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Flexible ureteroscopy (FURS) is a minimally invasive, standard treatment for kidney stones. This study
presents the development and clinical validation of an artificial intelligence system during FURS
(AIFURS) for real-time detection, classification, and measurement of stones. Using 6170 annotated
ureteroscopy video frames representing 11,870 labeled stones, the AIFURS was trained to identify
stone type, size, and number. Ex vivo validation across 191 groups predicted stone counts precisely
(r>0.9) in 300 samples. Size predictions for stones >2 mm (n = 100, r = 0.81) correlated with gold-
standard caliper measurements. In vivo and external validation of 100 and 80 cases, respectively,
demonstrated diagnostic accuracy (92.2-95.3% and 86.8-92.2%, respectively) for patient-level stone
type prediction, outperforming expert surgeons. Logistic regression further identified the proportion of
residual fragments (RFs) > 2 mm, measured during the final minutes of FURS, as an independent
predictor of reoperation. AiIFURS offers a novel solution to enhance surgical accuracy, reduce

complications, and improve outcomes in endourology.

Kidney stone disease is a major global health issue, affecting millions of
individuals and often requiring surgical intervention'. Kidney stones are
solid deposits formed when minerals and salts, such as calcium oxalate,
calcium phosphate, and uric acid, crystallize within the kidneysz’s. These
stones can cause severe pain and urinary tract infections (UTTIs) and, if left
untreated, lead to significant complications, including kidney damage and
increased morbidity”. The rising prevalence of kidney stones, coupled with
risk factors such as hypertension, obesity, and diabetes, has highlighted the
need for effective surgical treatments™. Flexible ureteroscopy (FURS) has
become a key treatment modality for kidney stones, offering benefits such as
minimal invasiveness, reduced patient morbidity, faster recovery times, and
lower complication rates’. However, successful FURS depends on the sur-
geon’s ability to accurately identify, classify, and remove stone fragments, a
process complicated by anatomical variations and stone characteristics’.
Traditional methods of stone detection during FURS rely heavily on

surgeons’ visual assessments, which are subjective and prone to variability’.
This dependence can lead to inconsistent outcomes, with residual fragments
(RFs) contributing to recurrent stones, UTIs, and the need for additional
surgeries’. The stone-free rate (SFR) and prevalence of post-operative
complications are vital metrics for evaluating the success of ureteroscopic
lithotripsy. According to the standard definition of SFR, the goal of FURS is
to pulverize stones to <2 mm in size'. However, achieving a high SFR
primarily depends on the surgeon’s skill and the accuracy of stone
detection'>". This variability underscores the need for a more objective and
reliable tool to help surgeons achieve complete stone removal'.

Recent advancements in artificial intelligence (AI) and computer
vision (CV) offer promising solutions to these surgical challenges'™'. AI-
assisted systems using deep learning algorithms improve medical image
segmentation and provide real-time support for detecting and analyzing
kidney stones™*, enhancing surgical precision while reducing operator
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variability. In recent years, several convolutional neural network (CNN)-
based methods have achieved excellent performance when identifying stone
composition from endoscopic images™ . However, existing approaches
cannot provide real-time information on the composition, size, or number
of stones to help surgeons assess surgical progress and outcomes. Thus,
development of an integrated, real-time system capable of multi-
dimensional stone analysis during FURS is essential.

To this end, the present study developed and validated an artificial
intelligence flexible ureteroscopy system (AiFURS) using object detection
and multi-object tracking algorithm for real-time detection, classification,
and measurement of stones during FURS, to assist intra-operative decision-
making and reduce post-operative complications.

Results

Study design

An overview of this study is provided in Fig. 1. Our aim was to develop a real-
time AiFURS for detecting kidney stones during FURS. In this system, we
employed the YOLOvI1-N"' and BoT-SORT tracking” deep learning
algorithms on a total of 6,170 annotated frames from 30 surgical videos. The
performance of AiIFURS was evaluated systematically via: (1) ex vivo vali-
dation included 300 stone samples, comparing stone-size predictions with
gold-standard caliper measurements, and 191 groups of stones, assessing
predicted stone numbers against actual counts; (2) in vivo clinical validation
on 100 cases assessing stone classification, size, and count; (3) external
validation on 80 cases; and (4) comparison with expert urologists to assess
accuracy in stone classification.

