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Large language models driven neural
architecture search for universal and
lightweight disease diagnosis on
histopathology slide images
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Artificial Intelligence has revolutionized healthcare by offering smart services and reducing diagnostic
burden, particularly facilitating the identification and segmentation of malignant tissues. However,
current task-specific approaches require disease-specificmodels, while universal foundationmodels
demand costly customization for complex cases, hindering practical deployment in clinical
environments. We present Pathology-NAS, a universal and lightweight medical analysis framework
that leverages LLMs’ knowledge to refine the architecture space across diverse scenarios, eliminating
the need for exhaustive search. Pathology-NAS is pretrained on 1.3 million images across three
supernet architectures, providing a robust visual foundation that generalizes across diverse tasks.
Across breast cancer and diabetic retinopathy diagnosis tasks, Pathology-NAS achieves 99.98%
classification accuracy while reducing FLOPs by 45% compared to leading methods. Our model
delivers near-optimal architectures in just 10 iterations, bypassing the exponential search space.
Pathology-NAS provides accurate tumor recognition across diverse tissues with computational
efficiency,makingAI-assisteddiagnosis practical even in resource-constrainedclinical environments.

Cancer remains one of the most formidable challenges in contemporary
medicine, with its diverse manifestations and multifaceted etiologies. His-
topathology image analysis is crucial in risk prevention and crisis man-
agement of aggressive tumor progression, commonly characterized by rapid
growth, dynamic molecular changes and high metastatic potential across
different organs. Historically, the cancer prediction and prognosis have
relied heavily on morphological criteria and tissue-based examinations.
However, these methods are time-consuming and depend on expertise
knowledge and specific behaviors of certain tumors. According to a recent
report from the GLOBOCAN1, over the past 10 years, more than 200 types
of all recorded cancers, 18% of related deaths (about 95 million) and
2.3–2.5% of related global economic losses (US$ 20 trillion) were con-
sequences of malignant tumors or their complications.

Artificial intelligence (AI), emerging as a revolutionary technology, has
unleashed the potential to provide automated and intelligent solutions for
medical imaging analysis. Histopathology slides provide high-resolution
tissue observations with rich cellular and morphological information,

making them ideal candidates for AI analysis2. The conventional approach
for analyzing these data is through task-specificdeep learningmodels,which
generate diagnostic predictions based on supervised learning from anno-
tated images3.However, thesemethods, evenwhen implementedwith state-
of-the-art architectures, restrict adaptability to specific cancer types and
anatomical regions4,5, requiring separatemodels for eachdiagnostic scenario
(Fig. 1a). Alternative approaches include CeoGraph3, a cell-graph model
attempts to address this limitation bymodeling cellular spatial organization.
These methods identify key morphological features by correlating spatial
patterns with patient symptoms, but depend heavily on precise computa-
tional staining and cell locationdetection. They provide valuable insights for
specific cancer types but fail to generalize across the spectrum of pathology
images due to heavy cost5.

Large language models (LLMs) and vision foundation models6,7 have
been widely applied in recent years to pathology analysis4,8. These methods
leverage large corpora of diverse medical images to train generalizable
models in an end-to-end fashion, dispensing with task-specific
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architectures. They have proved promising for universal medical image
analysis asmeasured by cross-domain generalizationmetrics9. A significant
advance in this direction has been the SegmentAnythingModel (SAM) and
its medical adaptation MedSAM4, which generates prompt-based seg-
mentations adaptable to diverse medical contexts. In evaluations across
multiple datasets, MedSAM demonstrated superior versatility compared to
task-specific models10. However, for complex pathological analysis, foun-
dation models face significant challenges in practical deployment, particu-
larly due to the need for high-cost customization to address diverse and
intricate cases. This customization, coupled with immense web-scale data
requirements and billions of model training parameters, demands

substantial computational resources, energy, and storage11,12, limiting their
deployment into clinical practice. Therefore, it is of great urgency and
importance to develop a universal and lightweight pathology image analysis
solution tailored for clinical practice.

In this work, we present Pathology-NAS, a universally lightweight
medical image analysis framework (Fig. 1b) that accurately identifies
malignant tissue sections and predicts tumor categories across diverse his-
topathology slide images. Pathology-NAS aims to automatically optimize
model design across diverse diagnostic tasks, achieving 99.98%classification
accuracy in breast cancer and diabetic retinopathy diagnosis while reducing
computational cost by 45% compared to leading methods. Pretrained on

Fig. 1 | The primary strength and overall framework of Pathology-NAS.
a Pathology NAS is trained on a large-scale corpus of medical image datasets.
PrevIoUs specific disease solutions require to design customized model for each
disease, lacking enough generalization capabilities. While universal foundation
models are trained on data covering numerous anatomical structures, high-cost
customization for complex cases is still required. Compared with disease-specific

methods and existing universal foundation models, Pathology-NAS holds advan-
tages in automated versatility and lightweight model design. b Overview of
Pathology-NAS, a universally medical image analysis framework driven by LLM-
assisted neural architecture search. Pathology-NAS significantly benefits from large-
scale generic supernet pretraining, neural architecture fine-tuning and validation on
diverse pathology datasets, and LLM-assisted architecture search.

https://doi.org/10.1038/s41746-025-02042-x Article

npj Digital Medicine |           (2025) 8:682 2

www.nature.com/npjdigitalmed


large-scale generic images via a supernet, Pathology-NAS identifies near-
optimal architectures in just 10 iterations guided by insights from large
language models (LLMs), bypassing the 420 configurations of traditional
exhaustive search. Deployable in resource-constrained clinical settings, it
recognizes tumors across varied tissues, which is a promising solution to
enhance AI-driven cancer prediction and prognosis worldwide.

Results
Pathology-NAS: a universally lightweightmedical image analysis
framework
Pathology-NAS is designed as a versatile and lightweight medical image
analysis framework, leveragingLargeLanguageModel (LLM)-drivenneural
architecture search (NAS) to achieve optimal performance across diverse
pathology datasets, as presented in Fig. 1. The primary goal of Pathology-
NAS is to address the limitations of existing deep learning models that are
often tailored to specific tasks, lacking generalization across different
pathology types and imaging modalities.

To achieve this, we employ a novel one-shot NAS strategy guided by
insights from LLMs, specifically utilizing GPT-4 to drive the architecture
search process. The framework begins by pretraining a Supernet on a large-
scale pathology image dataset, capturing a wide range of visual features.
Each subnet path is uniformly sampled during this phase to ensure a fair
estimation of its performance. After pre-training, GPT-4 assists in identi-
fying the optimal architecture by iteratively refining the model configura-
tions based on performance feedback.

Through extensive evaluations, Pathology-NAS has demonstrated
superior performance in both image classification and segmentation tasks,
as presented in Tables 1 and 2. Compared with competitive baselines,
Pathology-NAS achieves 99.98% classification accuracy while reducing
FLOPs by45%across breast cancer anddiabetic retinopathydiagnosis tasks.
This approach significantly reduces the computational burden typically
associatedwith exhaustive search strategieswhile enhancing the adaptability
of the model to various pathology tasks. The lightweight nature of
Pathology-NAS ensures that it can be effectively deployed in practical
clinical environments where computational resources may be limited.

Qualitative and quantitative analysis
We evaluated Pathology-NAS on medical image recognition and segmen-
tation tasks across four histopathology slide datasets. Particularly, we
compare our approach with specialized SOTA classification models
ResNet13, EfficientNet14 and Swin-Transformer15, as well as segmentation
models U-Net16 and FPN17. For convolution-basedmodels, eachmodel was
trained from scratch on a modality-wise image dataset, such as diabetic
retinopathy dataset. The training protocol follows the same setting in
Pathology-NAS approaches. During inference, these specialized models
were leveraged to conduct cancer diagnosis and malignant tissue segmen-
tation. For convolution-based classification and segmentation models, we
trained them from scratch on pathology datasets. For ViT classification
models Swin-Transformer, we finetune it on pathology datasets, while the
pretrained weights were downloaded from the official implementation of
timm library (https://huggingface.co/docs/hub/timm).

Tables 1 and 2 shows the overall performance of Pathology-NAS
against SOTA classification and segmentation models, respectively. As
shown in1, ourmethodhavedemonstrated superiorperformanceunder the
constraint ofmodel complexity.With the optimal architectures searched by
GPT-4, ShuffleNet achieves the 99.98% top-1 accuracy onBreakHis and the
highest 73.22% top-1 accuracy ondiabetic datasets.ViT achieves the 98.08%
top-1 accuracy on BreakHis and the highest 70.38% top-1 accuracy on
diabetic datasets. Meanwhile, the searched models holds relatively lower
FLOPs and model parameters. Note that swin-transformer shows extra-
ordinary performance after finetuning, due to the rich inherent knowledge
frompretraining on large-scale datasets.However, the optimal architectures
in ourmethodwere retrained from scratch on downstreamdatasets, further
showcasing excellent adaptability andperformance throughNAS. Similarly,
the searched U-net architecture have achieved the best performance in
terms of dice coefficient and IoU score, which might be attributed to the
capacity of capturing multi-scale context and searching the optimal archi-
tectures. A suite of visualized segmentation examples are presented in Fig. 2,
which showcases that Our segmentation model achieved results closely
resembling the ground truth segmentationmasks, surpassing the other two
methods.

Table 1 | Image classification performance compared with SOTA models

Models BreakHis Diabetic

Prec@1 (%)↑ FLOPs↓ Params (M)↓ Prec@1 (%)↑ FLOPs↓ Params (M)↓

EfficientNet 88.63 384.60M 3.97 69.52 384.61M 3.97

ResNet 95.10 4.13G 23.51 70.48 4.13G 23.52

Pathology-NAS ShuffleNet(ours) 99.98 213.30M 1.80 73.22 240.25M 2.10

ViT-small 87.33 4.25G 25.19 67.71 4.25G 21.59

Swin-Transformer 83.59 15.17G 86.68 54.69 15.17G 86.68

Pathology-NAS ViT(ours) 98.08 4.95G 25.12 70.38 4.13G 20.99

For ShuffleNet backbone, Pathology-NAS is compared with EfficientNet and ResNet in terms of Top-1 accuracy, FLOPs and Params. For ViT backbone, Pathology-NAS is compared with ViT-small and
Swin-Transformer in terms of Top-1 accuracy, FLOPs and Params. The best performance is highlighted in bold. Pathology-NAS achieves the highest performance with the lowest FLOPs and parameters.

