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Ultrasound imaging is widely used in clinical diagnosis due to its non-invasive nature and real-time
capabilities. However, traditional ultrasound diagnostics relies heavily on physician expertise and is
often hampered by suboptimal image quality, leading to potential diagnostic errors. While artificial
intelligence (Al) offers a promising solution to enhance clinical diagnosis by detecting abnormalities
across various imaging modalities, existing Al methods for ultrasound face two major challenges. First,
they typically require vast amounts of labeled medical data, raising serious concerns regarding patient
privacy. Second, most models are designed for specific tasks, which restricts their broader clinical
utility. To overcome these challenges, we present UltraFedFM, an innovative privacy-preserving
ultrasound foundation model. UltraFedFM is collaboratively pre-trained using federated learning
across 16 distributed medical institutions in 9 countries, leveraging a dataset of over 1 million
ultrasound images covering 19 organs and 10 ultrasound modalities. This extensive and diverse data,
combined with a secure training framework, enables UltraFedFM to exhibit strong generalization and
diagnostic capabilities. It achieves an average area under the receiver operating characteristic curve
(AUROC) of 0.927 for disease diagnosis and a dice similarity coefficient (DSC) of 0.878 for lesion
segmentation. Notably, UltraFedFM surpasses the diagnostic accuracy of mid-level
ultrasonographers (4—8 years of experience) and matches the performance of expert-level
sonographers (104 years of experience) in the joint diagnosis of 8 common systemic diseases.c These
findings indicate that UltraFedFM can significantly enhance clinical diagnostics while safeguarding
patient privacy, marking a significant advancement in Al-driven ultrasound imaging for future clinical
applications.

Ultrasound is becoming increasingly important in clinical practice world-
wide. It offers significant advantages over magnetic resonance imaging
(MRI) and computed tomography (CT), including freedom from radiation,
non-invasive nature, and cost-effectiveness. Thus, it is widely adopted as the
primary imaging method for monitoring fetal growth during pregnancy’,
diagnosing internal organ pathology, and assisting in surgical decision-
making’. However, ultrasound-based diagnosis relies heavily on the clin-
ician’s experience, while factors like noise and artifacts in the images can
compromise quality and hinder the clinician’s assessment of pathological
regions, increasing the risk of missed or incorrect diagnoses™*. Recent efforts
have turned to artificial intelligence (AI) technologies to mitigate

ultrasound-specific artifacts (e.g. speckle, false textures) and enhance diag-
nostic accuracy” . These contributions demonstrate that careful pre-
processing, task-specific network design, and curated annotations can
substantially improve performance for single-organ tasks. Despite notable
successes, existing Al-based ultrasound models typically focus on very
specific medical scenarios and require large amounts of high-quality labeled
data, which restricts their scalability and generalizability across diverse
medical applications.

Over the past two years, foundational models (FMs) have attracted
much attention due to their generality and high performance. In the medical
field, many efforts'®'” have leveraged unlabeled ultrasound data to pre-train
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FMs and fine-tuned them for specific tasks using labeled data. However,
existing ultrasound foundational models (USFMs) face three key challenges:
(1) Data privacy. Ultrasound data are distributed across multiple medical
institutions and cannot be shared due to privacy regulations (e.g., GDPR'),
restricting the volume of data available for pre-training; (2) Limited mod-
ality. Many USFMs are designed for particular ultrasound imaging mod-
alities (e.g., echocardiograms), limiting their applicability to other imaging
modalities and reducing their versatility; (3) Imbalanced data distribution.
Existing USFMs often face an imbalance caused by the long-tailed dis-
tribution of the organ/lesion types represented in the dataset (e.g., 91%
breast ultrasound in 3M-US'®), leading to a biased performance in diag-
nosing uncommon conditions. These challenges highlight the need for new
solutions that simultaneously address data privacy, scalability, and gen-
eralizability across various ultrasound imaging modalities and clinical
scenarios.

In this work, we introduce UltraFedFM, a novel ultrasound foundation
model pre-trained collaboratively by multiple medical institutions without
exposing and aggregating all the data together. Specifically, we utilize a
federated learning framework with one server and 16 clients from 9 coun-
tries, collectively possessing 1, 015, 754 unlabeled ultrasound images
(Fig. 1a). These images cover 19 systemic organs and 10 ultrasound imaging
modalities (Fig. 2a), providing an extensive and diverse representation for
pre-training. By leveraging large-scale unlabeled datasets, UltraFedFM
addresses key challenges in the medical field with the following solutions: a.
When new modalities or organ data are continuously introduced, Ultra-
FedFM can continuously update the model on new clients without accessing
private data from other clients, thereby effectively safeguarding patient
privacy; b. UltraFedFM minimizes the reliance on labor-intensive annota-
tions by medical professionals, overcoming a critical bottleneck in medical
Al development. This unsupervised approach ensures that valuable medical
data can be efficiently utilized without requiring costly annotations from
medical experts. The development of UltraFedFM consists of two stages: (1)
Federated pre-training, in which the multiple clients collaboratively pre-
train a shared model in a distributed, self-supervised manner. Throughout
the pre-training process, the server periodically aggregates the local model
parameters from each client without accessing their private data (Fig. 1b);
(2) Downstream fine-tuning, where the pre-trained FM is fine-tuned using
specific data to adapt to various clinical tasks, such as disease screening and
diagnosis, sub-classification of disease phenotypes (e.g., tumor infiltration
depth and type classification), prenatal maternal-fetal health analysis, and
critical lesion identification and segmentation (Fig. 1c).

UltraFedFM is adapted to various ultrasound imaging modalities,
modes, qualities, and clinical tasks. To accommodate the diverse features of
different modalities, we propose a dynamic ultrasound image masking
approach based on the specific texture features of organs and lesions.
Additionally, we incorporate a random image corruption branch within the
masked image modeling process to handle low-quality images commonly
encountered in real-world scenarios. Furthermore, we use simple yet effective
image transformations to generate simulated ultrasound images, aiming to
address the uneven distribution of scan patterns in the pre-training dataset.

We conduct extensive experiments to evaluate the performance of
UltraFedFM. To provide a fair and comprehensive evaluation, we collect
and curate the largest ultrasound evaluation benchmark, covering the two
most common ultrasound clinician tasks (i.e., disease diagnosis and lesion
segmentation) with 11 sub-tasks from 19 ultrasound datasets. Several fully-
supervised methods and a state-of-the-art USFM'® are utilized for com-
parison. Experimental results demonstrate that UltraFedFM outperforms
all baselines, achieving an average area under the curve (AUROC) of 0.927
for disease diagnosis and a dice similarity coefficient (DSC) of 0.878 for
lesion segmentation. Notably, UltraFedFM outperforms ultrasonographer
clinicians with intermediate levels (e.g., 4—8 years of clinical experience)
and achieves comparable performance to high-level (e.g, more than
10 years of clinical experience) ultrasonographers in the joint diagnosis of 8
common systemic diseases. Furthermore, UltraFedFM leverages the prin-
ciples of federated learning, enabling continuous model updates without the

need for centralized data aggregation. This capability ensures that the model
can be further trained using private data from different institutions or clients
while preserving privacy and adhering to data protection regulations. By
avoiding direct data sharing, UltraFedFM addresses critical privacy con-
cerns, fostering trust and collaboration across institutions. With these
capabilities, UltraFedFM provides a reliable model for clinical tasks, making
it a pioneering solution for advancing ultrasound AI across institutions,
regions, and clinical tasks.

