passed to the Injector andExtractormodules. Then,
the resulting spatial informationoutput from the Injector is copied along the
channel dimension before being added to the Transformer features (Sup-
plementary Fig. 12). After being passed fully through the ViT, these features
were also concatenated and linearly mapped to the original Transformer
feature size. This channel mixingmethod led tomarked benefits even when
we used single-channel pretrained weights on multi-channel segmentation
tasks (Supplementary Table 29).

3DINO segmentation finetuning
3DINO segmentation experiments were conducted using the 3DINO-ViT
weights learned from high-resolution adaptation. 3DINO-ViT was frozen,
and the ViT-Adapter module and a UNet-like convolutional decoder were
trained on the dense segmentation task (Supplementary Fig. 1a). Corre-
sponding to the pretraining input size, these experiments also used inputs of
size 112 × 112 × 112. To evaluate the label efficiency of the pretraining
method, we extracted a random subset of the finetuning train sets (with the
same random subset taken between experiments).

These finetuning experiments used a batch size of 8, and were con-
ducted on one A100-SXM4-80GB GPU. The base learning rate was set to
0.0001, and finetuning was conducted for 30,000 iterations (regardless of
input dataset size). We used the AdamW65 optimizer with default β and
weight decay and a LinearWarmupCosineAnnealing scheduler with 3,000

warmup iterations. For BraTS, we used the Dice loss function, and for
BTCV, LA-SEG, and TDSC-ABUS, we used Dice-Cross-Entropy. For all
finetuning experiments, we used the validation set to select the best model
epoch from training and reported results on the test set. To create final
segmentation logits for testing, we strided a sliding window over the full
image with an overlap between images of 0.75.

The decoder took in the four-level feature pyramid output from ViT-
Adapter and used UNet-like transposed convolutions for upsampling fol-
lowed by encoder-decoder connections62. The decoder consisted of four
layers with feature size 256, 128, 64, 32 before mapping to the number of
segmentation classes. The ViT-Adapter broke the 3DINO-ViT encoding
layers into four blocks each containing 6 Transformer layers, and used 8
MSDA heads. The feature size for ViT-adapter operations was 256, or 25%
of the full ViT feature size to reduce computational complexity.

SOTA segmentation finetuning comparisons
The Random encoder network is converted to perform segmentation by
adding a convolutional decoder taken from Hatamizadeh et al.66 and
adapted to a ViT-Large by taking the output of the 6th, 12th, 18th, and 24th
ViT layer (Supplementary Fig. 1d). Both the encoder and decoder were
tuned end-to-end. These networks otherwise used the same parameters as
pretrained initialization.

Segmentation experiments using the SOTA Swin Transfer, Swin
Transfer-FD and Swin Random encoders are conducted by attaching the
SwinUNETR decoder network21 (Supplementary Fig. 1e-g). As done in the
original work, the full SwinUNETR was tuned end-to-end. The input size
used for segmentation corresponded to the image size used for pretraining,
96 × 96 × 96. The same subsets of the finetuning datasets used for 3DINO
segmentation were taken in these experiments. Experiments tuning the
Swin Transfer and Swin Random networks on BTCVused a batch size of 8,
with BraTS experiments using a batch size of 4 (largest power of 2 without
running intomemory errors). All experiments are conducted on one A100-
SXM4-80GB GPU. Since the original network was trained on single-
channel inputs, we employed the same multi-channel adaptation strategy
for experiments onBraTS.Thepretrainedweightswereoriginally trainedon
CT images with intensity normalized to a range of [0, 1]. Segmentation
experiments using the Swin Transfer network are thus also normalized to
this range to better take advantage of pretraining. All other parameters
remained consistent with 3DINO segmentation experiments.

We performed segmentation using the MONAI-ViT and MIM-ViT
networks in the same way as the 3DINO-pretrained network (Supple-
mentary Fig. 1b, 1c). The pretrained ViT was frozen, with the ViT-Adapter
and decoder being trained. The input size for these experiments was 96 ×
96 × 96 to match pretraining image size. All other parameters were
consistent.

