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Deep learning-enabled multiphoton
microscopy predicts colorectal cancer
recurrence from routine FFPE specimens
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Zhan Zhao9, Shenghui Qiu9, Shijin Liu9, Yu Bai11, Wang-Yang Sun5, Rong-Rong He5, Guobing Chen12 ,
Tianwang Li1,13 , Oscar Junhong Luo2,14 & Wei Jiang15,16

Colorectal cancer recurrence remainsamajor challengeafter curative resection, andaccurate tools for
early risk assessment are essential to stratify patients and guide personalized therapeutic planning.
We developed MPMRecNet, a dual-stream deep learning model for predicting recurrence using
multiphoton microscopy imaging of formalin-fixed paraffin-embedded tissue sections from 1071
patients across two hospitals. MPMRecNet employsMaxViT-based encoders, cross-modal attention
fusion, and classification under focal loss with mixed-precision optimization. It achieved strong
external validation performance (ROC-AUC = 0.849, PR-AUC = 0.664), outperforming traditional
clinical predictors. Multivariable analysis confirmed MPMRecNet as the most powerful independent
predictor of recurrence (OR = 5.66, p < 0.001), and a combined nomogram incorporating clinical
variables further improved stratification (ROC-AUC = 0.872). MPMRecNet offers a non-destructive
tool for recurrence prediction from routine pathology slides, supporting precise risk assessment and
postoperative surveillance.

Colorectal cancer (CRC) ranks as the third most commonmalignancy and
second leading cause of cancer mortality worldwide1. Despite curative (R0)
resection, tumor recurrence remains amajordeterminant of poor long-term
survival, occurring in 6%–39% of stage I–III patients despite advances in
surgical and adjuvant therapies2–4. Currently, risk stratification and treat-
ment decisions largely rely on conventional clinicopathological features
such as tumor stage, lymphnode involvement, vascular invasion, and serum
carcinoembryonic antigen (CEA) levels5,6. However, substantial outcome
heterogeneity persists among clinically similar patients7, revealing critical
limitations in individualized recurrence prediction.

The rapid development of computational pathology has enabled deep
learning models to extract prognostic features directly from whole-slide
histopathology images. In colorectal cancer, multiple studies have applied
convolutional or transformer-based architectures to hematoxylin and eosin
(HE) stained slides for survival or recurrence prediction8–10. Beyond HE,
deep learning studies in other cancers indicate that incorporating IHC
signals can enhance performance on prognosis and recurrence
predictions11–13. While promising, these methods depend on chemical
staining, which introduces variability across laboratories and protocols and
leads to domain shift14. IHC further suffers from assay-to-assay discordance
and platform-specific differences, complicating analytic validation and
cross-site deployment15. Stains and antigens also degrade with storage time,

which reduces signal fidelity and undermines model generalizability and
reproducibility16. HE and IHC primarily measure morphology and protein
expression; they function as proxies rather than direct measurements of
tumor microenvironment biophysics, so features such as collagen archi-
tecture and crosslinking are not well captured.

The tumor microenvironment (TME) drives recurrence through
dynamic stromal interactions. The “seed and soil” hypothesis posits
that metastasis requires permissive extracellular matrices alongside
malignant cells17. Collagen architecture, particularly its deposition and
crosslinking within tumor cores, facilitates invasion and indepen-
dently predicts aggressive behavior18–20. Multiphoton microscopy
(MPM) enables nondestructive, label-free interrogation of these cri-
tical features through two complementary modalities: two-photon
excited fluorescence (TPEF), revealing cellular morphology via
endogenous fluorophores, and second harmonic generation (SHG),
specifically mapping collagen microstructure21. It achieves imaging
contrast and spatial resolution comparable to conventional
histopathology22. Accordingly, it complements conventional compu-
tational pathology by supplying label-free microstructural that aug-
ments morphology-based models. To date, studies have focused on
quantitatively characterizing collagen microarchitecture in SHG
images, and these features are associated with survival outcomes
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across multiple cancer types23–25. Our prior work also found that SHG-
derived collagen features are associated with lymph node metastasis in
colorectal cancer26. However, most existing studies rely on manual
annotation or automated pipelines to extract collagen features from
SHG images, rather than learning directly from raw MPM images27,28.
Moreover, the TPEF channel typically remains underutilized. By
training end-to-end on dual-modality MPM, deep learning can fuse
SHG captured collagen architecture with TPEF captured cellular cues,
model multi-scale cell stroma interactions without hand-engineered
features, and optimize directly for clinical endpoints. In the context of
CRC recurrence prediction, studies on end-to-end dual-modality
MPM remain limited.

To address this gap, we propose MPMRecNet, an end-to-end
framework for colorectal cancer that combines dual-modality multi-
photon microscopy, including TPEF and SHG, with deep learning for
recurrence prediction. MPMRecNet employs modality-specific Max-
ViT encoders with cross-modal attention fusion to capture local-
global, multi-scale features and explicitly integrate complementary
metabolic and collagen structural information. Our aim is to deter-
mine whether the proposed model can accurately predict post-
operative recurrence of colorectal cancer. We validate the model on
independent external dataset; perform modality ablation experiments;
and integrate the model output with clinical variables into a nomo-
gram, evaluating calibration and decision curve analysis (DCA) to
demonstrate potential clinical benefit (Fig. 1). The remainder of this
paper presents the results, followed by a Discussion that examines the
findings and limitations and summarizes the key contributions, and
concludes with the Methods section.