Results
UltraFedFM enables systemic disease diagnosis and can assist
clinicians in the diagnostic process
UltraFedFM aims to serve as a comprehensive FM in ultrasound imaging.
To assess its effectiveness for disease diagnosis, 6 publicly available datasets
and 2 private datasets (see Supplementary Table 2) are utilized, covering 8
kinds of organs (i.e., pancreas, gallbladder, liver, lung, colorectum, breast,
heart, and fetal organs, see Supplementary Fig. 6) and 6 ultrasound imaging
modalities (i.e., abdominal, lung, endorectal, superficial, echocardiogram,
and fetal ultrasound). To provide an overall assessment for UltraFedFM, we
average its performance on these datasets, and compare it with 4 baseline
methods, including supervised training from scratch, ImageNet-21k cen-
tralized pre-training, USFM'® centralized pre-training, and masked auto-
encoder (MAE)" federated pre-training. More details of the four methods
are described in the Method section. The experimental results are shown in
Fig. 3. We observe that UltraFedFM achieves an average AUROC of 0.927,
which significantly (p < 0.05) outperforms its counterparts, surpassing the
second-best USFM with an average AUROC of 0.894, by 0.033 (p = 0.002).
Additionally, UltraFedFM performs well in data-limited situations (see line
plot in Fig. 3b). As the amount of fine-tuning data is progressively reduced to
80%, 60%, 40%, and 20%, UltraFedFM remains robust, with only a modest
decline in average AUROC of 0.124 (fine-tuning data from 100% to 20%),
outperforming other methods. Notably, due to the federated pre-training
with the large volume of unlabeled data, UltraFedFM possesses powerful
feature extraction capabilities and can identify various types of lesions using
a single organ-agnostic decoder, thus eliminating the need for task-specific
classifiers utilized in other FMs. To demonstrate this, we constructed an
organ-agnostic dataset by combining eight distinct datasets from different
organs and fine-tuned UltraFedFM to recognize eight types of malignant
tumors. It is observed that UltraFedFM accurately identifies most categories
without requiring a separate classifier for each organ and the predicted
scores of UltraFedFM concentrate in higher confidence intervals (Fig. 3c).
Figure 3d illustrates the receiver operating characteristic (ROC) curves
among eight different diseases, showing that UltraFedFM achieves superior
efficiency in organ-agnostic disease diagnosis. More quantitative results for
UltraFedEM, including accuracy, Fl-score, and ROC, are provided in
Supplementary Fig. 7, Supplementary Fig. 8, and Supplementary Fig. 9.
To evaluate the reliability of UltraFedFM’s generalist intelligence in
clinical practice, we compare it with ultrasonographers having different
clinical levels. Seven ultrasonographers participated in this study, of whom
two are intermediate-level (clinicians A, B: 4—8 years of clinical experience)
and five are high-level (clinicians C-G: more than 10years of clinical
experience). A total of 80 ultrasound images containing 8 systemic malig-
nant diseases were tested. As shown in Fig. 3e and Supplementary Table 7,
UltraFedFM outperforms the ultrasonographers with intermediate-level
and achieves comparable performance with high-level ultrasonographers.
More specifically, while some specific organ diseases are easy for ultra-
sonographers to diagnose (e.g., average accuracy: 0.800 for breast and 0.871
for kidney), their diagnostic capabilities are limited when multiple ultra-
sound diseases are jointly diagnosed (e.g., average accuracy: 0.314 for gall-
bladder). In contrast, UltraFedFM can provide a consistent and accurate
diagnosis of different ultrasound organ diseases (average accuracy: 0.900 for
breast, 1.000 for kidney, and 0.800 for gallbladder). These results reveal that
the UltraFedFM has the potential to serve as a reliable decision support tool
to assist clinicians in prioritizing cases, reducing repetitive workloads, and
minimizing missed diagnoses.
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Fig. 1 | Overview of the study. a Medical data from 16 institutions and 9 countries
are collected to pre-train and evaluate UltraFedFM, encompassing 1 million ultra-
sound images with extensive diversity. b The pre-training framework of Ultra-
FedFM, where each client uses its private data to pre-train a local model through
pixel-level reconstruction. During pre-training, only the local model parameters are
uploaded for learning the global model, thus eliminating the risk of privacy breaches.
Icons used are free to download from www.iconfont.cnand do not involve

commercial use. ¢ Clinical applications of UltraFedFM. UltraFedFM is a versatile
ultrasound foundation model capable of handling multiple ultrasound scenarios,
supporting multi-disease, multi-modal, and multi-task applications, and demon-
strating superior performance compared with ultrasonographers in real clinical
scenarios. Icons used are free to download from www.iconfont.cnand do not involve
commercial use.
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Fig. 2 | Statistics of the pre-training and downstream validation datasets. a The
pre-training dataset covers 19 major organs across the entire body captured by
various ultrasound imaging modalities. The figure are created in Biorender and have
obtained publication license. b The distribution of class numbers for each down-
stream diagnosis dataset, ranging from basic binary classification to complex multi-

class classification, and the distribution of the target size for organ and lesion seg-
mentation tasks in the downstream validation dataset. Most segmentation targets
occupy less than 1/10 of the entire image. ¢ The distribution of sensitive information
in the dataset across six attributes.

UltraFedFM facilitates organ and lesion segmentation

Organ and lesion segmentation for ultrasound images is crucial for clinical
decision-making. To assess UltraFedFM’s segmentation accuracy across
different ultrasound imaging modalities, we evaluated it on four binary
segmentation datasets (nerve’’, muscle”, heart™, and thyroid”~°) and one
multi-class segmentation dataset (pubic symphysis-fetal head”). Ultra-
FedFM consistently achieves high segmentation accuracy, successfully
managing targets with diverse shapes and structures. In the binary seg-
mentation task (Fig. 4a), UltraFedFM achieves the highest average dice
similarity coefficient (DSC) score of 0.857 across the three binary seg-
mentation datasets, significantly outperforming all other baselines
(p <0.005). In particular, USFM achieves a DSC score of 0.828, which is
much lower than that of UltraFedFM (p = 0.002).

The multi-class segmentation task involves two steps, beginning by
segmenting the pubic symphysis and fetal head, followed by measuring the
angle between them. In this task, UltraFedFM achieves a DSC score of 0.842,
significantly outperforming the second-best method (USFM'®) with a DSC
score of 0.810 (p = 0.004). Additionally, UltraFedFM excels in measuring
the angle of progression (AoP), with a mean absolute error of 8.80, out-
performing all baselines by a significant margin (p < 0.005) (Fig. 4a). Similar
to the classification settings, we also evaluated UltraFedFM’s effectiveness in
scenarios with limited labeled data (Fig. 4b). Notably, even with 20% of the

fine-tuning data, UltraFedFM still achieves an average DSC score of 0.772,
outperforming the supervised method and USFM by 14.0% and 2.3%,
respectively. To further assess UltraFedFM’s generalization capability, we
compiled an organ-agnostic segmentation dataset comprising five types of
lesions. As shown in Fig. 4c, UltraFedFM demonstrates superior perfor-
mance in locating and segmenting these lesions using a single unified seg-
mentation model.

We also conducted cross-institutional validation (Fig. 4d) and imbal-
anced scanning mode validation (Fig. 4e). The former explores the seg-
mentation generalization capability of UltraFedFM across different organ
modalities, while the latter evaluates its performance under varying scan-
ning modes. Across all cross-validation datasets, UltraFedFM consistently
outperformed other baseline models (p < 0.01), demonstrating exceptional
stability and balanced generalization capability. Figure 4e shows the fine-
tuning performance of UltraFedFM under different data ratios of linear
array and convex array scanning modes. When the data distribution was
highly imbalanced (e.g., 0%:100% or 100%:0%), both models exhibited
uncontrollable bias and overfitting during training, leading to a decline in
prediction performance. In contrast, when the data proportions were more
balanced, the models achieved optimal performance. This indicates that the
feature distribution of images plays a crucial role in both pre-training and
fine-tuning stages.
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Fig. 3 | Diagnostic performance for systemic disease classification. a Internal
validation of disease classification performance across eight diagnostic tasks.
Comparative analysis shows model performance when fine-tuned on complete
datasets. For each task, we fine-tune the model with five different random seeds. The
error bars show 95% confidence intervals (CI) of the estimates, and the bar center is
the mean estimate. We compare the performance using the area under the receiver
operating characteristic curve (AUROC). P-value is calculated with the two-sided ¢-
test between UltraFedFM and the most competitive comparison model. *, **, *¥*

False Positive Rate

Predictor

denotes p < 0.05, p < 0.01, and p < 0.001. b The experimental results of disease
classification on limited labeled data subsets. ¢, d Performance of UltraFedFM on
organ-agnostic fine-tuning setting. ¢ Prediction confidence distribution over eight
disease classes. The center line of the box denotes the median, while the box edges
represent the first and third quartiles and the whiskers extend to 1.5 times the inter-
quartile range. d Receiver Operating Characteristic (ROC) curves for distinct disease
categories. e Generalist diagnostic accuracy of UltraFedFM across eight diseases and
the comparison with seven experienced ultrasonographers.

UltraFedFM outperforms existing ultrasound task-specific
methods

To further evaluate the excellence of UltraFedFM in medical image analysis
tasks, we comprehensively compared it with existing task-specific methods
in the ultrasound field. We chose four representative tasks, namely fetal
plane classification, gallbladder cancer classification, breast nodule seg-
mentation, and thyroid nodule segmentation, for evaluation. For each task,

we chose both traditional models and the latest high-performing methods as
comparisons. Detailed information about the datasets and comparative
methods is presented in the following Supplementary Table 8 and Sup-
plementary Table 9. The results are illustrated in Fig. 5a. The first two sub-
figures display the results of classification tasks (evaluated by accuracy),
while the last two sub-figures present the results of segmentation tasks
(evaluated by the Dice similarity coefficient). Overall, UltraFedFM
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Fig. 4 | Performance for organ and lesion segmentation. a Internal validation of
segmentation performance across eight diagnostic tasks. Comparative analysis
shows model performance when fine-tuned on complete datasets. We compared the
performance using the Dice similarity coefficient (DSC) score. b The experimental
results of disease classification on limited labeled data subsets. ¢ Performance of
UltraFedFM on organ-agnostic dataset fine-tuned with a single decoder.

d Comparison of cross-institution generalization performance. Cross-set 1 denotes
fine-tuning on thyroid dataset and test on muscle dataset; Cross-set 2 denotes fine-

tuning on thyroid dataset and test on muscle dataset; Cross-set 3 denotes fine-tuning
on muscle dataset and test on thyroid dataset; Cross-set 4 denotes fine-tuning on
muscle dataset and test on nerve dataset. The width represents the density of the data
points at different values. The central line within each violin indicates the median.
e Organ and lesion segmentation performance of UltraFedFM on different ratios of
linear- and convex-array scanning mode ultrasound imaging data. The 95% CI of
DSC is plotted in color bands, and the center points of the bands indicate the mean
value of DSC.

outperforms most of the comparative models in all evaluation metrics and
tasks. In classification tasks, for the fetal plane classification task, Ultra-
FedFM achieves an accuracy of 0.956, significantly higher than cutting-edge
models such as HCN* and Krishna et al.”” (p < 0.001). On the gallbladder
cancer classification dataset, it reaches an accuracy of 0.934, far surpassing
classic models like ResNet™ and Vision Transformer (ViT)"'. Compared
with the latest task-specific methods FocusMAE™ and GBCHV™, it shows
improvements of 2.3% and 1.9% respectively (p < 0.001). In segmentation
tasks, on the breast nodule segmentation dataset, UltraFedFM obtains a
Dice coefficient of 0.887, greatly outperforming advanced methods such as
FABRFnet* and EMGANet”, and achieving performance comparable to
the state-of-the-art method nnU-Net™. It is worth emphasizing that nnU-
Net, as a standardized segmentation framework integrating data-adaptive
processing and two-stage segmentation techniques, has achieved top-level
performance in multiple segmentation tasks. On the thyroid nodule

segmentation dataset, UltraFedFM achieves a Dice coefficient of 0.882,
outperforming nnU-Net (p < 0.01).

