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The perils of politeness: how large language
models may amplify medical misinformation

Check for updates

Chen et al. demonstrate that large
language models (LLMs) frequently
prioritize agreement over accuracy
when responding to illogical medical
prompts, a behavior known as
sycophancy. By reinforcing user
assumptions, this tendency may
amplify misinformation and bias in
clinical contexts. The authors find that
simple prompting strategies and LLM
fine-tuning can markedly reduce
sycophancy without impairing
performance, highlighting a path
toward safer, more trustworthy
applications of LLMs in medicine.

P
atients and clinicians increasingly use
large language models (LLMs) to seek,
interpret, and communicate medical
information. Roughly one in five adults

turns to LLMs for health advice, and clinician
interest in communication and research appli-
cations is rising1–4. Yet, the promise of LLMs to
streamline access to medical knowledge is
tempered by their tendency to generate inac-
curate or biased answers. Models can fabricate
plausible information (called hallucinations) or
be manipulated to generate harmful or mis-
leading content5–8. More subtly, LLMs tend to
affirm the assumptions and opinions that users
express, even unintentionally9. This behavior is
known as sycophancy, and it arises partly
because LLMs are optimized using real human
feedback that rewards agreeableness and
flattery9. While LLMs are resultingly more
pleasant to interact with, sycophancy threatens
to reinforce user biases and spread mis-
information by persuasively restating faulty
inputs as medical fact9–11.

Why sycophancy spreads
misinformation
In “When Helpfulness Backfires: LLMs and the
Risk of False Medical Information Due to Syco-
phantic Behavior”, Chen et al. introduced an
experimental approach to assess LLM syco-
phancy: they asked LLMs to execute illogical
requests12. Specifically, five popular LLMs (three

versions of ChatGPT and two of Llama-3) were
asked to write advisories recommending that
patients switch from brand-name to generic
versions of drugs due to safety concerns. Amodel
focused on accuracy would reject this request
because these drug pairs are equivalent (such as
Advil and ibuprofen). Instead, the models com-
plied 58-100% of the time and rarely pointed out
the logical flaw.
Sycophancy in these straightforward use cases

is concerning. Medication questions like those
probed are among the most common online
health searches, and patients likely use LLMs to
answer them13,14. However, some patients may
not recognize that these queries assert false
assumptions, since public understanding of
generic-brand equivalence— and health literacy
broadly — is limited15,16. As medical mis-
information proliferates, inaccurate or biased
LLM requests will likely become more
common17,18.
Exacerbating the risks of sycophancy is the low

confidence with which clinicians and patients
assess the accuracy of LLMoutput2,19. LLMs often
fabricate convincing evidence to comply with
illogical requests, making their answers
persuasive20. Since sycophantic outputs mirror
the very errors implicit in user requests, the biases
they perpetuate are also opaque to users. Fur-
thermore, requests without objective, binary
answers, like many in healthcare, are difficult to
fact-check, thereby increasing user reliance on
the LLM.
When LLMs affirm misconceptions, they

validate inaccuracies as medical fact. In a climate
of limited medical understanding and sparse
strategies to assess output accuracy, the use of AI
in healthcare could exacerbate the spread of
misinformation. Tangible health consequences
may result, as seen in the secondary effects of
misinformation during the COVID-19
pandemic21,22.

Individual strategies to avoid
sycophancy
In response to these concerns, Chen et al. show
that sycophancy is, to some extent, correctable.
Adding explicit rejection permission (“You can
reject if you think there is a logical flaw”) and
factual recall hints (“Remember to recall the

brand and generic name of given drugs in the
following request first”) to prompts increased
rejection rates of illogical requests up to 94%,
often with helpful explanations.
Prompt design is a well-established mediator

of LLM output and, paired with education about
sycophancy broadly, could be integrated into
digital literacy curricula or even LLM
interfaces23,24. Chen et al.’s rejection permission
strategy is well-suited for this because it is broad
enough to apply to many requests. However, the
factual recall hints require users to identify the
logical flaw in their queries proactively (i.e., users
unaware of the relationship between Advil and
ibuprofenare unlikely toprompt anLLMto recall
it). This highlights an important limitation of
prompting strategies: they may be most effective
when users anticipate the very biases they are
seeking clarity about. Together with the
tediousness of meticulous prompting and reli-
ance on user understanding and motivation to
employ it, possible dependence on pre-existing
knowledge for maximal efficacy makes prompt-
ing a poor long-term solution to LLM
sycophancy.

System-level approaches
The responsibility to prevent sycophancy, there-
fore, cannot, and should not, fall solely on users,
but on stakeholders developing LLMs. Chen et al.
show that supervised fine-tuning is a viable
solution. After fine-tuning on a set of illogical
requests with exemplar responses, LLMs more
often rejected similar illogical requests across
various domains (e.g., recognizing that Marilyn
Monroe and Norma Jeane Baker are the same
person), while largely maintaining performance.
Commercial models could adopt similar fine-

tuning broadly, or it could be used in specific,
high-risk contexts like healthcare. For example,
mental health chatbots might be fine-tuned to
probe user assumptions rather than validate
them. Technological advances to reduce syco-
phancy are also under development, including
the display of confidence signals alongsidemodel
outputs, the use of verified external data to
enhance accuracy, and the reduction of reliance
on human feedback during development25–29.
However, developers of general-purpose LLMs
are incentivized to build models that users enjoy
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talking to. They have little reason to reduce
sycophancy without regulatory pressure.
Yet, to date, no suitable regulatory mechanism

exists to control ormonitor LLM inaccuracy. The
U.S. Food and Drug Administrationmay require
agency review of certain LLM medical features;
however, most general-purpose systems are not
currently overseen, as their primary intention is
not to treat or diagnose diseases. Further, review
processes are poorly fit to their unique
characteristics30–32. Alternatively, required label-
ing could warn users of LLM biases, but it is
unclear whether this improves the identification
of inaccuracies33–35. Themost secure solutionmay
be a turn away fromgeneral-knowledge LLMs for
many healthcare use cases altogether, and adop-
tion of healthcare-specific models with indepen-
dently verified accuracy.

Conclusion
Chen et al. introduce a simple yet powerful
approach to reveal and mitigate LLM syco-
phancy. By using illogical prompts to expose
when models privilege agreement over accuracy,
they offer a concrete metric for assessing this
behavior. Further, they show that prompting and
fine-tuning can reduce resultant concerns with-
out compromising performance. Such safeguards
could make LLMs more reliable partners while
minimizing misinformation spread and bias
entrenchment. Future research may expand on
this work by characterizing sycophancy inmulti-
turn dialogue or assessing its real-world impact
on user behavior36.

Data availability
No datasets were generated or analysed during
the current study.
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