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Defining and validating a
multidimensional digital metric of health
states in chronic back and leg pain
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Chronic pain (CP) is a debilitating condition that extends beyond persistent pain, influenced by
physiological and psychological factors. However, clinical trials often evaluate outcomes solely on
self-reported pain amplitude. To address this, we aimed to derive a single metric from
multidimensional digital data to comprehensively represent wellness in lower back and leg pain. Daily-
reported data were collected for five years (>190 K samples, n = 498, from NCT01719055/
NCT03240588), comprised of clinical assessments, digitally-reported symptoms, text responses, and
smartwatch-based actigraphy. Clustering analysis of the digital data identified five novel symptom
clusters. They were validated by comparing centroid distances to standard assessments, revealing
five ordinal best-to-worst states (r = 0.34 to r =−0.51, ps < 0.001), even when pain magnitude was
similar. Further, patients’ text messages about their status associated better with the clusters than
pain reports alone. This solution extends beyond a recapitulation of pain level, yielding non-obvious,
meaningful states that serve as an actionable metric in CP care.

At some point in their lives, at least 20% of Americans experience chronic
pain (CP)1,2. It is not only associatedwith a significant impact onmental and
physical health, employment, and social interaction, but the CP disease
burden includes the opioid crisis. As a result, there is an urgent incentive to
understand CP and to predict its onset and progression. Two complicating
factors are its complexity and longitudinal nature. Initially, it is characterized
primarily by prolonged pain ( > 3–6 months3,4) after an injury has healed5.
Past the initial diagnosis, well-being and subjective pain reports are bidir-
ectionally impacted by sleep, mobility, medication use, psychosocial factors,
and other variables6. For example, sleep disturbances are a core factor inCP7,
can worsen the experience of pain8, and contribute to its chronicity9. CP is
also profoundly modulated by emotion and cognitive processing10, as CP
diagnosismaybepredictedbyemotional states11 and relatedbrain circuitry12.
Despite this, known comorbid symptoms such asmood, attention, and sleep
are not consistentlymonitored throughout the disease, even though they are
known to affect outcomes meaningfully13. Thus, the multidimensional
interaction of these associated symptoms is currently insufficiently under-
stood when evaluating important clinical outcomes, and there remains a
need to represent CP from a holistic perspective.

Many CP clinical trials use temporally coarse data collected at in-clinic
visits that are often infrequent relative to the evolution of the pain, and
report statistically derived relationships between a few variables. Technical

advances in digital health can address these gaps by capturing meaningful
symptoms as patients go about their daily lives14–16 at frequencies relevant to
the evolution of the symptoms. Additionally, appropriate forms of artificial
intelligence (AI) have shown promise beyond standard statistical approa-
ches in identifying disease metrics because they can recognize patterns or
joint representations in large, heterogeneous data streams. Machine learn-
ing has shown some success in CP when identifying pain17, distinguishing
subgroups18, and improving diagnoses19, but it has only contributed mini-
mally to identifying structure in biological and clinical data20 and in treating
ormanaging pain directly19,21. Further, studies using combinedmulti-modal
objective and subjective data (e.g., sensors with patient self-reports) to
understand CP are broadly underdeveloped. Another issue is that for many
clinicians who manage CP, predictive algorithms infrequently generate
actionable results and lack information about clinical contextualization,
labels, or other qualitative aspects. Considering this, we aimed to leverage
modern AI (i.e., unsupervised clustering methods) to shed light on the
complex symptom structure of CP across time in daily collected clinical trial
data.We seek tounderstandbetterhowgroups of symptoms– includingbut
not exclusive to pain – cluster together across time and how this connects to
critical outcomes such as function and quality of life.

In this study, we conducted discussions with the Physicians Author
Group and researchers intended to ensure the study design and results
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would facilitate the experience of interpreting longitudinal and raw time
course data for clinicians, and to formulate outcome variables for prediction
algorithms seeking to predict or optimize treatments. Our goal with this
approachwas to develop a computationally-informedmetric that integrates
multi-level symptom data instead of relying on pain reports alone. We
aimed to create a single metric that is easily communicated, clinically rele-
vant, and can be used in longitudinal assessments of CP, given the known
interactive nature of types of symptoms across the course of the disease. To
this end, we used data from a longitudinal, multi-center clinical trial across
several years in hundreds of individuals treated for chronic lower back and
leg pain using spinal cord stimulators (SCS). While chronic lower back and
leg pain does not represent all types of CP, it notably does constitute the
most common types of reported pain locations1. We included multiple
symptoms expected to impact the quality of life in this cohort and in CP
individuals more generally, including mood, sleep, medication use, alert-
ness, and activity, and combined them with an unsupervised clustering
method. In a subsequent analysis, we added watch-based actigraphy mea-
sures to quantify activity intensity in this model. To validate the results, we
compared clustering characteristics to periodic assessments of function
(disability), quality of life, and open-text self-report responses from the
participating patients, contextualizing the unsupervised output. We will
discuss the implications of these findings andweigh the advantages of using
a multidimensional health metric in CP instead of relying upon pain
magnitude alone, as well as the broader applications of this methodological
approach.

