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Machine learning-driven glycolytic
subtyping and exosome-based PKM
splicing modulation overcome drug
resistance in hyper-glycolytic myeloid
leukemia
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Liqing Zhang2, Li Liu2, Xiaoxuan Jiang2, Siying Huo2, Xiaozhong Wang1 & Bo Huang1

This study comprehensively investigates the role of glycolysis in acute myeloid leukemia (AML)
pathogenesis. Elevated glycolysis correlated significantly with poor prognosis. Bioinformatics
identified HIF1A and MIF as key regulators and revealed two robust molecular subtypes: a high-
glycolysis subtype (C1) associated with increased malignant cell proportion, activated oncogenic
pathways, genomic instability, and inferior survival, anda low-glycolysis subtype (C2). Thesesubtypes
exhibited distinct drug sensitivities (C1 sensitive to panobinostat, MK-2206, 17-AAG; C2 sensitive to
venetoclax) and predicted immunotherapy responses (C1 potentially benefitingmore from anti-PD-1).
An optimized 9-gene prognostic signature was developed using CoxBoost and StepCox algorithms,
demonstrating accurate survival prediction across cohorts. Crucially, aberrant PKM2 overexpression
was linked to imatinib (IM) resistance. A vivo-morpholino antisense oligomer (vMO) targeting the PKM
exon 9-10 splice junction effectively converted PKM splicing fromPKM2 to PKM1, inhibiting leukemia
growth and reversing IM resistance in vitro and in vivo. To mitigate vMO toxicity, IL3-Lamp2b-
engineered exosomes were developed, demonstrating efficient vMO loading, targeted delivery to
leukemia cells, potent PKMsplicing correction, significant IM resistance reversal, andminimal stromal
cell toxicity. This work defines glycolysis-based AML subtypes with therapeutic implications and
establishes engineered exosome-delivered vMOas apromising strategy to overcomedrug resistance
in hyper-glycolytic myeloid leukemia.

Acute myeloid leukemia (AML) is a hematological tumor that origi-
nates from hematopoietic stem and progenitor cells1. It is characterized
by impaired differentiation and malignant proliferation of myeloid
progenitor cells, resulting in anemia, infection, bleeding, and invasion
of extramedullary organs2. AML is the most prevalent form of acute
leukemia and has a poor prognosis, with a 5-year survival rate of less
than 30%3. The treatment options for AML include initial induction

therapy, postremission therapy, hematopoietic stem cell transplanta-
tion, and immunotherapy4. Despite significant advancements in these
treatment modalities, which have improved complete response rates
and 5-year survival rates for AML patients, approximately three-
quarters of those who achieve a complete response will eventually
experience relapse because chemotherapy resistance is a key factor
contributing to AML recurrence5,6. Therefore, exploring novel
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prognostic markers for AML and new targets for drug resistance
therapy is highly valuable.

Many interacting factors contribute to the emergence of drug resis-
tance, including the inhibition of apoptotic cell death, abnormal activation
of intracellular survival signaling pathways, changes in miRNA expression
associated with drug resistance, metabolic abnormalities, and alterations in
multidrug resistance enzyme kinetics7,8. The malignant growth of tumor
cells necessitates a rapid energy supply and significantly depends onglucose,
along with enhanced glycolytic metabolic activity9. Even under aerobic
conditions, this pathway remains active by converting glucose into lactic
acid and ATP, a phenomenon known as the “Warburg effect”10. Increased
glucose uptake and glycolytic activity are pivotal factors that contribute to
the emergence and progression of malignant phenotypes in tumors11.
Moreover, they play crucial roles in the development of drug resistance and
tumor recurrence12. The close association between glucose metabolism and
chemotherapy resistance has garnered increasing attention in leukemia
research13. For example, targeting glucose transporter 1 (GLUT1) can
overcome cytarabine resistance in AML14, whereas inhibiting hexokinase 2
(HK2) can effectively inhibit adriamycin resistance15. Additionally, key
glycolytic enzymes, such as phosphofructokinase-1 (PFK-1)16, pyruvate
kinase (PK)17, and lactate dehydrogenase (LDH)18, have been implicated in
leukemia drug resistance by enhancing glycolytic activity. Therefore, the
inhibition of glycolysis may serve as an effective approach to inhibit che-
motherapy resistance.

In this study, we first aimed to systematically define glycolysis-driven
molecular subtypes in AML using multiomics data and machine learning,
and to explore their distinct clinical, immune, and therapeutic features. We
hypothesized that the aggressive glycolytic subtype would be characterized
by specific key drivers. Our analysis indeed pinpointed PKM as a central
player. This led to our second hypothesis: that targetedmodulation of PKM
splicing, shifting the balance from the pro-tumorigenic PKM2 isoform to
the tumor-suppressive PKM1 isoform, could overcome drug resistance. To
experimentally validate the functional role of PKM in a model that reca-
pitulates the transition from a therapy-sensitive to a therapy-resistant,
hyper-glycolytic state, we turned to chronic myeloid leukemia (CML). The
progression of CML from the treatable chronic phase (CP) to the aggressive,
therapy-resistant blast crisis (BC) is a classic paradigm of leukemic evolu-
tion. BC shares numerous clinical and molecular features with high-risk
AML, including glycolytic reprogramming.We reasoned that the CP-CML
and BC-CML states would respectively model the low-glycolysis (C2) and
high-glycolysis (C1) AML subtypes we identified, providing a powerful
isogenic system to test our hypothesis. Finally, to translate this strategywhile
mitigating potential toxicity, we proposed a novel therapeutic approach
using IL3-receptor-targeted exosomes (IL3L-Exos) for the efficient and
specific delivery of a PKM-splicing vivo-morpholino (vMO). This work
establishes a comprehensive framework from glycolytic subtyping to a
targeted nanotherapeutic intervention for drug-resistantmyeloid leukemia.

Results
Myeloid leukemia is associatedwith increased glycolytic activity
and potential regulatory mechanisms
We initially compared the glycolytic activity of diverse blood tumors and
observed that theAML,CML, andMDSsamples presentedhigher glycolytic
scores than did theALL andCLL samples throughGSVA (Fig. 1A, B). tSNE
analysis revealed that the expression of GRGs effectively distinguished five
distinct types of blood tumors (Fig. 1C), highlighting the heterogeneity of
glycolyticmolecules across different blood tumor subtypes.Notably, clinical
data were available for the AML and MDS samples. Subsequent survival
analysis revealed a significantly worse prognosis for AML patients in the
high-glycolysis score group than for those in the low-glycolysis score group,
whereas no significant differencewas observed inMDSpatients (Fig. 1D, E).
Consequently, our focus shifted toward the analysis of glycolytic char-
acteristics, specifically in AML patients. The GSE116256 cohort included
single-cell transcriptome sequencing data from 21 subtypes of AML
patients, including six types of malignant cells: HSC-like, Prog-like, GMP-

like, ProMono-like, Mono-like, and cDC-like cells (Fig. 1F, G). Compared
with their normal counterparts, markedly elevated glycolytic scores were
detected in HSC-like, GMP-like, and ProMono-like cells (Fig. 1H, I). Fur-
thermore, all the malignant cell types presented higher overall glycolysis
scores than did all the normal cells.

To identify key GRGs, we discovered that 16 GRGs were aberrantly
expressed on the basis of the results of differential expression analysis via
single-cell sequencing (Fig. 2A). PGK1, ALDOA, ENO1, TPI1, PKM,
LDHA, PGAM1, CITED2, VCAN,HSPA5,MIF, STMN1,TALDO1, TXN,
and PPIAwere significantly upregulated inAML cells, whereas CXCR4was
significantly downregulated (Fig. 2B). These findings suggest that the
overexpression of these genes may contribute to the enhanced glycolytic
activity observed in AML cells. Fig. 2C shows the chromosomal locations of
the GRGs. To identify the potential transcription factors involved in reg-
ulating the expression of these key GRGs, we performed motif analysis via
the i-cisTarget platform. Notably, the HIF-1α binding motif was highly
enriched in these GRGs (Fig. 2D). Furthermore, HIF-1α expression was
significantly elevated in malignant AML cells compared with normal cells
(Fig. S1E). Correlation analysis revealed a significant positive correlation
between HIF-1α and most key GRGs, suggesting that HIF-1αmay serve as
an important upstream regulator of glycolysis in AML (Fig. 2F and S1).
Protein molecules associated with glycolysis may also play a role in the
tumor microenvironment (TME). Through cell communication analysis,
MIF-(CD74+CXCR4) and MIF-(CD74+CD44) were identified as the
most active ligand‒receptor pairs (L‒Rpairs) (Fig. 2G). SinceMIF is a crucial
gene involved in glycolysis, it might play an important role in TME reg-
ulation in AML. Among the various cell types, the GMP-like and Prog-like
populations are considered the major sources of MIF signals and target
other cell types (Fig. 2H–J). Notably, the possibility of a GMP-like popu-
lation transmitting information through exocrine ligands is more evident
(Fig. 2K), which is further supported by the significantly upregulated
expression of MIF specifically observed in GMP-like cells (Fig. 2L).