Results
Dataset composition and model architecture
We enrolled 1071 patients with stage I–III CRC after applying exclusion
criteria: 834 in the internal training cohort (The Affiliated Hospital of
Xiangnan University) and 237 in the external validation cohort (The Sixth
Affiliated Hospital of Jinan University) (Fig. 2a). The baseline clin-
icopathological characteristics exhibited no significant differences between
the two cohorts (Table 1), enabling robust external evaluation of recurrence
predictors.

MPMRecNet adopts a dual-modality design that integrates TPEF and
SHG imaging for predicting recurrence in CRC. The model architecture
incorporatesmodality-specificMaxViTencoders (A = TPEFandB = SHG),
attention-based pooling, cross-modal attention fusion, and a classification
head (Fig. 2b; detailed architecture in Fig. S1).

Training strategy and cross-validation performance
We trained MPMRecNet using a three-phase progressive unfreezing
schedule to stabilize fine-tuning (Fig. 3a). Robustness was assessed via
stratified 10-fold cross-validation on the internal cohort. Across folds, the
model achievedROC-AUCvalues ranging from0.662 to 0.904 (Fig. 3b) and
a mean accuracy of 75.1% (Fig. 3c). Despite class imbalance, performance
remained balanced with macro-F1 = 0.710 and weighted-F1 = 0.766 on
average (Fig. S2a). Precision-recall analysis further confirmed minority-
class detectability, with internal PR-AUC values of 0.402–0.771 (Fig. S2b).
Fold-wise confusion matrices indicate comparable behavior on recurrence
vs. non-recurrence (Fig. S2c).

As a non-informative consistency check, we also evaluated each fold’s
checkpoint on the held-out external cohort. Consistent fold-wise perfor-
mancewas observed,withROC-AUCs ranging from0.802 to 0.845 (Fig. 3d)
and 75.2% overall accuracy (Fig. 3e). Class-specific precision and recall
remained stable, resulting in a macro F1-score of 0.706 and weighted F1-
score of 0.765 (Fig. 3f). Confusion matrices indicated reliable recurrence
prediction, with high-performing folds (e.g., Fold 2 and Fold 8) correctly
classifying 45–46 of 58 recurrent cases (Fig. S2d). Precision-recall analysis
showed robust minority-class detection capability with external PR-AUCs
between 0.616 and 0.683 (Fig. 3g).

Final model evaluation
After retraining on the full internal cohort, we performed an evaluation on
the held-out external validation cohort. Attention heatmaps highlighted
distinct modality-specific focus areas: TPEF emphasized tumor-stroma
interfaces and glandular peripheries, while SHG concentrated on collagen-
rich stromal regions (Fig. 4a), indicating complementary extraction of
microstructural features. For comparative benchmarking, we also imple-
mented awidely used SHGcollagen feature pipeline-based onCT-FIRE as a
baseline and trained three conventional classifiers (Random Forest, SVM,
and XGBoost) on the extracted features. The model exhibited strong dis-
criminative power with ROC-AUC of 0.849, higher than baseline models
(0.744–0.763, Fig. 4b). As summarized in Table S1, MPMRecNet outper-
forms all baselines on ROC-AUC, PR-AUC, and F1 score, highlighting the
benefit of end-to-end dual-modality MPM learning over predefined SHG
collagen-feature pipelines. Classification performance showed balanced
results with an overall accuracy of 72.6%, accompanied by macro and
weighted F1-scores of 0.696 and 0.745, respectively (Fig. 4c). Despite the
limited number of recurrence cases (24.1%) in the external cohort, the
model achieved a PR-AUC of 0.664 (Fig. 4d), outperforming baseline
models (0.460–0.527) and indicating reasonable sensitivity andprecision for
minority class detection. Clinical reliability was confirmed through high
sensitivity (84.5%) and acceptable specificity (68.7%) for recurrence detec-
tion, as shown in the confusion matrix (Fig. 4e). Collectively, the high-
performance metrics validate MPMRecNet as a clinically applicable
recurrence prediction tool.

Modality contribution and ablation studies
To assess modality-specific contributions, we analyzed attention weight
distributions between correct and incorrect predictions (Fig. 5a). Correct
classifications demonstrated significantly higher reliance on SHG features
(72.3% attention weight), whilemisclassifications exhibited increased TPEF
influence (37.6%), indicating that SHG features are more predictive. Abla-
tion experiments (Fig. 5b) confirmed these findings: the SHG-only model
achieved moderate performance (ROC-AUC= 0.744; PR-AUC= 0.485),
whereas the TPEF-only model performed substantially worse (ROC-
AUC= 0.541; PR-AUC= 0.295) (Fig. 5c, d). DeLong tests show that the
dual-modalitymodel significantlyoutperformedSHG-only andTPEF-only;
SHG-only also exceeded TPEF-only (Table S2). Visualization techniques
further validated modality complementarity: UMAP revealed enhanced
class separation with dual-modality features (Fig. 5e), while Sankey dia-
grams demonstrated improved prediction concordance (Fig. 5f). Collec-
tively, these results confirm that integrating collagen-rich SHG data with
cellular TPEF features creates synergistic value for recurrence prediction.

