npj | digital medicine

Published in partnership with Seoul National University Bundang Hospital

https://doi.org/10.1038/s41746-025-02114-y

Unlocking the potential of real-time ICU

mortality prediction: redefining risk
assessment with continuous data
recovery
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Real-time prediction of short-term mortality risk in the intensive care unit (ICU) is often hampered by
missing medical data. To address this, we developed RealMIP, an end-to-end framework leveraging
generative model for the dynamic imputation of missing values and continuous mortality risk
assessment. The model was trained on data from 188 centers in the elCU Collaborative Research
Database (elCU-CRD), and internally validated on 20 held-out centers. External validation was
performed using the Medical Information Mart for Intensive Care IV (MIMIC-1V) and Salzburg Intensive
Care Database (SICdb). RealMIP’s predictive performance was compared with nine established
approaches. RealMIP achieved robust predictive performance, with AUCs of 0.957 (95% Cl,
0.956-0.957) internally, 0.968 (95% ClI, 0.968-0.968) in MIMIC-1V, and 0.932 (95% Cl, 0.932-0.933) in
SICdb, outperforming comparator models (p < 0.05). RealMIP unlocks the potential of real-time ICU
mortality prediction by effectively handling missing data and delivering continuous, interpretable risk

assessments.

Accurate prediction of mortality risk in the intensive care unit (ICU) is vital
for informed clinical decision-making and effective resource allocation'™.
Traditional illness severity scores and prediction models primarily rely on
static data collected within the first 24 h of admission, failing to capture the
dynamic physiological changes that critically ill patients experience™ .
Recent advances in real-time clinical decision support systems in ICUs offer
the promise of more timely and precise risk assessment, enabling prompt
interventions and better-informed decisions, such as those required in
organ transplantation®"".

However, the effectiveness of real-time prediction models depends on
the immediate availability of a comprehensive set of patient variables. In
practice, it is rarely feasible to obtain all relevant data points at every
moment due to factors such as laboratory processing delays, infrequent
examinations, and clinical workflow constraints®'>"*. Consequently, only a
subset of variables is typically available at any given time, resulting in per-
vasive missing data and presenting a significant challenge for real-time
prognostic modeling.

To address missingness and irregular measurement times, many
existing models aggregate physiological variables into hourly means or
variances®'*'". While this approach simplifies the data and mitigates some
missingness, it sacrifices true temporal resolution, limiting the model’s
ability to detect rapid physiological changes. Alternatively, conventional
imputation techniques, such as forward filling, are commonly used to
address missing values™'™*'>'°. However, these methods often ignore the
complex temporal and inter-variable dependencies characteristic of ICU
data, thereby compromising prediction accuracy.

To overcome these challenges, we propose a novel end-to-end fra-
mework that enables timely and accurate mortality risk prediction whenever
at least one new clinical examination is conducted. At each such time point,
our method utilizes all available historical patient data and employs a
generative model to automatically impute missing values, considering both
temporal trends and the relationships among clinical variables. This inte-
grated approach allows for real-time risk assessment, ensuring that pre-
dictions are always based on the most comprehensive and up-to-date
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information for each patient, even when the medical examination infor-
mation is irregular and incomplete in the ICU.

Results

Study cohorts

A total of 154,882 admissions (12,594,515 samples) from 188 centers from
the eICU Collaborative Research Database (eICU-CRD v2.0)"” were used for
model training, while 11,576 admissions (1,006,745 samples) from 20 other
centers from the eICU-CRD, 69,111 admissions (8,725,961 samples) from
the Medical Information Mart for Intensive Care Database (MIMIC-IV
v2.2)" and 27,137 admissions (2,478,003 samples) from the Salzburg
Intensive Care Database (SICdb v1.0.8)" served as internal test cohort,
independent external validation cohort 1 and independent external vali-
dation cohort 2, respectively. During their stay in the ICU, 3645 admissions
(2.4%) from the training cohort, 271 admissions (2.4%) from the internal
test dataset, 4238 admissions (6.5%) from the MIMIC-IV, and 976 admis-
sions (3.7%) from the SICdb died. Baseline characteristics and mean and
standard deviation of input variables are shown in Table 1, according to the
cohort and event group. A detailed inclusion and exclusion flow is shown in
Fig. 1. The study design, encompassing data collection, preprocessing,
model development, validation, and explanation, is illustrated in Fig. 2.