Table 2 | Image segmentation performance compared with SOTA models

Search strategy BCSS PanNuke

Dice (%)↑ IoU (%)↑ FLOPs (G)↓ Params (M)↓ Dice (%)↑ IoU (%)↑ FLOPs (G)↓ Params (M)↓

U-Net 71.56 56.33 14.80 18.44 84.93 74.99 14.80 18.44

FPN 72.30 57.21 17.00 11.49 88.45 80.07 17.00 11.49

Pathology-NAS U-
Net(ours)

74.33 59.68 10.58 11.37 89.24 81.25 14.33 8.34

For U-Net backbone, Pathology-NAS is compared with U-Net and FPN in terms of dice score, IoU score, FLOPs and Params. The best performance is highlighted in bold. Among all methods, Pathology-
NAS holds the optimal segmentation performance with the lowest FLOPs and parameters.
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The quantitative results on the PanNuke dataset across its 16 diverse
tissue types, demonstrating that Pathology-NAS effectively supports a wide
range of tissues by discovering superior and efficient architectures. Com-
pared to Random Search (Supplementary Table 3), Pathology-NAS iden-
tifies more efficient architectures (i.e., reducing FLOPs by approx. 19.1%)
while achieving superior segmentation, such as in Bile duct tissue (Dice:
88.53% vs. 81.71%). Furthermore, against non-searched baselines like
U-Net and FPN (Supplementary Table 4), Pathology-NAS demonstrates
improved performance with significantly fewer resources; for instance, it
achieved a 5.4% Dice improvement over U-Net on Bile duct tissue with
12.1% fewer FLOPs, and a 71.5% FLOPs reduction compared to FPNwhile
maintaining better performance

As shown in Fig. 3, the qualitative visual results presented further
substantiate the effectiveness of Pathology-NAS. As highlighted by the red
boxes in the visualizations, both U-Net and FPN exhibit common failure
modes, including inaccurate delineation in Bile duct and Thyroid tissues,
missed segmentations in Stomach and HeadNeck samples, and excessive
adhesion between targets in Ovarian and Skin tissues. Pathology-NAS
successfully mitigates these failure modes, demonstrating more robust and
accurate segmentation.

Pathology-NAS shows competitive performance with higher
computational efficiency
One-shot NAS approaches are a set of NAS strategies that leverages weight
sharing for architecture search in discrete space. Theweight sharing strategy
is of great significance to avoid training each subnet from scratch. However,
the search process is still exhausting. For example, NSE-NAS18 conducts
architecture search within 27 OPs and 5 layers, the total number of possible
architectures Narch ≈ 1.4 × 10110. The most obvious distinction between
previous one-shot approaches and our approaches is the architecture search
process drivenbyGPT-4.We resort to inherent knowledgeof large language
models for selecting network candidates, not other manual search strategy.
In this experiment, we compare the retraining performance of searched
architectures obtained from our approaches and representative one-shot
NAS approaches, including evolutionary search in SPOS19, AutoFormer20

and Cream21. The implementation of evolutionary search in SPOS and
AutoFormer follow the same setting. The population size is set to 50, while

the number of generations is set to 20. Each generation we pick the top 10
architectures as the parents to generate alternative subsets by mutation and
crossover. The mutation probability Pd and Pm are set to 0.2 and 0.4 as in
AutoFormer. The search space in Cream includes mobile inverted bottle-
neck MBConv22 and squeeze-and-excitation networks23. The experimental
setup is consistent with the original paper, including training and search
process of hypernetwork and subnetwork retraining.

Weprovided a detailed breakdownof the computational costs, including
the NAS time (GPU hours), total time (GPU hours), GPT-4 API calls (which
occur only during the NAS phase), search iterations, model latency (hours),
andAPI cost ($) for these respective tasks.As shown inTables 3–5, our results
show that Pathology-NAS achieves significant search efficiency improve-
ments, requiring 3–9 × less search time while discovering architectures with
superior performance compared to traditional methods. As seen from the
Total Time (TT) in Table 3, the GPT-4 search latency is negligible.

For instance, for ShuffleNet on BreakHis (Table 3), Pathology-NAS
identifies superior architectures in 10 iterations (search time 7.42GPUhrs),
achieving 99.98% ± 0.27 Top-1 accuracy, incurring a total latency of 0.001
over 10 calls and a total API cost of $0.13. This is achieved with 213.30M
FLOPs for the final model’s inference, which does not involve GPT-4. In
comparison, other NAS methods (i.e., Random Search, Cream, Auto-
Former) detailed in Tables 3–5 often require more iterations (i.e., Random
Search: 500; Cream: 120; AutoFormer: 300) and longer search times (see
tables for details) for comparable or lower accuracies. Furthermore, we also
conducted a comprehensive cost analysis for theZenodo lung cancer dataset
(Table 5). Similarly, we performed a cost analysis for the Gastric Cancer
dataset, with results presented in Table 4. Our results demonstrate that
Pathology-NAS effectively discovers superior architectures while main-
taining computational efficiency.

LLM response with controllable sampling helps stabilize perfor-
mance improvement
Recent advanced alignment techniques, such as Reinforcement Learning
with Human Feedback (RLHF)24 and Direct Preference Optimization
(DPO)25 algorithms, have been adopted to generate controllable and
adjustable content. In essence, these operations are to selectively utilize LLM
knowledge at different level and scale by setting various parameters. The

Fig. 2 | Quantitative and qualitative segmentation examples on BCSS and Pan-
Nuke segmentation datasets. a Comparison of segmentation results with U-Net
and FPN on BCSS. b Comparison of segmentation results with U-Net and FPN on
PanNuke. Our Pathology-NAS outperforms other two representative methods on
both datasets. c Comparison of visualized segmentation examples on BCSS,
including lung and breast tissues. d Comparison of visualized segmentation

examples on PanNuke, including skin and bile duct tissues. It can be observed from
segmentation examples that Pathology-NAS most closely resemble the ground
truth, accurately delineating the distribution of different anatomical structures. Our
method not only fully covers the target regions that need to be labeled but also
meticulously distinguishes the boundaries between the target regions and the
background regions.
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sampling temperature in GPT-4 is used to control the randomness and
diversity of LLM output. Larger values like 1.5 increase the randomness of
response, while smaller values like 0.8 will make it more controllable.
Consequently, the diversity of LLM response will inevitably affect network
candidate recommendation and the process of architecture search. In this
experiment, we seek to investigate the impact of GPT sampling temperature
on architecture search.We choose the value of 0 and 1 respectively, where 0
means greedy sampling for deterministic results and 1 allows partial
diversity. We apply these two temperature values on classification and
segmentation tasks across all of the datasets in this study.

The iterative validation results during search and fine-tuning stage are
presented in Fig. 4. From Fig. 4a, b, it can be observed that neural

architectures of ViT are iteratively refined for better performance via the
interaction with LLMs. The optimal architecture with best performance is
obtained at thefinal round.This canbe attributed tomassive knowledge and
complex reasoning abilities of LLMs. Those two curves in each figure
demonstrate generation diversity controlled by sampling temperature.
Stable andmonotonically increasing performance improvement is obtained
under the condition of temperature 0. By contrast, temperature 1 indicates
more diversity and randomness, resulting in more obvIoUs performance
fluctuations. As shown in Fig. 4c–f, architecture search for ShuffleNet and
U-Net also exhibit similar tendency. Nevertheless, the performance fluc-
tuations of these two models are smaller, which implicitly highlights the
challenging stable training of vision transformers.

Fig. 3 | Individual quantitative and qualitative segmentation examples on the
PanNuke dataset. The figure presents Dice score comparisons (bar charts) and
visualized segmentation examples (Original, GroundTruth, Pathology-NAS (Ours),
U-Net, FPN) for sixteen distinct tissue types. The masks generated by Pathology-
NAS (Ours) generally exhibit a closer alignment with the ground truth annotations,
particularly in accurately delineating intricate structures and reducing errors such as

over-segmentation when compared to U-Net and FPN. This visual assessment is
supported by the quantitative Dice scores, where our method often shows improved
or competitive performance across the various tissue types. The red boxes are used to
highlight common failure cases in the FPN and U-Net results, such as missed
segmentation, incorrect segmentation, and excessive adhesion between different
targets, areas where Pathology-NAS (Ours) often demonstrates more robust results.
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Expert prompt identified high-performing architectures with
fewer search iterations
We conducted a comprehensive study to investigate the impact of prompt
strategies on the search process and retrained architecture’s performance,
comparing three distinct approaches:

• Expert Prompt(Ep): Our proposed strategy, whereGPT-4 is explicitly
instructed to act as an “AI expert specializing in Neural Architecture
Search for medical image analysis”, equipped with detailed context
about the Supernet, search space, task, and historical perfor-
mance data.

