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Amulti-criterion feature integration
framework for accurate diagnosis of
Sjögren’s disease using routine
laboratory tests
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Sjögren’s disease (SjD) is a common systemic autoimmune disease that remains difficult to diagnose
early due to non-specific symptoms and lack of definitive biomarkers. This multicentre retrospective
cohort study analysed data from 34,958 patients across three hospitals in China to assess the
diagnostic potential of routine laboratory tests and to develop a robust, low-cost artificial intelligence
model, the Sjögren Multi-criterion Feature Integration Framework (SMFIF). This study is registered
with ClinicalTrials.gov (NCT06982482). The model was built using 16 optimal features selected
through ensemble learning and SHAP analysis, and validated internally (n = 9329) and externally
(n = 545). SMFIF achieved high diagnostic performance, with AUCs of 0.929, 0.934, and 0.964 in
testing, internal, and external validation sets, respectively, outperforming conventional biomarkers
such as anti-SSA/Ro and ANA. Calibration curves and confusion matrices confirmed its reliability.
SMFIF is publicly available and provides probabilities of SjD based on laboratory data, offering a
practical diagnostic tool for clinical use.

Sjögren disease (SjD) is one of the most common systemic autoimmune
diseases, yet effective targeted therapies remain elusive1,2. The prevalence of
SjD ranges from 0.01% to 0.05%, mostly affecting adult females3,4. The
clinical course of SjD is characterised by significant heterogeneity, ranging
from mild, gradually progressive exocrine dysfunction to severe systemic
manifestations. Extra-glandular involvement is frequently observed and
oftenprecedesdiagnosis innearlyhalf of all patients5. Peoplewithorwithout
extra-glandular involvement have a lower quality of life compared to the
general population3,6–8. A comprehensive epidemiologicalmeta-analysis has
highlighted an increased incidence of malignancies (excluding lymphoma),
infections, and cardiovascular diseases among individuals with SjD9,10.
However, diagnostic delay is common among patients with SjD11. In a
substantial international cohort of SjD patients, 7–8% lacked ocular or oral
symptoms at the time of diagnosis, resulting in frequentmisdiagnoses12,13. A
study of 524 individuals presenting with dry eyes and dry mouth revealed
that 75.2% had initially beenmisdiagnosed with rheumatoid arthritis (RA),

systemic lupus erythematosus (SLE), or systemic sclerosis (SSc). Of these,
46.5%were subsequently correctly identified as having SjD14. Thesefindings
emphasise the critical importance of early and accurate recognitionof SjD in
order to improve patient outcomes.

The clinical diagnosis of SjD relies on expert clinical assessment.While
established classification criteria, such as those from the American College
of Rheumatology (ACR)-European LeagueAgainst Rheumatism (EULAR),
are valuable research tools for defining standardized cohorts, they are not
used for individual patient diagnosis2,15,16. These classification criteria pro-
minently feature the presence of anti-SSA/Ro autoantibody as a key com-
ponent. However, only 75% of patients with clinically diagnosed SjD test
positive for these antibodies17. Clinicians often utilize several elements
incorporated within these research criteria to support the diagnostic eva-
luation. These include positive findings on minor salivary gland biopsy
demonstrating focal lymphocytic sialadenitis, reduced tear and salivaryflow
rates as assessed by Schirmer’s test, and abnormal findings on salivary gland
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imaging like delayed contrast elimination on sialography. Other commonly
observed laboratory abnormalities in SjD include antinuclear antibodies
(ANA), low complement 4 (C4) levels, rheumatoid factor (RF), and elevated
immunoglobulin G (IgG)18–23. The lack of a single, highly specific and
sensitive biomarker, combined with the high cost of certain tests and the
invasiveness of some procedures (like biopsy), contributes significantly to
the challenges in diagnosis, leading to underdiagnosis and misdiagnosis.

Advancements in artificial intelligence (AI) and the growing avail-
ability of big data have opened new avenues for disease screening. The
present retrospective multicentre study was conducted with the objective of
developing a robust, cost-effective and generalisable SjogrenMulti-criterion
Feature Integration Framework (SMFIF) that leverages routine laboratory
tests to assist in the identification of SjD.