Predictive performance

RealMIP significantly outperformed all nine comparator models across
both internal and external test cohorts (p < 0.05). Specifically, the model
achieved an area under the curve (AUC) of 0.957 (95% CI, 0.956-0.957) in
the internal test dataset, 0.968 (95% CI, 0.968—0.968) in the MIMIC-IV, and
0.932 (95% CI, 0.932-0.933) in the SICdb, as illustrated in Fig. 3a-c.
Additional evaluation metrics, including balanced accuracy, sensitivity,
specificity, and F1 score, positive predictive value (PPV), negative predictive
value (NPV), and false alarm count per 100 patient-days (FAC/100 pt-days),
expected calibration errors (ECE), and Brier score, are detailed in Table
S1 and S2. The calibration curves demonstrated excellent concordance
between predicted and observed probabilities, with the RealMIP model’s
curves closely aligning with the 45° line and exhibiting the lowest ECE
(Fig. 3d-f). Furthermore, DCA indicated that RealMIP offers clinical ben-
efits across both internal and external test cohorts (Fig. 3g-i). To further
validate the effectiveness of our end-to-end training strategy, we conducted
ablation experiments. As shown in Table S3, removing the joint optimiza-
tion of imputation and prediction components led to a noticeable decline in
model performance. This highlights the importance of the integrated, end-
to-end approach in enabling the RealMIP model to fully leverage imputed
data for accurate and robust real-time mortality prediction. To assess
robustness against varying degrees of missing data, we calculated the
missingness proportion at the patient level, defined as the fraction of missing
feature values across the entire time series for each patient. Patients were
then ranked by their missingness proportion and split at the median into
two groups (high vs. low missingness, equal sample sizes). Model perfor-
mance (AUC) was compared across these two strata. As shown in Table 54,
RealMIP retained strong predictive performance in both groups, suggesting
robustness across different levels of data incompleteness.

We also assessed the temporal changes in RealMIP’s predictive power
relative to the time after ICU admission and before death. This dual per-
spective provides a comprehensive temporal view of RealMIP’s predictive
capability, demonstrating both early detection potential and deterioration
sensitivity (Fig. 4).

Temporal analysis of actionable lead time and false alarm count
We assessed the clinical applicability of RealMIP through a temporal analysis
of both actionable lead time and FAC/100 pt-days (Fig. 5). Specifically, we
analyzed the proportion of high-risk patients correctly identified at different
intervals prior to death. A patient was considered identified if their predicted
probability of death exceeded a predefined threshold at least once before a
given time point. In addition, we evaluated the temporal trend of the FAC/
100 pt-days, offering complementary insights into model performance.

Augmenting clinical scoring systems with RealMIP imputation
We further explored whether the predictive performance of commonly used
real-time clinical scoring systems could be improved by imputing missing
data using RealMIP (Fig. 6). The results indicate that data imputed with
RealMIP significantly improve the predictive capability of the NEWS and
MEWS compared to forward imputation (p < 0.05). In the test set, the AUC
for NEWS with forward imputation ranged from 0.742 to 0.808, whereas
RealMIP improved it to a range of 0.767 to 0.845. Similarly, the AUC for
MEWS with forward imputation was between 0.728 and 0.811, while
RealMIP imputation increased this range from 0.755 to 0.838.

Feature importance

The relative importance of the top 20 features contributing to the RealMIP
model, as determined by the SHAP algorithm, is presented in Fig.7. Fraction
of inspired oxygen (FiO,), the Glasgow comma scale (GCS), systolic blood
pressure (SBP), age, and saturation of peripheral oxygen (SpO,) play sig-
nificant roles in the model’s predictive performance. Figure8 provides an
analysis of feature importance over time, illustrating the top 10 features
based on the absolute sum of the Shapley values. Notably, FiO, and the GCS-
verbal score had substantial impacts on prediction as patients approached
death. In contrast, in the survival group, most features contributed to
decreasing prediction scores over time, with FiO, and SBP being particularly
influential.

Dynamic imputation and interpretable risk assessment at the
individual level

RealMIP enables both the dynamic imputation of missing values and real-
time, visual, interpretable risk assessment for individual patients. Figure 9
illustrates a representative case from the external test cohort (MIMIC). The
patient, an 89-year-old male, died 48.6 h after ICU admission. We analyzed
the temporal dynamics of the ten most important features and their influ-
ence on high-risk predictions during the 24 h preceding death. Data were
recorded at 45 time points within this period, with solid symbols denoting
new measurements and hollow symbols indicating imputed values.
RealMIP not only provides real-time mortality risk predictions but also
imputes missing values to visualize each feature’s temporal changes and
their impact on prediction outcomes. Figure 9b highlights the influence of
specific features at a given time point, with lower GCS scores, reduced
oxygen saturation, and older age being associated with increased mortality
risk, whereas normal heart rate and sodium levels correlated with
reduced risk.