Table 3 | Detailed search cost and classification performance comparison for one-shot NAS methods on the BreakHis and
Diabetic datasets

Dataset: BreakHis

ShuffleNet backbone ViT backbone

Metric Random search Cream Pathology-NAS Random search AutoFormer Pathology-NAS

Iterations ↓ 500 300 10 500 300 10

GPT-4 API Calls 0 0 10 0 0 10

FLOPs ↓ 275.96M 442.99M 213.30M 4.42G 1.28G 4.95G

Prec@1 (%) ↑ 95.21 ± 0.34 97.13 ± 0.41 99.98 ± 0.27*** 95.67 ± 0.22 96.21 ± 0.39 98.08 ± 0.26***

API Cost ($) 0.00 0.00 0.13 0.00 0.00 0.17

Latency (hrs) 0.000 0.000 0,001 0.000 0.000 0.001

ST (GPU hrs) ↓ 32.40 10.63 7.42 67.28 31.72 14.88

TT (GPU hrs) ↓ 32.400 10.630 7.421 67.280 31.720 14.881

Dataset: Diabetic

ShuffleNet Backbone ViT Backbone

Metric Random search Cream Pathology-NAS Random search AutoFormer Pathology-NAS

Iterations ↓ 500 120 10 500 300 10

GPT-4 API Calls 0 0 10 0 0 10

FLOPs ↓ 246.32M 440.07M 240.25M 4.77G 1.28G 4.13G

Prec@1 (%) ↑ 65.03 ± 0.59 70.31 ± 0.38 73.22 ± 0.34*** 58.47 ± 0.57 67.62 ± 0.24 70.38 ± 0.22***

API Cost ($) 0.00 0.00 0.12 0.00 0.00 0.18

Latency (hrs) 0.000 0.000 0.001 0.000 0.000 0.001

ST (GPU hrs) ↓ 10.90 1.43 1.16 22.76 11.24 6.12

TT (GPU hrs) ↓ 10.900 1.430 1.161 22.760 11.240 6.121

Results are averagedover 5 independent runs. The table presents a comprehensivebreakdownof searchcosts (Iterations,GPT-4APICalls, Latency (hrs), APICost ($), ST (GPUhrs), TT (GPUhrs)) alongside
key performance metrics (FLOPs, Prec@1 (%)) for Pathology-NAS compared with Random Search, Cream (for the ShuffleNet backbone), and AutoFormer (for the ViT backbone). Optimal values for
performance and lower values for costs are typically highlighted in bold where applicable. Statistical significance of Pathology-NAS Prec@1 (%) performance compared to Random Search (assessed by
independent two-sample Welch’s t tests) is denoted by: ***p < 0.001 (very highly significant). Prec@1: Top-1 accuracy.
ST Search Time, TT Total Time, TT = ST+ Latency, Prec@1 Top-1 accuracy.

Table 4 | Detailed search cost and classification performance comparison for one-shot NAS methods on the Gastric Cancer
datasets

Dataset: Gastric Cancer

ShuffleNet backbone ViT backbone

Metric Random search Cream Pathology-NAS Random search AutoFormer Pathology-NAS

Iterations ↓ 500 120 10 500 300 10

GPT-4 API Calls 0 0 10 0 0 10

FLOPs ↓ 286.16M 430.04M 259.14M 4.25G 4.82G 4.25G

Prec@1 (%) ↑ 62.47 ± 0.21 54.88 ± 0.28 63.15 ± 0.25*** 40.62 ± 0.30 41.40 ± 0.12 43.04 ± 0.23***

Prec@5 (%) 98.61 ± 0.25 98.05 ± 0.31 98.99 ± 0.31** 93.57 ± 0.33 93.75 ± 0.25 94.28 ± 0.02***

API Cost ($) 0.00 0.00 0.15 0.00 0.00 0.16

Latency (hrs) 0.0000 0.0000 0.0011 0.0000 0.0000 0.0010

ST (GPU hrs) ↓ 9.16 8.46 3.00 111.10 70.96 8.02

TT (GPU hrs) ↓ 9.160 8.460 3.001 111.100 70.960 8.021

Results are averagedover 5 independent runs. The table presents a comprehensivebreakdownof searchcosts (Iterations,GPT-4APICalls, Latency (hrs), APICost ($), ST (GPUhrs), TT (GPUhrs)) alongside
key performance metrics (FLOPs, Prec@1 (%), Prec@5 (%)). Optimal values for performance and lower values for costs are typically highlighted in bold where applicable. Statistical significance of
Pathology-NAS Prec@1 (%) and Prec@5 (%) performance compared to RandomSearch (assessed by independent two-sample Welch’s t tests) is denoted by: **p < 0.01 (highly significant), ***p < 0.001
(very highly significant).
ST Search Time, TT Total Time, TT = ST+ Latency, Prec@1 Top-1 accuracy, Prec@5 Top-5 accuracy.

https://doi.org/10.1038/s41746-025-02042-x Article

npj Digital Medicine |           (2025) 8:682 6

www.nature.com/npjdigitalmed


Fig. 4 | Quantitative evaluation results on pathology classification and
segmentation tasks. a–f The iterative performance for searching backbone model
architectures on classification and segmentation taskwith a temperature 0 and 1.We
repeat each experiment with 10 iterations for 3 times. It can be found that stable
increasing performance can be obtained under the condition of lower sampling

temperature. g–iThe comparison of our search strategywith random search strategy
in terms of performance (accuracy or IoU score) and FLOPs of the model. It can be
found that our LLM-driven search strategy has mostly achieved the optimal per-
formance with low model complexity.

Table 5 | Detailed search cost and segmentation performance comparison for one-shot NASmethods on BCSS, PanNuke and
Zenodo Lung datasets, with U-Net based backbone

Dataset: BCSS Dataset: PanNuke Dataset: Zenodo Lung

Metric Random search Pathology-NAS Random search Pathology-NAS Random search Pathology-NAS

Iterations ↓ 500 10 500 10 500 10

GPT-4 API Calls 0 10 0 10 0 10

FLOPs (G) ↓ 12.63 10.58 17.72 14.33 38.45 18.52

Dice (%) 70.41 ± 0.18 74.12 ± 0.22*** 88.24 ± 0.38 89.31 ± 0.44** 71.77 ± 0.46 73.94 ± 0.46***

IoU (%) 55.38 ± 0.20 59.45 ± 0.23*** 80.61 ± 0.47 81.30 ± 0.45* 59.97 ± 0.39 62.05 ± 0.31***

API Cost ($) 0.00 0.14 0.00 0.15 0.00 0.16

Latency (hrs) 0.0000 0.0005 0.0000 0.0004 0.0000 0.0005

ST (GPU hrs) ↓ 194.68 12.14 13.44 2.14 7.46 0.72

TT (GPU hrs) ↓ 194.680 12.141 13.440 2.140 7.460 0.721

Results are averagedover 5 independent runs. The table presents a comprehensivebreakdownof searchcosts (Iterations,GPT-4APICalls, Latency (hrs), APICost ($), ST (GPUhrs), TT (GPUhrs)) alongside
key performancemetrics (FLOPs, Dice (%)). Optimal values for performance and lower values for costs are typically highlighted in boldwhere applicable. Statistical significance of Pathology-NASDice (%)
and IoU (%) performance compared to Random Search (assessed by independent two-sample Welch’s t tests) is denoted by: ***p < 0.001 (very highly significant).
ST Search Time, TT Total Time, TT = ST+ Latency.
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• GenericAssistantPrompt (GAP):AbaselinewhereGPT-4 is prompted
as a generic AI assistant, asked to suggest architectures based on the
provided information without the specialized “expert” role.

• No System Prompt (NSP): A minimal approach where only the task-
specific information and historical data are provided, without any
explicit system-level instruction or role assignment.

As shown in Tables 9 and 10, EP-discovered architectures achieved
superior or comparable performance. For instance, with ShuffleNet on
BreakHis (Table 9), EP (ours) achieved 99.98% Top-1 accuracy, surpassing
GAP(95.32%)andNSP(94.73%). EPalsooften identified architectureswith
competitive or improved computational efficiency. As shown in Table 9, for
ViT on Diabetic, EP (ours) found an architecture with 4.13G FLOPs and
20.99M Params (achieving 70.38% Prec@1). In comparison, GAP yielded
an architecture with 4.95G FLOPs and 25.12M Params but achieved only
52.17% Prec@1, and NSP resulted in 4.95G FLOPs and 25.12M Params for
63.86% Prec@1. Furthermore, EP consistently found high-performing
architectureswith fewer iterations andAPI calls. As shown inTable 10, with
U-Net on PanNuke, EP (ours) averaged only 10 iterations and 1.6 API calls.
Thiswas significantlymore efficient thanGAP,which required15 iterations
(+50%) and 4.1 API calls (+156%), and NSP, which used 15 iterations
(+50%) and 2.3 API calls (+44%). The above observations indicate that
assigning an “expert” role could more efficiently exploit the potential NAS-
related knowledge of LLM.

Moderate fine-tuning after LLM reference accelerates the
searching process
Balancing the search cost (e.g, FLOPs and Params) and the final perfor-
mance of optimal architectures is often of great significance in NAS.

Especially for large-scale pathology slide datasets, performing a standard
search strategy for each candidate architecturemight be exhaustively costly.
In the context of LLM-assisted architecture search, it is equally critical to
manage the frequency of calling GPT-4 API and total search time. To be
specific, the question arises as to how many training epochs should be
conducted before feeding performance back to GPT-4. Consequently, we
conducted an experiment to investigate the trade-off between architecture
performance and training epochs. For each iteration, We finetune the
pretrained model for 10, 20, 30, 40 epochs, respectively, and give feedback
into LLM. The retraining strategy follows the same setting when training
epoch is set to 20.

Tables 6 and 7 show the model performance of re-trained ShuffleNet,
ViT, andU-netwithvarying training epochs, respectively. It canbeobserved
that finetuning for 20 epochs have provided adequate accuracy for infor-
mative feedback. After 20 epochs of finetuning for each query-and-response
iteration, almost all of the models explored in this paper have achieved the
best performance on the medical image datasets.The only exception was
fine-tuning the U-Net model for 30 epochs on the diabetic retinopathy
dataset. Furthermore, Simply increasing training epochs fail to enhance the
final accuracy but lead to a sharp increase during the search stage. As
illustrated in architecture performance of re-trained ShuffleNet, ShuffleNet
with 20 epochs offinetuning attains a 100%accuracywith 213MFLOPs and
1.80M params, outperforming 30 epochs-finetuning ShuffleNet with 305M
FLOPs and 2.76M params by 5.82% in terms of accuracy.

Pathology-NAS achieves a better trade-off between accuracy
and efficiency
In this experiment, we compared the accuracy progression of model
retraining with the discovered architecture with our method and other
search strategies. Figure 4 shows the distribution of top-1 accuracy and
FLOPs on BreakHis and Diabetic for searching ShuffleNet archi-
tectures. It can be observed from Fig. 4g that ShuffleNet with LLM-
driven search achieves the optimal accuracy/FLOPs trade-off. Speci-
fically, our solution obtains 96.77% top-1 accuracy on BreakHis with
213.3M FLOPs, superior to other methods. Figure 4h illustrates the
distribution of top-1 accuracy and FLOPs on BreakHis andDiabetic for
search ViT architectures. It is shown that model complexities vary
widely for architectures achieving comparable performance. However,
LLM-driven search still rivals or outperforms random search in terms
of performance across almost all FLOPs constraints. As is shown in Fig.
4i, evaluation results tends to exhibit a more dispersed distribution,
with a wide range of both IoU and FLOPs values. Among a large
number of cases, LLM-driven search generally dominates random
search methods with the same level of FLOPs constraints.