Model validation
We evaluated the performance of our proposed AiFURS and compared
it to state-of-the-art lightweight (N-scale and S-scale) real-time detec-
tors, including You Only Look Once (YOLO)-based detectors
(YOLOV8-v12), transformer-based detectors (RT-DETR and D-FINE).
The performance results are shown in Table 1. When compared to
N-scale and T-scale models, the AiFURS achieved a mean average
precision at 50% intersection-over-union (IOU; mAP@50) of 0.933,
surpassing D-FINE-N (0.910), YOLOvV8-N (0.926), YOLOv9-T (0.924),
YOLOV10-N (0.913), and YOLOvI2-N (0.927) by 2.3%, 0.7%, 0.9%,
2.0%, and 0.6%, respectively, while requiring less or similar computa-
tional cost (6.5 giga floating-point operations [FLOPs]), evaluating
fewer or a similar number of parameters (2.6 million), and having a fast
latency speed of 1.5 ms per image. When compared to S-scale models,
the AiFURS outperformed RT-DETRv2-S (0.925), RT-DETR-S (0.919),
D-FINE-S (0.931), YOLOVS8-S (0.929), YOLOV9-S (0.927), YOLOvV10-S
(0.928), and YOLOV12-S (0.932) by 0.8%, 1.4%, 0.2%, 0.4%, 0.6%, 0.5%,
and 0.1%, respectively. Although YOLOv11-S matched the AiFURS
with respect to mAP@50 and slightly exceeded it with respect to mean
average precision at 50-95% IOU (mAP@50-95) and mean average
precision at 75% IOU (mAP@75), the AiFURS’s lower latency and
computations made it the optimal choice for satisfying the stringent
real-time performance and accuracy requirements of stone recognition.
As shown in Fig. 2, the predicted boxes were compared to ground-truth
labels and overlaid with gradient-weighted class activation mapping (Grad-
CAM) heatmaps to highlight the regions driving each detection event. The
AiFURS successfully detected and classified kidney stones, including cal-
cium oxalate, calcium phosphate, and uric acid stones, with high consistency
between labeled and predicted bounding boxes. Grad-CAM heatmaps
provided transparent and interpretable visual explanations of the model’s
decision-making process.

Ex vivo clinical validation

After FURS, extracted kidney stones were collected using a stone
retrieval basket. Stones of varying types and counts were then randomly
placed at a fixed visual distance (one fiber distance from the lens) under
the ureteroscope to simulate the surgical procedure and enable video
recording (Fig. 3a, b).

When the actual and AiFURS-generated counts across 191 groups with
different stone numbers were compared, Spearman’s correlation analysis
showed a strong association (r> 0.9, p <0.0001; Fig. 3c). Bland-Altman
analysis indicated an average difference of —0.1623 (95% limit of agreement
[LoAJ: —0.8869-0.5623; Fig. 3g).

Furthermore, the AiFURS was used to estimate the sizes of 300 stone
samples (100 each with maximum diameters >2 mm, 1-2 mm, and <1 mm);
these measurements were then compared to gold-standard caliper mea-
surements. The resulting correlations were fair for stones with a maximum
diameter >2 mm (r = 0.8134, p < 0.0001; Fig. 3d) yet weak for stones with a
maximum diameter of 1-2 mm (r = 0.3764, p = 0.0001; Fig. 3e) and <1 mm
(r=0.4728, p<0.0001; Fig. 3f). For stones with a maximum diameter
>2 mm, the mean difference was -0.0011 mm (95% LoA: —0.7814-0.7792;
Fig. 3h). For stones with a maximum diameter of 1-2 mm, the average
difference was 0.0272 mm (95% LoA: —0.5108-0.5652; Fig. 3i), and for
stones with a maximum diameter <1 mm, the average difference was
0.0817 mm (95% LoA: —0.3474-0.5108; Fig. 3j). These results demon-
strated excellent agreement in the Bland-Altman plots.

In vivo clinical and external validation

Following successful ex vivo validation, the AiFURS was further evaluated
using an in vivo patient-level dataset (100 cases). Specifically, we sought to
assess its real-time performance in detecting and classifying kidney stones
during surgery. During the final minutes of FURS, the intra-operative video
shows both systematic calyceal inspection and ureteroscope withdrawal
(Supplementary Fig. 1); validation was conducted only during the inspec-
tion phase. The AiFURS accurately identified stone types, including calcium
oxalate, calcium phosphate, and uric acid stones, achieving high values for
accuracy, sensitivity, specificity, positive predictive value (PPV), and nega-
tive predictive value (NPV), as shown in Fig. 4a.

Diagnostic metrics revealed accuracy rates of 95.3%, 92.2%, and 93.2%
for calcium oxalate, calcium phosphate, and uric acid stones, respectively.
Sensitivity and specificity were high across all stone types, confirming the
model’s reliability. PPVs and NP Vs further demonstrated the capacity of the
AiFURS to consistently provide accurate positive and negative identifica-
tions. The confusion matrix in Fig. 4b compares the model’s predictions
with spectrophotometric analysis, highlighting correct and misclassified
predictions. Moreover, the AiIFURS achieved an average real-time inference
speed of ~20 frames per second (fps), which is well-aligned with the original
video frame rate of 22.7 fps.