Discussion

In this multicenter retrospective study, we developed and validated
RealMIP, a novel end-to-end framework that enables real-time mortality
prediction for critically ill patients by leveraging generative modeling to
impute missing values. Unlike previous approaches that utilize static or two-
stage real-time models, RealMIP is specifically designed to handle the
irregular and incomplete nature of ICU data. It can automatically impute
missing values by utilizing the entire patient history information and
modeling inter-variable relationships. By integrating real-time imputation
with dynamic risk assessment, RealMIP provides timely, accurate, and
interpretable predictions that adapt to each patient’s changing clinical sta-
tus. Validation on both US and European cohorts supports the potential of
this approach to advance clinical decision support in critical care.

Timely and accurate clinical decision support is crucial in the ICU for
optimizing resource allocation, guiding interventions, and prioritizing
candidates for organ transplantation’’. However, most existing risk scores
and predictive models are static, providing only a single mortality estimate at
a fixed time point (such as 24 h after admission)’' . This approach fails to
capture the dynamic evolution of patients’ clinical status and, as a result,
cannot provide real-time, actionable support for patient management.
While some recent efforts have developed real-time prediction models, these
have often been limited to the initial 24 h after admission or have focused on
long-term outcomes, restricting their practical utility for ongoing ICU
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Fig. 1 | Flow diagram of study participant inclu-
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care”. In addition, many of these models extract summary statistics—such
as hourly means, variances, or other aggregated features—from patient data
streams, and then generate predictions at set intervals (e.g., every hour)**".
While this approach smooths over data irregularities, it fails to capture the
true dynamics of a patient’s evolving condition, as it does not fully utilize the
latest information. In contrast, RealMIP provides an updated prediction
each time any clinical variable is measured, thereby maximizing the real-
time responsiveness of risk assessment. However, making predictions at
every variable update introduces a new challenge: the resulting data points
often contain substantial missingness, since few features are measured
simultaneously. This represents a significant barrier to achieving truly real-
time clinical prediction, which previous research has not adequately
addressed.

Robust imputation methods are essential to address the pervasive issue
of missing data in real-time ICU settings. Traditional approaches such as
forward filling, mean or median imputation, and even some basic machine
learning techniques often fail to capture the complex temporal and inter-
variable dependencies in clinical data, potentially resulting in biased or
suboptimal predictions. To overcome these limitations, we introduced
diffusion models—a new class of deep generative models that have recently
demonstrated superior performance compared to generative adversarial
networks and variational autoencoders in domains such as image genera-
tion, natural language processing, and structured data synthesis™*°. Their
strong capacity to model complex data distributions and generate realistic
samples makes them particularly advantageous for imputing missing values
in highly sparse and irregular ICU datasets. Notably, our findings demon-
strate that, when used for missing data imputation, the diffusion-based
approach in RealMIP leads to a significant improvement in the predictive
performance of commonly used early warning scores such as NEWS and
MEWS, compared to conventional forward imputation. This underscores
the potential of advanced generative models to enhance the accuracy and
reliability of real-time clinical risk prediction in critical care settings.

Another key feature of our framework is the adoption of an end-to-end
training strategy, which allows the imputation and prediction networks to be
optimized jointly within a unified architecture”. This approach enables the
model to learn imputation patterns that are most beneficial for downstream
mortality prediction, rather than merely reconstructing missing values in
isolation. To validate this design choice, we conducted ablation studies
comparing the end-to-end approach with a conventional two-stage pipeline,
in which imputation and prediction are trained separately. The results,
confirmed by DeLong statistical tests, demonstrate that the end-to-end fra-
mework consistently achieves superior predictive performance. This high-
lights the advantage of integrated optimization in aligning the imputation
process more closely with the ultimate clinical prediction objectives™?”.