Molecular characterization of key GRGs and identification of
glycolytic molecular subtypes
We further analyzed the molecular characteristics of the key GRGs via
multiomics data analysis. The frequency of somatic mutations in GRGs
was relatively low, with only one out of 134 AML patients exhibiting
simultaneous mutations in PKM, TPI1, and VCAN (Fig. S2A). Among
the GRGs, only VCAN presented a copy number deletion frequency of
approximately 2%, whereas the other GRGs presented lower fre-
quencies of copy number variations (Fig. S2B). These findings suggest
that genomic changes have minimal effects on GRG expression and
that their regulation by transcription factors, such as HIF-1α, may be
the primary reason for this phenomenon. We subsequently investi-
gated the correlation between GRG expression and prognosis via data
from the TCGA dataset. Our analysis revealed a significant positive
correlation between the expression of different GRGs, indicating
potential synergistic effects (Fig. S2C). Moreover, most GRGs were
identified as poor prognostic factors for AML (hazard ratio >1), par-
ticularly PGK1, ALDOA, ENO1, TPI1, PKM, PGAM1, and TALDO1,
which exhibited significant correlations (P < 0.05) (Fig. S2D). These
prognostic GRGs may play crucial roles in the development of AML.

Molecular typing plays a vital role in personalized disease treatment
strategies. On the basis of these prognostic GRGs, we performed consensus
cluster analysis and identified two distinct glycolytic subtypes (Clusters C1
and C2) (Fig. S2E). PCA confirmed the reliability of the clustering results
(Fig. S2F). Interestingly, the expression levels of theGRGswere significantly
greater in the C1 subtype than in the C2 subtype (Fig. S2G). Additionally,
survival analysis demonstrated that patients with the C1 subtype had a
significantly worse prognosis than those with theC2 subtype did (Fig. S3H).
Furthermore, the glycolytic activity score was significantly greater in the
C1 subtype (Fig. S3A). These findings suggest that an increase in glycolytic
activity may aggravate the malignant progression of C1 subtype tumors,
thereby resulting in poor patient prognosis.
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There were significant differences in the immune microenviron-
ment andbiological characteristics betweenglycolysis subtypes
We further assessed the disparities in immune and molecular biological
characteristics between molecular subtypes. Through deconvolution, we
computed the relative proportion of AML blood cells in each sample of the
TCGA-LAML cohort. Differential analysis revealed a significantly greater
proportion ofmalignantAMLcells in theC1 subtype than in theC2 subtype
(Fig. S3B). Additionally, the C2 subtype exhibited a greater abundance of
immune effector cells, such as T andB cells, whichmay contribute to amore
favorable prognosis (Fig. S3C). However, a higher TIDE score in the
C2 subtype could be associated with elevated levels of immune evasion by

tumor cells, leading to impaired immune cell functionality and an inability
to halt cancer progression (Fig. S3D). Immunomodulators (IMs), including
numerous IM agonists and antagonists currently undergoing clinical
oncology evaluation, play crucial roles in cancer immunotherapy. Under-
standing their expression patterns across different molecular subtypes is
valuable for comprehensively assessing the immune characteristics of
patients (Fig. S3E). Notably, the most significant variation in expression
between subtypes was observed in the antigen-presenting gene family, all of
which presented higher levels of expression in the C1 subtype, along with
ITGB2, TLR4, and C10orf54 (Fig. S3F). Moreover, DNAmethylation levels
were inversely correlated with the expression levels of various IM genes,

Fig. 1 | Differences in the glycolysis scores of blood tumors and AML cells.
Heatmap (A) and boxplot (B) showing differences in glycolysis scores among the
five hematologic tumors. C The tSNE algorithm distinguished five types of blood
tumors on the basis of the expression of GRGs.D, E Prognostic analysis of the AML
and MDS cohorts with different glycolysis score groups. F Cell classification

characteristics observed in AML single-cell datasets.GThe distribution of glycolysis
scores across all types of cells is shown in the AML single-cell data. H Boxplot
highlighting significant differences in glycolysis scores among various cell types.
I Notable discrepancies exist in the distribution of glycolysis scores between
malignant AML cells and normal cells.
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Fig. 2 | Potential regulatory mechanisms underlying glycolysis in AML.
A Intersection analysis of differentially expressed genes (DEGs) and glycolysis-
related genes (GRGs) in AML malignant cells compared with normal cells.
B Expression profiles of 16 differentially expressed GRGs in a single-cell dataset.
C Chromosomal locations of the 16 differentially expressed GRGs.D Identification
of 16 transcription factors that exhibit differential enrichment of GRG binding sites.
The i-cisTargetmotif platformwas utilized to analyze normalized enrichment scores
(NESs). E Comparison of HIF1A expression between malignant and normal cells in
AML single-cell datasets. F Correlation analysis between HIF1A and the expression

levels of the 16GRGs.GVisualization of intercellular ligand‒receptor pairs in single-
cell data, with color indicating the likelihood and magnitude representing the sig-
nificance of cell communication. H–J Communication network depicting MIF
signaling interactions among distinct cell groups. The color consistency between
lines and squares indicates source‒target relationships, where squares represent
source cells, while line ends indicate target cells.KHeatmap displaying the dominant
senders, receivers, mediators, and influencers involved in MIF signaling inferred
from network centrality scores within the tumor context. L Expression character-
istics of molecules within the MIF pathway across different cell groups.
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such as HLA-DPA1, TNF, and HAVCR2 (Fig. S3F), indicating epigenetic
silencing effects. Enrichment analysis also revealed increased activity scores
for most cancer-related pathways, such as metabolism, proliferation, and
signaling, within the C1 subtype (Fig. S3G). We conducted somatic muta-
tion and copy number variation analyses to explore genomic trait dis-
crepancies between the twoMSs.Gene copynumber variationwas observed
in nearly all chromosomes in both MSs. The frequency of copy number
deletions on chromosomes 5 and 12 was significantly greater in the
C1 subtype than in the C2 subtype (Fig. S3H). Somatic mutation analysis
revealed that the tumor mutation burden was significantly greater in the
C2 subtype, whereas the C1 subtype exhibited a greater proportion of
samples with alterations, particularly a significantly elevated occurrence of
NPM1 mutations characterized by frameshift insertion mutations (Fig.
S3I–K). On the basis of these genomic changes, it can be speculated that the
unfavorable prognosis associated with the C1 subtypemay be influenced by
genomic alterations.

Validationofmolecular subtypesanddeterminationat thesingle-
cell level
We conducted a comprehensive analysis of the disparities in gene expres-
sionbetween the twomolecular subtypes, leading to the identification of 336
differentially expressed genes (DEGs). Most of these DEGs were upregu-
lated in subtype C1 (logFC > 1, adjusted P < 0.05), with PKM and PGAM1
displaying particularly significant differences, indicating their potential
involvement in driving the aggressive phenotype associated with this sub-
type (Fig. S4A). Subsequent GO annotation analysis revealed that these
DEGs were predominantly enriched in immune regulatory processes, such
as cell activation involved in the immune response andpositive regulationof
cytokine production; cellular components, including the secretory granule
membrane and endocytic vesicle; and molecular functions associated with
immune receptor activity (Fig. S4B). The GSEA results revealed significant
enrichment of immune pathways, including Fc gamma R-mediated pha-
gocytosis, necroptosis, neutrophil extracellular trap formation, the NOD-
like receptor signaling pathway, and the Toll-like receptor signaling path-
way, in the C1 subtype (Fig. S4C). Through consensus cluster analysis of
theseDEGs, we identified two distinct gene subtypes, namely geneCluster A
and geneCluster B (Fig. S4D). Notably, geneCluster A presented a sig-
nificantly higher glycolysis score than did geneCluster B (Fig. S4E). Prog-
nostic analysis further revealed that patientsbelonging togenClusterAhada
worse prognosis (Fig. S4F). In terms of clinical characteristics, patients in
geneCluster A presented with increased age and peripheral white blood cell
(WBC) counts (Fig. S4G). Interestingly, subtype C1 predominantly resides
within the confines of geneCluster A and has a relatively highmortality rate,
whereas subtype C2 is associated primarily with geneCluster B and has a
relatively high survival rate (Fig. S4H). Considering the consistent dis-
parities in glycolysis scores observed between these subtypes, it is reasonable
to assert that two distinct molecular subtypes related to glycolysis exist in
AML patients.