UltraFedFM generalizes to new medical scenarios

Beyond learning ability, a crucial metric to evaluate the practicality of FMs in
real-life scenarios is the generalization ability. To assess this, we selected two
medical institutions not involved in the pre-training stage (high-frequency
skin ultrasound imaging dataset and kidney disease ultrasound imaging
dataset). This evaluation aims to determine how well the model performs on
unseen ultrasound imaging modalities and organs, both key challenges in
ultrasound diagnostics. As shown in Fig. 5b, c¢. UltraFedFM consistently
demonstrates superior generalization across different modalities, achieving
an average AUROC of 0.925, significantly outperforming all other baselines
(p <0.01). Figure 6c¢ illustrates that UltraFedFM achieves an AUROC of
97.1% and an AP of 0.910, despite the textural and color differences of high-
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Fig. 5 | Comprehensive evaluation of ultraFedFM demonstrates high perfor-
mance, strong generalization, and improved fairness. a The quantitative com-
parison between UltraFedFM and state-of-the-art ultrasound task-specific models
across four typical ultrasound tasks. b Generalization performance evaluation on
out-of-distribution organ (i.e., kidney) and modality (i.e., high-frequency

N

ultrasound). ¢ The receiver operating characteristic curve (ROC) and precision-
recall curve (PRC) on a new organ and new ultrasound imaging modality. d, e The
quantitative analysis of UltraFedFM with state-of-the-art federated learning meth-
ods in terms of pre-training convergence (d) and prediction fairness (e).

frequency ultrasound imaging from conventional methods. Such general-
ization is essential for real-world applications where clinicians frequently
encounter new organs or modalities that the training data may not easily
access.

The stability of UltraFedFM’s predictions

The stability of model predictions is essential for ensuring reliable clinical
decision-making, particularly in ultrasound-based diagnostics, where
inconsistencies can lead to misdiagnosis. To this end, we quantitatively
compared the prediction stability of UltraFedFM with the baseline USFM'®
under two settings: organ-specific (Fig. 7a) and organ-agnostic (Fig. 7b).
USFM shows a broader distribution (mean y = 0.808 and standard devia-
tion o= 0.174). In contrast, UltraFedFM’s predictions concentrate in a high
DSC range (mean g = 0.857 and standard deviation ¢ = 0.103). Moreover,
stability is paramount when dealing with organs that exhibit significant

inter-patient variability, such as the liver or kidneys. Thus, we further
introduce random noise to simulate real-world ultrasound imaging per-
turbations, such as tissue movement, operator variability, or imaging arti-
facts. We compared the test results under varying levels of noise. Despite
these disturbances, UltraFedFM maintained highly correlated test scores
(Fig. 7¢), demonstrating its robustness and reliability in clinical environ-
ments where imaging conditions can be unpredictable.

The scaling efficiency in UltraFedFM

Figure 7e, f presents the scaling efficiency of UltraFedFM during pre-
training, including data scaling (Fig. 7e) and model size scaling (Fig. 7f).
Data scaling experiments were conducted using different proportions of
pre-training data, while model size scaling involved pre-training with
encoder architectures of varying parameter sizes (ViT-Base, ViT-Large, and
ViT-Huge). In the data scaling experiments, we randomly sampled 10%,
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Fig. 6 | Visualization of ultraFedFM's pre-training, data augmentation, and
segmentation performance. a The reconstructed ultrasound images from the pre-
trained model, where the masked regions are selected based on texture information.
b To increase the richness and balance of features, images captured in linear-array
mode and convex-array mode are transformed into each other. ¢ Visualization of

b
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multi-class organ segmentation and the prediction of the angle of progression (AoP).
d Visualization of binary lesion segmentation. Heatmaps highlight the attention
areas of the features extracted from the pre-trained encoder. The closer the color is to
red, the more the model pays attention to the area.

20%, 50%, and 100% of pre-training data from each client and evaluated
performance on eight downstream classification tasks and five downstream
segmentation tasks. Overall, increasing the amount of pre-training data
improved model performance, consistent with the data scaling principles in
self-supervised learning (SSL). However, the growth trends varied slightly
across different data modalities. Notably, segmentation tasks exhibited more
pronounced performance gains, indicating that high-dimensional pixel-
level prediction tasks are more sensitive to pre-trained feature learning. In
the model size scaling experiments, we used three ViT variants as encoders
to evaluate the impact of increasing the number of trainable parameters
during pre-training on classification and segmentation tasks. For classifi-
cation tasks, larger models generally yielded better performance across most
modalities. Specifically, performance gains were more significant for chal-
lenging tasks (those with lower AUROC for ViT-Base), while simpler tasks
reached a performance plateau, with ViT-Huge potentially introducing
noise and overfitting risks. For segmentation tasks, increasing model size
consistently improved performance, demonstrating that segmentation tasks
demand larger model capacity and that model size scaling is particularly
beneficial for addressing more challenging tasks.

Ablation studies validate the effectiveness of proposed
strategies

To thoroughly evaluate the contribution of each proposed module, we
implemented eight ablated variants of UltraFedFM by replacing individual
components and evaluated their performance on both classification and
segmentation tasks, as shown in Fig. 7d. Compared to the baseline, incor-
porating only SMAT (w/SMAT) yielded an increase of 5.5% AUROC and
3.0% DSC, while including only MIC (w/MIC) resulted in a more sub-
stantial improvement of 6.9% AUROC and 3.9% DSC. In contrast,

removing specific components (i.e., w/o SMAT, w/o MIC, w/o TGM)
degrades performance compared to the full UltraFedFM model. Notably,
excluding MIC led to the highest decrease of 1.3% AUROC and 3.4% DSC,
appearing to exert a particularly notable influence on the model’s efficacy as
evidenced by the relatively high performance when it is singularly included
and the performance retention when other components are removed. To
validate the effectiveness of our modified masked autoencoder (MAE)
strategy in UltraFedFM, we compare it with several baseline self-supervised
learning (SSL) strategies, including vanilla. MAE", SimCLR”, SwAV™,
DINO”, and MoCo”. Figure 7g shows that UltraFedFM with the modified
MAE significantly outperforms all other baselines (p < 0.001) in both disease
diagnosis and lesion segmentation tasks. Specifically, UltraFedFM achieves
the highest average AUROC of 0.926 across eight classification tasks and an
average DSC score of 0.878 across four segmentation tasks. In contrast, the
vanilla. MAE achieves the second-best performance, with an average
AUROC of 0.884 and an average DSC score of 0.839. These results suggest
that MAE-based approaches are more effective for ultrasound imaging than
contrastive learning-based methods. This success may be attributed to
MAE’s ability to learn robust feature representations in images where
structures can vary significantly across patients or organs. Clinically, this
translates to more accurate diagnostic predictions, especially for complex
cases involving subtle lesions or challenging anatomical regions.

Qualitative model analysis and visualization

UltraFedEM’s performance on downstream tasks depends on the repre-
sentations learned during training. To investigate how these representations
support downstream decisions, we qualitatively analyzed the internal
mechanisms of the pre-text task of UltraFedFM during pre-training and
how UltraFedFM made task-specific decisions on downstream tasks.
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Fig. 7 | Comprehensive analysis of ultraFedFM highlights its performance,
scalability, and robustness. a Comparison of the prediction distribution between
UltraFedFM and USFM across five independent segmentation tasks. UltraFedFM’s
predictions are concentrated within a high dice similarity coefficient range (mean
u=0.857, standard deviation o= 0.103), whereas USFM’s predictions show greater
dispersion (mean y = 0.808, standard deviation o= 0.174) b Prediction distribution
of all methods on organ-agnostic segmentation tasks. ¢ The prediction stability of
UltraFedFM under different ratios of input distribution variability. d The ablation

study of proposed framework components. e The scaling effect of pre-training data,
evaluated with different proportions of pre-training data. f The scaling effect of pre-
training model size, evaluated using different ViT architectures (ViT-Base, ViT-
Large, and ViT-Huge). g Performance impact of different self-supervised learning
strategies on classification and segmentation tasks. All results are scaled and nor-
malized relative to UltraFedFM. Specific quantitative results are available in Sup-
plementary Table 6.