Model interpretability plays a crucial role in fostering clinical trust and
facilitating the translation of machine learning models to real-world critical

care environments™” . By incorporating SHAP algorithm, our framework

provides both global and individualized insights into the key factors driving
mortality risk predictions. The identification of physiologically plausible
variables—such as FiO,, GCS, SBP, age, and SpO,—as primary contributors
to risk aligns our findings with established clinical knowledge, further
enhancing the model’s credibility’”**. Moreover, the ability to visualize
dynamic changes in feature importance over time, as patients approach
critical events, offers valuable transparency into the evolution of patient risk
profiles. At the individual level, RealMIP not only delivers interpretable real-
time risk assessments but also enables clinicians to trace how imputed and
observed variables affect predictions at each time point. This level of
interpretability is particularly beneficial for clinical decision support, as it
allows healthcare professionals to understand and trust model outputs,
identify possible interventions, and monitor the impact of therapeutic
strategies over time.

The applicability of a predictive model in clinical practice is as
important as the predictive performance. The data used by RealMIP are
routinely measured vital signs and laboratory tests in the ICU, and the real-
time update of each new value is exploited, so it has a good potential to use
real-time data for automated mortality prediction. RealMIP is used to
predict short-term mortality in real time, and the prediction performance of
the model improves as death approaches, both on internal and external data
sets, which reflects the real-time prediction ability of the model. Further-
more, the real-time interpretability of the model, including interpretation of
both existing and imputed data, suggests its potential application as a clinical
decision support tool in clinical practice.

This study has several limitations. First, studies are retrospective and
may be biased, requiring prospective validation. Second, while RealMIP can
accurately predict in-hospital mortality when available data are limited, the
model-generated data cannot fully replace real patient data, which remain
essential for optimal accuracy in prediction. Third, although the SHAP
algorithm was used to provide explanations for the model’s predictions, it is
important to note that the influence of features on predictions does not
necessarily correspond to causal relationships. Further investigation into
causal relationships is needed. Finally, there is a potential risk of overreliance
on imputed variables in life-critical decision-making. In the ICU, where
rapid physiological changes often drive urgent interventions, imputed
values should be interpreted as complementary information rather than
substitutes for real measurements. Future applications should highlight the
distinction between observed and imputed data to ensure safe clinical use.

This study introduces RealMIP, a novel end-to-end framework for
real-time mortality prediction in critically ill patients. By leveraging gen-
erative modeling for missing value imputation and integrating dynamic risk
assessment, RealMIP effectively addresses the challenges posed by incom-
plete and irregular ICU data. This enables the generation of timely and
interpretable predictions that accurately reflect patients’ evolving clinical
conditions. Our multicenter evaluation demonstrates the robust and gen-
eralizable performance of RealMIP, as well as its potential to enhance
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Fig. 2 | Overview of the study framework. a Data extraction and pre-processing
steps performed in this study. b The proposed end-to-end model automatically
performs real-time imputation of missing values and predicts patient mortality risk
each time a new measurement is obtained. ¢ Compared with traditional imputation
methods, our approach more effectively captures temporal dependencies and
interactions among features. d The modelling performance was evaluated using the
area under the receiver operating characteristic curve (AUC), calibration curve,
decision curve analysis (DCA), and temporal alert efficiency curve. e The SHapley

Additive exPlanations algorithm was used to interpret the real-time individualized
prediction results after missing values were imputed, and the SHAP risk scores were
visualized. eICU-CRD eICU Collaborative Research Database, MIMIC Medical
Information Mart for Intensive Care, SICdb Salzburg Intensive Care Database, AUC
area under the receiver operating characteristic curve, DCA decision curve analysis,
HR heart rate, RR respiratory rat, SBP systolic blood pressure, ALT alanine ami-
notransferase, WBC white blood cell. Some elements in the figure were drawn by
Figdraw.
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Fig. 3 | Performance of the models in internal and external test cohorts. a—c
Display the area under the receiver operating characteristic curve (AUC) for the
internal test cohort (eICU-CRD), and for the external test cohorts (MIMIC and
SICdb), respectively. d—f Present the calibration curves for the same cohorts. Panels
(g-i) show the decision curve analysis (DCA) results for the internal and two
external cohorts, respectively. elCU-CRD eICU Collaborative Research Database,
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Threshold probability

MIMIC Medical Information Mart for Intensive Care, SICdb Salzburg Intensive
Care Database, AUC area under the receiver operating characteristic curve, DCA
decision curve analysis, NEWS National Early Warning Score, MEWS Modified
Early Warning Score, SOFA sequential organ failure assessment, APACHE acute
physiology and chronic health evaluation.

traditional early warning systems. In the future, prospective studies will be
conducted to further validate the clinical utility of RealMIP and assess its
impact on patient outcomes.