Clinical integration and utility evaluation
Before integrating with clinical variables, we confirmed that model per-
formance remained largely consistent across clinicopathological subgroups
on the held-out external cohort, including ROC-AUC (Fig. S3), PR-AUC
(Fig. S4), and recurrence-class recall (Fig. S5). Notably, the largest perfor-
mance difference occurred in pN stage subgroups, which may reflect the
strong association between lymph node metastasis and recurrence risk. We
thenperformedunivariable andmultivariable logistic regression toquantify
the incremental value of the MPMRecNet. Univariable analysis identified
MPMRecNet score as the strongest recurrence predictor (OR = 5.691, 95%
CI: 3.52–9.09; p < 0.001), surpassing all clinical variables (Fig. 6a). This
dominance persisted in multivariable analysis, where MPMRecNet score
remained the primary independent predictor (OR = 5.660, 95% CI:
3.50–9.12; p < 0.001; Fig. 6b). And we built a multivariable nomogram that
combines the MPMRecNet score with key clinicopathological covariates
(Fig. 6c). The nomogram was developed exclusively on the internal cohort.
On this development set, logistic recalibration indicated excellent calibra-
tion (α = 3.85 × 10−14, slope = 1.00; Fig. 6d) and the model showed strong
discrimination (C-index = 0.881, 95% CI 0.831–0.937). On the held-out
external cohort, the nomogram achieved ROC-AUC of 0.872 (Fig. 6e),
significantly exceeding individual clinical predictors and MPMRecNet
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alone as assessed by DeLong tests (Table S3). Decision curve analysis per-
formed only on the external cohort (thresholds 0.01–0.99), with the
nomogram and standaloneMPMRecNet both showing substantially higher
net benefit than traditional approaches across all risk thresholds (Fig. 6f).

Discussion
In this study, we introduceMPMRecNet, a novel deep learning framework
that leverages dual-modalitymultiphotonmicroscopy (TPEF and SHG) for
recurrence risk stratification in stage I–III colorectal cancer. Traditionally,
recurrence prediction has relied on clinicopathological indicators. But these
markers provide only limited prognostic power6,29. More recent

computational pathology approaches have advanced prediction using
digital analysis ofHE and IHC images10,12,13,30,31, yet they remain constrained
to conventional staining modalities. In parallel, multiphoton microscopy
(MPM) has emerged as a powerful, label-free imaging technique, though
prior applications have primarily depended on manual or handcrafted
feature extraction27,28,32. We applied an end-to-end deep learning model
directly to dual-modality MPM imaging (TPEF and SHG), which out-
performedboth traditional clinicopathological indicators and feature-based
MPM approaches. Since prior deep learning-based recurrence prediction
studies were primarily developed on HE/IHC images, we conducted a
literature-based comparison. Although heterogeneity in imaging

Clinical data

Colorectal cancer Tumor tissue Multiphoton imaging

TPEF

SHG

TPEF/SHG image

TPEF Preprocessing

SHG Preprocessing

MPMRecNet

Recurrence

No Recurrence

Multiphoton Image Acquistion

MPMRecNet Development

MPMRecNet Evaluation

Performance evaluation

+

Nomogram construction

Fig. 1 | Workflow of the proposed MPMRecNet framework for colorectal cancer
postoperative recurrence prediction. Tumor FFPE sections are imaged with
multiphoton microscopy to obtain paired TPEF/SHG images, which are

preprocessed and used to train and then apply MPMRecNet for patient-level
recurrence prediction; performance is evaluated, and the prediction is integrated
with clinical variables to build a nomogram for clinical use.
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modalities, study designs, and patient cohorts limits strict comparability,
MPMRecNet demonstrated competitive or superior performance, with the
greatest advantage observed in the independent external validation cohort
(Table S4).

In MPMRecNet, the image encoder is a critical component. We
adoptedMaxViT because its hybrid design couples convolutional inductive
bias with concurrent local window attention and sparse global grid

attention, enabling jointmodeling of high-frequency details and long-range
spatial relations33. In contrast, non-hierarchical ViT/DeiT depend on global
attention at a fixed resolution, which scales poorly for high-resolution
inputs34,35. Hierarchical models such as Swin Transformer emphasize local
window attention and pass global context mainly through depth, while
Pyramid Vision Transformer introduces a hierarchical pyramid with
spatial-reduction attention to control complexity, but does not pair explicit
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Fig. 2 | Patient inclusion and architecture of the recurrence prediction model.
a Patients diagnosed with stage I–III colorectal cancer were enrolled from the
Affiliated Hospital of Xiangnan University and the Sixth Affiliated Hospital of Jinan

University between 2012 and 2019. Following eligibility assessment, 834 patients
were assigned to the training cohort and 237 to the validation cohort. b Schematic
overview of MPMRecNet.
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local window attention with an explicit global mechanism in the same
block36,37. MaxViT’s concurrent local-global attention therefore preserves
fine intra-patch details (e.g., collagen fiber orientation in SHG) and distant
tissue context required by MPM images.

MPMRecNet leveragesmodality-specificMaxViT encoders and cross-
modal attention fusion to extract complementary microstructural and cel-
lular features from unstained tissue. The SHG modality focused pre-
dominantly on dense, uniformly aligned collagen fibers, aligning with
established links between such structures and tumor invasiveness38–40. In
contrast, the TPEF modality highlighted tumor margins and glandular
regions associated with epithelial remodeling during cancer progression41,42.
These distinct, biologically relevant attention patterns confirm the capacity
of a model to capture complementary aspects of the tumor
microenvironment.