Results
Baseline characteristics of the study population and cohort
composition
Between January 1, 2013, and January 1, 2023, a total of 34,958 individuals
were finally included (Fig. 1). TheDTHgroup (training set) included a total
of 17,558 participants, of whom 9685 were in the Sjögren’s group and 7873
were in the control group. The DTH cohort (testing set) comprised 7526
participants, with 3429 in the Sjögren’s group and 4097 in the control group.
The internal validation set included9329participants, ofwhich4203were in
the Sjögren’s group and 5126 in the control group. The external validation
set, the SMH and HFPH cohort, consisted of 545 participants, with 139 in
the Sjögren’s group and 406 in the control group. The baseline character-
istics of the study population are summarized (Table 1). The baseline data
results from the three datasets showed significant differences between the
control and the SjD group in many haematological characteristics (Sup-
plementary Table 2). The median age of the testing cohort was 52 years. Of
these, 89.9% were female and 8.7% were smokers. In the internal validation
cohort, the median age was 53 years, 94.7% were female, and 12.8% were
smokers. In the external validation cohort, themedian agewas similar to the

testing cohort at 56 years. 91.4% were female and 9.3% were smokers. The
median symptom duration in SjD group was longer across all sets (testing:
3.5 years; internal validation: 4.0 years; external validation: 2.8 years)
compared to controls (0.8 years, 0.6 years, 0.6 years). Organ involvement
was elevated in SjDgroups,with higher rates of liver (6.5–9.0%vs 3.0–5.0%),
renal (14.4–17.0% vs 4.9–8.0%), lung (7.9–13.0% vs 3.0–5.0%), cardiovas-
cular (18.0–25.5% vs 16.0–19.0%), and metabolic disorders (17.3–19.0% vs
13.5–15.0%) versus controls. Basedon further tests, therewere 21.6%, 19.7%
and 23.0%with swollen parotid gland; 89.1%, 88.3% and 90.4%with dry eye
syndrome; 60.8%, 55.9% and 29.6% with positive parotid sialography;
30.0%, 23.5% and 21.2% with positive minor salivary glands in the testing,
internal validation and external validation cohorts, respectively.

Feature selection strategy and optimization outcomes
The construction of SMFIF model adopts the method of a multi-criterion
feature integration framework (Fig. 2; Supplementary Table 3). Initially,
the optimal features and intersecting features were selected through
feature selection algorithms for model construction. A detailed evalua-
tion of the performance of the models and the SHAP dependence plots of
the relevant features is provided in the supplementary materials (Sup-
plementary Tables 5–11; Supplementary Figs. 1 and 2). The SHAP values
computed for the ML models built using all features are shown
(Fig. 3A–G), while the performance of the seven models is summarized
in the supplementary materials (Supplementary Table 4). Correlation
analysis revealed significant relationships among most features (Fig. 3H).
Through the above analysis (refer to the Methods section), 16 core fea-
tures were identified and selected as the final input for SMFIF: Creatinine
(Crea), γ-glutamyl transferase (GGT), Uric acid (UA), Total protein
(TP), Apolipoprotein AI (apoAI), Alanine transaminase (ALT), Phos-
phorus (P), Adenosine deaminase (ADA), Glucose (Glu), Direct bilirubin
(DBIL), Chloride ion (Cl−), Globulin (GLO), Alkaline phosphatase
(ALP), estimated Glomerular Filtration Rate (eGFR), High density
lipoprotein cholesterol (HDL-C), and Complement 4 (C4). The SHAP

Fig. 1 | Study flowchart. NDT cohort = patients from Nanjing Drum Tower Hos-
pital, the affiliated hospital of Nanjing University Medical School. SMH cohort =
patients from Suzhou Municipal Hospital, the affiliated Suzhou hospital of Nanjing

Medical University. HFPH cohort = patients from the Huai’an First People’s Hos-
pital, the affiliated Huai’an No. 1 People’s Hospital of Nanjing Medical University.
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Table 1 | Baseline characteristics of included population

Characteristics Testing set
NDT cohort = 7526

Validation set
NDT cohort = 9329

External validation set
SMH and HFPH cohort = 545

Sjögren’s disease 3429 (45.1%) 4203 (45.1%) 139 (25.5%)

Non-Sjögren’s disease 4097 (54.9%) 5126 (54.9%) 406 (74.5%)

Age, years

Sjögren’s disease 52 (48–62) 53 (41–63) 56 (47–64)

Control groups 39 (24–49) 37 (29–47) 45 (26–51)

Female

Sjögren’s disease 3048/3429 (89.9%) 3981/4203 (94.7%) 127/139 (91.4%)

Control groups 3585/4097 (86.7%) 4793 /5126 (93.5%) 334/406 (82.3%)