To integrate the scRNA-seq and bulk data, 35 samples from the
GSE116256 scRNA-seqdatasetwere integrated intobulkdata on thebasis of
the average gene expression values. Through cluster analysis, these patients
were further classified into two distinct molecular subtypes (Fig. S4I). The
C1 subtype exhibited significant upregulation of both the glycolysis score
and GRG expression (Fig. S4J, K). Additionally, we observed that all six
types of AML malignant cells accounted for a greater proportion of the
C1 subtype, whereas the C2 subtype contained significantly more T cells
(Fig. S4L, M). These findings provide an additional characterization of
glycolysis-related molecular subtypes at the single-cell level.

Prediction of the sensitivity of different molecular subtypes to
chemotherapy and immunotherapy
We further assessed the sensitivity of distinct molecular subtypes to che-
motherapy and immunotherapy. The Beat AML cohort provided data on
patients’ isolated AML cell response to drug therapy; thus, our analysis
focused on this cohort. Consensus clustering also stratified the Beat AML

cohort into two distinct molecular subtypes (Fig. S5A), which is consistent
with other cohorts in which C1 patients presented significantly higherGRG
expression levels and glycolysis scores thanC2patients did (Fig. S5B, C).On
the basis of a significance level of P < 0.001, we identified a group of drugs
that displayed significant sensitivity differences between the C1 and
C2 subtypes; specifically, C1 showed greater sensitivity toward panobino-
stat, MK-2206, 17-AAG (tanespimycin), and cediranib (AZD2171) (Fig.
S5D), whereas the C2 subtype demonstrated increased sensitivity toward
venetoclax, NF-kB activation inhibitors, GSK-1838705A, PHA-665752,
lapatinib, neratinib (HKI-272), and NVP-TAE684 (Fig. S5E). With respect
to immunotherapy responseprediction, both theTCGAcohort and theBeat
AML cohort indicated that patients with the C1 subtype exhibited better
therapeutic responses to PD-1 therapy, with a greater proportion of
responders (Fig. S5F, G). These findings provide valuable insights into
personalized treatment strategies targeting different glycolytic sub-
types of AML.

Collectively, our bioinformatic analyses established two robust glyco-
lytic subtypes of AML with profound differences in prognosis, tumor
microenvironment, and therapeutic vulnerabilities. The consistent identi-
fication of PKM as a top differentially expressed gene in the poor-prognosis
C1 subtype, coupled with its well-established role in cancermetabolism, led
us to functionally investigate its role in leukemia drug resistance.

Development and predictive value analysis of glycolysis-related
signatures
We used all the GRGs to construct a glycolysis-related signature and elu-
cidate its prognostic value. Univariate Cox regression analysis was used to
identify 16prognosticGRGs, followedby the constructionof prognostic risk
score models on the basis of 118 combinations of 10 machine learning
algorithms (Fig. S6A). The C-index of each model was calculated in ten
AML cohorts to evaluate its prognostic ability. Among all the validation
cohorts, we selected the model combination with the highest average C-
index, namely, the algorithm composed of CoxBoost and StepCox (for-
ward), which consisted of nineGRGs (Fig. S6B). Risk scores were computed
for each sample across all cohorts, and patients were categorized into high-
and low-risk groups using optimal cutoff values (Fig. S6C). In the analytical
cohort (TCGA), a significantly greater number of patients in the high-risk
group died (Fig. S6D), and the overall prognosis of these individuals was
worse (Fig. S6E). ROC curve analysis demonstrated that in the analytical
cohort, the risk score model accurately predicted survival rates at 1-, 3-, and
5-year intervals, with AUC values of 0.770, 0.786, and 0.847, respectively
(Fig. S6F). Independent prognostic analysis revealed that this risk score
model possessed significant independentprognostic value according toboth
univariate and multivariate Cox analyses (P < 0.001) (Fig. S6G, H). In two
major international cohorts (Beat AML and HOVON), outcomes were
notably poorer among individuals classified as high risk by our scoring
system (Fig. S6I, J), and ROC curve analysis and independent prognostic
analysis further confirmed its predictive accuracy as an independent
prognosticator (Figs. S6K, LandS7A). Similarfindingswereobserved across
seven additional cohorts, in which patients with high-risk scores con-
sistently exhibited worse clinical outcomes (Fig. S7B–I).

Finally, we integrated clinicopathological factors that demonstrated
significant associations with the prognosis of AML patients via univariate
Cox analysis to develop a nomogram for predicting overall survival (OS) in
AML patients (Fig. S7J). The accuracy of the nomogram’s predictions was
validated through calibration curves generated from data from the TCGA,
HOVON, and Beat AML cohorts (Fig. S7K).

Targeted regulation of PKM alternative splicing represents a
potentially effective therapeutic strategy for addressing drug
resistance in myeloid leukemia
In the above studies, we observed a significant association between
PKM and poor prognosis in patients with AML. Additionally, we
found that the C1 subtype exhibited the most significant upregulation
of this gene. To functionally investigate the role of PKM in a disease
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context mirroring the progression from our low-glycolysis C2 subtype
to the high-glycolysis, drug-resistant C1 subtype, we utilized a model
of CML. We analyzed clinical samples and employed the imatinib-
sensitive K562 cell line (modeling CML-CP) and its isogenic,
imatinib-resistant counterpart K562/G01 (modeling CML-BC). We
hypothesized that the resistant, BC-like state would be associated with
a PKM2-dominant profile, analogous to our C1 AML subtype.
Therefore, our focus shifted toward investigating its role in CML
progression. PKM consists of 12 exons and gives rise to two splice
products: PKM1 and PKM2. Notably, these splice variants are
mutually exclusive, with exon 9 being present only in PKM1, whereas
exon 10 is exclusively included in PKM219. Clinical sample analysis
revealed that the mRNA and protein expression levels of PKM1 in
samples from IM-resistant patients were lower than those in the
normal control group and the sensitive group, while the expression
level of PKM2 was significantly elevated (Fig. 3A, B). Further immu-
nohistochemical detection of bonemarrow smears fromCML patients
revealed that the protein expression level of PKM2 in resistant patients
was significantly greater than that in sensitive patients (Fig. 3C). The
multicolor tissue immunofluorescence results confirmed that PKM
was expressed mainly as PKM2 in CML-resistant patients, whereas
PKM1 was expressed mainly in sensitive patients (Fig. 3D). In CML
and AML cell lines, RT‒qPCR revealed that the expression level of
PKM2 was the highest in the IM-resistant CML cell line K562/G01
(Fig. 3E). Western blot analysis of the CML IM-sensitive cell lines
KCL-22 and K562 and the IM-resistant cell line K562/G01 revealed
that the expression level of PKM2 was the highest in K562/G01 cells
(Fig. 3F), suggesting that PKM2 may play an important role in CML
resistance. PKM2 is a crucial glycolytic enzyme that confers metabolic
advantages for tumor progression20. Suppression of PKM2 induced
apoptosis both in vivo and in vitro21. Moreover, PKM1 exhibits tumor
suppressor activity22, and substituting PKM2 with PKM1 in cancer
cells inhibits cell proliferation and retards xenograft tumor formation
in nude mice23. These findings suggest that the downregulation of
PKM2 and upregulation of PKM1 may represent a particularly
effective therapeutic strategy for cancer treatment.

We developed a targeted PKM splicing strategy using vMO to convert
PKM2 into PKM1 (Fig. 3G). Flow cytometry analysis revealed that the
fluorescence intensity in vMO-transfectedK562/G01 cellswas the highest at
48 h posttransfection (Fig. 3H). Different concentrations of vMO were
transfected into K562/G01 cells for 48 h, and among the concentrations
ranging from 2 to 12 μmol/L, the transfection efficiency was the highest at
10 μmol/L after 48 h (Fig. 3I). Compared with the random sequence vMO
(RS-vMO) group and the untreated control group, treatmentwith 10μmol/l
vMO significantly reduced PKM2 expression while increasing PKM1
expression (Fig. 3J, K). Notably, vMO effectively reduced the IC50 value of
IM in K562/G01 cells. (Fig. 3L, M).

vMO inhibits the growth of myeloid leukemia cells and reduces
drug resistance
To further elucidate the potential of vMO in augmenting the cytotoxic
effects of IM on K562 and K562/G01 cells, both cell lines were cocultured
with IM, vMO, or IM+vMO for 48 h. Notably, treatment with IM+vMO
effectively downregulated PKM2 expression and upregulated PKM1
expression in both K562 and K562/G01 cells (Fig. 4A, F). Furthermore,
compared with the other experimental groups, the combined treatment
with IM and vMO resulted in a significantly greater ability to induce G1
phase arrest in the cell cycle (Fig. 4B, C, G, H). Notably, vMO alone had an
apoptotic effect; however, when vMO was combined with IM, this proa-
poptotic effect was further enhanced (Fig. 4D, E, I, J). Combined treatment
also effectively suppressed the activity of bothK562andK562/G01cells (Fig.
4K, L). Consequently, these findings collectively validate the growth-
inhibitory properties of vMO against myeloid leukemia cells while con-
currently reducing drug resistance.