Despite inherent class imbalance in recurrence data, MPMRecNet
demonstrated robust performance across cohorts (external ROC-AUC=
0.849; PR-AUC= 0.664). Critically, recurrence recall consistently exceeded
75%, addressing the clinical imperative to avoid under-detection of high-
risk patients43. Ablation studies confirmed the synergistic value of dual-
modality fusion: while SHG-only input retained moderate predictive
capacity, TPEF alone yielded substantially weaker results. Only the com-
bined model achieved high discriminative performance and clear outcome
clustering in latent space, underscoring the biological complementarity
among modalities. Additionally, for the focal loss, following the original
formulation and common practice, we fixed γ = 2.0 a priori per the original
formulation and a sensitivity analysis showed only modest changes on the
external cohort, with γ = 2.0 slightly superior (Table S5), implying that gains
arise chiefly from dual-modality and cross-modal fusion.

CRC risk assessment has traditionally relied on clinicopathological
features (e.g., TNM staging, tumor grade), yet these often fail to capture
biological heterogeneity and true prognosis. Growing evidence highlights
theTME, including immune infiltration and invasionpatterns, as critical for
outcome prediction44,45. Ourwork alignswith this direction, leveraging deep
learning to decode high-dimensional prognostic signatures directly from
multiphoton microscopy (MPM) images. Unlike traditional methods, this
approach quantifies subtle but prognostically decisive features, including
collagen architecture from SHG and cellular dynamics from TPEF, at
submicron resolution, thereby uncovering latent prognostic information
inaccessible to conventional microscopy. Clinically, MPMRecNet demon-
strated transformative potential by surpassing established prognostic mar-
kers. In multivariable regression adjusting for all clinicopathologic
covariates, MPMRecNet emerged as the strongest independent predictor of
recurrence, outperforming even advanced-stage indicators. This robust
association demonstrates that the model captures novel, biologically
groundedprognostic signals beyond standard histopathological assessment.

To facilitate clinical implementation, we developed a prognostic
nomogram integrating MPMRecNet outputs with key clinicopathological
variables. This integrated tool demonstrated exceptional performance in
external validation (ROC-AUC= 0.872; C-index = 0.881) and provided
significant net clinical benefit across decision thresholds, outperforming all
individual clinical factors while matching standalone MPMRecNet pre-
dictions. Critically, MPMRecNet remained the strongest independent pre-
dictor after multivariable adjustment, confirming its unique ability to
capture prognostically decisive signals. These results establishMPMRecNet
not as a research prototype but as a clinically actionable system for guiding
postoperative surveillance intervals and adjuvant therapy selection.

Our current interpretability analysis is qualitative: attention heatmaps
highlight modality-specific foci (TPEF at epithelial interfaces, SHG in
collagen-rich stroma) but were not quantitatively validated against region-
level ground truth. We are acquiring pathologist-annotated masks for
tumor-stroma interfaces and SHG-defined collagen structures to compute
overlap metrics (Dice, IoU) and localization faithfulness tests46, providing
objective validation of model focus. In addition, we have not yet assessed
whether attention patterns align with established histologic predictors of
recurrence (tumor budding, perineural invasion, desmoplastic
reaction)47–49; future analyses will quantify these features and evaluate their
correlation and incremental value relative to model outputs. Although
performance was comparable across various clinicopathological stratifica-
tions (Fig. S3), our dataset did not capture detailed histological subtypes
such as mucinous vs. non-mucinous adenocarcinomas. And we did not
stratify cases by stromal-rich vs. epithelial-rich architecture, as quantitative
measurements of stromal compositionwere not available.We acknowledge
that both histological subtype and stromal architecture may influence
recurrencedynamics andmodel behavior. In futurework,weplan to enlarge
the cohorts, test interactions between model performance and subtype-
specific features, and derive quantitative stromal metrics (e.g., SHG-based
collagen fraction) to further evaluate whether stromal composition mod-
ulates the relative contribution of SHG features in recurrence prediction.

Table 1 | Characteristics of the patients in the training and
validation cohorts

Characteristic Training
cohort (N = 834)

Validation
cohort (N = 237)

p

Age, years old
(Mean ± SD)

60.99 ± 11.37 59.55 ± 12.64 0.092

Sex, No.(%)

Male 492 (59.0) 130 (54.9) 0.254

Female 342 (41.0) 107 (45.1)

Tumor differentiation, No.(%)

Well or moderately 648 (77.7) 187 (78.9) 0.693

Poorly or
undifferentiated

186 (22.3) 50 (21.1)

Preoperative CEA level, No.(%)

Normal 541 (64.9) 165 (69.6) 0.173

Elevated 293 (35.1) 72 (30.4)

Primary tumor location, No.(%)

Rectal cancer 497 (59.6) 144 (60.8) 0.746

Colon cancer 337 (40.1) 93 (39.2)

Tumor size, cm, No.(%)

<4 334 (40.0) 106 (44.7) 0.196

≥4 500 (60.0) 131 (55.3)

VELIPI, No.(%)

No 546 (65.5) 156 (65.8) 0.919

Yes 288 (34.5) 81 (34.2)

Obstruction or perforation, No.(%)

No 597 (71.6) 162 (68.4) 0.334

Yes 237 (28.4) 75 (31.6)

pT stage, No.(%)

pT1 40 (4.8) 12 (5.1) 0.704

pT2 125 (150) 38 (16.0)

pT3 374 (44.8) 113 (47.7)

pT4 295 (35.4) 74 (31.2)

pN stage, No.(%)

N0 393 (47.1) 123 (51.9) 0.655

N1 240 (28.8) 64 (27.0)