Smokers

Sjögren’s disease 295/3429 (8.7%) 541/4203 (12.8%) 13/139 (9.3%)

Control groups 153/4097 (3.7%) 283/5126 (5.5%) 14/406 (3.4%)

Symptom duration, years

Sjögren’s disease 3.5 (0.5–8.0) 4.0 (1.0–9.5) 2.8 (0.3–6.0)

Control groups 0.8 (0.1–3.0) 0.6 (0.1–2.5) 0.6 (0.1–1.5)

Co-morbid conditions

Sjögren’s disease

Liver diseases 254/3429 (7.5%) 378/4203 (9.0%) 9/139 (6.5%)

Renal diseases 543/3429 (16.0%) 714/4203 (17.0%) 20/139 (14.4%)

Cardiovascular diseases 712/3429 (21.0%) 1073/4203 (25.5%) 25/139 (18.0%)

Lung diseases 356/3429 (10.5%) 546/4203 (13.0%) 11/139 (7.9%)

Metabolic disorders 627/3429 (18.5%) 799/4203 (19.0%) 24/139 (17.3)

Control groups

Liver diseases 166/4097 (4.0%) 256/5126 (5.0%) 12/406 (3.0%)

Renal diseases 207/4097 (5.0%) 410/5126 (8.0%) 20/406 (4.9%)

Cardiovascular diseases 703/4097 (17.0%) 973/5126 (19.0%) 65/406 (16.0%)

Lung diseases 124/4097 (3.0%) 256/5126 (5.0%) 16/406 (3.9%)

Metabolic disorders 558/4097 (13.5%) 769/5126 (15.0%) 57/406 (14.0%)

Swollen parotid gland

Sjögren’s disease 732/3429 (21.6%) 830/4203 (19.7%) 32/139 (23.0%)

Control groups 82/4097 (2.0%) 301/5126 (5.8%) 8/406 (2.0%)

Dry eyes syndromea

Sjögren’s disease 3021/3429 (89.1%) 3712/4203 (88.3%) 126/139 (90.4%)

Control groups 2406/4097 (58.2%) 1724/5126 (33.6%) 263/406 (64.8%)

Parotid sialography (+)b

Sjögren’s disease 2061/3429 (60.8%) 2353/4203 (55.9%) 41/139 (29.6%)

Control groups 459/4097 (11.1%) 589/5126 (11.5%) 58/406 (14.3%)

Chisholm stagec

Sjögren’s disease

Stage I 468/3429 (13.8%) 410/4203 (9.8%) 3/139 (2.2%)

Stage II 231/3429 (6.8%) 90/4203 (2.1%) 9/139 (6.5%)

Stage III 288/3429 (8.5%) 219/4203 (5.2%) 4/139 (2.9%)

Stage IV 729/3429 (21.5%) 769/4203 (18.3%) 27/139 (19.3%)

N/A 1675/3429 (49.4%) 2715/4203 (64.6%) 96/139 (69.1%)

Control groups

Stage I 798/4097 (19.3%) 761/5126 (14.8%) 65/406 (16.0%)

Stage II 289/4097 (7.0%) 294/5126 (5.7%) 7/406 (1.7%)

Stage III 210/4097 (5.1%) 78/5126 (1.5%) 24/406 (6.0%)

Stage IV 211/4097 (5.1%) 211/5126 (4.1%) 20/406 (4.9%)
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dependence plots for these features are included in the supplementary
materials (Supplementary Fig. 3).

In our study, 16 features were finally used to calculate the com-
prehensive performance indicators of each classifier in all datasets.
Compare and analyse the top five classifiers with the highest perfor-
mance as base classification models, integrated into a stacked ensemble
learning model (Supplementary Table 12). This ensemble model syn-
thesises predictions from meta classifiers and ultimately constructs the
SMFIF model. To rigorously evaluate the performance of the SMFIF
model, five-fold and ten-fold cross-validation and 95% CI analysis were
performed on all performance evaluation metrics of the model. SMFIF
model has been made publicly available via GitHub.