The therapeutic efficacy and resistance-reversing potential of
vMO were validated in a xenograft model
To assess the therapeutic effects of vMO in vivo and its potential to enhance
IM activity, a K562/G01 cell xenograft model was established. Following
successful cell inoculation, themice were treated with saline, IM, vMO, or a
combination of both drugs. Compared with those receiving low-dose IM,
mice receiving high-dose IM presented smaller tumor volumes (Fig. 5A, B),
indicating that IM can inhibit tumor growth in a dose-dependent manner.
Interestingly, compared with RS-vMO treatment, treatment with vMO
alone also significantly reduced the tumor volume (Fig. 5A, B). Notably,
when the vMO was combined with the IM, either intratumoral or intra-
venous injectionof the vMOresulted in a further reduction in tumorvolume
(Fig. 5A, B). Hematoxylin‒eosin (HE) staining revealed a loose distribution
of tumor cells and increased necrotic areas after combined treatment with
IM and vMO, confirming the superior efficacy of this drug combination
(Fig. 5C). Additionally, the Ki-67 signal intensity was weak after treatment
(Fig. 5D), suggesting slower proliferation of the cells. Consistent with the
findings from the cell experiments, the PKM2 expression levels were sig-
nificantly decreased following the combined treatment (Fig. 5E, F).Notably,
at moderate concentrations (100 μmol/l) of IM, intravenous injection of
vMO had inhibitory effects similar to those of intratumoral injection (Fig.
S8A–C). In conclusion, our study demonstrated that leukemia xenograft
models are more responsive to IM treatment in the presence of vMO.

Construction and identification of engineered exosomes
To better verify the biosafety of vMO,we found that the cell viability of both
the RS-vMO group and the PKM2-vMO group was severely impaired after
adding vMO to HS-5 bone marrow stromal cells (Fig. 6A). This finding
indicates that if vMO is directly added to the blood microenvironment
without targeting, it is likely to affect the physiological functions of normal
cells. Therefore, identifying a method that can transport vMO, target CML
cells, and effectively encapsulate it to reduce its toxicity is highly important
for the application of vMO and the treatment of CML.

Exosomes are novel nanoscale gene delivery vectors that are safe and
efficient, canpenetrate biological barriers, andhave goodbiocompatibility24.
They have great application potential in the delivery of nucleic acid drugs25.
Exosomes have a nanoscale membrane vesicle structure derived from the
fusion of intracellularmultivesicular bodies with the plasmamembrane and
are secreted outside the cell. This nanoscale membrane vesicle structure
exhibits a phospholipid bilayer-coated sac-like morphology, which can
effectively combine with vMO, thereby enabling its effective loading. In
addition, the interleukin-3 receptor (IL3-R) is overexpressed in CML and
AMLcells but is expressed at low levels or not at all in normal hematopoietic
stem cells26–28. These findings indicate that IL3-R can be used as a receptor
target for certain targeted drugs. Daniele Bellavia et al. demonstrated that
engineered exosomes expressing interleukin-3 and lysosome-associated
membrane protein 2b fusion protein (IL3-Lamp2b, IL3L) can load imatinib
or BCR-ABL siRNAand target CML cells in vitro and in vivo, inhibiting the
malignant proliferation of CML cells29. Therefore, we constructed a lenti-
virus expressing IL3L and used it for the preparation of engineered exo-
somes.Moreover, we attempted to load PKM2-vMO into exosomeswith an
IL3Lmembrane protein via an exosome nucleic acid loading kit to verify its
feasibility and functional effect.

We constructed a plasmid containing the recombinant human
Lamp2b gene and the human interleukin-3 gene fragment fusion. A 6*HIS
tag was subsequently added to the C-terminus of the protein (Fig. 6B).
Fluorescence confirmed the successful transfection of the lentivirus into
HEK-293T cells (Fig. 6C). RT‒qPCR and Western blot verification con-
firmed the increased expression of the Lamp2b gene (Fig. 6D, E); the 6*HIS
tag as a tag proteinwas expressed in cells transfectedwith the IL3L lentivirus
but not in cells transfected with the blank control virus or wild-type cells,
indicating that the IL3‒Lamp2b fusiongenewas successfully transferred and
expressed in the cells. We successfully constructed tool cells, that is, engi-
neered HEK-293T cells expressing IL3L.
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Fig. 3 | Changes in PKM gene expression and validation of the role of vMO in the
progression ofmyeloid leukemia. A RT‒qPCR was used to detect the expression of
PKM1 and PKM2 mRNAs in PBMCs from normal individuals, CML IM-sensitive
patients, and CML IM-resistant patients. BWestern blotting was used to detect the
expression of PKM2 in PBMCs from CML IM-sensitive patients and CML IM-
resistant patients. C Immunohistochemistry was used to detect the expression of
PKM in bone marrow sections from CML patients. D Tissue immunofluorescence
was used to detect the expression of PKM1 and PKM2 in bonemarrow sections from
CML patients; red fluorescence represents the PKM1 protein, and green fluores-
cence represents the PKM2 protein. E Expression of PKM2 mRNA in CML and

AML cell lines. F Expression of the PKM2 protein in CML cell lines. G A diagram
depicting alternative splicing of the PKM gene and the binding location of vMO.
H Transfection efficiency was assessed by flow cytometry after treating K562/
G01 cells with various concentrations (2, 4, 6, 8, 10, or 12 μmol/l) of vMO for 48 h.
I Flow cytometry was used to detect the fluorescence intensity in K562/G01 cells
treated with 10 μmol/l vMO for 48 h. J, K After treatment with a concentration of
10 μmol/l vMO, RT‒qPCRwas used formRNA expression analysis to reveal changes
in PKM2 levels, while western blotting was used for protein expression analysis to
assess alterations in both PKM1 and PKM2 levels. L,M Effect of vMO on the
imatinib resistance of K562/G01 cells. RS-vMO: random sequence vMO.
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Fig. 4 | Therapeutic efficacy of vMOs in cell experiments. A–E Expression levels of
the PKM1 and PKM2 proteins (A), the cell cycle (B, C), apoptosis rates (D, E), and
cell activity (K) were evaluated in K562 cells following transfection with IM
(0.2 μmol/l), vMO (10 μmol/l), or a combination of both drugs.F–JExpression levels

of the PKM1 and PKM2 proteins (F), the cell cycle (G,H), apoptosis rates (I, J), and
cell activity (L) were assessed inK562/G01 cells after transfectionwith IM (2 μmol/l),
vMO (10 μmol/l), or a combination of both drugs.
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Fig. 5 | Therapeutic efficacy of vMOs in animal experiments. A, B Tumor volume
was measured in CML xenograft models for each treatment group, with four mice
per group. C Hematoxylin‒eosin staining of tumor sections revealed distinct local
features among the treatment groups. D Immunohistochemical staining

demonstrated variations in Ki-67 levels across the different treatment groups.
E, F The protein expression levels of PKM1 and PKM2, as well as their ratios, were
assessed within each treatment group. IV: intravenous administration.
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Fig. 6 | Construction and identification of engineered exosomes. A The effect of
vMO on the viability of HS-5 cells. B Schematic diagram of the Pinco plasmid
containing IL3-Lamp2b. C Fluorescence image of HEK-293T cells after lentivirus
transfection. D RT-qPCR detection of Lamp2b mRNA expression in HEK-293T
cells after lentivirus transfection. E Western blot detection of 6*HIS tag protein
expression in HEK-293T cells after lentivirus transfection. F Electron microscopy

analysis of NC-Exos and IL3L-Exos. G Nanoparticle tracking analysis of NC-Exos
and IL3L-Exos. HWestern blot detection of exosome-positive markers, negative
markers, and 6*HIS tag protein expression. I, JConfocal microscopy observation of
fluorescence in K562/G01 cells treated with 20 µg/ml HEK-293T-derived exosomes
for 12 h.
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The engineered exosomes expressing IL3L (IL3L-Exos) and control
exosomes (NC-Exos) secreted by HEK-293T cells were extracted through a
multistep ultracentrifugation method. The extracted exosomes were ana-
lyzed and identified via electron microscopy. As shown in Fig. 6F, both
groups of exosomes presented a typical cup-shaped/disk-shaped mor-
phology, had a complete lipid bilayer membrane structure, the particle size
distribution was within the range of 30–200 nm, and gene modification did
not cause significant morphological changes. As shown in Fig. 6G, nano-
particle size analysis further confirmed that the average particle size of the
NC-Exo group was 148.8 nm, with a concentration of 1.8 × 1011

particles/mL; the average particle size of the IL3L-Exo group was 147.9 nm,
with a concentration of 2.8 × 1011 particles/mL, and the particle size dis-
tributions of the two groups were basically consistent.Western blot analysis
(Fig. 6H) revealed that exosomemarker proteins such as Alix, TSG101, and
CD81were stably expressed in the exosomes fromboth groups, whereas the
endoplasmic reticulumprotein CALNEXI, a negativemarker for exosomes,
was not expressed on the exosomes. This confirmed that engineering
modification did not affect the basic biological characteristics of exosomes;
in addition, exosomes expressing IL3L were also capable of expressing
6*HIS tag-labeled proteins.