N2 201 (24.1) 60 (21.1)

Tumor recurrence, No.(%)

Yes 201 (24.1) 58 (24.5) 0.906

No 633 (75.9) 179 (75.5)

Values in parentheses are percentages unless indicated otherwise.
SD standard deviation, CEA carcinoembryonic antigen, VELIPI venous emboli and/or lymphatic
invasion and/or perineural invasion.

https://doi.org/10.1038/s41746-025-02058-3 Article

npj Digital Medicine |           (2025) 8:689 5

www.nature.com/npjdigitalmed


Freeze_A=True
Freeze_B=False

Phase1
Freeze_A=False
Freeze_B=True

Phase2
Freeze_A=False
Freeze_B=False

Phase3

Fold1

Fold2

Fold10

Internal
Verification

External
Verification

Training Set Internal Validation Set External Validation Set
a

b c

d e

f g

Fig. 3 | Ten-fold cross-validation design and model performance evaluation.
a Schematic of the 10-fold strategy. For each fold, one subset was designated as the
internal validation set and the remaining nine subsets formed the training set,
whereas the independent validation cohort was kept locked for final external testing.
Model training proceeded through three sequential fine-tuning phases with selective
freezing of blocks A and B. b ROC curves for the internal 10-fold cross-validation
folds. c Bar plot of classification accuracy in internal validation: overall accuracy,

accuracy for non-recurrence cases, and accuracy for recurrence cases across folds.
d ROC curves for external validation cohort across all 10 folds. e Classification
accuracy in external validation, including overall, non-recurrence, and recurrence-
specific accuracy per fold. fMacro andweighted evaluationmetrics (precision, recall,
F1-score) computed on the external validation set across folds. g PR curves for
external validation. PR-AUC is reported for each fold, evaluating the model’s ability
to handle imbalanced outcomes.
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Fig. 4 | Final model evaluation and attention-based visualization on the external
validation cohort. aAttention visualization on TPEF and SHG image. b ROC curve
of the final MPMRecNet model on the external validation cohort, compared with
baseline models including Random Forest, SVM, and XGBoost. c Performance

summary on the external cohort, including overall accuracy and macro/weighted
precision, recall, and F1-scores. d PR curve on the external validation cohort,
compared with baseline models including Random Forest, SVM, and XGBoost.
e Confusion matrix showing prediction results on the external validation cohort.

https://doi.org/10.1038/s41746-025-02058-3 Article

npj Digital Medicine |           (2025) 8:689 7

www.nature.com/npjdigitalmed


Our retrospective design and restriction to two centers within one
national healthcare context necessitate prospective, multi-institutional
studies. Robustness to inter-scanner and inter-center variability in MPM
imaging (e.g., hardware, laser settings, acquisition protocols) remains to be
established; we will expand data collection across heterogeneous systems,
perform leave-one-scanner-out evaluation, monitor calibration drift, and
explore domain-adaptation and intensity-normalization strategies to sup-
port clinical translation. Finally, using fixed-size tiles (224 × 224) without
explicit inter-tile spatial modeling may underrepresent whole-slide context
(e.g., margin continuity and architectural gradients); we plan to incorporate

position-aware encodings, hierarchical MIL, slide-level transformer/graph
modules, andmulti-scale tiling to recover global context in our future work.

In conclusion, we developed MPMRecNet, a deep-learning fra-
mework that integrates dual-modality multiphoton microscopy (TPEF
and SHG) with modality-specific encoders and cross-modal attention
to predict colorectal cancer recurrence. The model achieved strong
predictive accuracy and generalizability across internal and indepen-
dent external cohorts, and its incorporation into a nomogram pro-
vided added clinical utility. Nonetheless, interpretability has yet to be
quantitatively validated with pathologist-annotated masks, and our
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Fig. 5 | Ablation analysis and modality contribution in recurrence prediction.
a Attention weight distribution from Modality A (TPEF) and Modality B (SHG) in
correctly and incorrectly predicted cases. b Schematic of the ablation setup, where
the Modality A branch was removed to evaluate the independent contribution of

SHG. c ROC curves comparing the full MPMRecNet model with single-modality
variants. d PR curves for the samemodels. eUMAP-based dimensionality reduction
of features from each model. f Sankey diagram comparing prediction outputs from
Modality A, Modality B, and MPMRecNet with the ground truth labels.
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current pipeline does not model whole-slide spatial context. In future
work, we will leverage annotations to derive quantitative stromal/ECM
metrics to enhance interpretability, and we will further improve per-
formance and robustness through multi-center expansion and the
addition of position-aware and multi-scale modeling. Overall,
MPMRecNet combines label-free multiphoton imaging and deep
learning to leverage intrinsic tissue signals for recurrence risk strati-
fication, with potential for further research and clinical translation.

Methods
Patient cohorts and study design
This retrospective study included patients diagnosed with stage I–III
colorectal cancer underwent curative (R0) resection between 2012 and 2019
at two independent institutions in China: the Affiliated Hospital of Xiang-
nanUniversity and the SixthAffiliatedHospital of JinanUniversity. Patients
were excluded if they had multiple primary malignancies, received neoad-
juvant therapy, or had incomplete clinical or follow-up data.