During pre-training, the pre-text task enables the model to learn
ultrasound-specific context across various ultrasound imaging modalities.
As shown in Fig. 6a, UltraFedFM accurately reconstructs images even when
large portions are masked while preserving anatomical textures and lesion
structures. This qualitative reconstruction behavior suggests the model
learns context-aware features that reflect tissue and lesion morphology
rather than merely memorizing low-level noise patterns. Figure 6b shows
the results of scanning mode-aware transformation (SMAT) used in pre-
training. Balancing scan modes reduces the tendency of UltraFedFM to
overfit to a single probe configuration and promotes robustness across
acquisition settings.

For downstream lesion segmentation tasks, Fig. 6¢c, d visualize Ultra-
FedFM’s precise localization of salient lesion areas and target boundaries.
Clinically, the model’s ability to focus on salient areas while excluding
irrelevant background interference enhances its accuracy in detecting
complex lesion structures, which is essential for diagnosing diseases with
subtle or overlapping symptoms. Supplementary Fig. 1 illustrates the
embedding feature space of different classes in the fine-tuned model.
UltraFedFM demonstrates superior class discrimination, with different
classes clearly separated in high-dimensional space, resulting in more pre-
cise classification boundaries. This ability is crucial in clinical applications
where precise differentiation between pathological and non-pathological
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tissue can impact treatment decisions. In contrast, the baseline supervised
model exhibits a weaker differentiation and less distinct classification
results. Supplementary Fig. 2a further shows how UltraFedFM effectively
recognizes specific patterns and targets via the attention mechanism. For
example, in pancreas, liver, breast, and gallbladder imaging, the model
focuses on the center and surrounding areas of tumor lesions. In colorectal
and lung imaging, it targets high-density textured regions while ignoring
irrelevant hollow regions such as intestines and alveoli. For fetal ultrasound
imaging, UltraFedFM focuses on the solid parts of the fetus and excludes
irrelevant regions such as the uterus and muscles. In addition, we visualized
the evolution of the attention map during pre-training (see Supplementary
Fig. 2b). As pre-training progresses, the local model increasingly focuses on
meaningful regions, thereby enhancing the effectiveness of the global model.

Discussion

With the growing demand for public health solutions, there is an urgent
need to develop Al-based foundation models for wide application to real-
world clinical scenarios. In this work, targeting the most widely used
ultrasound data, we are the first to propose a comprehensive privacy-
preserving ultrasound foundation model (USFM) using federated learning,
namely UltraFedFM. By eliminating privacy concerns through decen-
tralized pre-training, UltraFedFM leverages large-scale global datasets,
enhancing its generalization capabilities. Regarding the above extensive
experimental results, UltraFedFM demonstrates excellent performance,
favorable generalization and robustness, and good adaptability to fine-
tuning data. Specifically, it can handle different clinical tasks, such as
diagnosing diseases, segmenting regions of interest (i.e., pathological tissues
or organs), and analyzing spatial relationships of fetal organs, making it
versatile for a wide range of medical applications. Moreover, UltraFedFM
can be fine-tuned in a modality-agnostic manner to enable a single decoder
to diagnose multiple diseases present in different modalities. Even with
limited fine-tuning data, it consistently outperforms other baseline methods
in both accuracy and stability. Across various ultrasound modalities and
clinical tasks, UltraFedFM performs with judgment capabilities comparable
to human clinicians.

Ultrasound imaging, a widely used clinical diagnostic tool, is renowned
for its convenience and accuracy. Previous research in ultrasound diag-
nostics primarily focused on deep learning models trained on specific
ultrasound modalities, targeting the diagnosis or segmentation of disease
types within fixed imaging contexts. For example, Antropova et al.*
developed a method that utilized pre-trained CNNs to extract and aggregate
features, which were then combined with hand-crafted features from CADx
for breast cancer diagnosis. Similarly, Basu et al.” investigated multi-scale
and second-order pooling architectures to address false textures in gall-
bladder ultrasound, achieving precise localization and detection of malig-
nant gallbladder tumors. Objective assessments and specialized
segmentation strategies have been proposed by Yadav et al.""" for thyroid
ultrasound, highlighting the importance of robust segmentation and pre-
processing in downstream classification. Comparative studies™*'* on des-
peckling filters and image-quality metrics show that noise suppression and
texture preservation strongly affect diagnostic performance. Several recent
works also proposed deep-learning-based CAD systems with novel atten-
tion mechanisms for systematic disease diagnosis in ultrasound images.
Jiang et al.” introduced a sparse computation and temporal fusion archi-
tecture designed for the accurate and real-time segmentation of colorectal
cancer lesions. Yan et al.” constructed and validated a deep learning-based
radiomics fusion model, enabling accurate identification of bone erosions in
rheumatoid arthritis in musculoskeletal ultrasound. These studies have
significantly advanced the application of Al in various ultrasound mod-
alities, leading to improvements in automatic ultrasound image analysis,
including lesion segmentation, disease diagnosis, and treatment planning.
These successes are primarily attributed to the synergistic effects of data,
models, and algorithms, specifically the collection and thorough annotation
of datasets for specific organs or diseases, as well as specially designed
network structures and training methods. However, a critical bottleneck

limiting the advancement of medical imaging algorithms is the limited
availability of fully annotated medical data. Medical image annotation
demands the expertise of trained physicians, and the segmentation tasks in
particular require substantial time and effort. Traditional methods were
often trained on only hundreds or thousands of samples, significantly
impacting the models’ stability and generalizability in real-world applica-
tions. Meanwhile, with the evolution of ultrasound imaging technology, its
application to an increasing number of organs and diseases presents chal-
lenges for models trained on single-organ or single-disease data, making it
difficult to meet expanding clinical demands. There is a growing interest in
developing a label-efficient ultrasound model that can be generalized across
various tasks and organs, enabling rapid adaptation and deployment in
clinical practice.

This led to the introduction of the foundation model (FM) based on
self-supervised learning (SSL), which is capable of learning universal fea-
tures independent of organs and diseases from unlabeled data. Prior to
UltraFedFM, several studies explored FMs in medical imaging" ", covering
various modalities such as ophthalmic images, endoscopy, and CT scans. In
the field of ultrasound imaging, Christensen et al."” proposed an FM spe-
cifically for cardiac ultrasound, pre-trained on over one million echo-
cardiogram videos for diagnosing various heart diseases. Jiao et al.'®
compiled and organized over two million ultrasound images across 12
different categories to establish a general USFM. However, these foundation
models either focus on developing and applying to a single ultrasound
modality, which is limited in actual clinical deployment or require cen-
tralized collection and processing of multi-center large-scale data. On the
one hand, this approach requires expensive servers to store and process data,
and on the other hand, the circulation of data inevitably involves the dis-
closure of patient information, especially rare disease data, which hinders
the development of universal models.

UltraFedFM confirms that distributed pre-trained foundation models
can match centralized ones by appropriate design. While UltraFedFM is not
the first FM developed for ultrasound imaging, it is the first to integrate
privacy protection during the model development process. Previous
methods highlighted that, in most cases, private data held by different
institutions is not shared, and public data must be anonymized to protect
patient privacy, making it challenging to utilize a vast amount of available
medical data. In this study, UltraFedFM breaks the privacy obstacles by
leveraging federated learning that can use large inaccessible private data to
train model distributively across sites without sharing sensitive information.
UltraFedFM was pre-trained on over 1 million ultrasound images from 16
independent institutions worldwide, covering 19 different organs and 10
ultrasound modalities, which is 58.3% more in organ coverage and 66.7%
more in ultrasound modalities compared with centralized baseline 3M-US,
and therefore captures a substantially wide range of acquisition devices,
operators and clinical scenarios. To address ultrasound-specific pre-training
challenges, UltraFedFM developed the ultrasound image masking strategies,
which explicitly accounts for probe-dependent texture characteristics and
reduces failure modes observed when using generic MAE on ultrasound
data. More importantly, the federated architecture also confers practical
extensibility, where new private datasets can be incorporated incrementally
to update the foundation model, so the utility of the model can increase
overtime as more institutions join. Taken together, through careful selection
of pre-training image quantity and the design of pre-training algorithms
specific to ultrasound imaging, it has been demonstrated for the first time
that a distributed pre-training foundation model can achieve comparable
performance to centralized foundation models in overall performance
across multiple downstream tasks. In ultrasound disease diagnosis tasks,
UltraFedFM achieved an average AUROC of 0.927 across eight organs,
significantly (p < 0.001) surpassing USFM’s 0.894 AUROC. In ultrasound
lesion segmentation tasks, UltraFedFM achieved an average DSC score of
0.876, significantly (p < 0.001) exceeding USFM’s 0.858.