Furthermore, we selected an additional 80 cases for external vali-
dation of the AiFURS, achieving high accuracy rates of 86.8%, 92.2%,
and 87.7% for calcium oxalate, calcium phosphate, and uric acid stones,
respectively (Fig. 4c, d).

Peri-operative predictors of reoperation risk
The AiFURS was employed to detect residual stones in each renal calyx at
the end of surgery and classify them into three size categories: <1 mm,
1-2 mm, and >2 mm. A total of 100 patients were included in this analysis,
divided into a stone-free group (71 patients) and a reoperation group (29
patients). At initial presentation, all enrolled patients had unilateral kidney
stones and underwent FURS. Univariate and multivariate analyses were
performed on both groups (Supplementary Table 1). In the univariate
analysis, the proportion of RFs >2 mm showed an odds ratio (OR) of 1.099
(95% confidence interval [CI]: 1.059-1.142, p < 0.001), 1-2 mm showed an
OR 0f 0.977 (95% CI: 0.956-0.990, p = 0.038), and <1 mm showed an OR of
0.934 (95% CI: 0.903-0.967, p = 0.036). Analysis of stone location resulted in
an OR of 7.69 (95% CI: 2.133-27.700, p = 0.002) for distal stones and 2.56
(95% CI: 0.918-7.157, p = 0.072) for multiple stones.

In the multivariate analysis, the proportion of RFs >2 mm showed an
OR of 1.154 (95% CI: 1.080-1.233, p < 0.001), RFs (computed tomography
[CT]) showed an OR of 70.249 (95% CI: 7.168-688.433, p < 0.001), distal
stones had an OR of 40.197 (95% CI: 2.743-589.124, p = 0.007), and mul-
tiple stones had an OR of 6.252 (95% CI: 0.706-55.366, p = 0.100). Since
post-operative CT is not a pre-operative indicator, the multivariate analysis
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Fig. 1 | Study overview. a Ureteroscopic lithotripsy procedure: perform a pre-
operative computed tomography (CT) scan to evaluate stone characteristics, pro-
ceed with FURS using a holmium laser, conduct post-operative imaging to assess RF
size and perform spectrophotometric analysis of stone composition, and assess
prognosis and treatment. b Develop AiFURS; the model development dataset
consisted of data from 30 patients who underwent ureteroscopic lithotripsy. From
their surgical videos, 6170 ureteroscopy video frames were extracted, annotated, and
reviewed by expert urologists. The dataset was divided into training (80%),

validation (10%), and testing (10%) subsets. The AiFURS employed the YOLOv11-
N and BoT-SORT models, achieving real-time detection. ¢ System evaluation: the
performance of the AiFURS was evaluated via ex vivo clinical validation, in vivo
clinical validation (100 cases), external validation (80 cases), Al-urologist compar-
isons, and real-time inference. Created using BioRender. Liang, H. (2025) (https://
BioRender.com/3qbaz66) and the written permission given to use and adapt it.
Abbreviations: AiFURS artificial intelligence flexible ureteroscopy system, YOLO
You Only Look Once.
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Table 1 | Comparison results of different state-of-the-art lightweight real-time object detectors

Model FLOPs (G) Latency (ms) #Params (M) mAP@50 mAP@50-95 mAP@75
RT-DETRv2-S 60.0 4.6 20.0 0.925 0.757 0.841
RT-DETR-S 60.0 4.6 20.0 0.919 0.748 0.827
D-FINE-S 25.0 3.49 10.0 0.931 0.764 0.868
YOLOv8-S 28.6 2.33 111 0.929 0.769 0.848
YOLOvV9-S 26.4 25 7.2 0.927 0.773 0.860
YOLOv10-S 21.6 2.49 7.2 0.928 0.774 0.864
YOLOv11-S 215 25 9.4 0.933 0.781 0.860
YOLOv12-S 21.4 2.61 9.3 0.932 0.768 0.856
D-FINE-N 7.0 212 4.0 0.910 0.733 0.830
YOLOvV8-N 8.7 1.77 3.0 0.926 0.761 0.847
YOLOVO-T 7.7 2.1 2.0 0.924 0.762 0.854
YOLOv10-N 6.7 1.84 2.3 0.913 0.751 0.850
YOLOv12-N 6.5 1.64 2.6 0.927 0.757 0.855
AIFURS (ours) 6.5 1.5 2.6 0.933 0.769 0.855

FLOPs floating-point operations, #Params number of parameters, mAP@50 mean average precision at 50% intersection-over-union (IOU), mAP@50-95 mean average precision at 50-95% IOU, mAP@75
mean average precision at 75% IOU, RT-DETR real-time detection transformer, D-FINE DETRs as fine-grained distribution refinement, YOLO You Only Look Once, AiFURS artificial intelligence flexible

ureteroscopy system.

without post-operative CT is presented in Table 2. We observed that the
total number of kidney stones on post-operative CT images and the per-
centage of intra-operative RFs > 2 mm significantly predicted the need for
reoperation, providing an immediate assessment of risk stratification at the
end of surgery.