Performance of the SMFIF model and multicenter validation
results
The SMFIFmodel showed exemplary predictive ability in discriminating
patients with SjD from those with SjD-like manifestations without SjD.
The AUC for the test set was 0.923 (95% CI, 0.923–0.935), for the
internal validation set was 0.934 (95%CI, 0.929–0.939) and for the
external validation set was 0.964 (95%CI, 0.943–0.986) (Table 2). The
SMFIF model showed superior and more stable performance compared
to all previously established models, especially in terms of AUC, accu-
racy and specificity. In addition, a comparative analysis was performed
between 16 feature-based SMFIF and the independent conventional
marker-based SMFIF. The results showed that 16 feature-based SMFIF

Table 1 (continued) | Baseline characteristics of included population

Characteristics Testing set
NDT cohort = 7526

Validation set
NDT cohort = 9329

External validation set
SMH and HFPH cohort = 545

N/A 2627/4097 (63.5%) 3782/5126 (73.8%) 290/406 (71.4%)

Data aren (%) ormedian (IQR).NDTcohort=patients fromNanjingDrumTowerHospital, the affiliatedhospital ofNanjingUniversityMedical School. SMHcohort=patients fromSuzhouMunicipal Hospital,
The Affiliated Suzhou Hospital of Nanjing Medical University. HFPH cohort = patients from the Huai’an First People’s Hospital, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University.
aAn ocular surface disease index of ≥3 in either eye, or the Schirmer test was considered positive if the filter paper was wet to an extent of ≤5mm after 5min confirmed a diagnosis of dry eyes syndrome.
bA positive diagnosis was confirmed when the iodine formed globular pools in the terminal glands, with a tree- or snowflake-like pattern but the dominant duct was not obstructed.
cLabial gland biopsies with a pathological grade of at least grade III were considered as being SjD positive based on the Chisholm criteria.
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Fig. 2 | Graphical illustration of the construction and validation process
of SMFIF. The SMFIF model was developed using a systematic approach, involving
meticulous preprocessing of clinical and laboratory data, feature selection with six
methods, and the creation of 42 feature-model combinations. After refining feature

subsets, a final set of 16 key features was identified and used to train seven classifiers.
The top five models were selected for ensemble construction using a weighted
approach, and the model’s performance was rigorously validated with internal and
external datasets.
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outperformed those based on ANA (AUC: 0.709; 0.728–0.846), SSA
(AUC: 0.705; 0.703–0.699), SSB (AUC: 0.575; 0.569–0.583), RF (AUC:
0.506; 0.506–0.529), GLO (AUC: 0.688; 0.690–0.592), IgG (AUC: 0.677;
0.685–0.740), C3 (AUC: 0.672; 0.682–0.736) and C4 (AUC: 0.671;
0.683–0.621) in testing, internal validation and external validation,
respectively (Fig. 4).

The calibration curves for the testing set, internal validation set,
and external validation set demonstrate a generally good agreement
between predicted probabilities and actual outcomes, indicating that
the SMFIF model is well-calibrated across different datasets. Notably,
the calibration curves for the testing and internal validation sets show a
high degree of consistency, suggesting strong generalizability of the

model to unseen data. However, the calibration curve for the external
validation set exhibits greater variability, indicating potential chal-
lenges in adapting to external data distributions. In terms of classifi-
cation performance, the confusion matrices across the testing, internal
validation and external validation data sets consistently show high
sensitivity and specificity with minimal false classifications, high-
lighting the robust and reliable diagnostic performance of the model
across all evaluation phases (Fig. 5).

Overall, these results indicate that the SMFIF model provides robust
and reliable probabilistic predictions with strong diagnostic performance.
Nevertheless, while the model generalizes well to internal validation and
testingdata, its performanceonexternal validationdata suggests that further

a b c d e

f g

Gaussian Naive Bayes Light Gradient Boosting Machine Logistic Regression Random Forest

Support Vector Machine Extreme Gradient Boosting

K-Nearest Neighbors

h

Fig. 3 | SHapley Additive exPlanations plot: the impact of clinical features for
diagnosing Sjögren’s disease in the Gaussian Naive Bayes, K-Nearest Neighbors,
Light Gradient BoostingMachine, Logistic Regression, Random Forest, Support
Vector Machine, Extreme Gradient Boosting, and Logistic Regression.
aGaussianNaive Bayes,bK-Nearest Neighbors, cLightGradient BoostingMachine,
d Logistic Regression, e Random Forest, f Support Vector Machine, g Extreme
Gradient Boosting, h Pearson correlation coefficients between the included features.
Red represents a positive correlation between the two features. The redder the colour
is, the higher the positive correlation coefficient is. Blue represents a negative cor-
relation. The bluer the colour is, the higher the negative correlation coefficient is. All
the features were clustered into two groups according to the correlation. TP Total
protein, GLO Globulin, apoB Apolipoprotein B, TC Total cholesterol, LDL-C Low

