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An artificial intelligence system for
qualifiedmucosal observation time during
colonoscopic withdrawal

Check for updates
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Colonoscopic withdrawal time is crucial for achieving a high adenoma detection rate (ADR) and
reducing post-colonoscopy colorectal cancer risk. Enhancedqualifiedmucosal observation improves
ADR, butmanual quantificationof qualifiedmucosal observation time (QMOT) in routine is challenging.
We developed an artificial intelligence (AI) system, QAMaster, for automatic QMOT calculation during
colonoscopywithdrawal. QAMaster comprises twomodels:Model I for image quality analysis (trained
with 57,235 images from 64 patients) and Model II for anatomical landmark identification (trained with
7712 images from 3013 patients). Patients were stratified by QMOT, and ADR was compared. The
areas under the curve (AUC) ofModel I were 0.980–0.991, andModel II were 0.977–0.997. Among 482
patients, ADR was 36.54% (57/156) vs. 19.94% (65/326) in high-QMOT group (≥90 s) vs. low-QMOT
group (<90 s) (adjustedOR2.02; 95%CI1.23–3.33).QAMaster provides apromising tool for assessing
colonoscopy withdrawal quality.

Colorectal cancer (CRC) is the third most commonmalignancy and the
second leading cause of cancer-related mortality globally1. Early
detection and removal of precancerous adenomas via colonoscopy are
crucial for reducing CRC incidence and mortality2. Despite the proven
effectiveness of colonoscopy in CRC prevention, 26% of adenomas and
9% of advanced adenomas are missed during colonoscopy, largely due
to the substantial variability in colonoscopy inspection quality3. Missed
lesions may promote the development of post-colonoscopy CRC
(PCCRC)4. Therefore, various quality indicators for colonoscopy, such
as withdrawal time, bowel preparation quality, and cecal intubation
rate, have been established to increase the adenoma detection rate
(ADR) and reduce the risk of PCCRC5–7.

Colonoscopy withdrawal time is defined as the period spent with-
drawing the colonoscope while inspecting the colonic mucosa from the
cecum to the anus in the absence of an intervention6. Current guidelines
recommend a minimum withdrawal time of 6min to ensure thorough
mucosal observation and enhance ADR8–11. According to recent studies,
increasing thewithdrawal time to8–13mincould further improve theADR,

as it allows for a more meticulous examination of the colonic mucosa12–16.
However, withdrawal time contains various components, including time
spent on non-informative and defective observations, handling of foreign
bodies, and qualified mucosal observation17. Enhancing the qualified
mucosal observation is more effective in increasing the ADR than simply
prolonging the withdrawal time18. Moreover, improving the qualified
mucosal exposure can significantly reduce the total inspection time without
compromising lesion detection19,20. These findings underscore the impor-
tance of focusing on qualified mucosal observation time (QMOT) rather
than on the total withdrawal time. However, manual quantification of
QMOT during routine practice demands substantial human resources and
is prone to interobserver variability.

The integration of artificial intelligence (AI) into medical imaging has
shown great promise for enhancing diagnostic accuracy and procedural
quality21–23. In colonoscopy, AI has primarily focused on real-time polyp or
adenoma detection and characterization, demonstrating its potential in
standardizing quality of colonoscopy and reducing interobserver
variability24–26. However, limited researches have investigated the use of AI
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in the measurement of QMOT and validated this tool as a quality control
metric for colonoscopy.

This study aimed todevelop andvalidate the accuracy andeffectiveness
of an AI system, named the quality assessment master (QAMaster), for the
automatic calculation of QMOT during colonoscopy withdrawal by lever-
aging advanced Vision Transformer (ViT)models (Fig. 1)27. By conducting
a comprehensive validation, our study demonstrated that theQAMaster is a
potential practical tool for assessing colonoscopy quality.

Results
QAMaster development and evaluation
Fourmethods, namelyViT,ResNet-50,DenseNet-121, andEfficientNet-b2,
were used to develop QAMaster. Compared to convolutional neural net-
work architectures, ViT-based models demonstrated a slight advantage in
performance, achieving the highest macro-AUC of 0.980 and micro-AUC
of 0.983 in image quality assessment (Supplementary Table 1). For cecum
identification, the ViT-based models showed better performance than the
others, with the highest AUC of 0.992 and an accuracy of 0.975 (Supple-
mentary Table 2).

The accuracy of Model I in the internal testing dataset (20 patients,
19,467 images) ranged from 0.911 to 0.999 for the six types of images (in
vitro, non-informative, foreign body, intervention, defective, and

qualified), and the macro-AUC was 0.980 (range, 0.962–0.999). In the
external testing dataset (20 patients, 19,328 images), the accuracy
ranged from 0.961 to 0.995 and the macro-AUC was 0.990 (range,
0.981–0.996). In the prospective testing dataset (20 patients, 24,568
images), the accuracy ranged from 0.954 to 0.990, and the macro-AUC
was 0.991 (range, 0.985–0.999) (Fig. 2a–i and Supplementary Tables
3–5). Representative predicted images are shown in Supplementary Fig.
1a–f, and classification of the images collected from a representative
patient into six types is shown in Fig. 2j. In the 10 videos, the proportion
of each label identified by Model I was comparable to that of the
endoscopist’s annotations (Fig. 2k).