Variable

TD

CEA

TumorSize

VELIPI

BOorBF

T

N

MPMRecNet

Odds.ratio

0.565(0.373−0.854)

1.540(1.067−2.223)

1.551(1.076−2.248)

1.559(1.083−2.246)

1.347(0.924−1.96)

1.539(1.231−1.937)

1.765(1.423−2.196)

5.660(4.434−7.375)

P Value

0.007

0.021

0.020

0.017

0.120

1.883e−04

2.860e−07

8.031e−41

0.5 1.5 2.5 3.5 4.5 5.5

Variable
Age
Sex
TD
CEA
Location
TumorSize
VELIPI
BOorBF
T
N
MPMRecNet

Odds.ratio
1.000(0.989−1.013)
1.101(0.829−1.466)
0.640(0.466−0.885)
1.648(1.235−2.195)
0.919(0.688−1.222)
1.555(1.162−2.092)
1.754(1.316−2.336)
1.552(1.151−2.086)
1.401(1.171−1.685)
1.842(1.550−2.192)
5.691(4.500−7.338)

P Value
0.949
0.508
0.006

6.595e−04
0.562
0.003

1.203e−04
0.004

2.807e−04
4.530e−12
2.696e−44

0.5 1.5 2.5 3.5 4.5 5.5

0.0 0.2 0.4 0.6 0.8
0.

0
0.

2
0.

4
0.

6
0.

8
Predicted Probability of Recurrence

O
bs

er
ve

d 
R

ec
ur

re
nc

e 
R

at
e

Mean absolute error=0.013 n=834B= 1000 repetitions, boot

Apparent
Bias−corrected
Ideal

0.0 0.2 0.4 0.6 0.8 1.0

−0
.0

5
0.

05
0.

15
0.

25
N

et
 B

en
ef

it

1:80 1:4 2:3 3:2 4:1 80:1

Threshold Probability

Cost:Benefit Ratio

Nomogram
MPMRecNet
TD
CEA

Tumorsize
VELIPI
T
N

a b

c d

e f

Points
0 10 20 30 40 50 60 70 80 90 100

TD
2

1

CEA
0

1

TumorSize
1

2

VELIPI
0

1

T
1 3

2 4

N
0 2

1

Score
−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

Total Points
0 20 40 60 80 100 120 140 160

Linear Predictor
−7 −6 −5 −4 −3 −2 −1 0 1 2 3

Predicted Value
0.1 0.3 0.5 0.7 0.9

Fig. 6 | Construction and validation of a nomogram integrating MPMRecNet
with clinicopathological variables. a Univariable logistic regression analysis of
clinical features and the MPMRecNet prediction score. b Multivariable logistic
regression identifying independent predictors of recurrence. c Nomogram model
constructed using independent predictors to estimate individualized recurrence risk.

dCalibration curve of the nomogrammodel, showing agreement between predicted
and observed recurrence rates. e ROC curve comparison of the nomogram,
MPMRecNet, and individual clinical variables in the external validation cohort.
f Decision curve analysis comparing the net clinical benefit of the nomogram,
MPMRecNet, and individual predictors across varying threshold probabilities.
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A total of 1753 patientswere initially screened, 1302 from theAffiliated
Hospital of Xiangnan University and 451 from the Sixth Affiliated Hospital
of Jinan University. After applying exclusion criteria, 834 patients from the
Affiliated Hospital of Xiangnan University were assigned to the training
cohort, and 237 patients from the Sixth Affiliated Hospital of Jinan Uni-
versity were included in the external validation cohort. All patients were
followed for up to 5 years postoperatively. Recurrence was defined as any
radiologically or pathologically confirmed local or distant relapse occurring
within this period. Patients who were lost to follow-up or died without
documented evidence of recurrence were considered to have incomplete
clinical data and were therefore excluded from the analysis. Based on this
definition, 259 patients (24.2%) experienced recurrence.

To assess baseline comparability, the following key clinicopathological
features were compared between the training and validation cohorts: age,
sex, tumor size, T/N stage, CEA level, vascular or lymphatic invasion
(VELIPI), tumor differentiation (TD), bowel obstruction or perforation
(BOorBF), and recurrence rate (Table 1). No significant differences were
observed, indicating good balance across groups.

This retrospective study was approved by the institutional review
boards of both theAffiliatedHospital of XiangnanUniversity (K/KYX2024-
026-01) and the SixthAffiliatedHospital of JinanUniversity (JNUKY-2024-
0060). Informed consent was waived due to the use of de-identified archival
data and theminimal risk to participants. All procedureswere conducted in
accordance with the Declaration of Helsinki.

Multiphoton imaging and dataset construction
MPM was conducted on formalin-fixed, paraffin-embedded (FFPE) tissue
sections using a commercial system (Prairie Ultima IV, Bruker, USA).
Representative tumor regions were selected under the guidance of an
experienced pathologist to ensure biological relevance. Two nonlinear
optical imagingmodalities (SHG and TPEF) were acquired simultaneously.
Excitation was provided by a femtosecond Ti:sapphire laser tuned to
810 nm. Emission signals were filtered through narrow bandpass filters
(394–416 nm for SHG; 430–759 nm for TPEF) to ensure spectral
separation.

Because acquisition magnifications varied across scanning sessions
(20×/40×), to remove scale inconsistencies and ensure cross-sample com-
parability we isotropically downsampled all images to a 20× reference
resolution (0.8303 μm per pixel), native 20× images were unchanged. After
scale normalization, images were tiled into non-overlapping 512 × 512
patches and each patchwas resized to 224 × 224 via bilinear interpolation to
match the ImageNet-pretrained MaxViT input. The distribution of patch
numbers per case in both the training and validation cohorts is shown in
Fig. S6.