In our paper, the reported FLOPs measure the computational cost of
the discovered architectures during their inference stage only, without the
cost of the neural architecture search. It’s important to note that in our
approach, GPT-4 is only used during the initial NAS phase as a guiding
mechanism, involving a very limited number of calls (only 10 calls in our
experiments). GPT-4 is completely uninvolved in the subsequent model
training and inference stages. Therefore, there is a small, one-timeAPIusage

Table 6 | Image classification performance of re-trained
ShuffleNet and ViT with varying training epochs

Training
epochs

BreakHis Diabetic

ShuffleNet Prec@1
(%)↑

FLOPs
(M)↓

Params
(M)↓

Prec@1
(%)↑

FLOPs
(M)↓

Params
(M)↓

10 94.50 326.09 2.82 66.94 328.00 2.81

20 99.98 213.30 1.80 73.22 240.25 2.10

30 96.37 305.47 2.76 68.86 250.79 2.23

40 95.32 327.45 2.82 63.93 258.03 2.40

ViT Prec@1
(%)↑

FLOPs
(G)↓

Params
(M)↓

Prec@1
(%)↑

FLOPs
(G)↓

Params
(M)↓

10 97.63 5.35 27.19 48.63 4.95 25.12

20 98.08 4.95 25.12 70.38 4.13 20.99

30 96.78 4.77 24.24 66.12 4.13 20.99

40 96.90 5.00 25.42 64.75 4.95 25.12

We adjust the fine-tuning epochs with coverage from 10 to 40. The best metrics are highlighted in
bold. For both ShuffleNet and ViT search, Pathology-NASgenerally achieves the optimal re-training
performance when fine-tuning 20 epochs for each search iteration.

Table 7 | Image segmentation performance of re-trained U-Net with varying training epochs

Training epochs BCSS PanNuke

Dice (%)↑ IoU (%)↑ FLOPs (G)↓ Params (M)↓ Dice (%)↑ IoU (%)↑ FLOPs (G)↓ Params (M)↓

10 69.58 53.95 14.53 6.64 89.28 81.31 16.23 11.39

20 74.33 59.68 10.58 11.37 89.24 81.25 14.33 8.34

30 70.14 54.65 12.63 12.76 89.31 81.35 12.63 12.76

40 71.93 56.76 8.67 10.43 89.04 80.93 12.63 12.76

We adjust the fine-tuning epochs with coverage from 10 to 40. The best metrics are highlighted in bold. Pathology-NAS achieves the optimal dice score and IoU score when fine-tuning for 20 epochs on
BCSS and 30 epochs on PanNuke. FLOPs and Params of different fine-tuning epochs are on the same order of magnitude.
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cost during the search phase, and this does not affect the inference efficiency
of the final discovered models.

Consistent performance of Pathology-NAS across various
datasets
To further evaluate the segmentation performance and generalizability
of Pathology-NAS, we conducted additional experiments on the
CoNSeP dataset, including a direct comparison with HoVer-Net. As
shown in Supplementary Table 1, Pathology-NAS achieved aDice score
of 94.83% and an Aggregated Jaccard Index (AJI) of 64.71%, repre-
senting an improvement of 10.01% in Dice and 10.08% in AJI over
HoVer-Net (Dice: 84.82%, AJI: 54.63%). Furthermore, Pathology-NAS
demonstrated significantly higher efficiency, using only 25.9 GFLOPs
and 15.75Mparameters. This was ~7.6 times fewer FLOPs and 3.5 times
fewer parameters compared to HoVer-Net (197.05 GFLOPs and
54.74M parameters).

The generalizability of Pathology-NAS for image segmentation tasks
was also further assessed by incorporating the Zenodo lung cancer dataset
into our evaluations. As detailed in Supplementary Table 2, Pathology-NAS
(U-Net backbone) demonstrated excellent performance. Specifically, our
method achieved a Dice score of 73.48% and an IoU of 61.74%, out-
performing standard U-Net (Dice: 70.97%, IoU: 58.63%) and FPN (Dice:
69.52%, IoU: 57.22%). Notably, Pathology-NASwas also significantly more
efficient, utilizing only 18.51GFLOPs and 14.68Mparameters, compared to
U-Net (23.61G FLOPs, 24.44M params) and FPN (27.36G FLOPs, 26.01M
params). These findings highlight the effectiveness of Pathology-NAS in

discovering high-performing, efficient architectures for segmentation tasks
on various medical datasets.

Furthermore, we conducted experiments on the Gastric Cancer
dataset26. Our LLM-guided approach effectively balances high performance
with model efficiency, as demonstrated in Table 4.With the ViT backbone,
Pathology-NAS achieves a Top-1 accuracy of 43.04% ± 0.23. This notably
surpasses both Random Search (Top-1: 40.62% ± 0.30) and AutoFormer
(Top-1: 41.40% ± 0.12). Notably, it is achieved with FLOPs lower than
AutoFormer (4.82G). Furthermore, its Top-5 accuracy for ViT at 94.28% ±
0.02 also outperforms Random Search (93.57% ± 0.33) and AutoFormer
(93.75% ± 0.25). For the ShuffleNet backbone, Pathology-NAS also
improves Top-1 accuracy to 63.15% ± 0.25 compared with Random Search
(62.47% ± 0.21) while utilizing significantly lower inference FLOPs
(259.14M) compared to Random Search (286.16M).

Pathology-NAS demonstrates strong domain generalization on
unseen external datasets without retraining
Todemonstrate the domain generalization of Pathology-NAS,we evaluated
architectures discovered on our source datasets-BreakHis for classification
and PanNuke for segmentation, by directly validation on unseen external
datasets: SkinTumor27 (for BreakHis-derived models) and Polyp28 (for
PanNuke-derived models), respectively, without any retraining or fine-
tuning. As presented in Tables 8–10 Pathology-NAS demonstrates strong
generalization capabilities. For instance, a Pathology-NAS discovered
ShuffleNet architecture (trained on BreakHis) applied to SkinTumor27

achieves a top-1 accuracy of 74.50% ± 0.98%, which is a 35.29%

Table 8 | Domain generalization performance: evaluation of architectures (discovered on source datasets) on unseen external
target datasets without retraining

Source dataset Target external dataset Backbone Method Performance (%)↑

BreakHis SkinTumor27 ShuffleNet Random Search 39.21 ± 0.57 (Prec@1)

BreakHis SkinTumor27 ShuffleNet Pathology-NAS 74.50 ± 0.98 (Prec@1)

BreakHis SkinTumor27 ViT Random Search 73.52 ± 0.94 (Prec@1)

BreakHis SkinTumor27 ViT Pathology-NAS 82.35 ± 0.29 (Prec@1)

BreakHis SkinTumor27 MobileNetV3 Random Search 45.30 ± 0.70 (Prec@1)

BreakHis SkinTumor27 MobileNetV3 Pathology-NAS 78.10 ± 0.60 (Prec@1)

PanNuke Polyp28 U-Net Random Search 39.18 ± 0.27 (Dice)

PanNuke Polyp28 U-Net Pathology-NAS 62.07 ± 0.45 (Dice)

Performance metrics are reported as mean ± std. dev.

Table 9 | Ablation study: impact of prompting strategies on classification NAS performance

Backbone Dataset Prompt strategy Iterations (↓) API Calls (↓) Prec@1 (%)↑ FLOPs↓ Params (M)↓

ShuffleNet BreakHis EP (Ours) 10 3.5 99.98*** 213.30M 1.80

GAP 10 3.9 95.32 238.27M 2.38

NSP 14 3.5 94.73 225.86M 2.07

Diabetic EP (Ours) 10 4.2 73.22*** 240.25M 2.10

GAP 11 4.5 66.85 328.80M 2.81

NSP 10 4.3 66.30 249.54M 2.44

ViT BreakHis EP (Ours) 10 4.7 98.08*** 4.95G 25.12

GAP 15 7.5 96.09 4.83G 24.53

NSP 15 4.6 95.30 4.60G 23.35

Diabetic EP (Ours) 10 4.6 70.38*** 4.13G 20.99

GAP 10 4.6 52.17 4.95G 25.12

NSP 10 5.4 63.86 4.95G 25.12

Results are averaged over 5 runs. Best results for each metric within a group are typically achieved by EP. The Prec@1 of EP consistently outperforms the counterpart of GAP and NSP with very high
significance (p < 0.001).
EP Expert Prompt (Ours), GAP Generic Assistant Prompt, NSP No System Prompt, Prec@1: Top-1 accuracy.

https://doi.org/10.1038/s41746-025-02042-x Article

npj Digital Medicine |           (2025) 8:682 9

www.nature.com/npjdigitalmed


improvement over the Random Search-derived architecture (39.21% ±
0.57%). Similarly for segmentation, a U-Net architecture found by

Pathology-NAS (trained on PanNuke) achieves a Dice score of 62.07%
± 0.45% on Polyp28, representing an improvement of 22.89% over the
RandomSearchbaseline (39.18%±0.27%).These results onunseen external
datasets underscore the robustness and generalization of architectures dis-
covered by Pathology-NAS.

Significance analysis of search method comparison
To enhance statistical robustness, we conducted comprehensive statistical
analyses across all primary experiments (including newly added datasets).
For statistical assessment, we conducted 5 independent runs for each
method and dataset combination, then performed independent two-sample
Welch’s t tests (which do not assume equal variances) with a one-sided
alternative hypothesis to test if Pathology-NAS performance is significantly
superior. Significance levels are reported using a tiered system: * for p< 0.05
(significant), ** for p < 0.01 (highly significant), and *** for p < 0.001 (very
highly significant).

As shown in Figs. 5 and 6, Pathology-NAS consistently achieves sta-
tistically significant improvements over all baselinemethods across different

datasets, tasks, and backbone architectures. These improvements reach p <
0.001 (very highly significant) level inmost cases. For example, on BreakHis
with ShuffleNet backbone, Pathology-NAS achieves 99.98% ± 0.27% top-1
accuracy compared to Random Search’s 95.21% ± 0.34% (Table 3). For
segmentation on PanNuke with U-Net backbone, our method achieves
89.31% ± 0.44% Dice, versus Random Search’s 88.24% ± 0.38% (Table 5),
while using significantly fewer computational resources.