density lipoprotein cholesterol, apoA1 Apolipoprotein AI, HDL-C High density
lipoprotein cholesterol, ALB Albumin, Ca2+ Calcium, A/G Albumin to globulin
ratio, Cl− Chloride ion, Na+ Sodium ion, C3 Complement 3, C4 Complement 4,
CysC Cystatin C, Cr Creatinine, Ur Urea, BUN Blood urea nitrogen, Mg2+ Mag-
nesium ion, TGTriglycerides, K+Potassium ion, P Phosphorus, UAUric acid, eGFR
EstimatedGlomerular FiltrationRate, ChECholinesterase, C1qCholinesterase, IgM
Immunoglobulin M, RF Rheumatoid factor, IgA Immunoglobulin A, IgG Immu-
noglobulin G, Ig E Immunoglobulin E, ALT Alanine transaminase, LDH Lactate
dehydrogenase, AST Aspartate transaminase, CRP C-reactive protein, Glu Glucose,
TBIL Total bilirubin, DBIL Direct bilirubin, ADA Adenosine deaminase, ALP
Alkaline phosphatase, GGT γ-glutamyl transferase.
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Table 2 | Performance of SMFIF for classifying Sjögren’s disease versus controls

Testing set (3429 vs 4097) Internal validation set (4203 vs 5126) External validation set (139 vs 406)

ACC 0.858(0.850–0.866) 0.859 (0.852–0.866) 0.960(0.942–0.973)

Recall 0.832(0.821–0.845) 0.825 (0.813–0.833) 0.871(0.822–0.917)

F1-score 0.842(0.832–0.851) 0.841 (0.833–0.849) 0.917(0.883–0.947)

PPV 0.852(0.839–0.862) 0.857 (0.847–0.867) 0.968(0.929–0.992)

AUC 0.929(0.923–0.935) 0.934 (0.929–0.939) 0.964(0.943–0.986)

Specificity 0.879(0.869–0.888) 0.887 (0.880–0.897) 0.990(0.979–0.998)

Data are metrics (95% CI).
ACC accuracy, AUC area under the receiver-operating characteristic curve, PPV positive predicted value.

Fig. 4 | Diagnostic performance of the final machine learningmodels for Sjögren’s disease in testing, internal validation and external validation cohorts vs. SSA/SSB/
ANA/RF/IgG/GLO model. a Testing cohort, b Internal Validation cohort, c External Validation cohort. AUC area under the receiver-operating characteristic curve.

Fig. 5 | Calibration curves and confusion matrix to evaluate performance of SMFIF. a Testing cohort, b Internal validation cohort, c External validation cohort.
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refinement may be needed to enhance sensitivity when applied to different
external conditions.

Discussion
In this multicenter retrospective study, we screened 70 features from 123
routine blood test results through data preprocessing. By multi-algorithm
feature selection, SHAP value analysis, model performance evaluation, and
ensemble learning strategies, we developed the SMFIF model based on 16
optimal features for accurate SjD diagnosis and prediction, the SMFIF
achieved consistent and good performance both in the internal set and the
external validation sets, and outperformed anti-SSA/Ro, anti-SSB/La, ANA
in identifying SjD-like individuals with atypical symptoms. The model was
developed into a user-friendly prediction tool, which is publicly available
and provides an estimated probability of SjD based on routine laboratory
test results. To our knowledge, this study presents the first AI machine
learning model developed for diagnosing SjD using big data in clinical
practice.

The prevalence of SjD varies widely in the population. Due to the lack
of typical early symptoms and its slow progression, especially when com-
bined with smoking, diabetes, menopausal syndrome, or infection, clin-
icians in primary care settings fail to identify the primary disease.As a result,
patientsmay already have interstitial lung disease, arthritis, polyneuropathy
or even malignancies when a SjD diagnosis is made, leading to delays in
treatment of the primary disease in SjD.One advantage of the SMFIFmodel
is that it provides clinicians with a tool that can help them identify patients
who potentially have SjD, especially in primary care settings where routine
physical examinations or clinical experience with rheumatological diseases
is limited. Compared with SMFIFANA, SMFIFanti-SSA/Ro, SMFIFanti-SSB/La
and SMFIFRF/Glo/IgG/C3/C4, the combination of laboratory tests and auto-
antibodies contained in SMFIF has improved predictive performance, as
indicatedby the increasedAUCand sensitivity, with amuch lower cost than
conventional autoantibodies, labial gland biopsy, parotid sialography or
ultrasonography, tear flow rate and corneal fluorescein staining.