Methods
Study population
This retrospective study analyzed data from patients admitted to the ICU on
three different cohorts: eICU-CRD", MIMIC-IV'®, and SICdb"’. The eICU-
CRD includes data associated with over 200,000 admissions to ICUs across
208 United States hospitals, from 2014 to 2015. The MIMIC-IV database
encompasses 431,231 admissions treated in the ICU or emergency
department at Beth Israel Deaconess Medical Center (BIDMC) from 2008
t02019. The SICdb offers insights into over 27,000 ICU admissions between
2013 and 2021 from four different intensive care units at the University
Hospital Salzburg.

Admissions were excluded if patients were younger than 18 years,had a
“do not resuscitate” order, had an ICU stay longer than 60 days, or were
missing all variables required for modeling.

Ethical approval

The MIMIC-1V is publicly available after Institutional Review Board (IRB)
approval by the Beth Israel Deaconess Medical Center in Boston, MA, USA,
and the Massachusetts Institute of Technology, MA, USA. The eICU-CRD
is publicly available with appropriate IRB approval from 208 hospitals in the
USA. The SICdb is publicly available with appropriate IRB approval from
the local ethical commission of the Land Salzburg, Austria. All databases
contain anonymized patient information, eliminating the need for indivi-
dual informed consent. The principal investigator, P.X., obtained data access
after completing the required National Institutes of Health courses and
passing the associated assessments (Record ID: 51524821). This study was
conducted in accordance with the ethical standards set forth in the
Declaration of Helsinki™.

Data extraction and preprocessing

Building on prior research and the clinical expertise of specialists, we
identified 34 variables, including age, sex, vital signs, and laboratory results,
that are readily available in most hospital settings'"'*'°. Samples were
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from the time of death. elCU-CRD eICU Collaborative Research Database, MIMIC
Medical Information Mart for Intensive Care, SICdb Salzburg Intensive Care
Database, AUC area under the receiver operating characteristic curve.

generated at each time point where at least one variable was available.
Consequently, any variables not documented at that specific time point were
considered missing. Values outside the predefined range are treated as
missing data. The predefined ranges and proportion of missing values are
shown in Table S5.

To ensure a fair comparison between RealMIP and all comparator
models, we applied the same preprocessing steps across cohorts and
methods. These steps included standardized variable extraction, clinically
plausible range filtering, normalization, and the construction of two tem-
poral features: (i) time since the last available vital sign measurement, and
(ii) time since the last available laboratory test.

The only methodological difference lay in the treatment of missing
data. Comparator machine learning models were provided with explicit
masking indicators for missingness, together with a two-stage imputation
strategy consisting of (i) median imputation based on the training set
distribution, followed by (ii) forward filling using the most recent
observed value. By contrast, RealMIP does not rely on explicit missing-
value indicators or predefined imputation rules. Instead, it integrates
imputation and prediction in a fully end-to-end manner, implicitly
capturing patterns of missingness within its generative process. This
design allowed RealMIP to exploit correlations among variables and
temporal dynamics while avoiding limitations of rule-based filling
methods that are disconnected from the prediction task, which are
typically used in conventional ICU risk models.

The clinical outcome of interest was all-cause in-hospital mortality in
the ICU. For patients who died in the ICU, samples were collected within
24 h prior to death. Conversely, for patients who survived their ICU stay,
samples were drawn throughout their entire ICU admission period.

Training and testing data sets

For model training, we randomly selected patients from 188 centers within
the multicenter eICU-CRD dataset. Patients from an additional 20 centers
comprised the internal test set. Optimal hyperparameters for the model were
determined through five-fold cross-validation conducted on the training set.
The MIMIC-IV and SICdb datasets served as external test cohorts.