As illustrated in Fig. 6, these significant improvements extend to our
newly added datasets as well. For the Gastric Cancer dataset (Table 4),
Pathology-NAS achieves 63.15% ± 0.25% top-1 accuracy with ShuffleNet
backbone (versus Random Search’s 62.47% ± 0.21%) and 43.04% ± 0.23%
withViTbackbone (versusRandomSearch’s 40.62%±0.30%). Similarly, for
the Zenodo Lung Cancer dataset (Table 5), our method demonstrates
superior performance with strong statistical significance. Detailed statistical
results for all experiments are provided in the corresponding tables
throughout the manuscript and supplementary materials.

Discussion
We introduce Pathology-NAS, a LLM-driven medical image analysis fra-
mework empowered by neural architecutre search, which is developed for

Fig. 5 | Significance testing of Top-1 accuracy (Prec@1(%)) for different NAS
methods on the BreakHis, Diabetic, BCSS and PanNuKe datasets, utilizing
ShuffleNet, ViT and U-Net backbones. The x-axis displays the compared search
methods, including random (i.e., Random Search), Cream, AF (i.e., AutoFormer),
and “ours” (i.e., Pathology-NAS), grouped by dataset and backbone. The y-axis

represents the Prec@1(%) performance. Asterisks indicate statistical significance
levels assessed by independent two-sample Welch’s t tests: * denotes p < 0.05 (sig-
nificant), ** denotes p < 0.01 (highly significant), and *** denotes p < 0.001 (very
highly significant). Prec@1: Top-1 accuracy. Prec@5: Top-5 accuracy.

Table 10 | Ablation study: impact of prompting strategies on segmentation NAS performance

Backbone Dataset Prompt strategy Iterations (↓) API calls (↓) Dice (%)↑ IoU (%)↑ FLOPs (G)↓ Params (M)↓

U-Net BCSS EP (Ours) 10 1.8 74.33*** 59.68*** 10.58 11.37

GAP 10 1.9 73.78 58.99 19.83 15.75

NSP 11 2.2 73.90 59.22 17.46 12.73

PanNuke EP (Ours) 10 1.6 89.31*** 81.35*** 14.33 8.34

GAP 15 4.1 89.26 81.28 23.12 11.30

NSP 15 2.3 88.89 80.71 16.23 9.00

Results are averaged over 5 runs. Best results for each metric within a group are typically achieved by EP. The Dice and IoU of EP consistently outperform the counterpart ofGAP andNSPwith very high
significance (p < 0.001).
EP Expert Prompt (Ours), GAP Generic Assistant Prompt, NSP No System Prompt.
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universal and lightweight malignant tissue classification and segmentation
across a diverse spectrum of anatomical regions. Pathology-NAS integrates
task-aware domain knowledge possessed by LLMs with search-and-fine-
tuning on pathology images, thereby obtaining the ability to search the
optimal architecture for target taskswithin a short period. Pathology enables
automated and customized design of deep learning models, rendering itself
a versatile AI agent across a large amount of intelligent medical imaging
analysis tasks.

We conduct extensive experiments to evaluate the performance of
Pathology-NAS on a variety of pathological slides, covering disease type
classification andmalignant tissue segmentation across different anatomical
regions. Through comprehensive evaluations, Pathology-NAS have show-
cased extraordinary capabilities in accurate tissue recognition and seg-
mentation with much less model FLOPs constraint. Specifically, its
performance not only significantly outperforms that of existing the state-of-
the-art task-specific models, the visualization results show that our solution
presents more distinct segmentation boundaries compared to other meth-
ods. The key characteristic of Pathology-NAS lies in automated model
design via LLM-driven architecture search. Tremendous domain knowl-
edge about medical analysis could be exploited to recommend a suite of
promising architectures. After fine-tuning on downstream medical image
datasets, these architectures are prone to demonstrate superior perfor-
mances, accordingly alleviate the time andhardware burden for architecture
search. Consequently, our method achieves a favorable performance effi-
ciency trade-off by conducting the LLM-driven architecture search, which
holds the potential to facilitate the cost-effective clinical prediction service.

While Pathology-NAS has achieved remarkable performance, there
still remain a few limitations. One of the limitations is the supernet training
from single path one-shot used in this study. Although one-shot weight
sharing has substantially reduced the search cost, each sub-network still

suffers from the insufficient optimization during supernet training with
uniform sampling. Given the limited number of somemedical datasets, it is
non-trivial to train a high-performing model solely based on pathology
slides. This also underscores the necessity of large-scale generic visual
datasets during the pre-training phase. Another limitation lies in the
backbone model and search space for target tasks. We only search over a
number of fundamental operations and blocks in this study. Although
neural architecture search is conducted on a few representative classification
and segmentationmodels, developing search strategies for visual foundation
models presents a challenging yet promising direction. However, these
limitations do not conflict with the generality of our method. Since the
supernet is pretrained on a vast amount of generic images, Pathology-NAS
enables swift adaptation to various downstream tasks.

In conclusion, this study investigates the feasibility of cost-effective and
versatile pathology analysis framework, which can be rapidly adapted to
downstream medical tasks via LLM-driven neural architecture search.
Pathology-NAS, as an intelligent and efficient fundamental solution, offers
tremendous potential to accelerate the advancement of automatic diag-
nostic tools and the personalization of treatment strategies.

Algorithm 1. Pathology-NAS for Diverse Pathology Analysis
1: Input:
• Set of supernet types fScg, where c ∈ {U-Net, ViT, ShuffleNet}
• Large generic training datasets Dgen

• Medical tasks T and corresponding datasets Dm
• Budgets B for allowable FLOPs
• LLM for generating architecture configurations
• Universal Task NAS Prompt (UNP) P

2: Output: Optimal architecture configuration a�ti ;di for each task ti and
dataset di

Fig. 6 | Significance testing of Top-1 accuracy (Prec@1(%)) for different NAS
methods on the Gastric (i.e., Gastric Cancer) and Lung (i.e., Zenodo Lung
Cancer) datasets, utilizing ShuffleNet and ViT backbones. The x-axis displays the
compared search methods, including random (i.e., Random Search), Cream,
AutoFormer, and “ours'', grouped by dataset (Gastric, Lung) and backbone

(ShuffleNet, ViT). The y-axis represents the Prec@1(%) performance. Asterisks
indicate statistical significance levels assessed by independent two-sampleWelch’s t
tests: ** denotes p < 0.01 (highly significant), and *** denotes p < 0.001 (very highly
significant). Prec@1: Top-1 accuracy. Prec@5: Top-5 accuracy.
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3: Define a task-to-supernet mapping μ : T ! fScg
4: Pretrain each supernet Sc on Dgen to generate model config-
urationsMc using Eqs. (1)–(3).

5: InitializeUNPpromptPinit for each supernet based on theMc
6: for each task ti 2 T and dataset di inDm do
7: Select the appropriate supernet SμðtiÞ and its config MμðtiÞ

based on the mapping μ(ti)
8: Initialize performance memory βti;di ¼ fg
9: for t = 0 to T do
10: if t = 0 then
11: Set prompt Pti;di

¼ PinitðSμðtiÞ;MμðtiÞÞ
12: else
13: Update prompt Pti ;di

= PinitðSμðtiÞ;MμðtiÞ; βti;di Þ
14: end if
15: at;di  LLM ðPti;di

Þ {Generate preferred model
architecture}

16: ðacct;di ; FLOPst;di Þ  Finetune and evaluate at;di on
Dtr(ti, di), Dval(ti, di)

17: if FLOPst;di ≤B and acct;di > maxðβti;di ½acc�Þ then
18: βti;di ½acc�  acct;di
19: βti;di ½FLOPs�  FLOPst;di
20: end if
21: end for
22: a�ti;di ¼ βti;di ½at;di �
23: end for
24: return a�ti;di for each ti and di

Methods
Datasets curation and processing
Wecollected extensive tissue slide images of cancerdiagnosis and pathology
analysis from various sources from the Internet, including Kaggle, Grand-
Challenge, and scientific data. For histopathology classification task, we use
datasets from BreakHis challenge29 and Diabetic retinopathy challenge30,
SkinTumor dataset27 and Gastric Cancer Histopathology Tissue Image
Dataset26. The Breast Cancer Histopathology Image Classification (Break-
His) consists of 9109 microscopic images of breast tumor tissue obtained
from 82 patients. Diabetic retinopathy dataset is composed of 3662 retina
images taken using fundus photography under a variety of conditions.
BreakHis contains 2480 benign and 5429 malignant samples with different
magnifying factors (40X, 100X, 200X, and 400X). Each image is with 700 ×
460 pixels, 3-channel RGB, 8-bit in each channel and PNG format. The
diabetic retinopathy detection dataset is a subset of data fromAPTOS 2019
Blindness Detection, where the original file consists of 20GB of data among
13,000 images. The SkinTumor dataset is a refined version of ISIC 2019
challenge dataset, which includes 25,331 dermoscopic images in 2 cate-
gories, 8 subtypes.Allmelanomadiagnoses in thedatasetwere confirmedby
pathological annotations. The Gastric Cancer Histopathology Tissue Image
Dataset (Gastric Cancer) provides a large database of nearly 31,000 histo-
logical images from 300 whole slide images, annotated for 8 distinct tissue
categories, making it a suitable benchmark for evaluating multi-class clas-
sification performance. ImageNet-1k dataset is utilized to pretrain the
supernetof vision transformer and shuffle net for neural architecture search.

For image segmentation task, we use datasets from Breast Cancer
Semantic Segmentation31 (BCSS) and Cancer Instance Segmentation and
Classification32 (PanNuke), which were derived from The Cancer Genome
Atlas (TCGA) project. We use additional segmentation datasets such as
ConSep33, ZenodoLungCancer34 andPolyp28. TheBCSSdataset holdsmore
than 20,000 segmentation annotations of breast cancer tissue regions. The
number of samples in the training set, validation set, and test set are 30,760,
5429, and 4021, respectively. The PanNuke dataset includes histopathology
images thatwere semi automatically generatednuclei instance segmentation
and classification, covering tremendous nuclei labels across 19 different
tissue types. It is composed of 2661 samples and 205,343 labeled nuclei, each
with a ground truth mask. The ConSep dataset consists of 41 H&E stained
image tiles, each of size 1000 × 1000 pixels at 40× objective magnification.