One important factor in the generalisability and stability of our
prediction model is the representativeness of the data. We first trained,
tested, and internally validated themodel using data from a large regional
hospital, and selected two independent local mergers as primary care
providers for external validation. In the three cohorts, the median age at
diagnosis of SjD was 52–56 years, which is representative of the Chinese
and other Asian populations24,25. Another important factor in improving
the predictive performance of the model is our proposed multi-criterion
feature integration strategy. The approach not only ensures the identi-
fication of the most relevant and robust features but also significantly
enhances the model’s interpretability and generalizability. By system-
atically integrating the results from multiple feature selection algorithms
and SHAP-based evaluations, we derived a final feature set comprising 16
key features. Such optimization effectively minimizes feature redundancy
while maximizing the predictive power of the selected features. It is worth
noting that our final 16-feature model—which primarily includes non-
classical immune biomarkers of liver, kidney, and metabolic function—
reflects both the data-driven feature selection process and the systemic
pathophysiological characteristics of SjD. Although baseline analysis
revealed significant differences between the control and the SjD group in
terms of classical immune biomarkers, multivariate feature selection
prioritised conventionally available and cost-effective indicators after
rigorous multi-algorithm filtering and SHAP-based ranking. Most
cases in the control group were clinically suspected of SjD but were
ultimately diagnosed with various chronic diseases, ensuring the
model could distinguish SjD from complex non-autoimmune dis-
eases rather than healthy states. Additionally, the SjD group exhibited
higher actual organ involvement (co-morbid conditions) compared
to the control group, indicating that autoimmune disease-specific
biochemical abnormalities play a critical role in disease progression,
while the value of routine blood tests may be significantly
underestimated.

Further, to enhance interpretability in ambiguous cases, we incorpo-
rated patient-level SHAP decision plots to illustrate how the SMFIF model
makes predictions. We analysed all misclassified samples and visualized
representative cases from the false negative (FN) and false positive (FP)
groups (Supplementary Fig. 5). Notably, many of the FN cases exhibit
atypical values for canonical SjD indicators, but these were overridden by
strong negative contributions from renal or hepatic function markers,
thereby leading to a non-SjD prediction. In contrast, some FP cases present
borderline elevations in immune-related indicators, which could reasonably
lead to model suspicion of SjD.

Given the development of big data in genomics, transcriptomics,
proteomics, imaging, therapeutics, and electronic health records
(EHRs), machine learning models are extremely attractive in the field
of rheumatic diseases such as SLE and RA26,27. A few studies have been
already conducted in SjD. Dros et al. developed a classification model
using primary care electronic health records (EHRs) data and hospital
claims data (HCD) from 1411 SjD patients. The AUC of logistic
regression (LR) and random forest (RF) was 0.82 and 0.84,
respectively28. Troncoso et al. utilize an auto-machine learning
(autoML) platform for the automated segmentation and quantification
of Focus Score (FS) on histopathological slides, aiming to augment
diagnostic precision and speed in SS29. Marlin et al. developed an AI-
enabled algorithm that automatically identifies key histological fea-
tures of the minor salivary gland of SS patients30. Wu et al. developed a
graph-learning-based model named Cell-tissue-graph-based patho-
logical image analysis model for automatic diagnosis of SS31. Marugán
et al. applied ML methodologies to classify SLE and SjD patients and
designed an analysis pipeline to train an eXtreme Gradient Boosting
(XGBoost) multiclass predictor for each type of data32. However, all
published studies above were limited by the inclusion of only general
basic information or a single pathological type, small cohort sizes, and
lack of external validation. In contrast, our study was conducted on a
large-scale multicentre dataset that included multiple routine labora-
tory tests, autoantibodies, minor salivary gland function assessments
and pathological types of labial gland biopsies. The clinical utility of
SMFIF depends on its ability to distinguish SjD not only from healthy
individuals but, more importantly, from patients with other immune-
mediated and chronic conditions. We additionally applied the 16-
feature model to four comparator conditions using database from
DTH. The results demonstrate that SMFIF effectively distinguishes SjD
from RA (AUC = 0.8336), SLE (AUC = 0.8896), SSc (AUC = 0.8416),
and osteoarthritis (AUC = 0.9149) (Supplementary Table 13 and
Supplementary Fig. 4). We interpret the strong performance against
RA, SLE, SSc, and osteoarthritis (OA) as evidence that SMFIF captures
a signature relatively specific to SjD pathology compared to these
distinct inflammatory and non-inflammatory (OA) rheumatic dis-
orders, significantly enhancing its potential clinical utility for differ-
ential diagnosis. The SMFIF modelling process used multi-algorithm
feature selection, SHAP value analysis, model performance evaluation,
and ensemble learning strategies, which has advantages over tradi-
tional logistic regression models, and was validated by an independent
external large cohort, making the results more reliable.