The accuracy of Model II in identifying the cecum in the internal
testing dataset (20 patients, 1751 images) was 0.963, with the AUC 0.997. In
the external testing dataset (20 patients, 1657 images), the accuracy was
0.947 and theAUCwas 0.996. In the prospective testing dataset (20 patients,
1552 images), accuracy was 0.958 and the AUC was 0.977 (Fig. 3a–i and
Supplementary Table 6). Typical visualizations of Model II in recognizing
the cecum and other sites are shown in the Supplementary Fig. 2a, b.
Identification of the cecum images collected from a representative patient is
shown in Fig. 3j. Notably, the withdrawal time predicted by QAMaster was
highly correlated with the time determined by the endoscopists (Pearson
correlation coefficient 0.991, P < 0.001, Fig. 3k).

Fig. 1 | Illustration of the overall pipeline for the construction and evaluation of
the Quality Assessment Master (QAMaster).Data of the colonoscopic withdrawal
images were collected and annotated. QAMaster, which consists of two models—
Model I for image quality assessment and Model II for anatomical landmark
identification—was then trained. Afterward, QAMaster was validated using both

internal and external testing datasets. The qualified mucosal observation time
(QMOT) was automatically calculated using QAMaster, with a threshold of
QMOT ≥ 90 s set as the cut-off, corresponding to an adenoma detection rate (ADR)
of 26.05%. Finally, the clinical value of QMOT was assessed using a prospective
cohort study.

https://doi.org/10.1038/s41746-025-02067-2 Article

npj Digital Medicine |           (2025) 8:685 2

www.nature.com/npjdigitalmed


Fig. 2 | Performance of Model I for image quality analysis. aAccuracy, sensitivity,
and specificity of Model I on the internal testing dataset. b Confusion matrix of
Model I on the internal testing dataset. cAUCperformance for classifyingmulticlass
labels of Model I on the internal testing dataset. d Accuracy, sensitivity, and speci-
ficity ofModel I on the external testing dataset. eConfusionmatrix ofModel I on the
external testing dataset. f AUC performance for classifying multiclass labels of
Model I on the external testing dataset. g Accuracy, sensitivity, and specificity of

Model I on the prospective testing dataset. h Confusion matrix of Model I on the
prospective testing dataset. i AUC performance for classifying multiclass labels of
Model I on the prospective testing dataset. j Distribution of Model I in recognizing
each classification in a representative withdrawal video. k Comparison between
Model I and expert endoscopists in recognition of each classification in the 10
withdrawal videos. AUC area under the curve.
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Fig. 3 | Performance of Model II for landmark identification. a Accuracy, sensi-
tivity, and specificity of Model II on the internal testing dataset. b Confusion matrix
of Model II on the internal testing dataset. c AUC performance for classifying
landmarks of Model II on the internal testing dataset. d Accuracy, sensitivity, and
specificity ofModel II on the external testing dataset. eConfusionmatrix ofModel II
on the external testing dataset. f AUC performance for classifying landmarks of
Model II on the external testing dataset. g Accuracy, sensitivity, and specificity of

Model II on the prospective testing dataset. h Confusion matrix of Model II on the
prospective testing dataset. i AUC performance for classifying landmarks of Model
II on the prospective testing dataset. j Distribution of Model II in recognizing each
classification in a representative withdrawal video. k Correlation between the pre-
dicted withdrawal time of QAMaster and endoscopists in 100 withdrawal videos.
AUC area under the curve, PCC Pearson correlation coefficient.
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Clinical effectiveness of QMOT in prospective cohort
The prospective cohort included 482 patients who were enrolled in the
analysis (Supplementary Fig. 3). The baseline characteristics are shown in
the Supplementary Table 7. The mean QMOT was 78.93 s, and the mean
withdrawal time was 365.48 s.

To simplify the utilization of QMOT, the actual QMOT calculated by
QAMaster was converted into categorical variables at 30-s intervals. A
significant positive correlation was observed between QMOT and ADR,
with a Spearman’s rank correlation coefficient of 0.999 (Fig. 4a, P < 0.001).
ADR was 8.33% in patients with <30-s QMOT (n = 24), 16.25% in patients
with 30–60-s QMOT (n = 160), 26.05% in patients with 60–90-s QMOT
(n = 142), 32.98% in patients with 90–120-s QMOT (n = 94), 37.84% in
patientswith120–150-sQMOT(n = 37), and48.00% inpatientswith≥180-
s QMOT (n = 25). To achieve an ADR of at least 25%, QMOT≥90 s was set
as the cut-off (the ADR being 26.05%) (Fig. 4a).