In addition, external validation of our approach using 80 additional
cases yielded similar results (Supplementary Table 2).

Comparison of stone composition assessment between the
AiFURS and urologists

To evaluate stone composition, 20 urologists reviewed surgical videos and
provided visual assessments via a questionnaire. Our results show that the
accuracy of the AiFURS in evaluating stone composition is much higher
than that of manual evaluation by urologists (Table 3).

Discussion

Integrating Al into surgical image analysis, particularly in urology, marks a
significant shift in surgical practice". Deep learning approaches have pri-
marily been used to identify stone composition from endoscopic images™ ™
and assess stone volume using CT scans™ . However, there is a notable gap
in research concerning intra-operative decision-making, particularly in the
real-time estimation of stone size during surgical procedures. A key inno-
vation of this study is the real-time intra-operative detection and classifi-
cation of kidney stones, which reduces reliance on post-operative imaging
modalities such as ultrasound and CT scans and enables intra-operative
prognostic assessment. Specifically, we used an AiFURS to identify stone
types, sizes, and counts during surgery”', leveraging over 6,000 annotated
images. A YOLOv11-N-based AiFURS outperformed various popular state-
of-the-art lightweight real-time models, including RT-DETR-S/v2-$**”, D-
FINE-N/S¥, YOLOWV8-N/S”, YOLOv9-T/S*, YOLOv10-N/S", and
YOLOvV12-N/S* in mAP@50 with the lowest latency and the fewest FLOPs
while obtaining state-of-the-art latency-accuracy and FLOPs-accuracy
trade-offs. It is applicable to and suitable for real-time intra-operative
deployment.

According to the European Association of Urology urolithiasis
guidelines, information on stone composition can help patients set realistic
expectations and guide follow-up planning and medical management
strategies”. Traditionally, stone composition is determined post-operatively
through microscopic analysis, chemical testing, or infrared spectroscopic
techniques; this process often necessitates wait times for external reports,
leading to delayed decisions. In contrast, the AiFURS enables real-time

intra-operative analysis, providing surgeons with immediate feedback on
stone composition with high sensitivity (recall) rates for calcium oxalate
(95.2%), calcium phosphate (94.7%), and uric acid (88.9%). This instant
information facilitates optimization of laser power and frequency settings",
improving fragmentation efficiency, reducing the “popcorn effect”
(uncontrolled fragmentation that obscures the visual field), and minimizing
the risk of secondary damage caused by prolonged laser activation. These
technical advancements are crucial for significantly improving the out-
comes of laser lithotripsy and enhancing the surgeon’s ability to achieve a
stone-free outcome.

Reliable evaluation of AI performance requires comparison with
clinical expertise. In this context, we designed a questionnaire to compare
the AiFURS’s predictions to those of experienced surgeons. Specifically, 20
urologists independently reviewed surgical videos and provided visual
assessments of stone composition. Our results corroborate previous studies
indicating that visual assessments of urolithiasis during endoscopy do not
reliably predict stone composition, with diagnostic accuracy often limited".
In contrast, the AiFURS demonstrated the potential to support surgeons by
accelerating judgment and decision-making, with its visual outputs planned
for display on an auxiliary screen next to the primary endoscopy screen.

Accurately assessing the maximum diameter of RFs after laser litho-
tripsy is critical for evaluating stone expulsion efficiency and predicting
surgical prognosis. Traditional evaluations of this parameter rely on the
surgeon’s experience and the scale of the ureteroscope lens. However, this
approach is limited by image clarity and depth of field and increases the risk
of damaging the ureteroscope. To overcome these limitations, herein, we
proposed a novel method that uses the laser fiber as a reference object
(occupying one-quarter of the endoscopic screen width), in conjunction
with the YOLO algorithm, to enable the reliable identification of the size of
moving stones.

The presence of residual stone fragments after FURS is a significant
risk factor for the need for secondary procedures. Traditionally, post-
operative CT scans are used to assess stone clearance and determine the
necessity of reoperation. Supplementary Fig. 2 illustrates the standard
FURS post-operative follow-up evaluation method and highlights the
significant predictive factors for reoperation risk, including the size and
location of residual stone fragments and post-operative CT findings*.
The AiFURS developed in the present study allows for real-time RF size
and count tracking, helping to determine whether the surgical endpoint
has been reached. Logistic regression analysis indicated that the pro-
portion of RFs of varying sizes within each renal calyx during the final
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Fig. 2 | Comparison of ground-truth annotations with predicted bounding boxes
and Grad-CAM heatmaps. Visualization of AiFURS predictions with overlaid
bounding boxes and heatmaps illustrating localization accuracy and model attention
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5min of FURS was significantly associated with post-operative out-
comes, whereas the absolute fragment count was not. This finding
suggests that the proportion of RFs is a more reliable predictor of
prognosis. We hypothesize that the proportion-based method can