Results
Data characteristics and study details
The conceptual framework (Fig. 1a) was implemented using data from an
observational clinical trial that recruited individuals diagnosed with
intractable neuropathic pain seeking SCS therapy (see Fig. 1b, Methods,
and Supplementary Materials). The entire dataset included 190,580 sam-
ples from 498 participants, starting in August 2017. After applying the
data inclusion criteria, which was intended to ensure ample, quality data
for the daily digital responses for mood, sleep, pain, alertness, medication
use, and activity, the clustering analysis using only questionnaire data
included 375 participants with 50,620 complete samples (all 14 entries
per day were available) collected between May 22, 2018, and October 26,
2022, with amedian of 412 (+ /−349) days per person. For the clustering
analysis that included actigraphy (mobility) data, 327 participants across
30,086 samples were included. The validation data underwent a similar
process to ensure that they were temporally aligned to the cluster data.
This analysis, which aimed to verify the unsupervised clustering results,
included 1031 samples from 332 participants also from May 2018 to
October 2022, indicating that the assessments successfully spanned a
similar chronology to the data used to calculate the clusters. The analysis
that included actigraphy data used a validation sample of 647 with 261
participants, also within the same range of time. Additional details about
the patient cohort are found in Table 1.

Clustering results and validation
Following data curation, a k-means clustering analysis was implemented to
determine whether clinically meaningful clusters could be derived from the
daily digital data (Fig. 1c). The clustering results identified a range of two to
five (k = 2 to 5) stable clusters. Given prior findings that supported the
presence of five states in CP22 and the value of increased granularity with
additional clusters, we chose to focus on the five cluster solution. Feature
characteristics for the five clusters were examined by first inspecting mean
feature values associated with each cluster produced by the model (Fig. 2a).
A clear pattern emerged in which desirable characteristics (i.e., better
reported mood, sleep, activity, and alertness, and lower reported pain and
medication use) were associated in the best cluster, or superior state, and
undesirable characteristics clustered into the worst cluster, or inferior state.
Intermediate clusters appeared to represent incremental steps between the
superior and inferior states but notably included near-identical pain

magnitude levels. Several features, including alertness and medication use,
differentiated between them. The cluster model also showed consistency
across periods of time and response rates (see Supplementary Figs. 2-3).

In order to confirm the cluster ranking as best-to-worst, a valida-
tion analysis was implemented to compare the clusters to held-out data
comprised of disability (Oswestry Disability Index, or ODI23) and
quality of life scores (the 5-factor Euro Quality of Life, or QoL24). Here,
the validation scores were aligned with the cluster assignments by date,
and correlations were calculated between the validation scores and
cluster similarity characteristics (centroids). Indeed, the superior state
was associated with lower disability and better quality of life; the
opposite was true for the inferior state. Specifically, the results from the
correlation analysis between the disability score and the cluster cen-
troids indicated longer (further away) centroid distances for the
superior state correlated significantly in a positive direction with the
ODI or associated with high ODI scores. In other words, dissimilarity
with the best state was associated with higher ODI values (severe dis-
ability), and similarity with the best state was associated with lower ODI
values (lower disability). Conversely, shorter (closer) centroid distances
are associated with higher ODI values for the inferior state, indicating
cluster proximity or similarity associated with worse disability scores.
The intermediate cluster centroids correlated with ODI values in a
distinct order, suggesting that each associated with ODI in an ordinal
way. A similar pattern and rank were observed for the QoL values in
each sub-score. Notably, the EQ5D-VAS-Health metric, which, unlike
ODI, represents positive aspects of health, showed an inverse rela-
tionship relative to the prior findings (Fig. 3), further verifying the best-
to-worst rankings.

Given these findings, we assigned the clusters to distinct health states
named A-E, with A being the superior state and E being the inferior state.
Figure 2 presents a qualitative interpretation and comparison of the states.
We also explored descriptive statistics for the standard assessments across
the states given the assigned rank (Fig. 4) and anecdotal accounts for which
the states represented episodicmedical eventsduring SCS treatment (Fig. 5).
Adding actigraphy to the cluster model showed broad consistency with the
questionnaires-only model. The qualitative clustering results (Fig. 2b)
appeared to have similar feature characteristics and provided added insight
that while highmobility is generally associatedwith the superior state (AM),
lowmobilitymay also be associatedwith a good state (BM), supporting prior
findings that the association between pain andmobility is nontrivial. Also, a
clear ranking was identified for this solution, with AM-EM denoting the
model that includes mobility (see Fig. 3b).

Finally, we examined the relationship betweenparticipants’open-ended
responses via text message to questions about their health, pain, day, and
other topics (see Supplementary Table 1) and States A through E. The text
responseswere analyzedbycalculating semantic similarity scoresbetween the
participant responses and positive and negative statements about well-being
(see Supplementary Table 2). This calculation was used to create the text
health score. Like the disability and QoL scores, the content of patients’ text
messages also revealed that the clusters could be organized into rankedhealth
states.Using a similar validation analysis,we found that the text health scores,
for which positive values indicated better health, correlated significantly with
the distance from the best state in the questionnaire-only model (r =−0.23,
p < 0.000001, with a 95% confidence interval of −0.25 to −0.20; see Sup-
plementary Table 3). The negative r values indicated that higher (better) text
health scores correlated with shorter distance values in (more similar to) the
best state.As a comparison,we examined the relationshipbetween text health
score alone and average daily pain report, which also correlated significantly
in the same direction, in that higher pain and the text health score were
inversely correlated (r =−0.14, p < 0.001, with a 95% confidence interval of
−0.16 to−0.11). Using the model that included mobility, we again found a
relationship between the text health scores and the best state (r =−0.28,
p < 0.00001 with a 95% confidence interval of −0.31 to −0.25), revealing a
likely higher r-value compared to the relationship between text health scores
and pain (r = -0.16 with a 95% confidence interval of −0.19 to −0.13).
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Though the text responses varied in the extent and precision to which each
participant adequately evaluated their well-being, the relationship between
pain and states compared to the text health score was significant. However, it
is notable that the range of the confidence intervals suggests that the states co-
vary better with the text health score responses than with the magnitude of
pain, implying that the states can authentically capture general well-being
assessments at least as well, if not better than pain alone.