The enrolled patients were divided into two groups, namely low-
QMOT with QMOT <90 s and high-QMOT with QMOT ≥90 s. The dis-
tribution of baseline information of patients and endoscopists in the low-
andhigh-QMOTgroupswas collected (SupplementaryTable 8).Compared
to that in the low-QMOT group, colonoscopies in the high-QMOT group
were more often performed in the early session of the half-day (73.08% vs.
60.43%, P = 0.009), by female endoscopists (60.26% vs. 47.24%, P = 0.010)
and by physicians with ≥4000 colonoscopy cases (81.41% vs. 71.47%,
P = 0.025) (Supplementary Tables 8 and 9). The ADR in the high-QMOT
group was significantly higher than that in the low-QMOT group (36.54%
vs. 19.94%, P < 0.001; Fig. 4b). Multivariate logistic regression showed that
high QMOTwas an independent risk factor for adenoma (odds ratio (OR),
2.02; 95% CI, 1.23–3.33) and polyp detection (OR, 2.21; 95% CI, 1.41–3.48,
Table 1). Notably, high QMOT was significantly correlated with the
detection of diminutive (OR, 3.93; 95% CI, 2.09–7.39) and small adenomas

Fig. 4 | Clinical value of QMOT in ADR. a Correlation between ADR and QMOT
classification was conducted using Spearman’s rank correlation. The dotted lines
represent an ADR of 25%, and the latest ADR of 26.05% on the curve was used as the
optimal time point for QMOT (90 s). b Comparison of ADR between low-QMOT
and high-QMOT groups using chi-squared test. c Comparison of ADR across

groups with different total withdrawal times (between ≥6min and <6 min) in high-
QMOT group. d Association between risk factors and ADR using a multivariate
logistic regression analysis. Data are presented as the ORs, 95% CIs, and P values.
ADR adenoma detection rate, SCC Spearman’s rank correlation coefficient, QMOT
qualified mucosal observation time.
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(OR, 1.76; 95% CI, 1.02–3.03, Table 1). The association between high
QMOT and ADR was consistent across the right, transverse, and left colon
(Table 1). Subgroup analyses showed that the ADR in the high-QMOT
group was remarkably higher than that in the low-QMOT group across
different ages, patient sex, examination time for colonoscopy, endoscopist
sex, endoscopist experience, and withdrawal time (Supplementary Tables
10–21 and Supplementary Figs. 4a–f and 5). Notably, the ADR of the high-
QMOTgroupwas significantly higher than that of the low-QMOTgroup in
the subgroup of withdrawal time ≥6min (41.91% vs. 22.09%, P = 0.006,
Supplementary Table 21). We further investigated the difference of ADR
within subgroups of different total withdrawal time (<6-min and ≥ 6-min
groups) in the high-QMOT group. Results showed that the ADR for total
withdrawal time ≥ 6min was higher than that for total withdrawal time
<6min (41.91% vs. 25.49%, P = 0.069) although the difference was not
statistically significant (Fig. 4c and Supplementary Table 22). The results
suggested that with this threshold, QMOT may be used as an effective
quality indicator for colonoscopy.

Risk factors for adenoma detection
Finally, we conducted a logistic regression analysis to determine the vari-
ables related to adenoma detection. The results of the univariate logistic
regressionwere as follows: age≥50years (OR, 4.36; 95%CI, 2.51–7.59),male
patients (OR, 1.94; 95% CI, 1.27–2.96), QMOT ≥90 s (OR, 2.31; 95% CI,
1.51–3.53), totalwithdrawal time≥6min (OR, 1.94; 95%CI, 1.28–2.93), and
endoscopists with experience of ≥4000 cases (OR, 1.88; 95% CI, 1.11–3.17,
Supplementary Table 23) were risk factors of adenoma detection. The
results of the multivariate logistic regression revealed the following inde-
pendent risk factors of adenoma detection: age≥50 years (OR, 4.39; 95%CI,
2.48–7.78), male patients (OR, 2.02; 95% CI, 1.29–3.16), and QMOT of
≥90 s (OR, 2.02; 95% CI, 1.23–3.33) (Fig. 4d and Supplementary Table 23).

Discussion
In this study, we developed and evaluated the accuracy and effectiveness of
theQAMaster for colonoscopic examinations.QAMaster leveraged theViT
models to provide real-time image quality assessment and landmark

identification, thereby automatically calculating QMOT. ADR in the high-
QMOT group was significantly higher than that in the low-QMOT group.
Multivariate logistic regression analysis indicated that QMOT was a
potentially more effective quality control indicator than the total with-
drawal time.