mitigate the impact of repeated detection errors inherent to AiFURS,
such as those arising from tracking limitations in algorithms such as
BoT-SORT where RFs may sporadically appear and disappear from the
visual field.
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0.7316-0.8721, p < 0.0001 and h bias = —0.0011, 95% LoA: —0.7814-0.7792. Stones
with a maximum diameter of 1-2 mm e Spearman’s r = 0.3764, 95% CI:
0.1887-0.5376, p = 0.0001 and i bias = 0.0272, 95% LoA: —0.5108-0.5652. Stones
with a maximum diameter <1 mm f Spearman’s r = 0.4728, 95% CI: 0.2994-0.6160,
P <0.0001 and j bias = 0.0817, 95% LoA: —0.3474-0.5108. Abbreviations: AiFURS
artificial intelligence flexible ureteroscopy system.

Importantly, while AiIFURS demonstrates strong intra-operative per-
formance, several contextual factors highlighted in recent literature may
influence its real-world generalizability. First, image quality—critical for Al
model input—varies significantly across ureteroscope platforms. A com-
parative analysis of three single-use flexible ureteroscopes found notable
differences in image resolution, tip deflection, and ergonomic handling, all
of which may affect the clarity and consistency of video inputs used by Al
systems”. Second, pre-operative double J stenting, commonly performed to
facilitate ureteroscopic access, may alter renal pelvic anatomy and visibility.
A multi-center study showed that stent indwelling time >20 days was
associated with increased post-operative infection rates and longer operative
times, possibly due to mucosal edema and inflammatory changes that could
impair Al-based visual interpretation®. Therefore, future validations of
AiFURS should consider stratifying outcomes by scope type and stent
duration to enhance model robustness. Lastly, while AiFURS provides
precise intra-operative metrics, the translation of these outputs into patient-
understandable information remains underexplored. A recent evaluation of
Al-generated patient education materials revealed that most chatbot
responses, including those powered by large language models, failed to meet
recommended readability levels and lacked actionable guidance”. This
underscores the need to develop patient-facing interfaces that accompany
Al systems like AiFURS, ensuring that surgical outcomes are communicated
in a comprehensible and clinically meaningful manner.

This study has several limitations. First, as a pilot study, only single-
component stones were included. Thus, class imbalance was present in the
dataset. Future studies should include mixed-composition stones, expand
the sample size, and ensure a balanced distribution of different stone types to
provide a more comprehensive understanding. Second, the width and
height of a bounding box capture only an object’s extent along the image
axes and do not necessarily reflect its actual maximum caliper diameter. For
non-rectangular or curved shapes, the maximum distance between any two
points often lies in a direction that is not parallel to the box edges™. Third,
this study is a single-center, retrospective report. Therefore, comprehensive
multi-center validation is required to enhance the generalizability and
robustness of AiFURS. To address these limitations, we have initiated AI-
assisted Kidney Stones Randomized Controlled Trial (AI-STONE-RCT), a
multi-center, prospective, randomized, superiority trial. That will enroll 500
patients across five institutions. This protocol will provide evidence requisite
for technology certification of AiFURS. Fourth, the absence of randomi-
zation constrains causal inference. Although multivariable logistic regres-
sion adjusted for recognized confounders, unmeasured factors (irrigation
flow, cumulative laser energy) may still inflate the reported OR for reo-
peration. Fifth, the 6-month follow-up horizon captures only early rein-
terventions, whereas repeat procedures occur beyond 12 months,
particularly in metabolically active patients’. The paucity of long-term data,
therefore, underestimates the true number-needed-to-treat and biases cost-
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Fig. 4 | Validation results (in vivo). a, b Clinical (internal) validation.
a Performance evaluation metrics for kidney stone composition. b Confusion matrix
of predicted vs. actual kidney stone composition. ¢, d External validation.

¢ Performance metrics. d Confusion matrix. Abbreviations: PPV positive predictive
value, NPV negative predictive value.