Discussion
Using longitudinal data from hundreds of individuals experiencing CP
across nearly five years, we created a validated, data-driven, multi-
dimensional metric of well-being in CP, accounting for pain magnitude
augmented by sleep, mood, alertness, medication, activities, and mobility.
By integrating these features, which were assessed daily, we identified five
symptom clusters, which we call Pain Patient States. The model’s output

Fig. 1 | Schematic of Clinical Trial andHypothetical Analysis Overview. (a, Upper
panel) This schematic describes the general approach that was developed to obtain
and curate longitudinal clinical data, subject it to a grouping algorithm, and explore
whether the output was significantly aligned with clinically meaningful, held-out
data. (b, Middle panel) In the present study, eligible neurostimulation-naive parti-
cipants were recruited from pain clinics as de novo participants. Additionally,
participants who were already enrolled in a prior trial and had a successful spinal
cord stimulator (SCS) trial were also offered participation in the study after com-
pleting a baseline visit. Following screening and enrollment, participants had a trial
procedure visit, which trained them on the usage of the device, and pain relief was

assessed. Those with a successful trial received an implantable pulse generator (IPG)
implantation and were followed for as long as 36 months. (c, Lower panel) (1) Data
from (B) were applied to the framework in (A) in that they were curated from a large
clinical trial dataset ( > 190 K samples) and were selected for hypothetical con-
tribution to wellness in chronic pain patients, availability, and other factors. (2) Data
were subjected to a k-means clustering analysis, and (3) results were inspected. (4)
The clusters were validated by comparing the cluster properties to the health
assessments (disability and quality-of-life). Finally, a label and rank were assigned to
the clusters.
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revealed a clear distinction between superior and inferior clusters, in which
positive and negative symptoms were grouped at opposite ends of the
spectrum. To validate the model, we compared centroid distances to
assessments of disability, QoL, and open-form text self-reports. This ana-
lysis showed that the clusters held an ordinal property, inwhich the superior
cluster was associated with lowest disability, highest QoL, andmost positive
text responses; the opposite pattern was shown in the inferior cluster. Cri-
tically, three intermediate clusters were ranked distinctly as they related to
health but were remarkably similar in pain severity level. This suggests these
clusters providemeaningful information aboutmultidimensionalCPhealth
states beyond pain alone. We argue that the metric presented here tracks
well-established wellnessmeasures, may be remotely obtained, is both data-
and expert-driven, and can be reduced to an interpretable measure that is
informative for medical decision-making and outcomes prediction.

An advantage to this clustering approach is the ability to observe the
intricate dynamics of pain-related symptoms, which, by extension, provides
insights into biological mechanisms and clinical care.With this inmind, we
chose a five-cluster solution that best balanced relative stability, improved
granularity, and provided an understanding of patient experience. In prior
analyses using a smaller sample22, more conservative cluster solutions of
k = 2 to3were considered.While it is known that cluster instability increases
with additional k, having too few clusters also limits the amount of infor-
mation that may be inferred from a dataset. Using the cluster solution with
maximal stable clusters allows one to understand symptom groupings and
represents health status with better precision. Here, while itmay be intuitive
that high pain and poor mood co-occur, this approach allowed us to dis-
cover clusters in thePainPatient States thatwere non-obvious. For example,
statesCvs.D showeddifferentiationbasedon reported alertness,whichmay
be related to medication use and/or attentiveness and has been shown to
modulate pain-related neural processing and behavior substantially10,25. We

found two “good” states (States AM and BM) associated with very different
levels of mobility, supporting theories that the relationship between pain
and movement is complex26,27, or potentially non-linear28,29. In the inter-
mediate states, we observed similar reported pain magnitude. However,
other features appeared to differentiate the states, such as high mood level
for state BM and lowmood level for state CM. State D shows some degree of
similarity to State C. Still, State D is associated with poor alertness, and State
C is not, which may drive the association with poorer outcomes in State D.
Considering these findings, we believe this approach reveals novel infor-
mation about CP experience beyond measuring pain alone.

State characteristics covaried with widely-used health measures in a
distinct, ordinal fashion. Comparisons with disability (ODI) and QoL
(EQ5D) were used to provide clinical contextualization for our data-driven
analysis, a step we consider critical when working with machine learning
approaches that do not necessarily provide interpretation in the analysis
output. However, while these standard assessments allowed us to con-
textualize and rank the states, these measures (ODI, EQ5D) are only refer-
ential measurements, and our main goal is not to replicate them. Instead, we
aimed to develop a metric that offers value beyond these informative but
separate assessments. Using a clustering approach instead of a composite
measure affords the user a degree of flexibility when choosing input and
validationvariables andcangenerateproximitymetrics like centroiddistance,
which indicates how similar an individual’s experience is to a good or bad
state. This facilitates communication for clinicians and caregivers, enabling
decision-making using this more straightforward, clinically useful metric.