Quality control during colonoscopy plays a crucial role in increasing
the incidence of ADRwhile reducing that of PCCRC5,6. Researches indicate
that amore prolonged colonoscopywithdrawal time (8–13min) allows for a
higherADR12–16. However, even during a colonoscopywithmore prolonged
withdrawal time, enough QMOT may not be possible19,20. Calculating
QMOT typically requires significant human resources, is challenging to
implement broadly12,28, and can introduce high variability and incon-
sistencies.OurQAMaster basedonAIalgorithmsautomated the calculation
of QMOT, and demonstrated that the system performs accurately and
consistently across multiple still images and video datasets, allowing for a
mucosal observation of high quality during withdrawal.

Previous studies have used AI algorithms to record QMOT. For
instance, Lux et al. developed an AI model to automatically calculate
QMOT, and found the AI-predicted time to have smaller absolute differ-
ences with the measured time than the human-reported time29. Similarly,
Lui et al. developed an AI model to record QMOT by excluding the time of
inadequate view (including water absorption, significant redness, incom-
plete inflation, light reflection, excrement blocking, and air bubble block-
ing), identifying four quintiles of QMOT, and demonstrating a positive
correlationbetween adenomadetectionandhigher quintiles30. Compared to
previous studies, our image quality assessment model classified images in
more detail, ensuring homogeneity across different categories, and enhan-
cing the model’s effectiveness. We applied six distinct labels in this study,
including in vitro, non-informative, foreign body, intervention, defective,
and qualified with predefined visual criteria. Although all the images were
annotated through majority agreement by three experienced endoscopists,
the distinction between labels may vary slightly depending on human
interpretation,whichcan influence thefinalQMOTmeasurement. In future
work, we will further refine and standardize annotation protocols, possibly
incorporating semi-automated labeling tools and multi-institutional

Table 1 | Primary and secondary outcomes between low-QMOT and high-QMOT groups

Total (n = 482) Low-QMOT (n = 326) High-QMOT (n = 156) OR (95% Cl) P value

Adenoma detection rate 122 (25.31) 65 (19.94) 57 (36.54) 2.02 (1.23, 3.33) 0.006

Adenoma size category

Diminutive (≤5mm) 60 (12.45) 23 (7.06) 37 (23.72) 3.93 (2.09, 7.39) <0.001

Small (>5 to <10mm) 66 (13.69) 37 (11.35) 29 (18.59) 1.76 (1.02, 3.03) 0.045

Large (≥10mm) 29 (6.02) 19 (5.83) 10 (6.41) 1.11 (0.5, 2.44) 0.802

Adenoma location

Right colon 42 (8.71) 22 (6.75) 20 (12.82) 2.05 (1.07, 3.92) 0.029

Transverse colon 52 (10.79) 25(7.67) 27 (17.31) 2.52 (1.39, 4.56) 0.002

Left colon 72 (14.94) 38 (11.66) 34 (21.79) 1.65 (0.91, 2.98) 0.096

Polyp detection rate 186 (38.59) 99 (30.37) 87 (55.77) 2.21 (1.41, 3.48) <0.001

Polyp size category

Diminutive (≤5mm) 128 (26.56) 59 (18.10) 69 (44.23) 2.57 (1.60, 4.13) <0.001

Small (>5 to <10mm) 82 (17.01) 47 (14.42) 35 (22.44) 1.53 (0.87, 2.68) 0.138

Large (≥10mm) 30 (6.22) 20 (6.13) 10 (6.41) 1.05 (0.48, 2.3) 0.907

Polyp location

Right colon 54 (11.20) 28 (8.59) 26 (16.67) 1.64 (0.86, 3.14) 0.133

Transverse colon 71 (14.73) 35 (10.74) 36 (23.08) 1.94 (1.07, 3.52) 0.029

Left colon 128 (26.56) 70 (21.47) 58 (37.18) 1.74 (1.09, 2.78) 0.021

Advanced adenoma 32 (6.64) 20 (6.13) 12 (7.69) 1.27 (0.61, 2.68) 0.521

Sessile serrated lesion 7 (1.45) 3 (0.92) 4 (2.56) 2.83 (0.63, 12.82) 0.176

QMOT qualified mucosal observation time.
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validation to improve reproducibility and generalizability. Despite this
subjectivity, QAMaster demonstrated consistently high performance across
both internal and external validation datasets, suggesting that the current
annotation framework is sufficiently robust for a generalizable and effective
QMOT assessment system.