Paired TPEF and SHG images from each patient were processed in
parallel. Each imaging modality was preprocessed independently, and all
patches were normalized prior tomodel input. The resulting dual-modality
patcheswere saved as PyTorch-compatible tensors for downstream training
and inference. Dataset composition, patient-level splits, and preprocessing
steps are summarized in Table S6.

MPMRecNet architecture
MPMRecNet is a dual-stream, attention-based neural network designed to
predict recurrence risk from MPM images using both SHG and TPEF
modalities. As shown in Fig. S1, the architecture comprises three compo-
nents: (1) modality-specific patch-level encoders based on MaxViT, (2)
patch-level attention pooling, (3) cross-modal attention fusion with a
classification head. Layer-wise configuration are summarized in Table S7
and complexity and runtime statistics are provided in Table S8.

To obtain a patient-level representation from variable numbers of
patches, we adopt attention-based multiple-instance pooling within each
modality. Specifically, each patch embedding is scored by a lightweight two-
layer MLP, followed by softmax normalization across all patches from the
samepatient andmodality. Thenormalized scores are thenused to compute
a weighted sum of patch embeddings, yielding a single modality-level

feature vector. This permutation-invariant pooling naturally handles
patients with different numbers of patches. The resulting TPEF and SHG
embeddings are subsequently fused through a cross-modal attention block,
and the fused representation is passed to a fully connected classification
head to predict the recurrence probability.

For each patient, a set of paired SHG and TPEF patches
(N × 224 × 224) is extracted and fed into two independent MaxViT enco-
ders.We denotemodality A = TPEF andmodality B = SHG for consistency
with the codebase. Each encoder transforms a variable-length sequence of
image patches into a corresponding set of latent feature vectors:

XðAÞ ¼ x Að Þ
1 ; x Að Þ

2 ; . . . ; x Að Þ
N

n o
;X Bð Þ ¼ x Bð Þ

1 ; x Bð Þ
2 ; . . . ; x Bð Þ

N

n o
; xi 2 R512

ð1Þ

where XðAÞ and XðBÞ denote feature sequences from TPEF and SHG mod-
alities, respectively.

To aggregate the patch-level embeddings into a patient-level feature
vector, we implemented a learnable attentionmechanism50. For amodality-
specific embedding matrix X 2 RN ×D, attention weights are computed via:

w ¼ Softmaxðv> tanhðWX>ÞÞ ð2Þ

f ¼
XN
i¼1

wi � xi ð3Þ

Where W 2 RD×D, v 2 RD and f 2 RD is the attended feature vector
representing the entire image for onemodality. Thismechanism enables the
model to focus on themost informative regions across varyingpatch counts.

To effectively integrate complementary information from the two
imaging modalities, we designed a unidirectional cross-modal attention
module51. Given modality-specific embeddings a; b 2 RN ×D; we treat the
TPEF-derived featuresa as the query source and attend over bothTPEF and
SHG representations:

Q ¼ aWq 2 RN ×D ð4Þ

K;V ¼ a; b½ �Wk;V; ½a; b�Wv 2 RN × 2×D ð5Þ

Attention ¼ softmax
Q � K>

ffiffiffiffi
D

p
� �

2 RN×1× 2 ð6Þ

fused ¼ Attention � V 2 RN×D ð7Þ

Here, Wq;Wk;Wv 2 RD×D are learnable projection matrices. The fused
output fused combines both intra and inter modal context, guided by the
TPEF modality.

The fused representation f fused 2 RD is passed through a multilayer
perceptron (MLP) classifier to obtain the final logits:

z ¼ MLPð f fusedÞ 2 R2 ð8Þ

Predictions are computed via softmax:

ŷ ¼ argmaxðSoftmaxðzÞÞ ð9Þ

MPMRecNet training strategy
To ensure stable convergence and effective utilization of pretrained repre-
sentations, we adopted a three-phase fine-tuning strategy inspired by
Fastai52. Each phase progressively increased the trainable capacity of the
model, allowing for modality-specific adaptation followed by joint opti-
mization: (1)The encoder formodality B is set to be trainable,while encoder

https://doi.org/10.1038/s41746-025-02058-3 Article

npj Digital Medicine |           (2025) 8:689 10

www.nature.com/npjdigitalmed


A is frozen; (2) The training roles are switched: encoder B is frozen, and
encoder A is unfrozen and optimized; (3) All model parameters are
unfrozen for joint end-to-end training.This progressiveunfreezing schedule
was designed to reduce gradient instability and prevent premature over-
writing of pretrained knowledge.

The model was trained using the Adam optimizer in Phases 1 and 2,
and Adamwith cosine annealing learning rate scheduling in Phase 353. The
initial learning rate was set to 1e−4 for modality-specific training and
reduced to 7e−5 for the final joint fine-tuning stage. A cosine annealing
scheduler with 10% warm-up steps was used to improve convergence
during end-to-end training.

During training, we employed the focal loss to handle class imbalance.
The focal loss is defined as:

Lfocal ¼ �αtð1� ptÞγ logðptÞ ð10Þ

where pt is the predicted probability of the true class and αt is a class-
balancing weight. Following the original focal loss formulation and
common practice for imbalanced classification, we fixed the focusing
parameter at γ = 2.0 a priori54.