Our study has several limitations. First, SMFIF was not evaluated
in a prospective cohort. Second, loss of data was inevitable in this real-
world retrospective study. Third, due to data-sharing restrictions and
annotation costs, the cohort was exclusively derived from three Chi-
nese hospitals, representing a single-nation dataset. This necessitated
reliance on a second independent external validation cohort within the
same healthcare system. These constraints collectively limit the
extrapolation of our findings to other ethnic populations or distinct
healthcare settings. Furthermore, outpatient recruitment was confined
to two local hospitals, resulting in imbalanced sample sizes between
internal and external validation sets. The model’s generalizability
across other countries and regions requires further investigation,
including validation with more patients from primary care settings to
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confirm its broader utility. Future multinational studies are essential to
establish the model’s global applicability. Fourth, multimodal features
such as clinical symptoms, medical history characteristics, image
characteristics, and genetic characteristics were not included. Finally, it
must be acknowledged that the clinical application of the developed
model still faces challenges due to practical considerations such as
ethnic diversity, the attribution of clinical use, and full transparency of
the decision-making process. Prospective cohorts, improved annota-
tion of multimodal data, and more reasonable regulations for artificial
intelligence are required to ensure better application of SMFIF.

In summary, SMFIF based on 16 key features of routine laboratory
items achieved satisfactory and stable performance and was significantly
better than the traditional markers SSA/Ro, SSB/La and ANA. This model
provides a low-cost, accessible and accurate diagnostic tool for SjD. Pro-
spective studies and data sets from other regions are needed to further
confirm the feasibility and generalizability of SMFIF.

Methods
Study design and participants
This retrospective, multicentre study screened 198,922 laboratory exam-
inations from three hospitals in China between Jan 1, 2013, and Jan 1, 2023.
The 123 laboratory items were selected based on the tests’ universality in
routine clinical use by rheumatologists (Supplementary Table 1). The
training (testing) set was selected from a large-scale regional centre hospital,
Nanjing Drum Tower Hospital (NDT cohort). The external validation set
was selected from two local hospitals, Suzhou Municipal Hospital (SMH
cohort) andHuai’anFirst People’sHospital (HFPHcohort).All participants
recruited were aged between 18 and 65 years and underwent pathological,
haematological and imaging tests to confirm thepresenceof SjD. Laboratory
tests were measured from one month before diagnosis to any treatment.
Patients diagnosed with Sjögren’s disease were included in the SjD group,
while the control group comprised sex- and age-matched individuals
exhibiting similar or suspected Sjögren-like symptoms, such as dry mouth
and eyes, fatigue, joint pain, and weight loss, but who were excluded on
screening for SjD and other autoimmune diseases. The study excluded cases
of combined pregnancy, breastfeeding, a clear diagnosis of other auto-
immune diseases, infection andmalignant tumours. The diagnosis of SjD is
based on an assessment by at least two rheumatologists using the 2002
American-European Consensus Group (AECG) or 2016 ACR/EULAR
classification criteria15,16. Meeting any one of the two classification criteria is
considered a definite diagnosis.

Ethical statement
The study protocol was approved by the Medical Ethics Committee of
Nanjing Drum Tower Hospital (B2022-529-04), the Medical Ethics Com-
mittee of the First People’s Hospital of Huai’an City (YX-Z-2024-032-01),
and the Medical Ethics Committee of the Suzhou Municipal Hospital (K-
2022-074-K03). The study complied with the ethical principles of
Declaration of Helsinki of 1975. All case data were anonymised, and the
Institutional Review Board waived the requirement for written informed
consent. This study is registered with ClinicalTrials.gov (Registration
number: NCT06982482, Date of registration: May 13, 2025, Registry name:
Artificial Intelligence Based Models for Primary Sjögren’s Syndrome
Diagnosis). A copy of the study protocol can be found in supplemental file.