Moreover, none of the previous studies identified a suitable QMOT or
investigated its clinical significance in real-world clinical settings. Our study
addressed this gap by identifying a reasonable QMOT that provides a sig-
nificant improvement over those from previous methods. We found that
QMOT ≥90 s was positively correlated with adenoma detection (OR, 2.02;
95% CI, 1.23–3.33) through multivariate logistic regression. Subgroup
analyses demonstrated the stability of the association betweenQMOT≥90 s
and ADR across different ages, patient sexes, examination time for colo-
noscopy, endoscopist sexes, endoscopists’ experience, and withdrawal time.
There were several advantages of our established QMOT. On one hand, the
ADR of high QMOT was significantly higher than that of low QMOT, and
QMOT ≥90 s was an independent risk factor for ADR. When total with-
drawal time, colonoscopy experience, and QMOT were included in the
regression model, only QMOT ≥90 s remained significantly positively
associated with ADR, despite being positively correlated with ADR in
univariate analyses. This suggested that the QWT could bemore important
for quality control during colonoscopy.Ontheotherhand, in the groupwith
withdrawal time ≥6min, the ADR was significantly higher in the high-
QMOT subgroup than in the low-QMOT subgroup. This further high-
lighted the importance of QMOT over total withdrawal time in improving
ADR. Our current definition of QMOT is intentionally strict, as it was
designed to capture only frames with stable, clear, and informative mucosal
visualization while excluding frames affected by camera movement, non-
informative content, foreign bodies, or transitional views. This conservative
approach ensures high quality of frames and consistency but may lead to
relatively low QMOT values, as observed in our results. In future work, we
will explore more flexible and dynamic criteria, such as those can tolerate
slight movements or incorporate a continuous quality score, to better align
the QMOT metric with practical endoscopic performance while main-
taining its objectivity and reliability. Due to the strict definition of QMOT,
endoscopists are required tomaintain a relatively stablewithdrawal or adopt
a “withdrawal–stop to inspect–withdrawal” approach during the procedure
to enable real-time application of QAMaster.

TheAI architecture employed inQAMaster offered various advantages
over traditional methods. In particular, the ViT models utilized in our
systemexcelled at processing complex visual data, enablingprecise real-time
assessment of image quality and landmark identification. The models sig-
nificantly enhanced the accuracy and robustness of the system, ensuring
reliable performance across diverse clinical settings compared to several
deep convolutional neural networks. The heat maps generated by
QAMaster suggested that its remarkable performance can be attributed to
the ability of ViT models to capture global information across the entire
image27. This integration of AI into colonoscopy represented a notable
advancement, promoting a higher ADR andmore comprehensive mucosal
inspections, ultimately improving CRC screening and prevention.

Our study had certain limitations. One limitation of our current
approach is that the exclusion of frames containing foreign bodies or defects
may lead to underestimation of potentially informative images, as such
frames can still contribute to lesion detection in real-world clinical practice.
In future work, we plan to quantify the proportion of the visual field
obscured by foreign matter or defects and explore threshold values that do
not compromisediagnostic accuracy.Moreover, our currentmodel doesnot
distinguish between standard-view and magnified-view modes, whichmay
affect the granularity of time measurement for lesion search versus detailed
inspection. We will incorporate view mode differentiation in subsequent
model iterations like previously reported view mode to further refine the
assessment of effective mucosal observation time30. Another limitation was
that the system’s performance was based on data from Olympus endo-
scopes. Considering the widespread market share of Olympus endoscopes
and the homogeneity of endoscopic images, QAMaster may be adapted to

other endoscopes through transfer learning, thus ensuring broader applic-
ability. Furthermore, while QAMaster has demonstrated potential in
improvingADR, its effect on the detection of high-risk precancerous lesions
and long-termclinical outcomes remains to be validatedwith regard to cost-
effectiveness31. We plan to conduct randomized controlled trials to com-
prehensively assess its impact on high-risk lesion detection and to further
establish its clinical value in enhancing the quality and effectiveness of
colonoscopy.

In conclusion, we proposed theQAMaster system,whichwould offer a
more precise and effective method for colonoscopy quality control through
automatic calculation of QMOT. The system addressed the limitations of
total withdrawal timemetrics and could provide a robust tool for enhancing
the effectiveness of colonoscopic examinations. Future research should
focus on broadening the validation of QAMaster across diverse clinical
settings and exploring its long-term impact on patient outcomes.

Methods
Study design and datasets
A stepwise AI validation study was conducted in two hospitals, namely
Nanjing Drum Tower Hospital (NJDTH) and Nanjing Gaochun People’s
Hospital (GCPH) in China. QAMaster consisted of two models, namely
Model I for image quality assessment andModel II for anatomical landmark
identification. First, we retrospectively collected 93,726 images from
NJDTH, which were randomly divided into a training dataset with 57,235
images (61.07%) from 64 patients, a validation dataset with 17,024 images
(18.16%) from 16 patients, and an internal testing dataset with 19,467
images (20.77%) from20patients to develop andvalidateModel I. Similarly,
11,167 images fromNJDTHwere randomly split into a trainingdatasetwith
7712 images (69.06%) from 3013 patients, a validation dataset with 1704
images (15.26%) from755patients, andan internal testingdatasetwith1751
images (15.68%) from 20 patients to develop and validate Model II. The
inclusion criteria for the retrospective datasets were as follows: (1) colono-
scopy examinations conducted at one of the two institutions between Jan-
uary 2021and June 2021; (2) availability of clinical information, images, and
videos at the timeof diagnosis; and (3) all endoscopic procedures performed
with the Olympus 290 series system (Olympus Optical, Tokyo, Japan). The
exclusion criteria were: (1) inflammatory bowel disease, (2) familial poly-
posis syndrome, and (3) history of colorectal surgery.