Model development

Samples were obtained at any time point where at least one variable was
present, maximizing data utilization for accurate real-time prediction.
However, this approach also introduced numerous missing values. To
address this challenge, we propose RealMIP: an end-to-end model designed
for real-time missing data imputation and mortality prediction. As shown in
Fig.2c, RealMIP differentiates itself from traditional missing data filling
methods in the real-time mortality prediction of ICU patients. Traditional
methods often employ median or mean imputation for initial missing values
and use forward imputation for other missing values. A significant limita-
tion of this approach is its assumption that a patient’s measurements remain
constant until new data is available, thereby neglecting trends over time and
inter-variable correlations. This oversight can impede accurate real-time
assessment of patient conditions and prognostic predictions. Moreover, the
traditional imputation method operates as a two-stage process, lacking
integration with the downstream prediction model and potentially resulting
in suboptimal subsequent predictive performance. RealMIP addresses these
issues by employing a diffusion model for missing data imputation, which
has demonstrated state-of-the-art performance in various fields such as
image and text generation”***’. RealMIP enhances prediction accuracy by
capturing the temporal patterns of variables and their correlation structures,
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Fig. 5 | Temporal evaluation of model predictions relative to the time of death
across the internal (eICU-CRD) and external (MIMIC and SICdb) test cohorts.
a Proportion of deaths detected as a function of time before death, where detection is
defined as at least one prediction exceeding the predefined threshold within the

corresponding time window. b False alarm count per 100 patient-days as a function
of time before death. eIlCU-CRD eICU Collaborative Research Database, MIMIC
Medical Information Mart for Intensive Care, SICdb Salzburg Intensive Care
Database.

Fig. 6 | Predictive performance of the National a b
Early Warning Score (NEWS) and Modified Early 0.900 0.900
. . . .. Database Database
Warning Score (MEWS) after imputing missing oars | @ cICUCRD )
. . <0.05 ® wmmvic
values using RealMIP versus the forward impu- : o <00 ® sic p <005
tation method. In both the internal (eICU-CRD) 0.850 0-3‘5 0.850 0.838
and external (MIMIC and SICdb) test cohorts, the
AUCs of NEWS (a) and MEWS (b) are significantly g 0825 0.808 p<0.05 g 0825 0.811
higher when missing values are imputed with 2 0500 o 0.7.94 g 0.800
RealMIP compared to forward imputation. Statis- e LASU i S pooos o <loos
tical comparisons were performed using DeLong’s 0778 0'257 0775 o,gss Toges
test. eICU-CRD eICU Collaborative Research o750 0.742 o750 0.744
Database, MIMIC Medical Information Mart for o 0.728
I ive C SICdb Salzb I ive C 0.725 Method 0725 Method (o]
ntensive Care, zburg Intensive Care O Forward-impute - O Forward-impute
Database, AUC area under the receiver operating 0700 B RealMIP-impute 0700 B RealMIP-mpute
characteristic curve, NEWS National Early Warning €ICU-CRD MIMIC sicdb " elCUCRD MIMIC sicdb

Score, MEWS Modified Early Warning Score.

while simultaneously optimizing both the data imputation and prediction
network.

The experiments were conducted on a system equipped with a
3.50 GHz 13th Gen Intel(R) Core (TM) i5-13600KF CPU and an NVIDIA
RTX A6000 GPU (48 GB memory). RealMIP was trained using the AdamW
optimizer with a weight decay of 0.0001, B1 of 0.9, and 2 of 0.999. The
learning rate was set to 0.0001, the batch size to 8, and training was per-
formed for a maximum of 200 epochs. The RealMIP model is lightweight
(4.10 MB) and achieves efficient inference, processing an average of
392.5 samples per second on the RTX A6000 GPU and 23.2 samples
per second on the i5-13600KF CPU.

Comparative models

RealMIP’s performance was benchmarked against nine established
approaches, including traditional early warning scores designed for real-
time monitoring (NEWS and MEWS), widely used clinical severity scoring
systems (Sequential Organ Failure Assessment [SOFA] and Acute Phy-
siology and Chronic Health Evaluation I [APACHE-II])**. Additionally,
we included a linear model, Logistic Regression (LR), as well as several tree-
based machine learning models like Random Forest (RF)”, eXtreme Gra-
dient Boosting (XGBoost)”, and Light Gradient Boosting Machine
(LightGBM)*'. For deep learning approaches, we examined the Long Short-
Term Memory (LSTM) model, which is commonly employed for time series

npj Digital Medicine | (2025)8:733


www.nature.com/npjdigitalmed

https://doi.org/10.1038/s41746-025-02114-y

A

rticle

a

Fraction of inspired oxygen
Glasgow comma scale - motor
Systolic blood pressure
Potassium

Age

Heart rate

Hydrogen carbonate ion
Temperature

Saturation of peripheral oxygen
Sodium

Diastolic blood pressure
Glasgow comma scale - verbal
Respiration rate

Platelet

Glasgow comma scale - eyes
Albumin

Aspartate aminotransferase
White blood cell

Creatinine

Partial pressure of arterial carbon dioxide

-t}

$om

<
e —

00 0 02 03
SHAP value (impact on model output)

Low

High

Feature value

b

Glasgow comma scale - motor
Fraction of inspired oxygen
Glasgow comma scale - verbal
Systolic blood pressure
Glasgow comma scale - eyes
Age

Potassium

Saturation of peripheral oxygen
Heart rate

Sodium

Platelet

Respiration rate

White blood cell

Albumin

Hydrogen carbonate ion
Diastolic blood pressure

Blood urea nitrogen

Creatinine

Red blood cell

Protein

-
!