Table 2 | Multivariate analysis of peri-operative variables for reoperation risk, excluding post-operative CT as a pre-operative

indicator
Variables Univariate analysis Multivariate analysis
OR (95% CI) p value OR (95% CI) p value
Proportion of RFs
>2mm 1.099 (1.059-1.142) <0.001 1.100 (1.056-1.145) <0.001
1-2mm 0.977 (0.956-0.990) 0.038
<1 mm 0.934 (0.903-0.967) 0.036
Stone location
Proximal Reference Reference
Distal 7.69 (2.133-27.700) 0.002 8.791 (1.249-61.897) 0.029
Multiple 2.56 (0.918-7.157) 0.072 2.578 (0.632-10.518) 0.187
Stone composition
Calcium oxalate Reference Reference
Calcium phosphate 2.74 (0.977-7.711) 0.055 4.394 (0.968-19.936) 0.055
Uric acid 0.65 (0.195-2.179) 0.486
Age 0.99 (0.959-1.025) 0.599
Sex 1.53 (0.613-3.840) 0.361
Operative time 1.00 (0.993-1.013) 0.542
Hydronephrosis 0.64 (0.223-1.831) 0.405
OR odds ratio, C/ confidence interval, RFs residual fragments.
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effectiveness estimates in favor of the intervention. Sixth, the single-center
design inevitably introduces institutional specificity, all procedures were
performed by a small cohort of high-volume surgeons using a uniform
ureteroscope platform. Such homogeneity enhances internal validity yet
simultaneously restricts external generalizability. Furthermore, the following
exceptional cases in surgical videos can influence the AiFURS’s size esti-
mation: (1) operator-related variability: differences in surgical technique,
especially among novice surgeons, may lead to intra-operative ureter or renal
pelvis injury with bleeding or excessive RFs due to suboptimal laser power
settings; (2) pre-existing conditions: patients with severe pre-operative UTIs
often exhibit pronounced inflammatory hyperplasia and abundant purulent
secretions, causing stones to be enveloped by a purulent inflammatory
coating that renders their margins indistinct; and (3) in patients with
medullary sponge kidney and stone recurrence, stones are often not fully
exposed, making detection challenging. Recognizing this limitation, our
consortium has already initiated AI-STONE-RCT-II, a prospective, multi-
center trial designed specifically to stress-test AIFURS under visually chal-
lenging conditions. The protocol will deliberately enroll patients with active
bleeding and severe pyonephrosis and will prospectively label these “diffi-
cult” frames using a consensus panel of 3 expert urologists. We will then fine-

Table 3 | Evaluation of stone composition predictions: AiFURS
VS surgeons

Median percent accuracy (IQR)
AiIFURS
0.953 (0.901-1.000)

Stone composition

Urological surgeon
0.205 (0.108-0.301)
0.922 (0.833-1.000) 0.158 (0.610-0.254)
0.932 (0.845-1.000) 0.698 (0.591-0.805)

IQR interquartile range, AiFURS artificial intelligence flexible ureteroscopy system.

@_

Internal Dataset

Calcium oxalate

Calcium phosphate

Uric acid

—>> Model Development

Hospital

L @ —— External Validation

External Test Set

Fig. 5 | Overview of dataset components for model development, clinical vali-
dation, and external validation. The internal dataset was divided into three
branches: model development (6170 frames with 11,870 annotated objects,
derived from 30 surgical videos), ex vivo validation (191 videos with 1-10 stones

Ex Vivo
— Clinical Validation — ‘
Ex Vivo

—> [n Vivo

e |

tune the YOLOV11-N backbone by incorporating an additional module
designed to improve detection in visually challenging frames.

In conclusion, the AiFURS described herein uses YOLOv11-N for real-
time kidney stone detection and classification during surgery. It estimates
stone type, size, and number with a pixel-to-millimeter conversion factor for
precise measurements. BoT-SORT tracking ensures consistent stone iden-
tification. For the first time, we show that the number and maximum dia-
meter of RFs observed during the final 5 min of FURS surgery, as detected by
AiFURS, are prognostic indicators for the need for secondary procedures,
enabling more informed decision-making, optimized laser settings, and
reduced complications from incomplete stone fragmentation. Above all, this
AiFURS represents a significant step forward in endourology precision
medicine.

Methods

Dataset

To develop and validate an AiFURS for detecting and classifying kidney
stones during FURS surgery, intra-operative ureteroscopy videos were
acquired at the Chinese PLA General Hospital, Beijing, China, from
2022-2024. Videos with marked hemorrhage, purulent secretions or den-
sely clustered RFs were excluded to ensure high-quality ground-truth
annotation. This study was approved by the Ethics Committee of the Chi-
nese PLA General Hospital (internal registration no. $2022-387-01). All
patients provided written informed consent. The internal dataset consisted
of three components (model development, ex vivo, and in vivo datasets) as
described in Supplementary Notes 1 and 2. An external test set was used to
ensure the robustness of the AiIFURS. The internal and external datasets are
illustrated in Fig. 5.

Al-assisted FURS

The AiFURS was developed for real-time kidney stone detection and clas-
sification. We used the YOLOvV11-N algorithm® for training, followed by
detection and clinical validation.