Subsequently, we collected three independent datasets for further
validation ofModel I (retrospective external testing dataset 1:19,328 images
of 20 patients fromGCPH; prospective testing dataset 1:24,568 images of 20
patients from NJDTH; and video testing dataset 1:10 videos of 10 patients
from NJDTH) and Model II (retrospective external testing dataset 2:1657
images of 20patients fromGCPH; prospective testing dataset 2:1552 images
of 20 patients from NJDTH; and video testing dataset 2:100 videos of 100
patients from NJDTH) (Supplementary Fig. 6 and Supplementary Table
24). The training, validation, and testing datasets were divided at the patient
level to ensure the independence of the datasets. Finally, a prospective
observational study was conducted to evaluate the clinical significance of
QMOT in real-world clinical scenarios.

The study protocol was reviewed and approved by theMedical Ethics
Committee of Nanjing Drum Tower Hospital (no. 2023-175-02). Written
informed consent was obtained from all the prospectively recruited
patients. For retrospectively collecteddata, the ethics committeewaived the
requirement for informed consent since only de-identified information
was used. All procedures adhered to the principles of the Declaration of
Helsinki.

Training and testing datasets
To generate the training and testing datasets, both still images and videos
from the enrolled patients were utilized. All videos, except those designated
for video testing, were firstly converted into frames, followed by cropping
the irrelevant borders to retain the internal view of the colon. Then,
OpenCV’s Perceptual Hash (pHash) algorithm was employed to identify
and eliminate duplicate images, thereby reducing redundancy.
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For the training and testing ofModel I, the followingdatasetswere used
(Supplementary Fig. 6):
(1) Training dataset: 3926 in vitro images, 20,439 non-informative images,

11,207 foreignbody images, 3396 intervention images, 13,644defective
images, and 4623 qualified images from 64 patients at Nanjing Drum
Tower Hospital (NJDTH).

(2) Validation dataset: 731 in vitro images, 6595 non-informative images,
2846 foreign body images, 1366 intervention images, 4186 defective
images, and 1300 qualified images from 16 patients at NJDTH.

(3) Internal testing dataset: 1191 in vitro images, 7000 non-informative
images, 4144 foreign body images, 1257 intervention images, 4511
defective images, and 1364 qualified images from 20 patients
at NJDTH.

(4) External testing dataset: 688 in vitro images, 5736 non-informative
images, 3931 foreign body images, 1735 intervention images, 4451
defective images, and 2788 qualified images from 20 patients at
Gaochun People’s Hospital (GCPH).

(5) Prospective testing dataset: 4451 in vitro images, 7803non-informative
images, 4444 foreign body images, 848 intervention images, 4001
defective images, and 2921 qualified images from 20 patients
at NJDTH.

(6) Video testing dataset: 10 videos from 10 patients, randomly selected
from the prospective testing dataset at NJDTH, were used to evaluate
the consistency between Model I and endoscopists in the real-time
recognition of each label.

For the training and testing of Model II, the following datasets
were used:
(1) The trainingdataset: 4668 cecum images and4748other sites images of

3768 patients at NJDTH.
(2) The internal testing dataset: 763 cecum images and 988 other sites

images of 20 patients at NJDTH.
(3) The external testing dataset: 644 cecum images and 1013 other sites

images of 20 patients at GCPH.
(4) The prospective testing dataset: 599 cecum images and 953 other sites

images of 20 patients at NJDTH.
(5) The video testing dataset: 100 videos from 100 patients, randomly

selected from the dataset established in the prospective observational
study, were used to evaluate the correlation between the predicted
withdrawal time by QAMaster and that determined by endoscopists.

The training and testing datasets were divided at patient level to ensure
the independence of the training and testing datasets.