We also validated the states using NLP-derived text health scores with
the open-form text messages submitted by the participants, intended to
capture a general self-assessment of their well-being. We found that the
superior state centroids correlated similarly to the standard assessments.
While pain also correlated with the text health score, the magnitude of the

Table 1 | Participant demographics and characteristics

Category Values: No actigraphy Values: With actigraphy

Demographics Number of subjects 375 327

Sex 38.7% male (145) 37.6% male (123)

Age (years) 60.2+ /− 12 60.0+ /− 11.9

Race Caucasian: 317, Black: 29, Hispanic: 18, American Indian:
5, Other: 6

Caucasian: 273, Black: 29, Hispanic:16, American
Indian: 5, Other: 4

Pain history Years since onset of pain 16.2+ /− 13.4 years 16.2+ /− 13.2

Pain location Low back pain: 96.3%
Unilateral lower extremity: 32.5%
Bilateral lower extremity: 58.7%

Low back pain: 95.7%
Unilateral lower extremity: 33.3%
Bilateral lower extremity: 58.4%

Implanted with SCS 72.27% 76.45%

Diagnosis being treated
by SCS

Lumbosacral Radiculopathy: 61.1%
Failed Back Surgery Syndrome: 49.9%
Other: 47.5%

Lumbosacral Radiculopathy: 61.5%
Failed Back Surgery Syndrome: 49.5%
Other: 44.6%

Insurance coverage Medicare: 174
Private insurance: 148
Medicaid: 14
Worker’s compensation:13
Other: 26

Medicare: 155
Private Insurance: 127
Medicaid: 12
Worker’s compensation: 10
Other: 23

Concomitant therapies OTC meds: 83.2%
Chronic opioids: 71.7%
Prescription non-opioids: 82.7%
Complementary and Alternative Therapy: 49.6%
Physical therapy: 79.2%
TENS unit: 53.6%
CBT: 14.7%

OTC Meds: 84.7%
Chronic opioids: 72.8%
Prescription non-opioids: 83.8%
Complementary and Alternative therapy: 48.6%
Physical therapy: 80.1%
TENS unit: 54.1%
CBT: 14.7%

Study data Follow-up duration (days) 515.3 + /− 492.3 518.0+ /− 478.6

% of Data with SCS 78.8% 79.12%

Days of data for study period 419.1 + /− 384.7 391.5+ /− 377.6

The present table depicts the sample demographic and clinical characteristics for (middle column) the sample with only questionnaires and no actigraphy, and (right column) for the sample with both
questionnaires and actigraphy.
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r value was not as high (r =−0.23 vs. r =−0.14), and 95%CI values did not
overlap. This corroborates our previous findings that a multidimensional
metric may capture a patient’s assessment of their overall well-being better
than a singular value and that pain alonemay not be sufficient. This analysis
did have some limitations, as is customary in free-form responses,mainly in
that all text messages were considered and not excluded for short or low-
information responses (e.g., “Same,” “Fine,” “No,” etc.). Still,we couldderive
a significant relationship betweenpain andpainpatient states in termsof the
text health score. We interpret this to confirm that the Pain Patient States
includes information about a multitude of symptoms and contains some
signal in representing a patient’s opinion and voice about their clinical
status.

We observed that actigraphy data, an objective measure not typically
included in standard health assessments, fundamentally differs from self-
reported questionnaires. This was evident given that actigraphy data only
sometimes covaried with the activity score (e.g., states B and C have similar

activity levels but not mobility). Unlike a questionnaire, actigraphy is
challenging to interpret in its raw format, but it can offer unique, objective
information about patient behavior, as shown in other disease trials. We
have demonstrated that we could preprocess, quantify, and select features
that may be incorporated into a multidimensional metric and that it may
offer insight relative to a subjective metric alone, as evidenced by the higher
correlation r-values corresponding to the superior state in the validation
analysis.

To our knowledge, Pain Patient States are the first approach to
derive a holistic CPmetric from an unsupervised, data-driven clustering
approach, which was validated with standard health assessments. This
demonstrates that despite its data-driven nature, this model can be
clinically contextualized and reveal non-obvious, valuable information
about how symptoms group together in hundreds of individuals
experiencing CP. Further, we collapsed both subjective (questionnaires)
and objective (actigraphy) information, satisfying the need to represent a

Fig. 2 |K-means results for a 5-cluster solution.The clustering results derived from
(a, upper panel) questionnaires alone (n = 375 across 50,624 samples) revealed five
states that were stratified on a negative-to-positive spectrum based on reported
health symptoms consisting of mood, sleep, activity, pain, medication use, and
alertness (here, inverse values are taken for pain and medication so that all features
may visualized on the same good-to-bad scale). b Qualitative interpretation indi-
cates that the best state (State A) demonstrates a high mean of mood, sleep, activity,

alertness, analgesia (1 - reported pain), and medication avoidance (1 - medication
use). Conversely, the worst state (State E) shows the opposite pattern. This analysis
was repeated with actigraphy-based effective mobility (c, lower panel) for both
questionnaires and actigraphy (n = 327 participants across 30,086 samples).
d Similarly, a qualitative interpretation and comparison across states is provided for
this model. For a direct visual comparison, see Supplementary Fig. 5.
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patient experience in multiple domains. We also identified a con-
vergence of findings that open-form text responses and standard
assessments showed an ordinal property in the states, regardless of pain
level. As of yet, this approach has been implemented in two tangible
ways. First, we integrated patient state assignment as a summary mea-
sure used to communicate chronic pain status within an Application
Programming Interface (API) intended to manage, secure, analyze, and

communicate health information30,31. Though many clinicians are
familiar with interpreting patient data, this approach helps to visualize a
comprehensive set of information on a dashboard, rather than to
interpret multiple, longitudinal, and raw sensor-based datasets. This is
an especially valuable feature when monitoring patients’ progression
across long treatment periods. Second, a patient state value has been
utilized to represent a single-value outcome within a reinforcement

Fig. 3 | Validation using independent clinical metrics in a questionnaire sample.
(a, Upper panel) To validate clustering results, we compared independently collected
standard assessments (Oswestry Disability Index, or ODI, and the Euro Quality of
Life metric, or EQ5D) by calculating the correlation between ODI and EQ5D with
the cluster centroid distances for each state, within a week of each other. In both the
primary model and the model that included both questionnaires and effective
mobility, the best state (State A) was characterized by longer centroid distances and

higher disability and pain scores, meaning the states with poor healthmeasures were
“far” from this state. Conversely, the worst state (State E) was characterized by short
distances correlating with high disability and pain scores. Both solutions indicated a
clear ranked order across the five states. (b, Lower panel) This process was repeated
with mobility (actigraphy) data, and a similar pattern emerged (M denotes “mobi-
lity” in the state labels).