The advantages of UltraFedFM go beyond its performance metrics.
The federated learning framework it employs provides unique benefits that
address long-standing challenges in medical Al First, it enables the model to
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be continuously updatable, allowing further training and refinement on
private datasets held by individual institutions or clients without exposing
sensitive data. This ensures compliance with privacy regulations, such as
GDPR and HIPAA, while maintaining the model’s adaptability to evolving
clinical needs. Additionally, federated learning facilitates participation from
small-scale data contributors with uncommon organs or rare modalities
(e.g., uterus, testis, contrast-enhanced ultrasound, high-frequency ultra-
sound). This fosters a collaborative ecosystem where diverse and distributed
medical data can be leveraged to develop a comprehensive and generalizable
model. These capabilities establish UltraFedFM as a solution capable of
bridging the gap between data privacy and large-scale model training. The
security of UltraFedFM during the pre-training process and its accuracy
across various ultrasound imaging applications further solidify its potential
for clinical translation. Previously, only large institutions with efficient data
management workflows could develop foundation models from vast private
medical datasets. This study demonstrates that federated learning enables
the global medical community to collectively pre-train robust and gen-
eralizable foundation models. By addressing the dual imperatives of privacy
preservation and model performance, UltraFedFM marks a paradigm shift
in medical Al Its ability to adapt to new data while protecting patient
privacy sets a benchmark for the development of privacy-preserving Al in
healthcare. Through its innovative use of federated learning, UltraFedFM
demonstrates how global collaboration can unlock the potential of dis-
tributed medical data, paving the way for advancements in ultrasound Al
and broader medical applications.

The core innovation of this study is the application and engineering of a
large-scale, ultrasound-specific federated pre-training framework to simu-
late the distributed data distribution in real clinical environments. During
the federated pre-training stage, the ultrasound image data of each parti-
cipating institution showed significant differences in both sample size and
modality type, leading to the typical non-independent and identically dis-
tributed (non-IID) characteristics of the data. The sensitive attribute dis-
tribution shown in Fig. 2¢ further confirms the systematic bias existing in the
dataset, which poses a substantial challenge for cross-institutional model
aggregation. To systematically evaluate the model’s adaptability to non-
independent and identically distributed (non-IID) data, we designed two
sets of experiments focusing on convergence and fairness, respectively. For
the convergence validation, we implemented two testing scenarios: the first
using original non-IID training data from 16 different institutional clients
for pre-training, while the second employed randomly sampled data from 8
institutions. UltraFedFM was compared against four federated learning
approaches: Average (the baseline method without volume-based weighting
strategy), along with state-of-the-art methods specifically designed for non-
IID scenarios, including FedProx'®, FedNova®, and FlexFair”. Experimental
results in Fig. 5d demonstrated that UltraFedFM significantly outperformed
the Average baseline in both scenarios. Specifically, in the 8-client experi-
ment, FlexFair achieved the fastest convergence speed, followed by Ultra-
FedFM, whereas in the more challenging 16-client experiment, UltraFedFM
showed a comparable convergence speed to FedProx, both substantially
surpassing the simple averaging method. These findings indicate that the
uniform weighting approach of simple averaging causes deviation of the
global objective function from its optimal direction, thereby reducing the
convergence rate, while simultaneously confirming UltraFedFEM’s robust-
ness in handling non-IID data. For fairness evaluation, we constructed
simulated non-IID experimental environments. The classification task
utilized three breast ultrasound datasets (BUS®, BUS-BRA™, and BUS-
UCLM™) as clients, while the segmentation task employed three thyroid
ultrasound datasets (DDTT*, TG3k>, and TN3k****). Each client dataset was
randomly split into 80% training and 20% testing sets. Equal Accuracy
(EA)* served as the fairness metric, measuring maximum prediction
accuracy disparities across different groups (e.g., hospitals or age cohorts).
Results in Fig. 5e showed FlexFair achieved optimal EA fairness perfor-
mance in both tasks. UltraFedFM ranked second in classification fairness
and performed comparably to FedProx in segmentation. Notably, the
simple averaging approach performed poorly in both experiments,

conclusively demonstrating the necessity of weighted aggregation strategies
for non-IID data. Weighting by client data volume effectively prevents
information dilution from large-data clients and substantially mitigates
negative impacts from extreme data distributions.

While systematically evaluating the advantages of UltraFedFM in
ultrasound imaging analysis, this study still has several limitations and
unresolved challenges. Firstly, although currently we use federated learning
to simulate distributed privacy-preserving training to avoid data informa-
tion leakage between clients. However, the deployment is not in a fully
decentralized clinical environment, and it cannot fully replicate the chal-
lenges, such as heterogeneous device differences, network communication
delays, and dynamic client participation in a real multi-center scenario. This
limitation further highlights the necessity of establishing an inter-
institutional joint research network and promoting real distributed train-
ing. Secondly, although UltraFedFM has established a comprehensive
ultrasound imaging benchmark encompassing 10 ultrasound modalities
and 19 human organs, demonstrating outstanding performance in relevant
tasks, its data diversity remains limited. Compared to the broader scope of
clinical data, the benchmark lacks coverage in certain critical ultrasound
imaging domains (e.g., rheumatoid arthritis ultrasound, ocular ultrasound,
etc.), primarily due to the scarcity of publicly available datasets. This lim-
itation hinders the full validation of UltraFedFM’s generalization capability
in these scenarios. Furthermore, the current version of clinical evaluation
relies on a relatively small sample size and a limited number of participating
physicians, making it difficult to comprehensively reflect the diversity and
complexity of real-world clinical practice. Moving forward, we plan to
collaborate extensively with clinical institutions to collect multicenter clin-
ical samples covering mainstream ultrasound modalities and rare diseases,
while inviting clinical experts from diverse institutions to participate in
larger-scale double-blind evaluations. These efforts aim to ensure seamless
integration of the model into clinical ultrasound workflows and strict
compliance with clinical standards and practical requirements. Thirdly,
while our simulated non-IID experiments indicate some robustness of the
current volume-weighted federated learning setup, its effectiveness may
decline as institutions and heterogeneity grow. Future research efforts
should therefore explore targeted extensions with specific fairness designs,
such as fairness-aware aggregation to balance overall per-client equity, and
scalable federation to improve scalability in real-world deployments. Lastly,
although UltraFedFM effectively addresses critical clinical diagnostic and
segmentation tasks and has been validated across 12 different types of
organs and diseases, it does not utilize the vast amount of textual diagnostic
reports available in ultrasound examinations. Integrating multimodal fea-
tures from both text and images could further improve the foundational
model’s accuracy in various clinical tasks and enable the development of
additional clinically useful tasks like question-answering and diagnostic
report generation.

In conclusion, this study provided a robust and reliable framework for
developing comprehensive USFMs. It has been demonstrated that high-
performance and stable models can be pre-trained without risking privacy
leakage. This breakthrough can significantly advance the development of
USEMs and potentially lead to the emergence of more powerful general-
purpose medical AL UltraFedFM has already shown excellent performance
in various ultrasound clinical tasks and holds promise for further expansion.
It has the potential to replace traditional ultrasound Al diagnostic models
and play a crucial role in clinical decision support. The theoretical con-
tributions of this research lie in validating the efficacy of federated learning
for pre-training medical FMs, inspiring further academic advancements in
the field. Practically, the implementation of UltraFedFM can enhance
diagnostic accuracy, streamline clinical workflows, and improve patient
outcomes. Additionally, these findings offer valuable insights for policy-
making, particularly in the areas of data privacy and the integration of Al in
healthcare. By ensuring data privacy and leveraging federated learning, the
collective power of global medical data can be harnessed to drive innova-
tions in medical diagnostics and treatment planning, ultimately trans-
forming the healthcare delivery landscape.
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Methods

Ultrasound dataset curation

UltraFedFM aims to perform universal ultrasound tasks for clinical appli-
cations. A crucial aspect of constructing such a model is the adaptability to
diverse ultrasound imaging modalities and pathological conditions. To
address this issue, we curated a large-scale pre-training dataset consisting of
1,015,754 unlabeled ultrasound images. In this dataset, 782,513 images were
publicly available from multiple worldwide hospitals, while the remaining
images were our privately owned ultrasound data. Our dataset covers a wide
range of clinical ultrasound scenarios and modalities, including common
abdominal, heart, fetal, superficial, musculoskeletal, and transvaginal
ultrasound, as well as emerging techniques such as lung, endorectal,
endoscopic, high-frequency, and contrast-enhanced ultrasound (Fig. 2a).
Moreover, to realize federated pre-training, we split and arranged all data-
sets into 16 clients according to different hospitals. Supplementary Table 1
presents the data distributions of all clients. The multi-organ and multi-
modality categories enable UltraFedFM to adapt to a wide range of
clinical tasks.

The dataset contains a wide range of real sensitive attributes, and some
of these attributes are biased. As illustrated in Fig. 2c. Specifically, at the
national level, data from Chinese medical institutions accounts for the
largest proportion at 57.30%, primarily because most private data comes
from collaborative Chinese institutions. Followed by the United States at
15.94% and Germany at 10.14%, with all other countries comprising less
than 20%. This imbalance may lead UltraFedFM to perform better on
Chinese patient cases while introducing bias against underrepresented
regions. In terms of geographical population distribution, the majority of
cases come from Asia, followed by Europe and the Americas, reflecting
imbalances in global healthcare resources. At the gender level, although the
known gender ratio appears balanced, the large portion of samples with
unspecified gender raises concerns about hidden gender bias. In terms of
ultrasound modalities, mainstream modalities (such as abdominal, super-
ficial, etc.) are relatively evenly distributed, while other modalities account
for a smaller proportion due to their lower usage frequency. The data also
primarily uses conventional linear scanning modes. Regarding the image
quality of downstream fine-tuning data, nearly 50% of the data has varying
degrees of quality issues, which helps us evaluate whether the model exhibits
bias with low-quality data. In future work, in addition to expanding the
geographical coverage and modality range of the data to minimize infor-
mation bias introduced by the data, we also plan to explore the effectiveness
of fairness-aware federated learning in improving dataset bias.