.| + 6,170 frames
* 11,870 annotated objects

* 191 groups of videos
* Random stone count
(range: 1 to 10)

» 300 groups of videos
¢ 300 stones: > 2 mm,
1-2mm, <1 mm

* 100 patients —————--!
» 100 surgical videos
* 5 minutes before surgery end

80 patients
80 surgical videos
5 minutes before surgery end

arranged at random and 300 single-stone videos), and in vivo validation (100
videos captured during the final 5 min of each procedure). An independent
external test set contained 80 surgical videos recorded during the final 5 min of

surgery.
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Fig. 6 | AiFURS pipeline for kidney stone detection and analysis. Ureteroscopy
video frames are analyzed by the YOLOvV11-N Backbone, Neck, and Head to
predict stone locations and generate bounding boxes. BoT-SORT then tracks
each stone across frames by assigning it a unique ID. Pixel dimensions are con-
verted to millimeters using a fixed ratio, after which RFs are binned into cate-
gories of <1 mm, 1-2 mm, and >2 mm for counting and statistical analysis. Grad-

CAM heatmaps overlay model attention, offering visual interpretability.
Abbreviations: AiFURS artificial intelligence flexible ureteroscopy system, Grad-
CAM gradient-weighted class activation mapping, RFs residual fragments, 3 x 3
Conv convolutional layers, C3k2 cross-stage partial with 2 convolution blocks,
SPPF spatial pyramid pooling fast, C2PSA cross-stage partial with pyramid
squeeze attention.

YOLOV11-N is a deep CNN designed for real-time object-detection
tasks. The strengths of the YOLO series, including its rapid detection
capacity, have been further improved, introducing new structures and
training techniques to improve detection accuracy”**. In the present work,
the model was trained to detect kidney stones in surgical videos acquired
using retrograde intrarenal surgery”’. The main tasks were identifying
kidney stones and their composition, size, and number during surgery. The
YOLOvV11-N architecture was structured into three main components: the
Backbone, Neck, and Head, as illustrated in Fig. 6. The Backbone component
extracted features from the input image using convolutional layers (3 x 3
Conv), cross-stage partial with 2 convolution blocks (C3k2), spatial pyramid
pooling fast (SPPF), and cross-stage partial with pyramid squeeze attention
(C2PSA), enhancing feature reuse and computational efficiency. The Neck
aggregated these features through convolution (3 x 3 Conv), upsampling,
C3k2 blocks, and concatenation to facilitate multi-scale detection. The Head
generated the final output, including bounding boxes, confidence scores,
and class probabilities for detected kidney stones, ensuring accurate iden-
tification. The YOLOv11-N-guided kidney stone detection process is illu-
strated in Supplementary Note 3. Additionally, to evaluate the most
appropriate real-time object detectors for kidney stone detection, various
state-of-the-art lightweight detectors, including YOLO-based detectors
(YOLOv8-N/S, YOLOvV9-T/S, YOLOvVIO-N/S, YOLOvll-S, and
YOLOvV12-N/S) and DETR-based detectors (RT-DETR-S/v2-S and D-
FINE-N/S), were tested””**2.

To ensure precise estimation of kidney stone size during surgery, the
YOLOV11-N model incorporates a target size conversion mechanism. To
this end, the pixel dimensions of the detected stones’ bounding boxes are
converted into real-world measurements using the predefined conversion
ratio in Eq. (1):

Sreal = Spixel xR (1)
where S, is the size of the kidney stone (mm), Spixel 18 the size of the
bounding box in pixels, and R is the pixel-to-millimeter conversion ratio
calibrated based on the ureteroscope’s field of view and magnification.
Figure 7 shows the external and endoscopic views of a reusable flexible
ureteroscope (FLEX-XC 11278VS, STORZ, Germany) with a 200-pm
holmium laser fiber. The fiber occupies one-quarter of the endoscopic
screen width when it is extended 3-4 mm from the scope**™. The AiFURS’s
Measurement Mode was used to calculate the conversion ratio (R) by

comparing the pixel distance to the fiber’s actual diameter for accurate stone
size estimation.

To maintain consistent tracking of kidney stones during surgery, the
BoT-SORT multi-object tracking algorithm was integrated into the
YOLOV11-N model”. The system assigned unique IDs to all detected stones
and tracked their motion across video frames. The bounding boxes and IDs
were updated dynamically in Eq. (2):

Bt =f(Bt—17 Ar) (2)
where B, denotes the updated bounding box of the stone in the current
frame t, B,_, is the bounding box of the stone in the previous frame, and A,
represents motion offset (i.e., position change) between consecutive frames
estimated by the BoT-SORT algorithm. This integration ensures accurate
stone tracking, preventing duplicate or missed measurements, and provides
real-time feedback on stone size, type, and number. The AiFURS’s graphical
user interface was developed using PyQT5 and is illustrated in
Supplementary Fig. 3.