Model design and training
QAMaster is consisted of two deep learning models, and both models
were based on ViT27. QAMaster initiates its preprocessing by first
resizing the images, followed by normalization. An RGB image is
cropped and split into a batch of 16*16 nonoverlapping patches before
being fed into the ViTs architecture. To retain the maximum amount of
visual information, all colonoscopy images were preserved in their ori-
ginal three-channel RGB format throughout the entire preprocessing
and training pipeline. No conversion to grayscale or other color spaces
was performed. This decision was motivated by the fact that color cues
can be clinically relevant in endoscopic imaging and may contribute to
improved feature extraction by the neural network, particularly in dif-
ferentiating mucosal texture, vascular patterns, and artifacts. Once
normalized, the images are partitioned into distinct, non-overlapping
windows. Subsequently, the content of these windows is converted into
token embeddings. To enhance their spatial context, these embeddings
are complemented with positional embeddings32. We employed stan-
dard learnable 1D positional embeddings, consistent with the original
ViT design. In particular, each patch embedding was augmented with a
positional embedding of the same dimensionality as that of patch
embedding before being fed into the Transformer encoder. These

positional embeddings were initialized as trainable parameters and
added element-wisely to the sequence of patch embeddings. This design
allows the model to capture spatial information across image patches,
which is critical for accurate visual representation and downstream
classification. This refined data then proceeds to the deeper layers of the
model, enabling sophisticated visual analysis. All our model parameters
have been pretrained on ImageNet before being fine-tuned on our col-
lected dataset. Finally, to enhance the model’s robustness, we utilized
mixup augmentation during the training process33. To improve the
efficiency of training process, an increasing number of training images
were used to obtain an optimal sample size of training datasets. An early
stopping strategywas used to prevent overfitting. In particular, after each
epoch, themodel’s performance on the validation set was evaluated. If no
improvement in validation accuracy was observed for five consecutive
epochs, trainingwas terminated. Themodelweights from the epochwith
the highest validation accuracy were retained for final evaluation on the
test set. This strategy ensured robust generalization while avoiding
unnecessary over-training. The stability of the models was evaluated
with 5-fold cross-validation and using different random seeds. The
specific training details are shown in Supplementary Note 1, Supple-
mentary Figs. 7 and 8, and Supplementary Tables 25–28. Our models
were both trained and evaluated using four GeForce RTX 2080TI gra-
phics processing units (NVIDIA Corporation, Santa Clara, California,
USA). The optimal hyperparameters were selected using validation
datasets.

Evaluation of QAMaster performance
The performance of Model I was assessed on the internal, external, and
prospective testing datasets. For each classification on the datasets, multi-
label classification was evaluated with confusion matrix, accuracy, sensi-
tivity, specificity, precision, and F1-score at binary decision thresholds.
Receiver operating characteristic (ROC) analysis with area under the curve
(AUC) calculationwas performed.macro-AUC, andmicro-AUCwere used
to assess the aggregate performance of multi-label classification. Five-fold
cross validation and different random seeds were also used to evaluate the
performance of Model I. The 95% confidence intervals (CIs) of accuracy,
sensitivity, specificity, and precision were computed with Clopper–Pearson
method, and the 95% CIs of AUC and F1-score were calculated using
bootstrapping with 1000 resamples.

The Model II was tested on the internal, external, and prospective
testing datasets. The performance ofModel II was evaluated with confusion
matrix, AUC, accuracy, sensitivity, specificity, precision, and F1-score
with 95% CIs.

The metrics were calculating using the following formulas:

Accuracy ¼ true positive images casesð Þ þ true negative imagesðcasesÞ
total imagesðcasesÞ

ð1Þ

Sensitivity ¼ true positive imagesðcasesÞ
true positive images casesð Þ þ false negative imagesðcasesÞ

ð2Þ

Specificity ¼ true negative imagesðcasesÞ
true negative images casesð Þ þ false positive imagesðcasesÞ

ð3Þ

Precision ¼ true positive imagesðcasesÞ
true positive images casesð Þ þ false positive imagesðcasesÞ

ð4Þ

F1� score ¼ 2 × Precision × Sensitivity
Precisionþ Sensitivity

ð5Þ
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Procedures
ToestablishModel I for imagequality assessment, colonoscopy imageswere
annotatedwith the following six labels: (1) in vitro: images captured outside
of the body; (2) non-informative: images captured too close to the colon
wall, those out of focus, containing numerous artifacts, or with over- or
under-exposure; (3) foreign body: images containing bubbles, fluid, and
fecal materials; (4) intervention: images showing flushing, chromoendo-
scopy, biopsy, or any other instruments; (5) defective: images with a small
number of artifacts, slightly blurry areas, or mild overexposure but still
showing part of themucosa; (6) qualified: imageswith clearly visiblemucosa
or vessels, moderate lighting, and no artifact17. ForModel II (for anatomical
landmark identification), images were annotated as showing either the
cecum (ileocecal valve, appendiceal orifice, and cecal caput) or other sites6.
All imageswere annotatedby three experienced endoscopistswith>10years
of experience in colonoscopy, and only the images for which at least two
endoscopists reached a consensus were included.

To test QAMaster, images from the internal, external, and prospective
testing datasets were first adopted to evaluate the classification performance
of Models I and II. Subsequently, videos from video-testing dataset 1 were
used to analyze the accuracy of Model I in calculating the duration of
different labels in real-time.Videos fromvideo-testingdataset 2wereused to
assess the performance of QAMaster in calculating the withdrawal time
(Supplementary Movies 1 and 2).