Linear decoder segmentation
To perform the lightweight linear decoder experiments for segmentation,
the pretrained network was frozen, and a two-layer linear network was
trained. The first linear layer was the multi-channel projection linear layer.
The second layer mapped to the number of segmentation classes, taking
concatenated patch representations from the final four ViT layers as input.
The output of the linear decoder was a low-resolution volume of class logits
(for example, for an input image of size 96 × 96 × 96 and a patch size of
16 × 16 × 16, the model would output a 6 × 6 × 6 map). This volume was
upsampled using trilinear interpolation to the original image size to obtain
pixel-wise segmentation logits, which are compared with the ground truth
mask (Supplementary Fig. 13). The linear decoder experiments used a base
learning rate of 0.001 and a batch size of 16. Other parameters, including
optimizer, scheduler, iterations trained, and loss functions remained con-
sistent with 3DINO segmentation experiments. We did not use Swin
Transfer and Swin Random for these experiments as their final repre-
sentation map was highly downsampled (only a 3 × 3 × 3 map for the
96 × 96 × 96 input).
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Linear classification probing
Classification experiments are conducted with the four pretrained models
investigated in this study: 3DINO-ViT, MONAI-ViT, Swin Transfer, and
Swin Transfer-FD. In all cases, linear probing on frozen pretrained weights
was performed similarly to the original DINOv2 by using a grid search on
three key parameters: the learning rate, the number of final ViT layer out-
puts to concatenate, and whether the averaged patch tokens are con-
catenated to the ½CLS� token.As in the original work, the learning rates were
searched in the set 0:0001; 0:0002; 0:0005; 0:001; 0:002; 0:005;f
0:01; 0:02; 0:05; 0:1; 0:2; 0:3; 0:5g, number of output layers in 1; 4f g and
averaged patch token concatenation in True; Falsef g. The best parameters
based on validation performance were then used for evaluating on the
test set.

The Swin Transfer and Swin Transfer-FD networks do not train a
½CLS� token for forming image-level representations. To probe the image-
level representations from these pretrainedweights, we extracted the output
from the pretrained contrastive coding head of the network. As with seg-
mentation experiments, the input images to the pretrained Swin Transfer
network were normalized between [0, 1].

Classification experiments were conducted for 12,500 iterations with
input sizes that match what was originally used to pretrain the models. All
experiments used a batch size of 32, and were conducted on one A100-
SXM4-80GB GPU. We used the SGD optimizer with a momentum of 0.9
and 0 weight decay, a cosine annealing learning rate scheduler, and Cross-
Entropy loss. As with segmentation experiments, we extracted a random
subset of the finetuning train sets to test reliance on labeled data.

Visualization methods
No images were registered to atlases for pretraining, finetuning, finetuning
visualizations, or unsupervised visualizations. To create our principal
component analysis (PCA) visualizations, we took the features output by
3DINO-ViT at each 16 × 16 × 16 patch location. We flattened the spatial
dimension of these features and performed PCA to reduce the feature
dimension. The first PCA component typically separates the image fore-
ground and background, and a simple threshold was taken to color back-
ground regions for visualization. Then, the next three PCA components at
each patch locationwere represented by the red, green, and blue channels of
an RGB image, respectively. This color-coded representation offers an
intuitive way to interpret the contribution of each principal component
(variance axis) to the overall structure of the images. We additionally
extracted the multi-head self-attention (MHSA)map of one attention head
on the ½CLS� token of the final 3DINO-ViT Transformer layer to visualize
regions of interest. This map describes the relative attention given to each
patch for generating image-level representations.

Impact of high-resolution adaptation ablation study
To explore the impact of high-resolution adaptation, we took the model
pretrained with 96 × 96 × 96 image size for 125,000 iterations (‘Low-res’),
and compared it against 3DINO-ViT, which was pretrained for 112,500
iterations at 96 × 96 × 96 image size, and adapted for high resolution at
112 × 112 × 112 image size for 12,500 iterations (same total training itera-
tions). We evaluate these models on BTCV and BraTS segmentation using
the linear decoder at 96 × 96 × 96, 112 × 112 × 112, 128 × 128 × 128, and
144 × 144 × 144 input sizes (Supplementary Table 28). To ensure this
ablation examines image resolution, we ensure each crop covers an
equivalent volume of the original image via resizing. For example, the ori-
ginal image in the 144 × 144 × 144 experiment is resized 144/96 = 1.5 times
larger than the 96 × 96 × 96 experiment. We found that high-resolution
adaptation improves the quality of patch-level features for segmentation,
especially for high input resolutions.