Exosome uptake experiments and targeting verification
To determine whether the exosomes produced by the HEK-293T cells
(either expressing IL3L or not expressing IL3L) were taken up by the K562/
G01 cells, the exosomes labeled with the lipophilic dye PKH26 were
coculturedwith theK562/G01 cells at a concentrationof 20 µg/ml in a 37 °C,
5% CO2 incubator for 12 h Confocal microscopy images revealed that the
exosomes were successfully taken up by the cells (Fig. 6I, J); compared with
cells treated with NC-Exos, cells treated with IL3L-Exos presented sig-
nificantly greaterfluorescence intensity, indicating that the cells treatedwith
exosomes took up more exosomes within the same time period, and the
difference was significant.

To confirm that engineered exosomes with targeting ability could
effectively target leukemia cells within a unit of time, K562/G01 cells, HS-5
cells, and BT-549 breast cancer cells were cocultured with 20 µg/ml lipo-
philic dye PKH26-labeled exosomes at 37 °C in a 5% CO2 incubator for 6,
12, or 24 h; one group of K562/G01 cells was cocultured withNC-Exos; and
the other three groups of K562/G01 cells, HS-5 cells, and BT-549 cells were
cocultured with IL3L-Exos. As shown in Fig. S9A, B, compared with K562/
G01 cells treated with NC-Exos, K562/G01 cells treated with IL3L-Exos
presented significantly greater fluorescence intensity at 6 h, 12 h, and 24 h,
indicating that they took up more exosomes; at the same time, compared
with HS-5 cells and BT-549 cells treated with IL3L-Exos, K562/G01 cells
treated with IL3L-Exos, owing to their specific IL3-R, also took up more
exosomes at 6 h, 12 h, and 24 h, showing significantly greater fluorescence
intensity.

vMO-loaded engineered IL3-Lamp2b exosomes
First, we coincubated 2 µl, 4 µl, 8 µl, and 10 µl of vMO at a concentration of
1mMwith engineered exosomes via the ExoLoad® nucleic acid loading kit
from Enzogenetix to obtain vMO-loaded engineered exosomes. These
solutions were then added to K562/G01 cells and coincubated at 37 °C with
5% CO2 in saturated humidity for 48 h. RT‒qPCR and Western blotting
verified that the engineered exosomes loaded with 10 µl of vMO (1mM)
were themost effective at splicing the PKMgene (Fig. 7A, B), promoting the
generation of PKM1 and inhibiting the generation of PKM2. Therefore, we
used 10 µl of vMO(1mM) for subsequent experiments. Flow cytometrywas
used to detect the fluorescence intensity of the cells. The percentages of
positive control exosomes loadedwithRS-vMO, IL3L exosomes loadedwith
RS-vMO, and IL3L exosomes loadedwith PKM2-vMOafter cellular uptake
were 95.5%, 95.2%, and 97.7%, respectively (Fig. 7C). Confocal microscopy
confirmed that the IL3L-engineered exosomes loaded with PKM2-vMO
were successfully taken up by K562/G01 cells, with overlapping green
fluorescence from vMO-FITC and red fluorescence from PKH26-labeled
exosome membranes observed intracellularly (Fig. 7D).

The engineered exosomes loaded with 10 µl of 1mM vMO were
subsequently cocultured with K562/G01 cells, and the results were com-
pared with those of the other groups. As shown in Fig. 8A, B, both the
exosomegroup loadedwithPKM2-vMO(PKM2-vMOExos) and the direct
PKM2-vMO treatment group effectively increased the expression of PKM1
and decreased the expression of PKM2 through selective splicing. However,
the IL3L-engineered exosome group loaded with PKM2-vMO (IL3L-
PKM2-vMOExos)wasmore effective at influencing the expression of PKM
than the PKM2-vMO Exos group was; that is, it most effectively increased
the expression of PKM1 and decreased the expression of PKM2.Moreover,
the protein expression of the proapoptotic gene BAX in the IL3L-PKM2-
vMO Exos group increased the most significantly, whereas the protein
expressionof the antiapoptotic geneBCL-2decreased themost significantly.
This finding also indicates that the addition of IL3L-engineered exosomes
loaded with PKM2-vMO to K562/G01 cells can most effectively promote
the apoptosis of drug-resistant cells.

vMO-engineered exosomes loaded with exosomes inhibited the
malignant biological phenotypes of CML cells
K562/G01 cells were cocultured with exosomes from each group for 48 h,
and the IC50 values of IM in the different treatment groups were detected.
The results revealed that the IC50 of the blank control groupwas 3.735 µM;
after pretreatment with 2 µM IMand culture with K562/G01 cells, the IC50
values of the blank control group and the RS-vMOExos control groupwere
3.788 µMand3.804 µM, respectively, with no significant change in the IC50
value; the IC50 value of the PKM2-vMOexperimental groupwas 2.262 µM;
the IC50 value of the PKM2-vMO Exos experimental group was 2.202 µM;
and the IC50 value of the IL3L-PKM2-vMO Exos experimental group was
1.771 µM (Fig. 8C, D). The results indicated that in the drug-resistant CML
cell line, the IC50 of the PKM2-vMO Exos experimental group decreased
and was similar to that of the PKM2-vMO experimental group, and the
sensitivity of cells to IM significantly increased. Compared with the other
two groups, the IL3L-PKM2-vMO Exos experimental group more effec-
tively increased the sensitivity of cells to IMand reversed the drug resistance
of K562/G01 cells to IM.

Flow cytometry was used to detect cell apoptosis. The results revealed
that pretreatment with 2 µM IM induced partial apoptosis of K562/
G01 cells, and the apoptosis rate increased in the blank control group and
the RS-vMO Exos control group. On this basis, the percentage of apoptotic
cells in the PKM2-vMO experimental group and the PKM2-vMO Exos
experimental group was greater than that in the control group. The IL3L-
PKM2-vMO Exos in the experimental group most significantly promoted
cell apoptosis, increasing the apoptosis rate (Fig. 8E, F). This trend was
consistent with the IC50 results of the different treatment groups on K562/
G01 cells mentioned above.

We also detected that after bone marrow stromal HS-5 cells were
treated with exosomes from each group loaded with vMO, the cell viability
remained essentially unchanged, with no significant difference (Fig. 8G).
Thisfinding indicated that the vMO-loaded exosomeshadno toxic effect on
bone marrow stromal cells, demonstrating their ability to target drug-
resistant cells and potential biological safety.

Discussion
The Warburg effect and glycolytic reprogramming are established hall-
marks of cancer30,31, and their association with poor prognosis and drug
resistance in AMLhas been observed32,33. However, a systematic framework
that translates glycolytic heterogeneity into actionable therapeutic strategies
has been lacking. Our study moves beyond correlation to establish a com-
prehensive pipeline from computational discovery to therapeutic inter-
vention. We first defined robust glycolytic molecular subtypes, identified a
key mechanistic driver (PKM) linking aggressive subtyping to resistance,
and ultimately developed and validated a novel, targeted nanotherapeutic
strategy to reverse this resistance.

Myeloid leukemia has a high-glycolysis score and is associated with an
unfavorable prognosis, indicating that glycolysis may play a crucial role in
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Fig. 7 | Uptake of engineered exosomes loaded with PKM2-vMO by CML drug-
resistant cells. A, B RT-qPCR and Western blot detection of PKM1 and PKM2
mRNA and protein expression in K562/G01 cells cocultured with engineered exo-
somes loaded with different concentrations of vMO. C Flow cytometry verification

of fluorescence expression after the uptake of engineered exosomes loaded with
vMO by K562/G01 cells. D Confocal microscopy observation of the uptake of
engineered exosomes loaded with vMO by K562/G01 cells.
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the initiation and progression of AML. Single-cell data provide compelling
evidence that AML cells derived from hematopoietic stem cells, progenitor
cells, and granulocyte‒monocyte progenitor cells exhibit significantly ele-
vated glycolytic scores compared with their normal counterparts. We also
attempted to elucidate thepotential regulatorymechanismunderlyingAML
glycolytic activity, revealing a significant positive correlation between
HIF1A and GRG expression. Several experimental studies have confirmed
that HIF1A promotes glycolysis in AML cells by regulating GRG
expression34–37, further reinforcing the reliability of our bioinformatics
analysis results. Additionally, MIFmaymodulate the function of TME cells
through the secretion of proteins, thereby affecting the activities of CD74,
CD44, and CXCR4. In leukemia, MIF/CD74 interactions play pivotal roles
in tumor cell survival, tumor progression, andmetastasis. For example,MIF
binding to CD74 upregulates BCL-2 and CD84 expression38, inducing NF-
κB activation and TAp63 upregulation, consequently leading to IL-8

secretion, which promotes cell survival39. Furthermore, CD74, alongwith its
target genes TAp63 and VLA-4, facilitates CLL cell migration back into the
bone marrow39. Therefore, GRGs have diverse biological functions, neces-
sitating a comprehensive understanding of their molecular characteristics.