Fig. 4 | Relationships between states and clinical outcomes. The box plot depicts
mean (line) and quartile values associated with each state; the whiskers denote the
distribution, and points represent outliers. a The total score for the Oswestry Dis-
ability Index (ODI) and the (b) EQ5D (QoL) Index Score indicate that lower
values(better outcomes) are associated with State A, and higher values (worse out-
comes) are associated with State E. In contrast, (c) the EQ5DHealth Score, for which
higher values are associated with better outcomes, shows the opposite trend. These

outcomes were chosen for their continuous nature and ability to compare direction
and stratification. Repeated measures ANOVA tests showed significant differences
in scores across clusters for all score types (p < 0.0001), with post-hoc tests con-
firming significant differences across clusters for all ODI scores and most EQ5D
scores (ps<0.01), except States A vs. B (p = 0.41) and C vs. D (p = 0.31) for the Index
Score, and for States A vs. B (p = 0.9) and C vs. E (p = 0.054) for the Health
Score (VAS).

https://doi.org/10.1038/s41746-025-02084-1 Article

npj Digital Medicine |           (2025) 8:713 6

www.nature.com/npjdigitalmed


learning algorithm where a closed-loop health recommender algorithm
aimed to optimize patient monitoring and outcomes32. Together, this
demonstrates that patient states may be used to successfully and suc-
cinctly represent patient status within a digital health ecosystem, and in
complex calculations that benefit from using a single value as an out-
come variable.

Future work related to this approach involves several important con-
siderations. Though chronic lower back and leg pain are themost common
subtypes of CP1, this type of pain is characteristically distinct from CP
conditions like migraine or fibromyalgia. It is also notable that this cohort
specifically included individuals experiencingpain severe enough towarrant
eligibility for SCS therapy. For these reasons, the clustering models devel-
oped here may not generalize to all forms of CP. However, we were able to
reproduce a similar five-state model even after removing pain ratings
(Supplementary Fig. 10), demonstrating that the overall structure of the
clusters does not depend solely on pain, and may not rely on pain type.
Consequentially, thismethodmay be adapted to produce clusteringmodels
for otherpain subtypes, particularly becausemostCPconditions are affected
by the features involved in the model such as pain magnitude, sleep, med-
ication use, activity, mobility, arousal, and mood. This can be achieved so
long as the data includes 1) longitudinal, digital measures suitable to cal-
culate clusters; and2)measures that can serve as validationdata (seeFig. 1a),
neither of which are restricted to the specific inputs, questionnaires, or
assessments used in this study. While the properties of such clusters may
vary from the present work, their clinical meaning can be contextualized
given the validation data, and may be further interpreted using domain
knowledge. Additionally, several limitations should be addressed. This
cohort was American, predominantly female, and Caucasian, and the par-
ticipants suffered fromspecificpain-related etiologies. Future studies should
aim to increase the size of longitudinal datasets, and include a more diverse
set of participants to explore these states. Further, measures of social health
and amore detailed analysis ofmedication usemay add valuable dimension
to the Pain Patient States. Like all data-driven approaches, these findings
should be replicated in independent datasets. Still, Pain Patient States hold
substantive promise in harnessing AI-inspired solutions to augment
healthcare in CP.

Methods
Participants and data
Participants (Table 1)with chronic leg andbackpainwere recruited over the
course of seven years from three, multi-center, prospective Boston
Scientific-sponsored spinal cord stimulator (SCS, Boston Scientific,
Valencia, CA) studies at up to 30 U.S. sites. RELIEF (Clinicaltrials.gov ID:
NCT01719055, registration submitted October, 30, 2012) is a single arm,
observational registry trial intended to understand approved neuro-
stimulation practices for pain in clinics33. NAVITAS and ENVISION (both
registered under Clinicaltrials.gov ID: NCT03240588, registration sub-
mitted July 11, 2017; see Fig. 1) aimed to characterize the relationship
between objective measurements of pain and clinical outcomes in chronic
pain patients seeking and receiving neurostimulation treatment. Inclusion
criteria required that participants intended to receive or had received the
SCS trial or implant, were at least 18 years old, and had beendiagnosedwith
intractable neuropathic pain. The study was approved by the Western
Institutional Review Board (WIRB), and informed consent was obtained
before any study procedures. These studies collected a variety of self-
reported, psychological, physiological, and othermeasures across the course
of treatment via a custom digital health ecosystem34,35.