Images were extracted from 16 colorectal adenocarcinoma (CRA) WSIs,
each belonging to an individual patient. The Zenodo LungCancer dataset is
a dataset of 85 tiles of size 1024 × 1024 pixels with cell level annotations
extracted from 9 lung WSIs. The annotations define the cells’ nuclei shape
and classify each cell as either cancerous or non-cancerous. The Polyp
dataset includes 1000 frames taken from colonoscopy videos, which feature
numerous instances of polyp. The ground truth is represented by a mask
that corresponds to the area of the image occupied by the polyp. To ensure
consistency and compatibility with deep learning models, all whole slide
images (WSI) have been cropped into small patches using a sliding window
method. Each image is in the PNG format of 224× 224 and 512× 512 pixels.
All images have been resized into the size of 224 × 224 pixels to ensure
uniformity for histology classification task.Weutilize z-score normalization
with default mean and standard deviation to rescale the pixel values. The
implementation of these standardization protocols guaranteed a consistent
and harmonized approach throughout all imagery, thereby streamlining
their incorporation into the successive phases of the model’s learning and
assessment procedure.

LLM-driven neural architecture search
In this paper, we propose a LLM-driven neural architecture search (NAS)
pipeline to apply a universal and efficient pathology segmentation and
recognition framework, as illustrated in Fig. 1. This approach is inspired by
one-shot NAS methods that adopt a weight-sharing strategy to avoid
training each subnet independently19,20. By decoupling the supernet training
and architecture search, one-shot NAS can alleviate the problematic cou-
pling of joint optimization. The architecture search space,A, is represented
as a set of supernetsScðA;WÞ, where c represents a different supernet types
(details see Section “Network architecture”),W is theweight of the supernet.
W is shared among all possible architecture candidates, i.e., subnetα 2 A in
N . Searching for the optimal architecture a* is formulated as a dual-stage
optimization problem:

WA ¼ argminWLtrainðScðA;WÞÞ; ð1Þ

which indicates optimizingW based on loss function on training dataset by
sampling subnets. The second stage is to search the optimal architecture of
subnet α 2 A via the validation performance of the tuned weights ofWA.

α� ¼ argmax
α2A

AccvalðScðα;wÞÞ; ð2Þ

where the sampled subnet inherits a weight w from WA. PrevIoUs works
resort todifferent search algorithms tofind thefittest candidate architecture,
such as random search35,36, reinforcement learning37,38 and evolution
search20,39. However, It remains uncertain why the pre-trained weights
WAðαÞ remain effective for any arbitrary architecture α. According to the
principle that the supernetweightsWA should be optimized in away that all
architectures in the search space are optimized simultaneously, a subnet α is
randomly sampled and optimized for each iteration. This is expressed as:

WA ¼ argminWEα�ΓðAÞ Ltrain Sc

�
α;WðαÞð� �

; ð3Þ

where ΓðAÞ is a prior distribution of α 2 A.
During the pretraining stage, we design a supernet structure that each

architecture is a single path, which means that no overlap blocks exists
among subnet architectures. More specifically, for a subnet α 2 A with a
stack of l layers, the architecture is represented as follows:

α ¼ ðαð1Þ; � � � ; αðiÞ; � � � ; αðlÞÞ
w ¼ ðwð1Þ; � � � ;wðiÞ; � � � ;wðlÞÞ;

8><
>: ð4Þ

where the α(i) is the sampled block in the i-th layer and w(i) is the
corresponding block weight. Therefore, α(i) is actually sampled from a set of
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n choice blocks, which can be denoted as:

αðiÞ 2 ðbðiÞ1 ; � � � ; bðiÞj ; � � � ; bðiÞn Þ
wðiÞ 2 ðwðiÞ1 ; � � � ;wðiÞj ; � � � ;wðiÞn Þ;

8><
>: ð5Þ

where the bðiÞj is a choice of candidate blocks in the i-th layer and wðiÞj is the
corresponding weight.

Inour setting it is forced that one randompathdropanyoperations in a
block, eliminating the occurrence of shot cut connection. Moreover, it also
helps to reduce the entanglement of different operation weights. Note that
the supernet’s architecture is uniformly sampled from a fixed prior dis-
tribution, following the principle in existing works that purely random
search from a supernet is competitive enough.

During the architecture search stage, we leverage GPT-4 as a
sophisticated black-box optimizer to guide our neural architecture
search (NAS). Although prevIoUs research has explored numerous
algorithms to identify optimal architectures efficiently and accurately,
they still suffer from substantial computational burdens. Recent stu-
dies suggest that GPT-4, endowed with vast inherent knowledge, is
suitably equipped to tackle NAS tasks, substantiating its capability
beyond traditional models40.

The GPT-4-driven architecture search works in an iterative improve-
ment process. In the first round, the NAS problem statement is provided to
the GPT-4 model in a natural language format, along with an initial can-
didate model architecture configuration MμðtiÞ derived from the Eqs.
(1)–(3). Then, we initialize the UNP prompt Pinit for GPT-4 with the
configuration and the supernet types SμðtiÞ, setting a robust foundation for
subsequent optimizations:

Pti ;di
¼

PinitðSμðtiÞ;MμðtiÞÞ if t ¼ 0;

PinitðSμðtiÞ;MμðtiÞ; βti;di Þ otherwise ;

(
ð6Þ

where βti ;di includes accumulated performance metrics such as accuracy
and computational efficiency (FLOPs), providing a feedback loop to refine
the search.

After initialization, the current state of the network, represented by
Pti;di

, is fed into theLLMmodel to recommend anewpreferred architecture
configuration:

at;di  LLM ðPti ;di
Þ: ð7Þ

The proposed architecture at;di is then fine-tuned on the respective
training datasetDtr(ti, di) and evaluated on the validation datasetDval(ti, di)
to obtain empirical accuracy and FLOPs:

ðacct;di ; FLOPst;di Þ  Fine-tune and evaluate at;di : ð8Þ

The performancememory βti;di is updated based on the newmetrics if
they meet the defined criteria of computational budget B and improved
accuracy:

if ðFLOPst;di ≤BÞ ^ ðacct;di > max ðβti;di ½ acc �ÞÞ then update βti;di : ð9Þ

The iterative process continues until a predetermined number of
iterations are completed. The optimal architecture for each task and dataset
is selected based on the best performance metrics recorded in the perfor-
mance memory:

a�ti;di ¼ βti;di ½at;di �: ð10Þ

This LLM-driven Pathology-NAS not only ensures that the archi-
tectures are optimized for performance but also adheres to computational

constraints, making it a practical approach formedical image analysis tasks,
as shown in Algorithm 1.

Network architecture
Thenetworksof the supernet utilized in this study represent anewparadigm
that dynamically adapts to specific tasks, incorporating both CNN-based
models and vision transformer models, which have achieved remarkable
performance in existing image recognition and segmentation tasks41,as
shown in Fig. 7a. The architecture includes three main model types:
• ShuffleNet v2: Adapted for classification, this model comprises 20

choice blocks, each offering 4 operation candidates: 3 × 3, 5 × 5, 7 × 7
convolutions, and an identity block18.

• U-net: Employed for segmentation tasks, it includes 8 choice blocks
corresponding to 4 down-sampling and 4 up-sampling layers. Each
choice block is enhanced with a squeeze-and-excitation (SE) network
to adaptively calibrate channel-wise feature responses, thereby
improving performance23.

• Vision Transformer (ViT): Utilized as another backbone model for
medical image recognition, it features a modular design with a patch
embedding module, a classifier head, and a series of stacked transfor-
mer blocks, each comprising a multi-head self-attention layer and a
feed forward network layer with layer normalization. The search space
for ViT includes options for depth of transformer layers (12, 13, 14),
numberofheads for attention layers (3, 4, 6, 8), and scale ratios forMLP
layers (3, 4, 5).
These models are pretrained on the ImageNet-1k dataset to develop

robust initial capabilities, which are then specialized through architecture
search and fine-tuning on pathology images. This dynamic selection of
network architectures allows Pathology-NAS to tailor its approach to
effectively address the diverse requirements ofmedical image analysis tasks.

Training protocols
The training protocols include datasets preparation, model parameters, loss
functions, evaluation metrics, and baseline methods.

Dataset. To thoroughly exploit rich visual features in large-scale images,
the supernet is pretrained using the ImageNet-1k dataset, with 10% of the
training set reserved for validation to ensure fair model evaluation. For
histopathology images used in the architecture search, we follow the
official setting in terms of data partition. The 65% samples of BreakHis
constitute the training set while other images are included as the test
dataset. For BCSS, there are totally 30,760 train images, 5429 validation
images, and 4021 test images. The diabetic retinopathy dataset contains
3662 images, which is divided into 80%, 10%, 10% as training, validation,
and test, respectively.

Network initialization and loss functions. Following the settings in
prevIoUs works18,20,42, the weights of convolutional models are simply
initialized with normal and uniform distribution, while the weights of
vision transformer are initialized with truncated normal distribution.
The loss functions used are cross entropy loss for image classification and
dice loss for image segmentation.

Training configuration. The networks are optimized by an SGD opti-
mizer with an initialized learning rate of 0.1 and a weight decay of 5e−2.
We deploy distributed data parallel for model training, where the global
batch size is 256. The CNN and ViT models were trained on 4 NVIDIA
V100(32G) GPUs for 500 epochs, selecting the checkpoint with the best
validation accuracy as the final model. During the GPT-4 assisted search
phase, we manually set 10 iterations and 20 finetuning epochs for each
iteration.