We subsequently confirmed the presence of the two subtypes of gly-
colytic molecules in multiple AML cohorts. The high-glycolytic score sub-
type is associatedwith a significantlyworse prognosis, potentially because of
an increased proportion of malignant cells, increased activity of cancer-
relatedpathways, and a greater frequencyof genomic variations. The precise
identification of molecular subtypes also facilitates the establishment of
personalized treatment programs. The isolated cells in the high-glycolysis
score group presented increased sensitivity to panobinostat, MK-2206,
tanespimycin, and cediranib, which exert antitumor effects by targeting
HDAC inhibition, AKT suppression, HSP90 blockade, and VEGFR inhi-
bition, respectively. Panobinostat, MK-2206, and tanespimycin promote

Fig. 8 | Effects of engineered exosomes loadedwith PKM2-vMOon themalignant
phenotype of CML drug-resistant cells. A, BRT-qPCR andWestern blot detection
of changes in PKM1 and PKM2 mRNA and protein expression in K562/G01 cells

cocultured with engineered exosomes loaded with vMO. Effects of engineered
exosomes loaded with PKM2-vMO on imatinib resistance (C, D) and apoptosis
(E, F) in K562/G01 cells and the viability of HS-5 cells (G).
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apoptosis and enhance the cytotoxicity of cytarabine in AML cells40–42, and
relevant clinical experiments have confirmed their value in vivo43. Addi-
tionally, we predicted that subtypes with high-glycolysis scores would be
more responsive to anti-PD-1 immunotherapy, thus providing a new
therapeutic basis for this group of patients. Among the glycolytic genes,
PKM emerged as a prime candidate from our bioinformatic analysis due to
its significant upregulation in the C1 subtype. To functionally validate its
role, we leveraged the strong biological parallel between CML disease pro-
gression and our AML subtypes. We posited that the transition from the
treatment-sensitive chronic phase (CP, modeling the C2 subtype) to the
aggressive, therapy-resistant blast crisis (BC, modeling the C1 subtype)
would be underpinned by a metabolic shift. Our findings confirmed this: a
pronounced switch from PKM1 to PKM2 expression was evident in
imatinib-resistant patients and in the isogenic K562/G01 CML-BC model.
This positions PKM2 not merely as a glycolytic enzyme, but as a key
executor of the “C1-like” resistant phenotype, directly bridging our com-
putational finding with a tractable therapeutic mechanism. The designed
vMO effectively modulated PKM splicing from PKM2 to PKM1, reversing
imatinib resistance in vitro and in vivo. However, its non-specific cyto-
toxicity to bone marrow stromal cells highlighted the critical barrier of
targeted delivery for therapeutic oligonucleotides. Our study provides a
sophisticated solution: IL3-receptor-targeted exosomes (IL3L-Exos). This
delivery system successfully addressed the dual challenges of (1) specificity,
by efficiently delivering vMO to IL3-R-expressing leukemia cells while
sparing non-target cells, and (2) safety, by shielding the cargo and sig-
nificantly reducing off-target toxicity. The IL3L-Exos/vMO complex
achieved the most potent PKM splicing correction and resistance reversal,
effectively transforming a promising oligonucleotide into a targeted, clini-
cally viable nanotherapeutic.

The 9-gene prognostic signature, developed through a rigorous multi-
algorithmic approach and validated across ten independent cohorts,
demonstrates remarkable generalizability. The predictive power of this
model is underpinned by the strong biological rationale of its components,
most of which are established players in glycolysis and leukemogenesis44–46.
This fusionof computational robustnesswithbiological credibility enhances
the model’s potential clinical utility.

We acknowledge the limitations of our study. The prognostic model
and subtype analyses, while validated in multiple retrospective cohorts,
require confirmation in prospective clinical trials. Furthermore, although
the CML-BC model is a highly relevant surrogate for aggressive AML, the
efficacyof the IL3L-Exos/vMOstrategymust be further validated inprimary
AML samples, particularly across different genetic subtypes. Finally, the
translational path for this system necessitates addressing challenges related
to scalable GMP production, comprehensive in vivo pharmacokinetics/
pharmacodynamics, and long-term biosafety studies.

In conclusion, our work establishes a closed loop from systems-level
discovery to targeted nanotherapy. We defined a clinically relevant glyco-
lytic taxonomy of AML, identified and functionally validated PKM as a
master regulator of the resistant subtype in a pertinent disease model, and
engineered a novel exosome-based delivery platform to overcome the
toxicity of this intervention. This integrated approach provides a robust
foundation for targeting hyper-glycolytic, drug-resistant myeloid leukemia
with precision and efficacy.

Methods
Data collection and preprocessing
TengroupsofAMLsampleswereutilized in this study, encompassing a total
of 2680 AML samples with available clinical information. These groups
consisted of seven Gene Expression Omnibus (GEO) datasets: GSE10358-
GPL570, GSE12417-GPL96, GSE12417-GPL570, GSE37642-GPL96,
GSE37642-GPL570, and GSE71014-GPL10558. Additionally, 173 AML
sampleswere obtained from theTCGA-LAMLcohort from theUCSCXena
database (https://xena.ucsc.edu/). The HOVON group was obtained from
the ArrayExpress database (https://www.ebi.ac.uk/biostudies/
arrayexpress). The RNA-seq and matched clinical data for the Beat AML

group were downloaded from the Vizome database (http://www.vizome.
org/aml2/). The GSE13159-GPL570 cohort comprised 750 cases of acute
lymphoblastic leukemia (ALL), 542 cases of AML, 448 cases of chronic
lymphoblastic leukemia (CLL), 76 cases of chronic myeloid leukemia
(CML), and 206 cases of myelodysplastic syndrome (MDS) to compare
glycolytic activity in different blood tumors. To ensure consistency across
platforms for GEO groups on the GPL96 and GPL570 chip platforms, we
acquired the original “CEL” file and performed data normalization via the
robust multiarray averaging (RMA) method. Standardized data files were
downloaded from other GEO groups on different platforms. RNA
sequencing data from the TCGA-LAML, GSE106291, and Beat AML
groups were converted into transcripts per million (TPM) values. Data on
methylation, somatic mutation, and gene copy number were downloaded
from The Cancer Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/).
Table S1 provides sample information for all the groups. All of the experi-
ments were approved by the Ethics Committee of the Second Affiliated
Hospital of Nanchang University (No. review. [2018] No. (092)).

Single-cell RNA-seq data processing
WeobtainedAML single-cell sequencing data (GSE116256) for 21 different
cell types from the GEO database. To ensure accuracy, we consulted the
relevant literature on single cells47,48. R software was used to process the 10×
scRNA-seq data following a standardized procedure. We filtered out genes
that were not expressed in at least three single cells and removed cells with
uniquemolecular identifier (UMI) counts of less than 200. Additionally, we
included only cells that expressed between 1500 and 6000 genes. Cells with
mitochondrial gene expression exceeding 20% were considered of low
quality and were excluded from further analysis. Normalized counts were
obtained by applying library size normalization to the original matrix, fol-
lowed by identifying the top 2000 genes with high coefficients of variation
via the “FindVariableFeatures” function. After z-score transformation,
principal component analysis (PCA)was conductedon thesehighly variable
genes. To visualize the clustering patterns, we employed the uniform
manifold approximation and projection (UMAP) algorithm. The cell types
were annotated according to the van et al. annotation file49. We utilized the
“CellChat” package to analyze intercellular communication networks
within AML samples to identify potential regulatory roles.