Clinical validation

Clinical validation of the AiFURS involved data from 100 patients, including
cases with calcium oxalate (61 cases), calcium phosphate (22 cases), and uric
acid (17 cases) stones. All cases were single-component stones. Renal pelvic
calculi were defined as proximal stones, whereas upper, middle, and lower
calyceal calculi were categorized as distal stones. Potential selection bias was
mitigated by consecutive patient enrollment and the inclusion of all eligible
cases meeting predefined criteria during the study period. To reduce
operator-related bias, all procedures were performed by a small group of
experienced surgeons using a standardized protocol. Detailed information is
provided in Supplementary Table 3. The stone composition prediction
performance of the AiFURS was evaluated using several standard metrics,
described extensively in Supplementary Note 4. The AiIFURS was employed
at the laser lithotripsy endpoint to identify residual stone fragments. These
fragments were categorized by size into three groups: >2 mm, 1-2 mm, and
<1 mm. The analysis of these residual stone fragments was directly linked to
patient outcomes, assessing the model’s effectiveness in improving surgical
decision-making and ensuring optimal stone removal. The Al-generated
stone number and size estimations were compared to measurements
obtained using digital calipers to further evaluate the performance of the
AiFURS (Supplementary Fig. 4). Spearman correlation and Bland-Altman
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Fig. 7 | Schematic of size conversion. The AiFURS features a Measurement Mode
that utilizes the diameter of a 200-um holmium laser fiber tip as a reference by which
to establish a pixel-to-millimeter conversion factor. The default setting assumes that
the fiber occupies approximately one-quarter of the screen width. The AiFURS

permits manual adjustments to accommodate variations in fiber size or positioning,
ensuring accurate real-time measurement of stone size during procedures. Abbre-
viations: AiFURS artificial intelligence flexible ureteroscopy system.

analyses assessed the consistency between the AI predictions and actual
measurements™.

Moreover, we recruited 20 urologists to review surgical videos and
evaluate stone composition, with the dual aim of assessing diagnostic
accuracy®. The videos were integrated into a questionnaire, played in a
continuous loop, and could be viewed an unlimited number of times. The
questionnaire interface is shown in Supplementary Fig. 5. The raters’
median working experience was 18.50 years (interquartile range [IQR]:
11.75-20.75), median endourology experience was 15.50 years (IQR:
9.25-17.75), and the median number of ureteroscopic lithotripsy cases per
year was 384 (IQR: 276-384).

External validation
The external validation cohort included 80 cases, with detailed information
supplied in Supplementary Table 4.

Computational setup

Model development was performed by fine-tuning a YOLOvVI1-N
algorithm (100 layers, 2.6 million parameters) pre-trained on the COCO
dataset”, using annotated images extracted from ureteroscopy surgery
videos, for 200 epochs with a batch size of 16 on NVIDIA A100 (40GB)
GPUs. The process was implemented using Python, PyTorch, and
OpenCV, with stochastic gradient descent as the optimizer (Supple-
mentary Table 5). The detailed hyperparameters used to fine-tune the
DETR-based models are presented in Supplementary Table 6. Input
images were resized from their original resolution of 1920 x 1080 to
512 x 512 pixels. To simulate the constrained computational environ-
ment of the Al-assisted module during FURS surgery, clinical and
external validation assessments were conducted on a personal computer
equipped with a single NVIDIA GeForce RTX 3050 Laptop GPU (4 GB)
and an Intel(R) Core (TM) i7-11800H CPU.

Statistical analysis

Quantitative data are presented as quartiles and medians or as standard
deviations and means. Categorical variables are presented as absolute counts
and percentages. Quantitative variables were analyzed using the Student’s t-
test or Mann-Whitney U test, while categorical variables were analyzed
using the Chi-squared test or Fisher’s exact test. Multivariable logistic
regression models identified prognostic indicators for reoperation risk,
including stone count and maximum diameter during the final minutes of
the procedure. Two-sided p < 0.05 were considered statistically significant.

All statistical analyses were performed using SPSS version 26 (IBM Corp.,
Armonk, NY, USA). Spearman correlation and Bland-Altman plots were
generated using GraphPad Prism version 8.0 (GraphPad, San Diego, CA,
USA). We adhered to the Checklist for Artificial Intelligence in Medical
Imaging (CLAIM)™ as detailed in Supplementary Table 7.

Data availability

The datasets analyzed during the current study are not publicly available due
to patient privacy concerns but are available from the corresponding author
on reasonable request. This study developed an AI-FURS using the YOLO
series, RT-DETR, D-FINE, and BoT-SORT. The source code for these
models can be accessed at the following links: YOLO series: https://github.
com/ultralytics/ultralytics; RT-DETR: https://github.com/lyuwenyu/RT-
DETR; D-FINE: https://github.com/Peterande/D-FINE; BoT-SORT:
https://github.com/NirAharon/BoT-SORT. The code of the proposed
AiFURS is available at https://github.com/Jamie-HM/AiFURS.
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