We also utilized mixed-precision training via PyTorch’s Automatic
Mixed Precision (AMP) and gradient scaling with GradScaler to accelerate
training and reduce memory consumption without compromising
numerical stability55. Given the variable number of image patches across
patients, we implemented patch-wise feature extraction using sub-batches
(patch batch size = 480) to manage GPU memory usage efficiently. This
strategy allowed the model to handle per-patient patch heterogeneity while
maintaining stable and consistent training behavior.

Model evaluation
To comprehensively evaluate MPMRecNet, we employed both internal
cross-validation and external validation on independent data. Model per-
formance was assessed using standard classification metrics, along with
modality ablation and interpretability analyses to elucidate the contribu-
tions of individual components.

Internal validation employed stratified 10-fold cross-validation
exclusively on the internal cohort56. The dataset was stratified to maintain
class balance in each fold. For each fold, models were trained on 90% and
evaluated on10%of the internal data.Metrics including accuracy, precision,
recall, macro and weighted F1 score, ROC-AUC, and PR-AUC were cal-
culated for each fold57. The external cohort was held out in its entirety
throughout training and cross-validation and was not used for training,
internal validation, model selection, or hyperparameter tuning. Fold-wise
predictions on the external cohort, when reported, are provided as
descriptive sanity checks and did not influence any training or selection
decisions.

After cross-validation, a single final model was retrained on the full
internal cohort and evaluated once on the external cohort using the same
metrics, including ROC-AUC and PR-AUC, as well as class-specific recall
and overall confusion matrix analysis. The confusion matrix was used to
visualize the distribution of true positives, false positives, and misclassified
cases, providing insight into the model’s behavior across recurrence and
non-recurrence classes.

To demonstrate the effectiveness of our architecture, we conducted
comparative benchmarking against a widely used SHG collagen feature
pipeline based on CT-FIRE28,58. For each patient, SHG image features were
extracted using the default CT-FIRE parameters, including fiber density
(count per mm²), mean fiber length and standard deviation, mean orien-
tation angle and standard deviation, circular variance of orientation, mean
fiber width, andmean SHG intensity. These patient-level features were then
used to train three conventional classifiers (Random Forest, SVM, and
XGBoost) on the training folds, while the independent external cohort was
reserved strictly for final testing. Evaluation followed the same external
protocol asMPMRecNet, with results reported in terms of ROC-AUC, PR-
AUC, F1-score, and class-specific accuracies.

To investigate the modality-specific contributions, we conducted
ablation experiments59. Each variant was evaluated on the external valida-
tion set. The full model was trained once using the procedure described
above.During ablation testing, either the SHGorTPEF branchwas disabled
by zeroing its global embedding before cross-modal fusion. This design
ensures consistent optimization and avoids variability introduced by
retraining.

Statistical analysis and clinical integration
Univariable and multivariable logistic regression analyses were performed
to identify factors associated with recurrence. The MPMRecNet predicted
recurrence probability was included alongside standard clinical features
such as age, sex,CEA level, tumor size, tumor location,T/N staging,VELIPI,
TD, and presence of BOorBF. Variables with a p < 0.05 in univariable
analysis were retained for inclusion in the multivariable model. Odds ratios
(ORs) and 95% confidence intervals (CIs) were reported for all predictors.

A nomogram was constructed based on the multivariable logistic
regression model to enable individualized risk estimation of recurrence on
the training cohort60. The nomogram integrated theMPMRecNet score and
the selected independent clinical variables. Calibration of the nomogram
was assessed using calibration curves, comparing predicted probabilities
with observed outcomes61. Mean absolute error and visual alignment with
the 45-degree reference line were used to evaluate model reliability. To
quantify overall discriminative performance,we computed the concordance
index (C-index), which measures the probability that the model correctly
ranks a randomly selected pair of patients (one recurrent, one non-recur-
rent). Higher C-index values indicate better discriminative ability.

Finally, decision curve analysis (DCA) was performed to evaluate the
net clinical benefit of usingMPMRecNet and the nomogram across a range
of decision thresholds62. The DCA curve illustrates the trade-off between
true positive benefit and false positive harm, helping to assess the model’s
utility in guidingpostoperative clinical decisions such as adjuvant therapyor
surveillance intensification.

Implementation details
All model development and training were conducted using Python 3.12 on
Ubuntu 22.04, with PyTorch version 2.5.1 and CUDA 12.4 for GPU
acceleration. The model architecture was implemented using PyTorch’s
native modules, with additional utilities from the torchvision and trans-
formers libraries (transformers version 4.36.2). Training was performed
under automatic mixed-precision (AMP) to improve computational effi-
ciency and reduce memory usage. Complexity and runtime statistics are
reported in Table S8. All experiments were conducted on a single NVIDIA
GeForce RTX 4090D GPU (24 GB VRAM).

No data augmentation (e.g., rotation, flipping, color jittering) was
applied during preprocessing. Given the nature ofmultiphotonmicroscopy
and the need to preserve spatial and structural integrity across SHG and
TPEF channels, raw image morphology was retained throughout training.

Logistic regression modeling, nomogram construction, calibration
curve analysis, and decision curve analysis were conducted using R version
4.4.1. Pairwise AUC comparisons between ROC curves were performed on
the external cohort using DeLong tests63.

Data availability
Original patientdata fromthis study arenotpublicly available due toprivacy
constraints, but may be shared in de-identified form upon reasonable
request and institutional approval.

Code availability
The source code for MPMRecNet used in this study is publicly available at
https://github.com/yyb2020/MPMRecNet.
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