Analysis of functional enrichment and estimation of the cellular
composition of AML samples
The software package “clusterProfiler” was used for performing Gene
Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Gen-
omes (KEGG) enrichment analysis50. The pathway score was calculated
via the gene set variation analysis (GSVA) algorithm to quantify the
activity level of each pathway51. The CIBERSORT algorithm employs a
support vector regression model to deconvolve bulk gene expression
profiles into cell-type compositions, utilizing a reference matrix that
contains gene expression signatures (GESs) specific to the desired cell
types of interest. To construct theGES referencematrix for the 21 required
cell types inCIBERSORT, we randomly sampled 200 instances of each cell
type via AML scRNA-seq profiles.We subsequently estimated the relative
proportions of these 21 AML cell types within the bulk gene expression
dataset52, including hematopoietic stem cells (HSCs), HSC-like progeni-
tors (Prog), Prog-like, granulocyte–monocyte–progenitor (GMP), GMP-
like, promonocyte (ProMono), ProMono-like, monocyte (Mono),Mono-
like, conventional dendritic cell (cDC), cDC-like, plasmacytoid dendritic
cell (pDC), early erythroid progenitor (earlyEry), late erythroid pro-
genitor (lateEry), progenitor B-cell (proB), mature B-cell (B), plasma cell
(plasma), naïve T-cell (T), cytotoxic T lymphocyte (CTL), and natural
killer cell (NK) populations.

Identification of molecular subtypes
The AML samples were subjected to unsupervised clustering via the
“ConsensusClusterPlus” package, and 1000 resampling iterations were
conducted to ensure the reliability of the cluster analysis results.
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Development of a prognostic model through the integration of
machine learning approaches
Initially, we utilized univariateCox regression analysis to identify glycolysis-
related genes (GRGs) that were significantly associated with prognosis
(P < 0.05) in at least four of the ten AML datasets while maintaining a
consistent hazard ratio (HR) orientation. The TCGA-LAML dataset was
designated the primary cohort for analysis, and the remaining datasets were
used as the validation cohort. We employed 10 different machine learning
algorithms, including CoxBoost, stepwise Cox, Lasso, Ridge, elastic net
(Enet), survival support vector machines (survival-SVMs), generalized
boosted regression models (GBMs), supervised principal components
(SuperPCs), partial least Cox (plsRcox), and RSF. These algorithms were
combined in 118 different ways within a 10-fold cross-validation frame-
work, using the TCGA-LAML training cohort for variable selection and
model construction. All the constructed models were evaluated in both the
validation and analysis cohorts by calculating their C-index values. The
predictive performance of eachmodel was ranked on the basis of its average
C-index within the validation cohort. Finally, we selected a combination of
algorithms that demonstrated robust performance and clinical translational
significance to develop a risk score model capable of predicting the prog-
nosis of patients with AML. In this study, we specifically utilized the Cox-
Boost and StepCox (forward) algorithms to construct the risk-scoring
model.

Risk score ¼
Xi

1

ðCoefi � ExpGeneiÞ ;

In the model gene, “i” represents the regression coefficient as “Coef,”
and the expression value is “ExpGene” (Table S2). By applying an optimal
cutoff value, all the AML cohorts were categorized into high- and low-risk
groups for subsequent analysis.

Drug sensitivity analysis and immunotherapy response
assessment
We analyzed the experimental data of drugs administered to isolated AML
cells from the Beat AML cohort. We compared the AUC values of multiple
drug treatments across different molecular subtypes, where a smaller AUC
value indicated greater drug sensitivity. We used a significance level of
P < 0.001 to identify drugs with significant differences in sensitivity. Addi-
tionally, we utilized the SubMap algorithm (https://cloud.genepattern.org/
gp) to predict the response of various molecular subtypes to immunother-
apy with anti-PD-1 and anti-CTLA4 agents. Furthermore, to assess the
degree of tumor immune evasion,weused theTumor ImmuneDysfunction
andExclusion (TIDE)website (http://tide.dfci.harvard.edu/) to calculate the
TIDE score of the AML samples53.

Cell culture
The K562 and K562/G01 cell lines, obtained from the Institute of Hema-
tology at the Chinese Academy of Medical Science in Tianjin, China, were
maintained in RMPI 1640medium (Bioind, Israel) supplementedwith 10%
fetal bovine serum (FBS, Bioind), 100 U/ml penicillin, and streptomycin.
HEK-293T,HS-5, and BT-549 cells were cultured inDMEM supplemented
with 10% fetal bovine serum. The cells were then incubated at 37 °C with a
CO2 concentration of 5% in a humidified incubator. IMwas procured from
Sigma‒Aldrich (St. Louis, MO, USA), while IM-resistant K562/G01 cells
were cultured as previously described54.

Morpholinos transfection
On the basis of the abnormal splicing pattern of PKM pre-mRNA, we
developed and synthesized a specific vMOsequence labeledwithfluorescein
FAM (Gene Tools, USA). vMO (5′-CGCCAGGCGGCGGAGTTCCTC
AAATAAT-3′) was designed to target the splice junction between exons 9
and 10 of PKM pre-mRNA. An antisense oligonucleotide (5′-CCT CTT
ACCTCAGTTACAATTTATA-3′)was used as a control. The cocultured
cells were washed with PBS until no fluorescence signal remained, and flow

cytometry was used to measure the level of fluorescence activity. Endo-
Porter is known for its unique delivery capabilities, and gene tools have
minimal toxicity and optimal delivery when the recommended con-
centration of 6 μmol/l (equivalent to 6 μl/ml of media) is used for assessing
antisense activity at 48 h. Gene tools suggest starting with a morpholino
oligo concentration of 10 μmol/l and adjusting it on the basis of experi-
mental outcomes. To further optimize the reaction conditions, K562 cells
were coincubated with vMO concentrations ranging from 2 to 12 μmol/l
(corresponding to volumes ranging from 2 to 12 μl per ml of media),
allowing for comprehensive evaluation.

RNA extraction and real-time quantitative PCR
Total RNA was extracted from cells via TRIzol reagent (Invitrogen, CA,
USA) following the manufacturer’s instructions. Real-time quantitative
PCR (RT‒qPCR) analysis was conducted on an Applied Biosystems 7500
Real-TimePCRSystem (Applied Biosystems, Foster City, CA,USA) using a
TaqMan Probe qPCR SuperMix Kit (TransGen Biotech, Beijing, China).
For PKM1 gene amplification, the following primers were used: forward
primer, 5′-GCT GCC ATC TAC CAC TTG C-3′ and reverse primer, 5′-
CCA GAC TTG GTG AGG ACG ATT-3′. Similarly, for PKM2 gene
amplification, the forward primer 5′-GAAGAACTTGTGCGAGCCT-3′
and reverse primer 5′-CGTCAGAACTATCAAAGCTGC-3′were used.
GAPDH gene amplification was performed via the following primers: for-
ward primer, 5′-CAG CCT CAA GAT CAT CAG CA-3′ and reverse pri-
mer, 5′-TGTGGTCATGAGTCCTTCCA-3′. The comparative threshold
cycle (Ct) valuewas used for data analysis of each parameter. The changes in
expression were calculated relative to those of the control group via the
formula 2−ΔΔCt.

Western blot analysis
Total proteins were separated via 10% SDS-polyacrylamide gel electro-
phoresis (Beyotime) and transferred ontopolyvinylidenedifluoride (PVDF)
membranes (Millipore, MA, USA). To block the PVDF membranes, they
were incubated with 5% skim milk in PBS for 2 h. The membranes were
subsequently incubated overnight with anti-PKM1/2 antibody (1:1000
dilution; Cell Signaling Technology, USA) and anti-β-actin antibody
(1:1000 dilution; Cell Signaling Technology, USA). Following three washes
with TBST buffer solution, the membranes were exposed to horseradish
peroxidase (HRP)-conjugated secondary antibody (1:10,000 dilution; Pro-
teintech, Rosemont, IL, USA) at room temperature for 1 h. After washing
again, the protein bands on the strips were visualized via a chemilumines-
cence reagent kit (Beyotime, China). The resulting images of the protein
bands were captured via ChemiScope Series equipment (Clinx Science
Instrument Co., China).

Cell Counting Kit-8 (CCK-8) assay
Cell cytotoxicity was assessed via a CCK-8 assay (TransGen Biotech,
Beijing, China). K562 or K562/G01 cells were seeded at a density of
20,000 cells/well in 96-well plates. The IM group, fluorescent-labeled
vMO group, combination of IM and vMO (IM+vMO), and untreated
control groups were cocultured with the respective cell types. Different
concentrations of IM were added to both cell types for 48 h. Subse-
quently, the CCK-8 reagent (10 μl/well) was added after IM treatment,
and the mixture was incubated for 2 h. The absorbance at 450 nm was
measured via an ELISA-format spectrophotometer. Each experiment
was replicated three times, and the mean value represents the data
obtained. The inhibition rate was calculated as follows: 1-(treated OD-
blank OD)/(control OD-blank OD).

Flow cytometry for the cell apoptosis assay
Apoptotic cells were assessed via Annexin V-FITC/PI (for K562) or
Annexin V PE/7-AAD (for K56/G01) apoptotic detection kits (Solarbio)
following themanufacturer’s guidelines. The cells were plated at a density of
106 cells perwell and incubated for 15minat roomtemperature according to
the manufacturer’s instructions. A Beckman Coulter CytoFLEX S flow
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cytometer was used to analyze the proportions of early apoptotic and late
apoptotic/dead cells.