QMOTwas calculated usingQAMaster, as follows:Model II identified
the cecum frame for thefirst time to determine the start time of colonoscopy
withdrawal, and Model I recognized the in-vitro frames to determine the
end time of the withdrawal. The total number of withdrawal and qualified
frames in the withdrawal procedure were calculated using Model I.

The total withdrawal time ¼ the end time of withdrawal� the
start time of withdrawal � time of the intervention (6)

QMOT ¼ qualified frames
total withdrawal frames

× the total withdrawal time ð7Þ

To facilitate the utilization of the qualified withdrawal time, every 30 s
of QMOT was treated as a class (i.e., 0–30 s corresponded to a QMOT
category of 30 s, 30–60 s corresponded to a QMOT category of 60 s, etc.).

To evaluate the clinical value of QMOT, we conducted a single-center
prospective cohort study inNJDTH.We recruited consecutive patients aged
between 18 and 75 years who provided informed consent to undergo
colonoscopy between July 1 and October 15, 2023. The exclusion criteria
were inflammatory bowel disease, family polyposis syndrome, history of
colorectal surgery, known or suspected bowel obstruction or perforation,
and pregnancy or lactation.

Data collection
Basic demographic characteristics of patients including age, sex, indication
for colonoscopy, type of sedation, recruitment of patients, and time for
colonoscopy were recorded before colonoscopy. Time for colonoscopy was
divided into 2 groups according to the end time of procedure. The early
group commenced in the early sessionper half day (8:00AMto10:59AMor
1:00 PM to 3:29 PM), and the late group commenced in the late session per
half day (11:00 AM to 12:59 PM or 3:30 PM to 5:29 PM). Boston Bowel
Preparation Scale (BBPS) score was used to assess bowel preparation34.
Information regarding endoscopist age, sex, year of practice, endoscopists
experience, and colonoscopies per year were also obtained. The withdrawal
time was defined as time from cecum to anus, exclusion the time of inter-
vention including polyp resection, biopsy time, time of the mucosal clean-
ing, and observation time using chromoendoscopy, which was
automatically computed by the QAMaster. After the colonoscopy, whole
colonoscopy videos were collected for subsequent analysis. Two endosco-
pists rechecked the cecal intubation time and withdrawal time reported by
the QAMaster.

Outcomes
The primary outcomes for the performance of QAMaster were AUC,
accuracy, sensitivity, and specificity. For the prospective observational
study, primary outcomewas the ADR, defined as the proportion of patients
with one or more histologically confirmed adenomas. Secondary outcomes
included theADR for adenomas of different sizes (diminutive≤5mm, small
>5 to <10mm, or large ≥10mm) and locations (the right colon defined as
the cecum to the ascending colon, the transverse colon as the hepatic flexure
to the splenic flexure, and the left colon as the descending colon to the
rectum), the polyp detection rate for polyps of different sizes and locations,
advanced ADR, and sessile serrated lesion detection rate of patients above
and below the determined QMOT threshold. Advanced adenomas were
defined as those with a size of 10mm, a villous component, or high-grade
dysplasia. Polyps were diagnosed based on endoscopic diagnosis, and
adenomas and sessile serrated lesions were diagnosed based on the World
Health Organization criteria and the pathology reports from NJDTH.

Statistical analysis
We analyzed 250 patients recruited earlier (in the prospective study) to
estimate the sample size. A sample size of 466 was required to meet a two-
sided 95% CI with a width of 0.1 when the Spearman’s rank correlation of
the 250 patients was 0.715 (PASS, version 15.0.5). Considering that
approximately 5% of the patients may be excluded from the analysis, the
target sample size was set to 492 cases. Variants were compared using the
chi-square test or Fisher’s exact test for categorical variables and Student’s t
test for continuous variables. We calculated the ADR of each QMOT class
and performed correlation analysis using Spearman analysis. Logistic
regression was used to evaluate the association between adenoma detection
and QWT above and below the determined threshold, after adjusting for
age, sex, indication for colonoscopy, use of analgesia, examination time for
colonoscopy, bowel preparation, type of instrument, withdrawal time, age
and sex of endoscopists, years of practice, experience as endoscopist, and
colonoscopies per year. All statistical tests were two-sided, and P < 0.05 was
regarded as statistically significant. All statistical analyses were conducted
using the R software (version 4.3.3).

Data availability
Due to the requirements of Ethics Committee, all the deidentified data sets
generated or analyzed in the present study are available from the corre-
sponding author (Lei Wang, leiwang9631@nju.edu.cn) upon reasonable
request with written data-sharing agreement signed.

Code availability
All the computations of this study (after data preprocessing) were per-
formed in Python, and the corresponding codes are publicly available at
https://cs.nju.edu.cn/lwj/code/QAMaster.zip.
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