This broad set of clinical trial data included information about clinical
visits, demographics, medical, pain, and psychiatric history, daily smart-
phone questionnaires, actigraphy, open-form text responses, health
resource utilization, standardized pain-related assessments (e.g., for cata-
strophizing, fear-avoidance, quality of life, work productivity, disability,
etc.), pain drawings, actigraphy, heart rate data and variability, daily self-
reported health ratings, voice and text responses, fitness tests and other
measures of activity, sleep assessments, actigraphy and mobility features,
information about the spinal cord stimulator (SCS) sensor and program-
ming, and other related variables. The reduced, curated set of data used in
the present analysis was collected over four years and five months and
chosen to reflect aspects hypothesized to primarily impact well-being in the
lives of those with CP based on prior findings. This was comprised of 1)
clinical data—including demographics, pain history, and standardized
assessments (described below), and 2) digital data—including ques-
tionnaires, smartwatch actigraphy, and text responses collected via a

Fig. 5 | Patient data may be reduced to a single metric using Pain Patient States.
Pain Patient States are expressed as a single variable representing many aspects of
patient experience, including alertness, sleep, medication use, mobility, activities,
mood, and pain magnitude. Above represent three real patient anecdotes depicting

how states may reflect SCS-related clinical events: a an example of an individual who
experiences moderate pain but remains in a good state; b a patient who shows state-
based responses at implant and reprogramming; and c a patient who shows state-
based responses during trial and implantation.
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smartphone-based app. The variables not chosen were either designated as
exploratory variables that did not have a literature-established impact on
pain, were previously deemed unrelated to outcomes of interest, or were
insufficient in sample size.

Data selection and preprocessing
The clinical trial is described in Fig. 1. Digital data was collected from each
individual across the course prior to and during their treatment (or just
during treatment for existing patients) with SCS therapy, and up to
36months following implantation. Daily, self-reported questionnaires were
recorded which reflected participants’ assessments of their own pain mag-
nitude, mood, sleep hours and quality, alertness, medication use (opioid,
prescribednon-opioid, andover-the-counterpainmedication), andactivity,
including activities of daily living and pain-related activity interference
(Table 2).

Each day, participants were asked to use this digital ecosystem on their
phones to respond at least once, or up to twice, to the self-report questions.
Participants were asked to wear a smartwatch, though doing so was an

optional portion of the study. This was intended to assess mobility using
accelerometer data from Galaxy Watch S2 and S3 (Samsung, Menlo Park,
CA, USA) and the Garmin Venu 2S, (Olathe, KS) with custom application
from Boston Scientific (Valencia, CA) to objectively assess mobility using
accelerometer data. Actigraphy was collected daily at a sampling rate of
30–50Hz, dependingon thewatch typeused.Rawdatawasused to calculate
effectivemobility22,36, a novelmetric of physical activity calculation based on
duration and intensity, and categorized fromZone 0 (least active) to Zone 4
(most active), which is described below in additional detail.

To validate the results of the clustering analysis, we used clinically
validated assessments (Oswestry Disability Index23, or ODI, and the 5-factor
Euro Quality of Life, or EQ5D QoL24) and open-form text responses. This
choice aimed to utilize two well-known and widely-used questionnaires,
contextualize the results basedon standardpain-relatedmetrics and compare
them to self-reports of general health not specifically tied to pain per se, and
maximize the data sample. The standardized assessments used in the present
study,ODI and the EQ5DQoL, were chosen for their broader evaluation of a
patient’s wellness and function, including reported disability and quality of

Table 2 | Questions used in the subjective digital profile

Category Question Answer Type

Mood Please rate yourmood right now (where 1 star isworstmood, 3 stars is
neutral mood, and 5 stars is best mood)

Stars (1–5) Single Select

Pain Which number best describes the intensity of your overall pain? (0 for
no pain and 10 for worst pain imaginable)

Input via a sliding scale between 0–10. Number
Slider

Pain Which number best describes the intensity of your leg pain? (0 for no
pain and10 forworst pain imaginable, please select 0 if youdon’t have
any leg pain)

Input via a sliding scale between 0–10. Number
Slider

Pain Which number best describes the intensity of your leg pain that your
neurostimulator is programmed to treat? (0 for no pain and 10 for
worst pain imaginable, please select 0 if you don’t have any leg pain)

Input via a sliding scale between 0–10. Number
Slider

Pain Which number best describes the intensity of your low back pain? (0
for no pain and 10 for worst pain imaginable, please select 0 if you
don’t have any low back pain)

Input via a sliding scale between 0–10. Number
Slider

Pain Which number best describes the intensity of your low back pain that
your neurostimulator is programmed to treat? (0 for no pain and 10 for
worst pain imaginable, please select 0 if you don’t have any low
back pain)

Input via a sliding scale between 0–10. Number
Slider

Sleep How many hours did you sleep in the last day? 0–24 Number
Slider

Sleep Please rate the quality of your sleep where 1 star is poor sleep and
5 stars is great sleep.

Star (1–5) Single Select

Activity Does your pain interfere with your activities? - I have no problems doing my usual activities / - I have slight
problems doing my usual activities / - I have some problems
doing my usual activities / - I have severe problems doing my
usual activities / - I am unable to do my usual activities

Single Select

Activity What type of activities did you do today? (Select more than one if
applicable)

- Standing / - Sitting / - Housework / - Walking / - Running /
-Dressing / -Bathing / -Feeding/eating / -Driving / -Cooking /
-None of the above

Multi Select

Alertness How rested, refreshed and restored do you feel on waking? - Not at all / - Slightly / - Moderately / - Quite a bit / - Extremely Single Select

Medication Did you need to take prescribed pain medication (other than opioids)
for your pain today? Examples may include: Neurontin/Gabapentin,
Lyrica/Pregabalin, Cymbalta/Duloxetine, Voltaren Gel, Amitriptyline/
Elavil

- No, I didn’t need touseany / -Yes, I needed touse less thanusual /
- Yes, I needed about the same amount / - Yes, I needed to use
more than usual / - No, I do not have any pain medication (other
than opioids) prescribed / - Prefer not to answer / - I don’t
remember, unsure / - Other