In vivo xenograft model of human CML in BALB/c-nu mice
The BALB/c-nu mice used in this study were obtained from Nanchang
University. All experiments were approved by the Animal Care Committee
of the Second Affiliated Hospital of Nanchang University (no. review.
[2018]No. (092)). To induce local tumor formation, 1 × 107 K562 cells were
subcutaneously injected into female BALB/c-numice aged 5–6weeks (n = 4
per group). The mice were randomly divided into 10 groups. Two weeks
after transplantation, an intratumoral injection of vMO (8.4mg/kg) was
administered every other day, whereas IM (50, 100, or 200mg/kg/day) was
administered orally once daily. Different concentrations of IM alone or in
combination with vMO were administered for a duration of 2 weeks, with
saline serving as the control treatment.Additionally, vMOwas administered
via tail vein injection every other day to female BALB/c-nu mice, whereas
IM (100mg/kg/day)was administered orally once daily. Tumor growthwas
monitored regularly andmeasured every other day via calipers to determine
the tumor size. The tumor volumewas calculated via the following formula:
volume = 1/2 × length × width2. Paraffin-embedded tissue samples were
prepared for immunohistochemical staining.

Construction of lentiviruses expressing the IL3-Lamp2b protein
and cell lines stably expressing the IL3-Lamp2b protein
On the basis of the literature29, we constructed a plasmid containing the
fusion gene of recombinant human Lamp2b and human interleukin-3.
Then, a 6*XHIS tag was added to the C-terminus of the protein for ver-
ification of recombinant protein expression. GENEWIZ was used to con-
struct a lentivirus expressing the IL3-Lamp2b fusion protein. Subsequently,
well-grown HEK-293T cells were seeded into 6-well plates at a density of
1×10⁵ cells/well and cultured at 37 °C and 5% CO₂ for 16–24 h. When the
cell confluence reached 20–30%, the calculated volume of lentivirus sus-
pension was added at an MOI of 20, along with the corresponding con-
centration of transfection reagent. The final volume of each well was
adjusted to 2mL. After 16 h of virus infection, the medium was replaced
with completemedium(if the cell conditionwas abnormal, themediumwas
replaced at 8 h). After 72 h of continuous culture,fluorescencewas observed
under afluorescencemicroscope.When the cell conditionwas good and the
fluorescence expression was obvious, puromycin at an appropriate con-
centration (usually 1–5 μg/mL) was added for screening culture. A stably
transfected cell line was successfully obtained when more than 90% of the
surviving cells showed stable fluorescence under a fluorescencemicroscope.

Exosome preparation
After the HEK-293T cells were gently washed three times with PBS at a
confluence of 80–90%, they were cultured in serum-free DMEM for 48 h.
After the culture, the supernatant was collected and subjected to gradient
centrifugation: first, it was centrifuged at 500 × g for 10min to remove the
suspended cells; then, the supernatant was transferred to a new centrifuge
tube, centrifuged at 2000 × g for 20min to further remove the cell debris;
and finally, it was centrifuged at 12,000 × g for 20min to remove the cell
fragments and small particles, obtaining a clear conditioned medium. The
supernatant was concentrated to an appropriate volume via a 100 kDa
ultrafiltration tube (5000 × g, 5 min). The concentrated cell supernatantwas
collected, transferred to an ultracentrifuge tube, and centrifuged at
120,000 × g for 1 h and 30min via ultracentrifugation. The supernatant was
discarded, and the precipitate was collected as exosomes. The exosome
precipitate was resuspended in an appropriate amount of PBS and stored at
4 °C for short-term preservation (≤3 days) or at −80 °C for long-term
storage.

Electron microscopy observation
A total of 10 µL of the exosome sample was mixed with an equal volume of
4% paraformaldehyde solution for fixation; the fixed sample was added to
the surface of a 200-mesh carbon supportfilm copper grid (pore diameter of

2 nm) and allowed to stand at room temperature for 1min for adsorption;
the excess liquid from the edge of the copper grid was gently absorbed at a
45° angle with filter paper, and 10 µL of 2% uranyl acetate negative staining
solution (pH4.5)was immediately added for staining for 1min; the staining
solutionwas again absorbedwithfilter paper, and the coppergridwasplaced
in a desiccator at room temperature and away from light for 30min to dry.
Finally, the samples were observedwith a transmission electronmicroscope
at an acceleration voltage of 100 kV and magnified to collect typical mor-
phological images of the exosomes.

Particle size determination
Exosomeswere appropriately dilutedwith 1×PBS. The size distribution and
concentration of the exosomes were determined via NTA via a ZetaView
particle size analyzer. The exosomemixture was illuminated with a 488 nm
laser, and the movement of the nanoparticles caused by Brownian motion
was recorded for 60 s at an average frame rate of 20 frames per second. The
NTA values at multiple positions were recorded and analyzed via the cor-
responding software (ZetaView).

Exosome uptake experiment
Onemilliliter of diluent C buffer (from the Solarbio PKH26 kit) was added,
4 μL of PKH26 red fluorescent dye was added, and the mixture was mixed
thoroughly and labeled as Tube A. Another 1mL of diluent C buffer was
added, and 20 μg of purified sEVs was added, which was labeled as Tube B.
Tube A and Tube B were mixed in equal volumes and incubated at room
temperature in the dark for 5min to allow the dye to stably bind to the sEV
membrane lipid bilayer. Then, 2mL of fetal bovine serum was added to
terminate the reaction, and the serum protein bound to the excess free dye
molecules. The labeled mixture was transferred to an ultracentrifuge tube
and centrifuged at 120,000 × g for 90min at 4 °C to completely remove the
unbound dye molecules. The supernatant was discarded, and the sEV
precipitate was gently resuspended in 100 μL of precooled PBS and stored at
4 °C in the dark for later use. Next, the cells of each cell line were seeded at a
density of 2 × 104 cells per well in 24-well plates with sterilized coverslips
preplaced. After the cells stabilized (approximately 12 h), an equal amount
of PKH26-labeled sEVswas added to eachwell. Three time points, 6 h, 12 h,
and 24 h, were set, and the samples were incubated at 37 °C in a 5% CO₂
incubator. After reaching the predetermined time, different types of cells
were treated differently: for the suspended K562/G01 cells, they were first
collected via centrifugation at 1000 rpm for 5min and then washed twice
with PBS (1000 rpm × 3min); for the adherent HS-5 and BT-549 cells, the
culture medium was directly discarded, and the coverslips were gently
rinsed with prewarmed PBS three times. The K562/G01 cells were resus-
pended, added to new coverslips, and incubated with coverslips containing
adherent cells at room temperature for 5min. All coverslips were fixedwith
500 μL of 4% paraformaldehyde at room temperature for 20min and then
washed three times with PBS on a horizontal shaker. To permeabilize the
nuclear membrane, it was treated with 0.2% Triton X-100 at room tem-
perature for 15min and then washed three times with PBS. Next, 500 μL of
DAPI working solution was added for nuclear staining for 20min, and the
samples were then washed three times thoroughly with PBS. Coverslips
were sealed with anti-fluorescence quenching mounting medium. A con-
focal microscope with a 40× objective was used to collect images. Five fields
of view were randomly selected for each sample, and the fluorescence
intensity was quantitatively analyzed via ImageJ software.

vMO load experiment
In this study, the ExoLoad® nucleic acid loading kit from Enzogenetix was
used to encapsulate vMO effectively into the exosomes. The reagents were
added in the following sequence and proportion: 10 µl of vMO (1mM),
100 µgof exosomes, 20 µl of ETP, and a reactionmixturewith a volumeof 1/
10 of the exosome volume. The mixture was incubated at 37 °C in the dark
for 2 h, with continuous shaking at 150 rpm during the incubation. After
incubation, the exosomes were transferred to a 100 kDa ultrafiltration tube
and subjected to ultrafiltration centrifugation again to obtain vMO-loaded
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exosomes, and free small nucleic acids were removed. The vMO-loaded
exosomes were cocultured with K562/G01 cells for 48 h, and gene expres-
sion and related phenotypes were detected.

Statistical analysis
Statistical analysis was performed via R software. The Wilcoxon test was
used to evaluate disparities between twogroups,whereas theKruskal‒Wallis
test was used to compare differences among multiple groups. Data are
presented as mean ± SD, a significance level of P < 0.05 was considered
(*P < 0.05, **P < 0.01, ***P < 0.001).

Data availability
All data used in this work can be acquired from the Gene-Expression
Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) and The Cancer
Genome Atlas (TCGA) databases (https://portal.gdc.cancer.gov/).

Code availability
All custom code can be obtained from the corresponding author upon
reasonable request.
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