-0.4 -0.2 0.0 0.2
SHAP value (impact on model output)

High

Feature value

C

Glasgow comma scale - verbal d -
Systolic blood pressure —
Fraction of inspired oxygen -< —_—
Age -
Saturation of peripheral oxygen -Q‘ —_—
Glasgow comma scale - motor '  —
Potassium = —
Heart rate 4',—
Respiration rate {'-—
Sodium ——
White blood cell —
Blood urea nitrogen -
Albumin 4>
Platelet —".
Temperature
Glasgow comma scale - eyes -
Hydrogen carbonate ion -
Aspartate = —
Diastolic blood pressure -

Red blood cell

00 [ To
SHAP value (impact on model output)

High

Low

Feature value

Fig. 7 | Global influence of input features on model predictions across all
time steps. a Top 20 most important features in the internal test set (eICU-CRD),
b Top 20 most important features in the external test set (MIMIC), and (c) Top 20

most important features in the external test set (SICdb). elCU-CRD eICU Colla-
borative Research Database, MIMIC Medical Information Mart for Intensive Care,
SICdb Salzburg Intensive Care Database.

a

0.45 1

0.40 1

Prediction score + shapley value

o o o o o
= [N) N W w
%) S} u s} %)
) L ) L )

—— Prediction score

—o— Age

—<— Glasgow comma scale - verbal Respiration rate

—e— Fraction of inspired oxygen —4&— Potassium Heart rate —=— Hydrogen carbonate ion
0.10 Systolic blood pressure —v— Glasgow comma scale - motor ~ —=— Sodium
23 22 21 -20 -19 -18 -17 -6 -15 -14 -13 -12 -11 -10 9 8 -7 -6 -5 -4 -3 2 -1 0

Time before death (h)

—— Prediction score
—e— Fraction of inspired oxygen
Systolic blood pressure

—o— Age
—4— Potassium

0.02

0.01

0.00

—0.01 1

Prediction score + shapley value

—0.02 1

—0.03 1

—v— Glasgow comma scale - motor

—<— Glasgow comma scale - verbal
Heart rate
—e— Sodium

Respiration rate
—e— Hydrogen carbonate ion

23 22 21 20 -19 -18 -17 -16 -15 -14 -13

12 -11 -10 -9

Time before random point (h)

Fig. 8 | Average Shapley values derived from the internal test dataset over time.
Initially, Shapley values were averaged hourly for each admission, and subsequently,
these values were averaged across all admissions. The black line indicates the average
prediction score. The average Shapley values are added to this prediction score for

clarity. a Illustrates data from event admissions, for which we collected values 24 h
prior to the time of death. b Depicts data from normal admissions, where we
gathered values 24 h before randomly selected time points to mitigate selection bias.

npj Digital Medicine | (2025)8:733


www.nature.com/npjdigitalmed

https://doi.org/10.1038/s41746-025-02114-y

Article

Fig. 9 | Visual example of dynamic imputation and a

feature impact on mortality risk prediction.

. . . . @ Observed value (solid)
a Visualization of the 10 most important features for

(O Imputed value (hollow)

6

B Glasgow comma scale - motor
@  Saturation of peripheral oxygen @ Glasgow comma scale - verbal

Albumin
Respiration rate

@ Fraction of inspired oxygen

@  Sodium

<0 Glasgow comma scale - eyes

>
v

®  Systolic blood pressure
A Mortality risk prediction

* Age

predicting patient mortality risk at each time point
where at least one feature has a new measurement.
Solid symbols represent new measurements, while
hollow symbols indicate missing values imputed by
the RealMIP. The red triangle marks the model’s
predicted probability of mortality. The left axis
shows the Z-score of each feature, and the right axis
displays the predicted mortality probability.

b Contribution of each feature to the risk prediction
within a specific time point. Features in red increase
the predicted risk of mortality (non-survival), while

©

Standardized value (Z-scores)
|
b

I
ES

L

Y

1.0

‘__-A-——-A-——*———A—---t—--A—--*-—-A———*--—A———A—-f:fj‘:-—A———*“A

08

%

*

*

FBI
<

e
OV T
vex
<1
@od

[ _ory
oe
@
CeTe
@ wd
[ ]

] OXe s
u}

O O

features in blue decrease it (survival). ¢

-4 -13 12 11 -10

Time before death (h)

9 8 7 6 5 4 3

i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
.
i
i
i
i
i
:
T
:
:
i
i
.