Single Select

Medication Did you need to take prescribed opioid medication for your pain
today?Examplesof opioids include:Morphine, Fentanyl, Oxycodone,
Percocet, Hydrocodone, Vicodin

-No, I didn’t need touseany / -Yes, I needed touse less thanusual /
- Yes, I needed about the same amount / - Yes, I needed to use
more than usual / - No, I do not have any opioid medications
prescribed / - Prefer not to answer / - I don’t remember, unsure /

- Other

Single Select

Medication Did you need to take over-the counter pain medication today?
Examples include:NSAIDs, Tylenol, Advil, Celebrex, Aleve, Ibuprofen,
Capsaicin cream/gel

-No, I didn’t need touseany / -Yes, I needed touse less thanusual /
- Yes, I needed about the same amount / - Yes, I needed to use
more than usual / - No, I do not have any opioid medications
prescribed / - Prefer not to answer / - I don’t remember, unsure /

- Other

Single Select

Subjective questions assessing mood, pain, sleep, activity, and medication were used to compute a subjective digital profile for each person in a day.
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life, and their ability to evaluate a state-dependentwellness rating, as opposed
to assessments aiming to assess trait-like behavior. The open-ended self
reports were collected across a select period of time during the clinical trial
(October 2021-October 2022), in which participants were asked to respond
periodically via text message to open-ended, free-text questions about a
variety of pain-related symptoms, and generally about their day. The prompt
questions are reported in Supplementary Table 1.

All available data was downloaded and eligible for use in the clustering
analysis regardless of which time point it originated in the clinical trial time
course (e.g., baseline/enrollment, SCS trial period, follow-up). This allowedus
to capture a broad range of clinical information across time in chronic pain,
consistent with the way current assessments are applied across the course of
the condition. It also allowed us to focus on state- and population-level
patterns rather than individual trajectories. This decision was intentional,
both to parallel the time-independent nature of standard assessments and to
account for the heterogeneous number of observations per participant. A
total of 14 questions (Table 2) were analyzed: overall/leg/back pain, mood,
sleep hours, sleep quality, alertness, medication use for opioid/over-the-
counter/non-opioid pain medication, activity interference due to pain, and
activities of daily life). Although these questions were custom and thus non-
standard, they were designed to reduce patient burden relative to traditional
long-form questionnaires, and elicit fast, consistent responses from patients
about pre-established, pain-relevant topics within a digital ecosystem.

Most of questions were answered by the subjects along the clinical
study. However, there were some days that subjects did not answer every
question on every day. In this case, we used linear and Markov chain
methods to impute data based on these criteria: at least 60% of historic data
available for the subject and less than 14 consecutive days of missing data.
We then used the following criteria: 1) For a given day, the participant had
responded to all questions ormissing variables were reasonably imputed; 2)
Daily averages were calculated in the instances in which participants
responded to a question more than once per day; 3) We only considered
subjects for which we had more than 10 data points. Notably, after data
cleaning and quality control for our clean sample, some subjects were
included in the present analysis ultimately had fewer than 10 eligible data
points. To ensure that these individuals were not driving the results, we
repeated our analyses excluding these individuals, and found only negligible
differences in terms of the cluster characteristics compared to the full
sample. To produce a reduced set of stable composite scores for each
category and reduce autocorrelation across the variables, the data to assess
pain, sleep, and medication use were averaged within each modality.
Activity scores were calculatedwhere the total number of reported activities
of daily living were penalized using the pain interference score (see Table 2
for details). For pain medication, we calculated the mean of the three
categories (prescription opioid, prescription non-opioid, and over-the
counter) from the participant response, which indicated how much medi-
cation was taken relative to their usual amount (none (0), less (1), the same
(2), or more (3) medication). All data were then normalized and scaled
between 0 and 1 prior to being incorporated into the clustering analysis.

In an additional, exploratory analysis, we analyzed and examined a
cluster solution that included the questionnaire data described above in
combination with the actigraphy data. For the actigraphy data specifically,
we calculated effectivemobility22,36, a novelmetric of physical function based
on the duration and intensity of activity. To do this, rates of activity were
calculated periodically throughout the day, and assigned to a category
ranging from Zone 0 (e.g., resting, or using a mobile device while seated) to
Zone 4 (e.g., intense or repetitive motion or vigorous exercise). The same
imputation criteria described above was applied for this feature.

Additional study data characteristics, including retention rates, avail-
able data for all data types, and slope of reported responses, can be found in
the Supplementary Materials (Supplementary Figs. 7–9).

Validation data preparation
Finally, several stepswere taken toprepare the validation data.We extracted
standardized assessments of disability and quality of life (ODI, QoL,

respectively, mentioned above) with the intention of later comparing them
to the state assignments. These were collected less frequently than the daily
questionnaires andwere administered both in-clinic and using the at-home
phone app. For this work, we used the total ODI score and sub- and total
scoresofEQ5D, including those for activities of daily living (ADL),Mobility,
Pain, Mood, Health (VAS) and the total index score, to evaluate and
clinically interpret each cluster.

To preprocess the text data, we extracted text responses from open-
ended free-text prompts presented to participants (see Table 2). Transfor-
mers using RoBERTA37 were used to compute semantic similarity between
their responses and different topics (Supplementary Table 2) such as “I have
morepain”or “I have less pain” aswell as other aspects in their life, including
mood, sleep quality and time, socialization, stimulator device function and
recommendations, job performance, exercise, attentiveness, medication,
anxiety, and chores38. This was aggregated using principal component
analysis (PCA) into a consistency measure and assigned a value, which was
interpreted as a text health score associatedwith each response on a positive
to negative health spectrum. This was later used to compare to the
assigned state.