Impact of channel mixing ablation study
To explore the impact of the proposed channelmixingmethod to adapt from
single-channel pretrainedweights tomulti-channel segmentationdatasets, we
compare against using a standard finetuning method–reinitializing the ViT

patch embedding layer to permitmulti-channel inputs using randomweights
and tuning the layer. We perform experiments on the only multi-channel
segmentation task (BraTS) at three dataset percentages (1%, 10% and 100%;
Supplementary Table 29).Wefind that the proposed channelmixingmethod
takes better advantage of pretrainedweights, especially at lower data sizes.We
expect this is because reinitializing the embedding layer substantiallymodifies
the distribution and meaning of features seen by later ViT layers.

Impact of 3D ViT-adapter ablation study
To explore the impact of the 3DViT-Adapter segmentation decodermodel,
we compare it against using a standard UNETR decoder. We perform
experimentswhere the 3DINO-ViT encoder is tuned and frozen, and report
results on BTCV at all dataset percentages (Supplementary Table 30). We
found that tuning 3DINO-ViT leads to overfitting and poor performance in
small data sizes, and that the 3D ViT-Adapter outperforms the other
comparisons.

Impact of multimodal dataset ablation study
To assess the importance of a mixed multimodal dataset versus modality-
specific pretraining, we pretrain only on the MRI data in our dataset using
3DINO. We match the standard pretraining settings of 3DINO (96 × 96 ×
96 image size), butpretrain only 37,500 iterations due to computational cost.
To form a fair comparison, we take the checkpoint pretrained on the full
dataset for the same number of iterations, and evaluate using the linear
decoder on BTCV and BraTS (Supplementary Table 31). Training using a
diverse dataset enhances representations for 2D natural images28, and we
found similarly that mixed modalities seem to benefit feature salience.
Notably for the MRI-only model, the drop in performance is smaller on
BraTS than BTCV.

Statistical analysis
Error bars and 95% confidence intervals are computed using 1000 boot-
strapped samples from scan-wise Dice and HD95 metrics (for segmenta-
tion) and AUC and F1 scores from five independent and randomized runs
(for classification). Subsets drawn from the full labeled dataset are rando-
mized across all five classification runs, but remain consistent across the
compared pretraining methods. For segmentation results, statistical sig-
nificance is computed using a paired nonparametricWilcoxon test on Dice
score and HD95 obtained per scan. For classification, significance is com-
puted via an unpaired Welch’s t-test against AUC and F1 scores from the
five runs. Statistical tests are implemented in relevant Python libraries
(Scipy, Seaborn), and visualizations are created using the Statsannotations
library.

Data availability
All external data used in this study can be obtained online. DOIs and
links to pretraining datasets can be found in Supplementary Table 1.
Finetuning datasets can be found as follows: BraTS (https://www.
synapse.org/Synapse:syn25829067/wiki/610863), BTCV (https://www.
synapse.org/Synapse:syn3193805/wiki/89480), LA-SEG (https://www.
cardiacatlas.org/atriaseg2018-challenge/atria-seg-data/), TDSC-ABUS
(https://tdsc-abus2023.grand-challenge.org/), ICBM (https://ida.loni.
usc.edu/collaboration/access/appLicense.jsp), COVID-CT-MD (https://
figshare.com/collections/COVID-CT-MD_COVID-19_Computed_
Tomography_CT_Scan_Dataset_Applicable_in_Machine_Learning_
and_Deep_Learning/5129081).

Code availability
Full 3DINO code can be found at https://github.com/AICONSlab/3DINO
with documented instructions for performing pretraining, finetuning,
unsupervised visualization, and simplemodel inference. 3DINO-ViTmodel
weights will be made available upon paper acceptance.
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