Baseline and comparative methods. We conducted comparative
experiments against state-of-the-art image classification models
(ResNet13/EfficientNet14/Swin-transformer15), semantic segmentation
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models (U-Net16/FPN17) and NAS methods (Single path one-shot19/
AutoFormer20/Cream21). For CNN-based classification models, we
employed ResNet-50 and EfficientNet-b0 implemented by the timm
library (https://timm.fast.ai/) as the backbone models. For ViT classifi-
cation models, we directly finetuned the pretrained weights of Swin
Transformer. For segmentation models, we utilized VGGNet43 as the
backbone encoders. For one-shot NAS methods, we referred to three
representative methods, contrasting our LLM-driven search strategy
against SPOS’s vanilla evolutionary search strategy, AutoFormer’s weight
entanglement strategy, and Cream’s architecture distillation strategy.

Loss functions
For classification task, we use the soft target cross entropy loss for training
and cross entropy loss for validation. Soft target cross entropy is a softened

variant of traditional cross entropy loss function. It is commonly applied in
scenarios where targets are soft distributions, corresponding to mixup
strategy. Specifically, each class c∈C is assignedwith a soft target probability
tc, the modified loss can be formulated as

Lsoft ¼ �
XC
c¼1

tclogðpcÞ; ð11Þ

where pc denotes the predicted probability of of the sample belonging to
class c.

For segmentation tasks, we adopt dice loss that has proved to be
effective in numerous literatures. Dice loss measures the overlaps between
predicted segmentation results and ground truth. Specifically, given S,G
denote the predicted segmentation and ground truth, si, gi denotes the pixel-

Fig. 7 | Demonstration of supernet dynamic pretraining and LLM-driven neural
architecture search. a Illustration of supernet model for single path one-shot
architecture search. During pretraining, numerous subnetworks with independent
choice block path are trained via uniform sampling.We search the kernel size of each
convolution block in ShuffleNet search for classification and U-Net search for
segmentation.We search the depth of transformer layers, number of attention heads,

the hidden scale ratio of FFN layer in ViT search for classification. b Illustration of
prompt template for searching U-Net architectures via LLM recommendation on
pathological tasks. The search prompt template include task formulation, network
architecture implementation, search space of different variables and LLM response
format.
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level predicted result and ground truth, respectively. N is the number of
pixels in image I, dice loss is defined as

Lsoft ¼ 1� 2
PN

i¼1 gisiPN
i¼1 ðgiÞ2 þ

PN
i¼1 ðsiÞ2

: ð12Þ

Evaluation metrics
We follow the recommendedmetrics inMetrics Reloaded44. Accuracy is the
primarymetric used in the validation for classification results,while theDice
Coefficient and Intersection over Union (IoU) are adopted in the validation
for segmentation results. The Dice Coefficient is calculated by taking twice
the intersection of the predicted and ground truthmasks divided by the sum
of their areas, which is defined as follows

Dice ¼ 2 × jX \ Y j
jXj þ jYj ; ð13Þ

where X is the set of predicted mask and Y is the set of ground truth mask.
IoU, also known as the Jaccard Index, measures the overlap between the
predicted mask and the ground truth mask. It is defined as the size of the
intersection divided by the size of the union of the masks

IoU ¼ jX \ Y jjX ∪Y j : ð14Þ

A dice score of 1 indicates perfect match, while a score of 0 indicates no
overlap. Similarly, an IoU of 1 indicates a perfect match, and an IoU of 0
indicates no overlap.

Algorithm 2. LLM Response Parsing Algorithm (Core Logic)
1: Input: LLM response text (string)
2: Output: Instantiated architecture model or core configuration
3: response_text ← LLM_response
4: json_str ← ExtractJSONFromText(response_text) {Extract JSON

data block}
5: parsed_json ← AttemptParseJSON(json_str) {Convert JSON string
to dictionary}

6: config_dict← parsed_json["configuration”] {Access the architecture
configuration}

7: validated_config ← ValidateConfigurationValues(config_dict,
expected_search_space) {Validate values against search space
definitions}

8: architecture_model ← InstantiateArchitecture(validated_config)
{Create model instance from validated_config}

9: return architecture_model

Implementation details of LLM-driven NAS
Prompt engineering has beenwidely leveraged to narrow the gap between
pre-training and downstream tasks45. In essence, language prompt is
constructed to reformulate downstream tasks into the format of pre-
training, thereby boosting the zero-shot generation capabilities of LLMs.
The prompt template in our experiments is composed of three parts.
System prompt tell GPT-4 that he is now an expert in the field of neural
architecture search. Role Assignment allows LLM to better understand
the background and nuances of the question, leading to more accurate
and targeted responses. Content prompt includes task description,
implementation details of model architecture, operation candidates, as
well as output format. Additionally, experiment prompt with evaluation
results will be attached to the content prompt after the initial iteration as
supplement materials for LLM decision-making. A detailed prompt
example is presented in Fig. 7b.

The complete prompt template used for our LLM-driven Neural
Architecture Search is composed of system prompt template shown in
Supplementary Fig. 2 and user prompt template shown in Supplementary

Fig. 3. This template is used for all architecture search tasks, with task-
specific details (i.e., dataset description, search space) modified accordingly.
The Algorithm 2 describes how we process the LLM’s responses to extract
and validate the architecture configurations. An example of a JSON
response from GPT-4 for a ShuffleNet architecture search task is presented
in Supplementary Fig. 4. For ViT architecture search, the configuration
would include different parameters such as embedding dimension, number
of layers, number of attention heads, andMLP ratio. An example of a JSON
response from GPT-4 for a ShuffleNet architecture search task is presented
in Supplementary Fig. 5. For U-Net segmentation architecture search,
parameters would include encoder/decoder depth, channel scaling factors,
and kernel sizes.

Table of abbreviations
For the convenience of the reader, the Table 11 lists major abbreviations
used throughout thismanuscript, alongwith their corresponding full forms.
This includes frequently used acronyms such as NAS (Neural Architecture
Search), LLM (Large Language Model), and FLOPs (Floating Point
Operations).

Ethics statement
This study utilized publicly available medical image datasets (e.g., histo-
pathological slides, retina images), detailed with access links in Section
“Datasets curation and processing” for transparency and reproducibility.
We relied on the ethical approvals (including IRB/ethics committee review
and informed consent) and data usage permissions established by the ori-
ginal dataset creators. These datasets were anonymized or de-identified by
the original providers in compliance with relevant regulations (e.g., GDPR,
HIPAA) prior to public release. Our research involved the use of these pre-
existing, de-identified public datasets for computational modeling, did not
involve access to personally identifiable information (PII), and no attempts
were made to re-identify individuals. This study did not involve new
experiments directly on human subjects or animals.

Table 11 | List of abbreviations

Abbreviation Full form

AI Artificial Intelligence

LLM Large Language Model

NAS Neural Architecture Search

FLOPs Floating Point Operations

IoU Intersection over Union

SAM Segment Anything Model

BCSS Breast Cancer Semantic Segmentation

PanNuke Pan-cancer Nuclear Segmentation

TCGA The Cancer Genome Atlas

WSI Whole Slide Images

UNP Universal Task NAS Prompt

RLHF Reinforcement Learning with Human Feedback

DPO Direct Preference Optimization

SGD Stochastic Gradient Descent

CNN Convolutional Neural Network

ViT Vision Transformer

FPN Feature Pyramid Network

SPOS Single Path One-Shot

MBConv Mobile inverted Bottleneck Convolution

SE Squeeze-and-Excitation

GDPR General Data Protection Regulation

HIPAA Health Insurance Portability and Accountability Act
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Data availability
The training and validationmedical image datasets used in this study, in the
form of fundus and histopathology, are publicly available and can be
downloaded via the web links. The BreakHis dataset can be obtained from
https://www.kaggle.com/datasets/ambarish/breakhis. The Diabetic retino-
pathy dataset can be obtained from https://www.kaggle.com/datasets/
sovitrath/diabetic-retinopathy-224x224-gaussian-filtered. The SkinTumor
dataset can be obtained from https://challenge.isic-archive.com/landing/
2019/. TheGastricCancer dataset canbeobtained fromhttps://www.kaggle.
com/datasets/orvile/gastric-cancer-histopathologytissue-image-dataset.
The BCSS dataset can be obtained from https://www.kaggle.com/datasets/
whats2000/breast-cancersemantic-segmentation-bcss. The PanNuke data-
set can be obtained from https://www.kaggle.com/datasets/andrewmvd/
cancerinst-segmentation-and-classification. The ConSep dataset can be
obtained from https://paperswithcode.com/dataset/consep. The Zenodo
Lung Cancer dataset can be obtained from (https://zenodo.org/records/
8368163). The Polyp dataset can be obtained from https://paperswithcode.
com/dataset/polypgen.

Code availability
The training script, search script, validation script as well as SPOS model
implementation has already been publicly available at our Github (https://
github.com/maopopovich/Pathology-NAS).

Received: 2 April 2025; Accepted: 26 September 2025;

References
1. Mousavi, S. E., Ilaghi, M., Elahi Vahed, I. & Nejadghaderi, S. A.

Epidemiology and socioeconomic correlates of gastric cancer in Asia:
results from the GLOBOCAN 2020 data and projections from 2020 to
2040. Sci. Rep. 15, 6529 (2025).

2. ClaudioQuiros, A. et al.Mapping the landscapeof histomorphological
cancer phenotypes using self-supervised learning on unannotated
pathology slides. Nat. Commun. 15, 4596 (2024).

3. Wang, S. et al. Deep learning of cell spatial organizations identifies
clinically relevant insights in tissue images. Nat. Commun. 14, 7872
(2023).

4. Ma, J. et al. Segment anything in medical images. Nat. Commun. 15,
654 (2024).

5. Fu, X. et al. BIDCELL: biologically-informed self-supervised learning
for segmentation of subcellular spatial transcriptomics data. Nat.
Commun. 15, 509 (2024).

6. Achiam, J. et al. Gpt-4 technical report. Preprint at https://arxiv.org/
abs/2303.08774 (2023).

7. Li, J., Li, D., Savarese, S. & Hoi, S. BLIP-2: bootstrapping language-
image pre-training with frozen image encoders and large language
models. In International conference on machine learning,
19730–19742 (PMLR, 2023).

8. Kirillov, A. et al. Segment anything. In Proceedings of the IEEE/CVF
International Conference onComputer Vision, 4015–4026 (IEEE, 2023).