To further verify the practicality of UltraFedFM on clinically relevant
tasks, we curated 15 well-annotated ultrasound datasets for validation. Two
common clinical tasks were tested. The first task is ultrasound image
diagnosis, which requires the FM to make accurate category judgments
based on the organ and lesion information, ranging from two-class cancer
recognition to multi-class disease diagnosis (Fig. 2b top). For this task, we
utilized 7 publicly available datasets and 3 internal datasets for validation,
which included a total of 10 organ categories and 8 ultrasound modalities.
The second task is ultrasound image segmentation, which requires the FM
to identify key organ/lesion areas and predict boundaries. For this task, we
collected 5 public datasets for validation, which included a total of 5 organ
categories and 4 ultrasound modalities. Note that small targets are more
challenging for the model’s prediction ability. In the validation datasets,
64.5% of the images contained targets that are less than 1/10 of the total
image area (Fig. 2b bottom).

The overall ultrasound pre-training dataset and validation dataset
breakdown are presented in Supplementary Table 1 and Supplementary 2.

Clinician cohort

To truly evaluate the reliability of UltraFedFM as an auxiliary tool in clinical
scenarios, we invited multiple clinicians to participate in the evaluation. All
participating clinicians hold a physician qualification certificate and a
physician’s practice certificate issued by the National Health Commission of
China, and have completed subspecialty fellowship training in abdominal or

musculoskeletal ultrasound. In addition, mid-level clinicians (with
4—8years of clinical experience) hold a certificate of qualification for
intermediate professional and technical positions (CQIPTP), and their
professional titles are attending physicians. Expert-level doctors (with
10 years of clinical experience) hold a certificate of qualification for senior
professional and technical positions (CQSPTP), and their professional titles
are chief physicians or associate chief physicians. Additionally, expert-level
clinicians handle an average of 7000 + 200 ultrasound clinical cases per year
(with an average of 240 working days), whereas mid-level clinicians
(4-8 years, n = 2) average 4, 500 + 300 clinical cases per year.

Federated pre-training framework

This work aims to collaborate with multiple clients to jointly train a robust
FM without sharing their privacy-sensitive ultrasound data. To simulate the
real clinical decentralized setting, we partitioned the pre-training dataset in
K “virtual clients” to mimic independent institutions. Our simulation
ensures raw data never leaves clients and assumes encrypted communica-
tion channels. Each client k € {1, ---, K} possesses a local dataset &, with
data samples. The objective is to learn a global model, consisting of a global
encoder Eg and a global decoder D, towards minimizing the global loss
function, which can be expressed as

K
@) =Y mly @), )
k=1

where w is the overall model parameters of the global encoder E, and global
decoder D, n = 34, n, is the total number of data of all clients, and
L;(w) is the local loss function of client k that measures the local empirical
loss on its local dataset &,.. Then, the pre-training stage can be described as
follows.
1. In the ¢-th communication round, the server broadcasts the global
model o' to all clients.
2. Each client k takes E steps of gradient descent to update the local model
based the received global model ', as given by

0 = 0l = VL"), @

where wy denotes the local model parameter of client k and # is the
learning rate.
3. Each dlient uploads its local model parameter w{ ™ to the server.
4. The server aggregates the local models from all clients and updates the
global model by

1 K
wH—l [ Z nkwltc-H' (3)
n k=1

The combination of the four steps is referred to as one communication
round. The pre-training process terminates once it reaches a pre-defined
number of communication rounds T.

After completing pre-training, the pre-trained global encoder was
saved while the global decoder was discarded. In the fine-tuning stage, the
global encoder generated high-level features from the ultrasound images. A
multi-layer perceptron (MLP) takes these features as input and outputs the
probabilities for disease categories. The category with the highest probability
was defined as the classification result. The fine-tuning objective was to
produce classification results that match the ground-truth labels. After each
epoch, the model was evaluated on the validation set. The model weights
with the highest accuracy on the validation set were saved as checkpoints for
internal and external evaluations.
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Local model architecture

As illustrated in Supplementary Fig. 3, we employed a masked autoencoder
(MAE) as the local model of each client k, which consists of an encoder E;
and decoder Dy.

For each image I € R**"*C sampled from the local dataset, the
corresponding local model undergoes pre-training through an ultrasound
masked image modeling (UltraMIM) process, including an ultrasound
image masking (UIM) stage and a reconstruction stage, which are respec-
tively defined by

2 = UTM(I), )
1" = D (B(2), 5)

where 2 = {p!,--- ,p"} is the patch set, p’ € RY represents the ¢-th
patch, L denotes the total number of patches, and UIM denotes the ultra-
sound image masking operation. In particular, there exist two types of
patches in the 2, i.e., masked patches 2,, and visible patches 2,

We utilized Vision Transformer (ViT) as the encoder E; and applied it
to a sequence of unmasked image patches. Specifically, the encoder com-
pressed the input visible patches 2, into the latent representation, denoted
by 2. The latent representation captures the essential features of the input
images, allowing the model to learn meaningful patterns regardless of
masking. Then, we concatenated 2/, and 2, to obtain the overall patch set,
defined as 2% = Concat(?,, #,,). After that, the overall patch set pal
was passed through the decoder Dy, which is a lightweight ViT that aims to
reconstruct the input image by predicting the pixel values of the masked
patches. Finally, the output of the decoder was reshaped to obtain a
reconstructed image. We note that the reconstruction process enables the
model to learn the underlying structure and patterns of the ultrasound
images. Without loss of generality, we adopted the mean square error (MSE)
as the local loss function to measure the discrepancy between the original
image and the reconstructed image, which is defined as

1 ; N2
Li(w) = — (xl - 5c’) , 6
1<i<N,, Ny, ©)
where N,,, is the number of masked patches, while x and X are the ground-
truth and predicted pixel values of each masked patch.

Ultrasound image masking

In clinical scenarios, different medical institutions may use different probes
and equipment to collect ultrasound images. As a result, there exists sig-
nificant variability in the imaged organs and lesions. To enhance the gen-
eralization ability of UltraFedFM across diverse clinical scenarios, we
proposed the UIM composed of three modules, including scanning mode-
aware transformation (SMAT), mixed image corruption (MIC), and
texture-guided masking (TGM), which adaptively adjust the pre-training
process based on the characteristics of the local dataset. Specifically, the
working mechanism of UIM at client k can be expressed as

I = ST, (7)
gliotal _ Concat(glt(mms7 D@k)7 (8)
o — MIC(I,P)7 (9)

P = TCM(I”™), (10)

where 2]*" is the transformed dataset, @,ﬂ”ml is the overall dataset for
pretraining, and I"™ is the corrupted input image.

Scanning mode-aware transformation. To ensure the generalization
ability of UltraFedFM to images acquired under different scanning

modes, we introduced a data augmentation method called Scanning
Mode-Aware Transformation (SMAT). Typically, ultrasound images are
collected using convex-array or linear-array probes, each with distinct
geometrical properties. Therefore, we leveraged the coordinate mapping
relationship between the two modes through Polar-Cartesian
transformations™.

Supplementary Fig. 4a shows the detailed process of SMAT. We first
established the Polar coordinates for the convex-array mode image using the
origin point (r,, 6,) set at the top center of the image and the x-axis at the top
edge. Meanwhile, the Cartesian coordinates are set using (x,, ,) as the origin
point, the top edge as the x-axis, and the vertical central axis as the y-axis. In
Cartesian coordinates, we denote (x;, y;) as the point in the original image,
(2, ¥») as the point in the transformed image. In polar system, (1, 6,) is the
point in the original image, (r,, 8,) is the point in the transformed image. For
the convex-array mode, we transform the Polar coordinate into the Car-
tesian coordinate. Specifically, we obtained the value and position of each
pixel (x,, ¥,) according to its corresponding point (r;, 6;) on the original

image:
=R (an)
6, = arctan&, (12)
X1
I""[xy, y,] = f(x, + 1, cos 0, y, + r; sin 6,), (13)

where I denotes the transformed image, f is a function for getting the
information of the corresponding pixel points in the input image.

For the linear-array mode, the transformed position (r, 8) of the
convex-array mode image is calculated using the Cartesian-to-Polar
transformation, which can be expressed as

}’2 = my (14)
62 = arctan&, (15)
X
ItmnS[xZ’yz] zf(xa + T, €Os 627 ya + 5} sin 62) (16)

After image transformation, we then concatenated the transformed
dataset and the original dataset to obtain an enhanced pre-training dataset,
ie., @ff’“l. Note that the number of images in fZ,t(‘”“l is balanced across
different scanning modes. Therefore, the risk of model over-fitting to any
particular mode is significantly reduced.

Mixed image corruption. To ensure that UltraFedFM is robust to both
low-quality and high-quality images, we introduced an additional
de-corruption branch in the pre-training process, as shown in Supple-
mentary Fig. 4b. The image corruption operations were inspired by three
common cases encountered in clinical practice, i.e., motion blur, low
resolution, and random noise.