Clustering methods
Clustering was calculated for 1) questionnaire data only and 2) ques-
tionnaire data combined with watch-based actigraphy data. This was per-
formed in this order because watch data was unavailable for all individuals
on all days, thus limiting sample size yet providing valuable non-subjective
insight. We used the k-means clustering algorithm to examine how the
participant symptom grouped together across time. K-means was chosen
for its unsupervised nature and ability to handle larger sets of data, but
several alternativemethods were explored to verify convergence (e.g., factor
analysis, PCA, hierarchical clustering). The k-means analysis was per-
formed using Euclidean distance exploring solutions for up to k = 10. The
optimal k was determined using the majority agreement of multiple stan-
dard methods including sum of squares distances, silhouette values, and
consensus clustering39, amethod adapted for our analysis to resample based
upon subject number, adding subject-specificity and rigor to standard sta-
bilitymetrics (SupplementaryFig. 1).Consensus clustering inparticular also
helps tomitigate the impact of repeatedmeasures by reducing overfitting to
individual-level idiosyncrasies and enhancing cluster stability. The results of
the stability analyses were taken into account along with prior findings and
topic expertise.

The cluster solution results were then replicated for consistency across
periods of time within the clinical trial, including before and after SCS
therapy (Supplementary Fig. 2). For this analysis, the clusters were exam-
ined over periods of time defined by the clinical trial and with the intention
of maximizing data per time window. Periods of 4 months were chosen for
periods of time ranging from 4 months prior to SCS implantation up to
12 months after implantation, and then yearly up to 3 years following
implantation. A three-state solution was used to maximize cluster stability;
we did not opt for a larger cluster solution due to known instability for
k-means in small samples. For each of these time periods, the k = 3 cluster
solution was calculated, graphed, and examined. We confirmed that the
feature means tracked with expected characteristics – for example, we
observed that threemonthsprior to and followingSCS implantation showed
very high values for pain and medication use, and similarly, the pain levels
decreased post-SCS over time. Furthermore, the clusters maintained some
consistency over time (see Supplementary Fig. 2), most specifically showing
similar feature means and cluster shape for the best and worst states.
Additionally, participants with varying response rates (Supplementary Fig.
3), including those that responded at relatively high and low rates, were
examined, also using a 3-state solution. Results indicated consistency across
these groups. Finally, Transition periods were also reviewed across all states
to ensure that the state solution maintained the expected properties of
biological systems (Supplementary Fig. 4).Multidimensional scaling (MDS)
was used to examine the similarity of the centroid characteristics across two
dimensions (Supplementary Fig. 6).
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Clustering validation
The clustering results were then compared to the independent validation
data. This allowedus to compare thewell-known standard assessments in the
validation to the more novel daily questions, given that the daily digital
questionswere customand thus non-standard, createdwith the intent for use
in a digital environment. These standard validation assessments were col-
lected in-clinic at baseline, months 1, 3, and 12, and yearly. In the Envision
study, participants also responded to the assessmentswithin the phone-based
digital ecosystem at more frequent, varying intervals, most often being
defined as every 3weeks. To address the validation, we obtained the standard
assessments described above (e.g., ODI, QoL) and identified the cluster
assigned to aparticipantwithin aweekof that particular standard assessment.
This meant that for these pairs, we used a cutoff of 7 days across the two data
points to ensure that they were close enough in time to be clinically related.
Thus, if the response date for either item in the pair of metrics was collected
outside theone-weekwindow, theyweredropped fromthe analysis. Fromthe
state assignments, we extracted the centroid distance for all clusters in the
optimal solution. We calculated the Pearson r correlation and p-value
between the cluster centroids and the standard assessmentswithwhich it was
paired. Next, we repeated this analysis with the text health score, comparing
within-week pairs of the text health score to the state centroids.

In order to cross-check the validation, this analysis was repeated in a
smaller sample (118 samples across 76 participants) in theGlobal Impression
ofChange40 for both physician andpatient subscales using themodelwithout
actigraphy in order to maximize data availability. While it was found that
both of these scales ranked the states in the sameway that theODIdid, not all
values were found to be significant, likely due to the difference in sample size.
These values are reported in Supplementary Table 4.

Finally, to further understand the role of pain in shaping the identified
states, we repeated the analysis once more while excluding pain questions
from the model. As in the previous models, the resulting 5-state solution
produced 5 clusters that were also distributed on an apparent positive-to-
negative spectrum (Supplementary Fig. 10a). Correlations with clinical
assessments supported this interpretation (Supplementary Fig. 10b).
Although the correlation magnitudes (r-values) were slightly weaker than
when pain was included, these findings did suggest that non-pain features
also contributemeaningfully to well-being in individuals with chronic pain.
While additional studies are needed for confirmation, these findings also
indicate that a model using similar non-pain features might successfully be
applied across different types of chronic pain.

Data availability
Restrictions apply to the availability of these data due to expectations of
privacy which were outlined at the time of consent. Further, they are used
under license for the purposes of the current study. As a result, they are not
publicly available. Data may be made available upon reasonable request in
accordance with Institutional Review Board and Data User Agreement
limitations. Requests can be made by contacting Boston Scientific at
Dat.Huynh@bsci.com.

Code availability
The underlying code for this study is not publicly available for proprietary
reasons, but example and pseudocode have been provided in Python and
can be found at: https://github.com/jennamr/IBM-pain-states.
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