A4

04

I Feature driving prediction towards non-survival

05

I Feature driving prediction towards survival

higher 2 lower

x)
0.6 0.8 0.90 1.0

Albumin (g/dL)=1.8 | GCS

eyes=1.0

92222 > 2 > > > > D 2 | _{ ¢ ¢ (K«

Age (year) = 89.0

GCS -verbal = 1.0 | GCS - motor = 1.0 Sp02 (%) = 88.0 Sodium (mmol/L) = 127.8 Heart rate (/min) = 84.0

prediction tasks". The hyperparameters for each model were optimized
using five-fold cross-validation within the training set to ensure robust and
reliable evaluations.

Model evaluation

For RealMIP and other comparative methods, the classification cutoff
threshold was determined using the Youden index during the cross-
validation process on the training cohort, and this threshold was applied
consistently to the internal and external test cohort for evaluation. However,
to facilitate comparison in the typical ICU setting where scoring systems are
used for assessing the real-time severity of a patient’s condition, the NEWS
and MEWS models adopted their commonly accepted thresholds: NEWS at
>5 and 27, and MEWS at >4 and >5. This approach ensures a meaningful
comparison under standard ICU practices. In addition to AUC, we assessed
the models using 7 performance metrics: balanced accuracy, sensitivity,
specificity, F1 score, PPV, NPV, and FAC/100 pt-days. Confidence intervals
(CIs) for these estimates were derived using 1000 bootstrap samples to
ensure statistical robustness.

To examine the reliability of the models’ probability estimates, we
utilized calibration curves alongside ECE and Brier scores. Furthermore, we
conducted DCA to appraise the clinical utility of the models in practice.
DCA was performed by quantifying net benefit (NB) across a range of
threshold probabilities. The net benefit at a given threshold p, is defined as:

TP TP

LV 4
N N

1 —p,

NB(pt) =

where TP and FP denote the number of true positive and false positive
predictions, respectively, and N is the total number of patients. This for-
mulation incorporates both discrimination and clinical consequences by
weighting false positives according to the relative harm of unnecessary
interventions versus missed events. The threshold probability range was set
to 0.01 to 0.99 in increments of 0.01, consistent with prior methodological
guidance. This range reflects the probability thresholds at which a clinician
might reasonably intervene, balancing overtreatment and undertreatment
risks in critically ill patients. Because our dataset included longitudinal
measurements (multiple time points per ICU admission), analysis was
conducted at the patient level rather than per sample, to avoid double-
counting events. Specifically, all predicted probabilities from the same
admission were aggregated into a single patient-level probability by taking
the arithmetic mean. This approach yields a stable estimate of the patient’s

overall risk burden during ICU stay, while preventing inflation of net benefit
due to repeated measurements.

Statistical analysis

Continuous variables were reported as mean + standard deviation (SD),
while categorical variables were expressed as frequencies and percentages.
To assess differences in predictive power between models, we employed the
DeLong test. A p-value of less than 0.05 was considered indicative of sta-
tistical significance.

Model explanation

To interpret the model’s predictions, we utilized the Shapley Additive
Explanations (SHAP) algorithm, which supports both global and local fea-
ture importance analysis"***. To manage computational demands, we ran-
domly selected a subset of 200 admissions that survived and 200 deceased
admissions from the test set. This approach allowed us to evaluate overall
feature importance, examine the temporal variation in feature importance,
and produce interpretable, individualized real-time prediction results.

Data availability

The datasets from MIMIC-IV, eICU-CRD, and SICdb presented in this
study can be found in online repositories: https://physionet.org/content/
mimiciv/2.2/, https://eicu-crd.mit.edu/about/eicu/ and https://physionet.
org/content/sicdb/1.0.8/, respectively.

Code availability

The code will be made available upon acceptance of the manuscript at
https://github.com/PuguangXie/Real MIP.
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