1. Motion blur arises from the swift movement of the ultrasound probe,
leading to artifacts and image distortion. We simulated this effect by
convolving the original image with a motion blur kernel K(d, ¢) that
accounts for both the degree of blur d and the angle of motion ¢.
Specifically, we first constructed an identity matrix U e R?*?,
Moreover, we defined a rotation matrix R(¢) with respect to the
motion angle ¢, as given by

cos(9)

—sin(¢)
sin(g) ] | )

R
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Then, by applying the affine transformation, the motion blur kernel K(d, ¢)
is derived as

1

¥ (18)

where each element in K(d, ¢) was normalized by the degree of blur d to
ensure that the kernel maintains the same intensity as the original image.
Finally, the motion-blurred image can be obtained by convolving the
original image with the motion kernel, which is expressed as
I = I« K(d, ¢), (19)
where * denotes the convolution operation.
2. Low resolution makes it hard to distinguish the critical parts of images.
It can be achieved by a simple Gaussian blur operation. Gaussian blur
involves convolving an image with a Gaussian kernel G(0), which is a
two-dimensional Gaussian function with a standard deviation o.
Mathematically, the Gaussian blur operation can be expressed as
[“™ = Gaussian(l, o)
I % G(u,v;0)
— Ix% ﬁef(uz+v2)/2627

(20)

where u is the distance to the origin in the horizontal axis, v is the distance to
the origin in the vertical axis.

3. Random noise is the disturbance of pixel values, which is caused by the
aging of components in old equipment. Random noise often destroys
the appearance features of the target and affects the doctor’s judgment.
In this work, we simulated salt-and-pepper noise by the random
occurrence of black and white pixels in an image. Given a grayscale
image I(x, y) where (x, y) denotes the pixel coordinates. The corrupted
image is given by

0, with probability p_,
I (x, y) = 255, with probability Py 1)
I(x,y), with probability 1 — p, — Py

where p; is the probability of a pixel being set to the minimum intensity value
("0" corresponds to “salt"), and p,, is the probability of a pixel being set to the
maximum intensity value ("255" corresponds to “pepper”).

The above three image corruption transformations can be combined to
constitute a variety of composite transformations. We randomly selected
one, two, or three operations from the triplet of [motion blur, gaussian blur,
random noise] according to probability p to form a composite operation.

Texture-guided masking. In ultrasound images, the edge prior reveals
the sharpness of local regions and contains high anatomical information.
Therefore, we quantified the edge information of each image patch to
measure the texture complexity. The process is illustrated in Supple-
mentary Fig. 4c. Specifically, given an ultrasound image I with the spatial
size of H x W, we computed the texture map I'*™ ¢ R7*W*1 based on
the edge information of I using a second-order Laplacian differential
operator™, as defined by

#1+aﬁ
ay?’

Itexture

= 22
ox2 22)
where x and y are the indices of the image I. Then we split I into a series
of texture patches, denoted by a set 2, = {p},--- ,p}}. Here, p' €
RP***1 g the ¢-th texture patch with spatial size of h x w. For each texture
patch, the texture complexity score was calculated by summing the absolute

values of all elements, which is given by

Score! = ZZ I piGio ) I,

i=1 j=1

(23)

where Scorei is the score of the I-th texture patch and (i, j) denotes the
position of the texture patch. By doing so, we can obtain the scores for all
texture patches, denoted by [ Score;, Score?, ..., Score I]. Then, we gener-
ated the texture attention mask by concatenating the score of all texture
patches, as given by

A = Concat( Scoretl, Score?, ..., Score f). (24)

Given the attention mask A € R”, the texture patches with higher
weights are more likely to be the foreground critical objects and may contain
more information than those with lower weights. Therefore, we raised the
masking probabilities of texture patches with high weights and used the texture
patches with low weights as the visible hints in the masked image modeling
process. More precisely, we first sorted the values in A from largest to smallest.
Then, we guided the token selection process to generate the masked patch set
2. The tokens with the top M highest probabilities were discarded, while the
remaining tokens were preserved as visible hints for masked image modeling.
Here, we set M = 75% to keep consistent with the original MAE settings.

Self-supervised learning implementation

For comparison purposes, we replaced the MAE" in UltraFedFM, with
other SSL methods, including SimCLR”, SwAV*, DINO*, and MoCo-v3*
to generate different pre-trained models. For each SSL method, we followed
the network architectures and hyperparameter settings recommended in the
literature to achieve the optimal performance. First, we loaded the pre-
trained weights on ImageNet- 1k into the models. Subsequently, we trained
the models using the ultrasound pre-training dataset with each SSL method
to obtain the pre-trained models. Following the same process for Ultra-
FedFM, we transferred the MAEs to downstream disease detection tasks and
fine-tuned these pre-trained models.

Baseline methods implementation

We compared the performance of UltraFedFM with 4 pre-trained compar-
ison models: Supervised, ImageNet-21K (centralized), USFM (centralized),
and MAE (federated). “Supervise” uses the supervised learning strategy with a
randomly initialized ViT encoder. “ImageNet-21K” uses the transfer learning
strategy, where the model is centralized pre-trained on ImageNet-21K (about
14 million natural images with classification labels) through self-supervised
learning. “USFM” uses the Universal Ultrasound Foundation Model'® to
perform centralized pre-training on the 3M-US dataset (about 2 million
ultrasound images of 12 organs). MAE and UltraFedFM use the same
ultrasound dataset for federated pre-training, but MAE uses the original
masked image modeling algorithm as a control to observe the advantages of
our newly designed modules. All methods are fine-tuned on the same
downstream datasets using the same experimental settings until convergence.

Performance metrics

To evaluate the performance of all disease diagnosis tasks, we utilized four
widely employed metrics, including accuracy, F1-score, AUROC, and recall.
Accuracy is a fundamental metric in classification tasks, which is defined as
the ratio of correctly classified instances to the total number of instances.
Mathematically, it is expressed as

TP + TN

; (25)
TP+ TN + FP + FN

Accuracy =

where TP, TN, FP, and FN represent the true positives, true negatives, false
positives, and false negatives, respectively.
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F1-score is often used to evaluate the performance of classification
models, particularly in scenarios where the data distribution is imbalanced.
It is defined as the harmonic mean of precision and recall, offering a balance
between the two metrics. F1-score is mathematically expressed as

Precision - Recall

F1 — =2 - 26

score Precision + Recall’ (26)
TP

Precisi = 27

recision TP 1 FP’ (27)
TP

Recall = ———. 28

=T N (28)

AUROC is utilized to assess the performance of binary classification
models, particularly in distinguishing between positive and negative classes
across various threshold settings. Typically, AUROC is defined as the area
under the receiver operating characteristic curve, which plots the true
positive rate (TPR) against the false positive rate (FPR) as the decision
threshold is varied. Mathematically, AUROC is expressed as

1
AUROC = / TPR()dFPR (), (29)
0
TP
TPR = —— (30)
TP + FN
FP
FPR = — . (31)
FP+ TN

For binary and multi-class lesion segmentation tasks, we utilized the
dice similarity coefficient (DSC) for evaluation. DSC is useful for assessing
the accuracy of a model in scenarios where spatial overlap between predicted
and true masks is of primary interest. It is defined as

2-1PNT|

DSC == '
[P| 4+ |T]

(32)

where P represents the predicted segmentation and T represents the
ground truth.

In addition to DSC, we used the Hausdorff distance (HD) to evaluate the
binary segmentation models. HD is a critical metric for image segmentation
tasks, which measures the maximum discrepancy between the boundaries of
the predicted segmentation and the ground truth. It evaluates the worst-case
scenario by identifying the greatest distance from any point on one boundary
to the closest point on the other boundary. Mathematically, the HD between
two prediction segmentation P and ground truth T'is defined as

HD = i - ' —p| b,
maX{rggg{ntlelTn}llp t\l,rr;gg{rggl}llt PII} (33)

For pubic symphysis-fetal head tasks, the measurement of the angle of
progression was conducted by constructing two lines from three specific
landmarks. Firstly, we identified the two furthest points on the pubic
symphysis contour based on the segmented image. Then, we drew a tangent
line through the rightmost point of the pubic symphysis to define the fetal
head region. The tangent line on the right side of the image, intersecting with
the fetal head region, determines the third point for calculating the angle of
progression (AoP). Finally, the angle formed by these three points con-
stituted AoP. The performance of AoP prediction was evaluated using the
mean absolute error (MAE). MAE provides a straightforward interpretation
of how far, on average, the predicted values deviate from the actual observed

values, which is given by

1 n
MAE:—E =¥
n p |y1 yl" (34)

where 7 is the number of samples, y; is the actual value for the i-th sample, y;
is the predicted value for i-th sample.

To evaluate the prediction fairness of the method, we adopted equal
accuracy (EA) as the fairness evaluation metric, which measures the max-
imum gap in prediction accuracy between different groups (e.g., different
hospitals, age groups):

EA = mkax|Score (&//k) — Score]|. (35)
Here, A represents the k-th client, Score (A;) denotes the AUROC score of
the test set for client k, and Score is the average score across all clients.
Minimizing EA (ie., narrowing the performance gap between groups)
indicates achieving maximum fairness.