Data preprocessing
Laboratory items with different units were unified. Characteristics of study
cohorts in whichmore than 50% ofmissing data in each rowwere removed
from analysis and more than 80% of missing data in each column after
cleaning were removed. After data cleaning, missing values were imputed
using the random forest imputation method, which leverages predictive
modelling to estimate missing entries based on available features. To
minimize institutional bias introduced by the multicenter nature of the
dataset, we implemented a harmonization procedure prior to modeling.

Laboratory items from the three centres were first aligned using a shared
data dictionary, ensuring consistent variable naming, definitions, and
measurement units33. Additionally,wevisually inspected thedistributionsof
key variables across cohorts and applied min-max normalization to reduce
centre-specific variability34. Data imbalance was resolved via the adaptive
synthetic sampling method with a balancing ratio of 0.535.

Predictive modelling
After data preprocessing, the 70 laboratory itemswere used as the candidate
features for themodel building. The predictive model for SjD diagnosis was
developedusing a structured,methodologically rigorous framework (Fig. 2).
Six feature selection algorithmswere first applied to identify optimal feature
subsets, which were then input into seven machine learning classifiers to
calculate SHAPvalues, quantifying feature importance.After thefirst stepof
screening, 41 candidate features were obtained. To strengthen model
robustness, the intersection of features from six algorithms formed a core
feature set. Meanwhile, the performance of all features was assessed by
constructingmodels using the seven classifiers, followed by ranking features
based on their SHAP values. By integrating all feature sets, optimal feature
subsets and the core feature set with SHAP-based rankings, and afinal set of
16 significant features was established. To enhance the reliability of the
features incorporated into the final model, we computed the Pearson cor-
relation matrix for all candidate features. No pair of features exceeded the
commonly accepted threshold of r > 0.90. Additionally, we calculated the
Variance Inflation Factors (VIFs) for the features. Eleven features had aVIF
of less than 5, andfive features (apoA1,HDL,DBIL, TP andGLO)had aVIF
between 5 and 10; the latter were retained due to their distinct clinical
relevance. This achieves control over multicollinearity. The predictive
model was then built using this curated set and trained with multiple
classifiers. The top five performing models were selected as base classifiers
and integrated into a stacking ensemble learning model, SMFIF, which
employs a meta-classifier to further improve accuracy36. The model’s gen-
eralizability and accuracy were validated using both internal and external
datasets, demonstrating its potential for clinical application. The model’s
generalizability and accuracy were validated using both internal and
external datasets, demonstrating its potential for clinical application.

Performance evaluation
The performance of the SMFIF model was assessed by using seven sig-
nificant metrics: area under the receiver operating characteristic curve
(AUC), accuracy (ACC), recall, F1-score, positive predicted value (PPV),
specificity, and negative predictive value (NPV). Independent classification
models were constructed using feature inputs derived from the anti-SSA/Ro
antibodies, anti-SSB/La antibodies, ANA, RF, GLO, IgG, C3, and C4
datasets, and their performance was compared to that of the SMFIFmodel.
The evaluation of the SMFIFmodel was further augmentedwith calibration
curves and confusion matrices to assess its clinical utility and reliability.

Feature evaluation
The primary outcome was the prediction accuracy of the model in identi-
fying SjD, based on an optimally selected feature set to ensure the best
predictive performance. The SHAP method was used to analyse the con-
tribution of each feature in order to quantify its relative importance. The
diagnostic performance of the SMFIF was found to be heavily influenced by
the selection of input features. To optimize themodel, 16 significant features
were identified and prioritized based on their frequency of selection and
importance rankings across all classification models.

Statistical analysis
Patient data were analysed separately for continuous and categorical vari-
ables, with results reported as median and interquartile range (IQR) for
continuous variables and frequency (%) for categorical variables. Com-
parisons of continuous variables between groups were conducted using the
Mann–WhitneyU test, while categorical variableswere compared using the
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Chi-square test or Fisher’s exact test, as appropriate. A P-value < 0.05 was
considered indicative of statistical significance.

Data availability
The data that support the findings of this study are available on reasonable
request from the corresponding author, X.Y. Please note that patient per-
sonal information and correspondence will not be shared, as they are pro-
tected by the corresponding authors’ institutions to ensure patient privacy.

Code availability
Data analysis was conducted using R software (Version 4.3.2) and Python
(Version 3.7). The core code for the research can be found on the corre-
sponding author’s GitHub page (https://github.com/guanhaowu123/
SMFIF).
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