9. Huang, Z., Bianchi, F., Yuksekgonul, M., Montine, T. J. & Zou, J. A
visual–language foundationmodel for pathology imageanalysis using
medical Twitter. Nat. Med. 29, 2307–2316 (2023).

10. Lu, M. Y. et al. A visual-language foundation model for computational
pathology. Nat. Med. 30, 863–874 (2024).

11. Chen, Z., Yang, H. H., Tay, Y., Chong, K. F. E. &Quek, T. Q. The role of
federated learning in a wireless world with foundation models. IEEE
Wirel. Commun. 31, 42–49 (2024).

12. Hu, E. J. et al. LoRA: Low-rank adaptation of large language models.
International Conference on Learning Representations. https://
openreview.net/forum?id=nZeVKeeFYf9 (2022).

13. He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 770–778 (IEEE, 2016).

14. Tan, M. & Le, Q. Efficientnet: rethinking model scaling for
convolutional neural networks. In International Conference on
Machine Learning, 6105–6114 (PMLR, 2019).

15. Liu, Z. et al. Swin transformer: hierarchical vision transformer using
shifted windows. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, 10012–10022 (2021).

16. Ronneberger, O., Fischer, P. &Brox, T. U-net:Convolutional networks
for biomedical image segmentation. InMedical ImageComputing and
Computer-assisted Intervention–MICCAI 2015: 18th International
Conference, 234–241 (Springer, 2015).

17. Lin, T.-Y. et al. Feature pyramid networks for object detection. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2117–2125 (IEEE, 2017).

18. Ci, Y. et al. Evolving search space for neural architecture search. In
Proceedings of the IEEE/CVF International Conference on Computer
Vision, 6659–6669 (IEEE, 2021).

19. Guo, Z. et al. Single path one-shot neural architecture search with
uniform sampling. In Computer Vision–ECCV 2020: 16th European
Conference, 544–560 (Springer, 2020).

20. Chen, M., Peng, H., Fu, J. & Ling, H. Autoformer: Searching
transformers for visual recognition. In Proceedings of the IEEE/CVF
international conference on computer vision, 12270–12280 (IEEE,
2021).

21. Peng, H. et al. Cream of the crop: distilling prioritized paths for one-
shot neural architecture search. Adv. Neural Inf. Process. Syst. 33,
17955–17964 (2020).

22. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A. & Chen, L.-C.
Mobilenetv2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 4510–4520 (IEEE, 2018).

23. Hu, J., Shen, L. & Sun, G. Squeeze-and-excitation networks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 7132–7141 (IEEE, 2018).

24. Ouyang, L. et al. Training language models to follow instructions with
human feedback. Adv. Neural Inf. Process. Syst. 35, 27730–27744
(2022).

25. Rafailov,R. et al. Direct preferenceoptimization:Your languagemodel
is secretly a reward model. In Advances in Neural Information
Processing Systems, 36 (NIPS, 2024).

26. Lou, S. et al. A large histological images dataset of gastric cancer
with tumour microenvironment annotation for ai. Sci. Data 12, 138
(2025).

27. Pham, T. C. et al. Improving binary skin cancer classification based on
best model selection method combined with optimizing full connected
layers of Deep CNN. In 2020 International Conference on Multimedia
Analysis and Pattern Recognition (MAPR), 1–6 (IEEE, 2020).

28. Ali, S. et al. A multi-centre polyp detection and segmentation dataset
for generalisability assessment. Sci. Data 10, 19 (2023).

29. Spanhol, F. A., Oliveira, L. S., Petitjean, C. & Heutte, L. A dataset for
breast cancer histopathological image classification. IEEE Trans.
Biomed. Eng. 63, 1455–1462 (2016).

30. Wang, Z. & Yang, J. Diabetic retinopathy detection via deep
convolutional networks for discriminative localization and visual
explanation. In AAAI Workshops, 514–521 (AAAI, 2018).

31. Wang, H., Ahn, E. & Kim, J. A dual-branch self-supervised
representation learning framework for tumour segmentation in whole
slide images. Preprint at https://arxiv.org/abs/2303.11019 (2023).

32. Gamper, J. et al. Pannuke dataset extension, insights and baselines.
Preprint at https://arxiv.org/abs/2003.10778 (2020).

33. Graham, S. et al. Hover-Net: simultaneous segmentation and
classification of nuclei in multi-tissue histology images.Med. Image
Anal. 58, 101563 (2019).

34. Pérez-Cano, J. et al. Combining graph neural networks and computer
vision methods for cell nuclei classification in lung tissue. Heliyon 10,
e28463 (2024).

https://doi.org/10.1038/s41746-025-02042-x Article

npj Digital Medicine |           (2025) 8:682 16

https://www.kaggle.com/datasets/ambarish/breakhis
https://www.kaggle.com/datasets/sovitrath/diabetic-retinopathy-224x224-gaussian-filtered
https://www.kaggle.com/datasets/sovitrath/diabetic-retinopathy-224x224-gaussian-filtered
https://challenge.isic-archive.com/landing/2019/
https://challenge.isic-archive.com/landing/2019/
https://www.kaggle.com/datasets/orvile/gastric-cancer-histopathologytissue-image-dataset
https://www.kaggle.com/datasets/orvile/gastric-cancer-histopathologytissue-image-dataset
https://www.kaggle.com/datasets/whats2000/breast-cancersemantic-segmentation-bcss
https://www.kaggle.com/datasets/whats2000/breast-cancersemantic-segmentation-bcss
https://www.kaggle.com/datasets/andrewmvd/cancerinst-segmentation-and-classification
https://www.kaggle.com/datasets/andrewmvd/cancerinst-segmentation-and-classification
https://paperswithcode.com/dataset/consep
https://zenodo.org/records/8368163
https://zenodo.org/records/8368163
https://paperswithcode.com/dataset/polypgen
https://paperswithcode.com/dataset/polypgen
https://github.com/maopopovich/Pathology-NAS
https://github.com/maopopovich/Pathology-NAS
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://arxiv.org/abs/2303.11019
https://arxiv.org/abs/2303.11019
https://arxiv.org/abs/2003.10778
https://arxiv.org/abs/2003.10778
www.nature.com/npjdigitalmed


35. Li, L. & Talwalkar, A. Random search and reproducibility for neural
architecture search. In Uncertainty in Artificial Intelligence, 367–377
(PMLR, 2020).

36. Bender, G., Kindermans, P.-J., Zoph, B., Vasudevan, V. & Le, Q.
Understanding and simplifying one-shot architecture search. In
International Conference on Machine Learning, 550–559 (PMLR,
2018).

37. Pham, H., Guan, M., Zoph, B., Le, Q. & Dean, J. Efficient neural
architecture search via parameters sharing. In International
Conference on Machine Learning, 4095–4104 (PMLR, 2018).

38. Tan, M. et al. MnasNet: platform-aware neural architecture search for
mobile. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2820–2828 (IEEE, 2019).

39. Real, E., Aggarwal, A., Huang, Y. & Le, Q. V. Regularized evolution for
image classifier architecture search. In Proceedings of the AAAI
Conference on Artificial Intelligence, 33, 4780–4789 (AAAI, 2019).

40. Zheng, M. et al. Can gpt-4 perform neural architecture search?
Preprint at https://arxiv.org/abs/2304.10970 (2023).

41. Dosovitskiy, A. et al. An image is worth 16x16words: transformers for
image recognition at scale. International Conference on Learning
Representations. https://openreview.net/forum?id=YicbFdNTTy
(2021).

42. Su, X. et al. ViTAS: vision transformer architecture search. InEuropean
Conference on Computer Vision, 139–157 (Springer, 2022).

43. Simonyan, K. & Zisserman, A. Very deep convolutional networks for
large-scale image recognition. In 3rd International Conference on
Learning Representations (eds, Bengio, Y. & LeCun, Y.) (ICLR, 2015).

44. Maier-Hein, L. et al. Metrics reloaded: recommendations for image
analysis validation. Nat. Methods 21, 195–212 (2024).

45. Brown, T. et al. Language models are few-shot learners. Adv. Neural
Inf. Process. Syst. 33, 1877–1901 (2020).

Acknowledgements
This research is funded by National Natural Science Foundation of China
(No. 62406347 and No. 62202302 and No. 62572311).

Author contributions
Xiu Su, Qinghua Mao, and Xi Lin wrote the main manuscript text. Zhongze
Wu and Xi Lin prepared all the figures. Xiu Su, Shan You, Yue Liao, and

Chang Xu were responsible for the study conception (formulation of the
research question) and algorithm design. All authors reviewed the
manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41746-025-02042-x.

Correspondence and requests for materials should be addressed to Xi Lin.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if you modified the licensed material. You
do not have permission under this licence to share adapted material
derived from this article or parts of it. The images or other third party
material in this article are included in the article’s Creative Commons
licence, unless indicated otherwise in a credit line to thematerial. If material
is not included in thearticle’sCreativeCommons licenceandyour intended
use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by-
nc-nd/4.0/.

© The Author(s) 2025

https://doi.org/10.1038/s41746-025-02042-x Article

npj Digital Medicine |           (2025) 8:682 17

https://arxiv.org/abs/2304.10970
https://arxiv.org/abs/2304.10970
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://doi.org/10.1038/s41746-025-02042-x
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.nature.com/npjdigitalmed

	Large language models driven neural architecture search for universal and lightweight disease diagnosis on histopathology slide images
	Results
	Pathology-NAS: a universally lightweight medical image analysis framework
	Qualitative and quantitative analysis
	Pathology-NAS shows competitive performance with higher computational efficiency
	LLM response with controllable sampling helps stabilize performance improvement
	Expert prompt identified high-performing architectures with fewer search iterations
	Moderate fine-tuning after LLM reference accelerates the searching process
	Pathology-NAS achieves a better trade-off between accuracy and efficiency
	Consistent performance of Pathology-NAS across various datasets
	Pathology-NAS demonstrates strong domain generalization on unseen external datasets without retraining
	Significance analysis of search method comparison

	Discussion
	Methods
	Datasets curation and processing
	LLM-driven neural architecture search
	Network architecture
	Training protocols
	Dataset
	Network initialization and loss functions
	Training configuration
	Baseline and comparative methods

	Loss functions
	Evaluation metrics
	Implementation details of LLM-driven NAS
	Table of abbreviations
	Ethics statement

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