The models for all tasks were trained using five different random seeds
to determine the shuffling of the training data. We calculated the mean and
standard deviation of the performance over the three iterations and com-
puted the standard error, ie., the standard deviation divided by the square
root of 5. We obtained the 95% confidence interval (CI) by multiplying the
standard error by 1.96. Moreover, to determine whether there were sig-
nificant differences, we performed two-sided ¢-tests between the significance
of UltraFedFM compared to other methods.

Implementation details

In the pre-training stage, the image encoder of UltraFedFM is implemented
by a basic vision Transformer33 (ViT-base) with 12 Transformer blocks and
an embedding vector size of 768, whereas the decoder is a small vision
Transformer (ViT-small) with 8 Transformer blocks and an embedding
vector size of 512. The masking ratio is configured to 0.75, with an input size
of 224 x 224. The model was pre-trained for 600 communication rounds
(epochs) with a batch size of 512, and the warm-up period is 60 epochs. The
local model was trained with 1 epoch in each communication round. We
employed the AdamW optimizer with ; = 0.9, 8, = 0.95, an initial learning
rate of 1.5¢ — 4, and a weight decay of 0.05. For the fine-tuning stage, the
input images are resized to 224 x 224, and Random rotations, flips, and
crops were used as data augmentation. The batch size was set as 16. All
models were trained with 100 epochs using the AdamW optimizer with a
cosine learning rate scheduler. The first 10 epochs were used for learning
rate warm-up. The drop-path probability was set to 0.1. The detailed con-
figurations are listed in the Supplementary Table 4 and Supplementary
Table 5.

Computing hardware and software

We used Python (version 3.7.4) for all experiments and analyses in the
study, which can be replicated using open-source libraries as outlined
below. For pre-training, we used 8 32-GB NVIDIA GeForce Tesla V100
GPUs configured for multi-GPU training using DistributedDataParallel
(DDP) as implemented by the framework PyTorch (version 1.11.0,
CUDA 11.3). For fine-tuning, we used 1 32-GB NVIDIA GeForce Tesla
V100 GPU. Pillow library (version 9.5.0) and opencv-python (version
4.7.0) libraries were used to read images, which were then converted to the
base64 string format using Python. Timm library (version 0.9.2), torch-
vision (version 0.12.0) and opencv-python were applied for image pro-
cessing and loading during training. Einops library (version 0.6.1) was
applied for tensor operations in modeling. For model evaluation, we use
the torchmetrics library (version 1.3.2) and pycm library (4.0) for classi-
fication task evaluations, and the segmentation-models-pytorch library
(version 0.3.3) for segmentation task evaluations. Numpy (version 1.23.2)
and Pandas (version 2.2.2), were used in data collection, preprocessing
and data analysis.
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Data availability

The publicly available dataset for pre-training can be accessed from: BUV
(\href{https://github.com/jhl-Det/CV A-Net/tree/main}H{https://github.com/
jhl-Det/CVA-Net/tree/main}), CLUST (\href{https://clust.ethz.ch/data.html}
{https://clust.ethz.ch/data.html}), EchoNet-Dynamic (\href{https://echonet.
github.io/dynamic/Hhttps://echonet.github.io/dynamic/}), FETAL-PLANES
(\hreffhttps://zenodo.org/records/3904280} {https://zenodo.org/records/
3904280}), TDSC-ABUS (\href{https://tdsc-abus2023.grand-challenge.org/
Dataset/}{https://tdsc-abus2023.grand-challenge.org/Dataset/}), Leg-3D-US
(‘hreffhttps://www.cs.cit.tum.de/camp/publications/leg-3d-us-dataset/}
{https://www.cs.cit.tum.de/camp/publications/leg-3d-us-dataset/}), Thyroid
Ultrasound Cine-clip (\href{https://stanfordaimi.azurewebsites.net/datasets/
a72f2b02-7b53-4c5d-963¢-d7253220bfd5Hhttps://stanfordaimi.
azurewebsites.net/datasets/a72f2b02-7b53-4¢5d-963c-d7253220bfd5}),
SYSU-FLL-CEUS  (\hreffhttps://github.com/lemondan/Focal-liver-lesions-
dataset-in-CEUSHhttps://github.com/lemondan/Focal-liver-lesions-dataset-
in-CEUS}), CAMUS  (\href{https://www.creatis.insa-lyon.fr/Challenge/
camus/index htmlHhttps://www.creatis.insa-lyon.fr/Challenge/camus/index.
html}), COVID-BLUES  (\href{https://github.com/NinaWie/COVID-
BLUESHhttps://github.com/NinaWie/COVID-BLUES}), NerveUS (\href
{https://www.kaggle.com/competitions/ultrasound-nerve-segmentation}
{https://www.kaggle.com/competitions/ultrasound-nerve-segmentation}),
LEPset (\hreffhttps://zenodo.org/records/8041285}Hhttps://zenodo.org/
records/8041285}), FPUS  (\href{https://github.com/bharathprabakaran/
FPUS23?tab=readme-ov-file}{https://github.com/bharathprabakaran/
FPUS23?tab=readme-ov-file}), GBUSV (\href{https://github.com/sbasu276/
FocusMAEHhttps://github.com/sbasu276/FocusMAE}). The publicly avail-
able datasets for downstream tasks can be accessed from: LEPset-labeled
(\hreffhttps://zenodo.org/records/8041285} {https://zenodo.org/records/
8041285}), SYSU-FLL-CEUS-labeled (\hrefihttps://github.com/lemondan/
Focal-liver-lesions-dataset-in-CEUSHhttps://github.com/lemondan/Focal-
liver-lesions-dataset-in-CEUS}), GBCU (\hreffhttps://gbc-iitd.github.io/data/
gbcu}{https://gbc-iitd.github.io/data/gbcu}), BUSI (\href{https://www.kaggle.
com/datasets/aryashah2k/breast-ultrasound-images-dataset}{https://www.
kaggle.com/datasets/aryashah2k/breast-ultrasound-images-dataset}), BUV-
labeled (\href{https://github.com/jhl-Det/CV A-Net/tree/main}{https://
github.com/jhl-Det/CVA-Net/tree/main}), BUS-BRA (\hreffhttps://zenodo.
org/records/8231412}{https://zenodo.org/records/8231412}), BUS-UCLM
(\hreffhttps://data.mendeley.com/datasets/7fvgj4jsp7/3}{https://data.
mendeley.com/datasets/7fvgj4jsp7/3}), POCUS  (\href{https://github.com/
jannisborn/covid19_ultrasound}{https://github.com/jannisborn/covid19
ultrasound}), FETAL-PLANES-labeled (\href{https://zenodo.org/records/
3904280Hhttps://zenodo.org/records/3904280}), HFUS (\href{https://data.
mendeley.com/datasets/td8r3ty79b/1}{https://data.mendeley.com/datasets/
td8r3ty79b/1}), NerveUS-labeled (‘hreffhttps://www.kaggle.com/
competitions/ultrasound-nerve-segmentation}{https://www.kaggle.com/
competitions/ultrasound-nerve-segmentation}), DDTI (\href
{https://www.kaggle.com/datasets/dasmehdixtr/ddti-thyroid-ultrasound-
images}https://www.kaggle.com/datasets/dasmehdixtr/ddti-thyroid-
ultrasound-images}), Thyroid Ultrasound Cine-clip labeled (\href{https://
stanfordaimi.azurewebsites.net/datasets/a72f2b02-7b53-4c5d-963c-
d7253220bfd5} {https://stanfordaimi.azurewebsites.net/datasets/a72f2b02-
7b53-4c¢5d-963¢-d7253220bfd5}),  TG3k  (\href{https://github.com/
haifangong/TRFE-Net-for-thyroid-nodule-segmentation}{https://github.
com/haifangong/TRFE-Net-for-thyroid-nodule-segmentation}), ~TN3k
(\href{https://github.com/haifangong/TRFE-Net-for-thyroid-nodule-
segmentation}{https://github.com/haifangong/TRFE-Net-for-thyroid-
nodule-segmentation}), LUMINOUS (\href{https://users.encs.
concordia.ca/~impact/luminous-database/}{https://users.encs.concordia.
ca/~impact/luminous-database/}), CardiacUDA (\hreffhttps://www.
kaggle.com/datasets/xiaoweixumedicalai/cardiacudc-dataset}{https://
www.kaggle.com/datasets/xiaoweixumedicalai/cardiacudc-dataset}),
JNU-IFM (\hreffhttps://figshare.com/articles/dataset/JNU-IFM/
14371652} {https://figshare.com/articles/dataset/JTNU-IFM/14371652}).
The UltraFedFM private dataset consists of routinely collected

healthcare data. Owing to its sensitive nature and the risk of reidenti-
fication, the dataset is subject to controlled access by means of a
structured application process. Data access enquiries may be made by
\href{https://forms.gle/sdS5uX5FJjFRcr74A}{Google form}. We will
review and aim to respond in a few weeks. The pre-trained and fine-
tined models, as well as source code for pre-training, fine-tuning,
inference, and data preprocessing, can be accessed at \href{https://
github.com/yuncheng97/UltraFedFM}{https://github.com/
yuncheng97/UltraFedFM}
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