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Mismatch repair (MMR) deficiency occurs in 10–20% of colorectal cancer (CRC) cases, leading to
microsatellite instability (MSI). Although MSI/MMR testing is critical for CRCmanagement, high costs
and long turnaround times limit testing rates and clinical utility, highlighting the need for more
accessible, cost-effective alternatives. PANProfiler Colorectal (PPC) is an artificial intelligence (AI)-
based biomarker test that determines MSI/MMR status directly from haematoxylin and eosin (H&E)-
stained slides. We conducted a blinded, multi-centred validation to assess PPC’s performance
against standard testing. The study included 3,576 whole slide images from 1,243 CRC patients
across three United Kingdom institutions. PPC produced definitive results for 86.55% of slides,
achieving an overall agreement of 93.83%, positive agreement of 92.54%, and negative agreement of
94.02%. PPC accurately determined MSI/MMR status from routine H&E slides, offering a rapid,
scalable alternative to conventional diagnostic methods.

The DNA mismatch repair (MMR) system is essential for maintaining
DNA integrity by rectifying errors that occur during replication, such as
base-base mismatches and insertion-deletion loops, to maintain genomic
stability. Four key proteins, MLH1, MSH2, MSH6, and PMS2, are included
in this process. If the expression of any of the corresponding genes is
impaired, theMMRmechanism can becomedysfunctional1.WhenMMR is
disrupted, it leads to microsatellite instability (MSI), which is characterised
by changes in these repetitiveDNA sequences. As such,MSI is a phenotypic
indicator of abnormalMMR function1. DeficientMMR (dMMR) is evident
in 10-20%of colorectal cancers (CRCs)2–4.MSI/MMR status can inform the
clinical management of CRC patients, with major diagnostic, prognostic,
and therapeutic implications, as well as highlighting patients for Lynch
syndrome testing5. Importantly, MSI-high (MSI-H) and dMMR serve as
predictive biomarkers of response to immune checkpoint inhibitors. The
pioneering work of Allison and Honjo demonstrated that immunotherapy
is particularly effective inCRCwithMSI-HordMMR,with response ratesof
approximately 50% inmetastaticCRCandup to 100% in early-stage cases6,7.
Therefore, accurate and timely MSI/MMR testing is critical to guide treat-
ment decisions and improve patient outcomes.

Testing forMSI or dMMR is recommended for all CRCpatients by the
National Institute for Health and Care Excellence (NICE)8, the European
Society forMedicalOncology (ESMO)9, and jointly by theAmerican Society
of Clinical Oncology (ASCO) and the College of American Pathologists
(CAP)10. However, universalMSI/MMR testing is not yet standard practice,
with testing rates varying significantly across countries, healthcare settings,
and patient demographics11–13. Current clinical practice relies on two pri-
marymethods forMSI/MMRtesting: immunohistochemistry (IHC),which
detects loss of nuclear expression of the MMR proteins MLH1, MSH2,
MSH6, andPMS2, andpolymerase chain reaction (PCR)-basedMSI testing,
which identifies instability in specific microsatellite loci14. Both approaches
demonstrate good sensitivity (91–93%) and moderate specificity
(79–83%)15, yet are limited by practical challenges. While IHC is generally
highly concordant, its interpretation can be subject to inter-observer
variability in challenging cases16, whereas PCR can be affected by poorDNA
quality, especially from formalin-fixed, paraffin-embedded (FFPE)
samples17,18. Both require additional tumour tissue beyond that used for
preparing the haematoxylin and eosin (H&E)-stained specimen, specialised
infrastructure, and may incur high costs. Combined with pathology

A full list of affiliations appears at the end of the paper. e-mail: cher@panakeia.ai

npj Digital Medicine |            (2026) 9:44 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-025-02218-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-025-02218-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-025-02218-5&domain=pdf
mailto:cher@panakeia.ai
www.nature.com/npjdigitalmed


workforce shortages and variable turnaround times13,19,20, these limitations
highlight the need for a rapid, reliable, cost-effective, and widely accessible
alternative for MSI/dMMR detection in all CRC patients.

In routine H&E-stained CRC tissue, MSI and dMMR tumours are
associated with certain morphological patterns21, such as the presence of
prominent tumour-infiltrating lymphocytes (TILs) or peritumoral
“Crohn’s-like” lymphoid reaction, mucinous differentiation and/or poorly-
differentiated morphology21. This suggests that MSI/MMR status has dis-
tincthistomorphological features identifiable fromH&E-stained specimens,
which could be leveraged in image-driven algorithms using artificial intel-
ligence. This potential has been demonstrated in multiple studies where AI
modelswere successfully used to determineMSI orMMRstatus fromwhole
slide images (WSIs) of H&E-stained tissue21–24.

PANProfiler Colorectal (PPC) is an AI-based biomarker test for
determining MSI/MMR status from H&E-stained WSIs (Fig. 1). In this
paper, we report the performance characteristics of PPC based on a retro-
spective validation performed in a blinded setting. Data were collected from
three UK institutions, ensuring a diverse cohort that enabled assessment of
PPC’s robustness and effectiveness across different clinical settings. The
results were generated centrally and analysed at St James’s University
Hospital (SJUH) in Leeds, UK, without PPC having access to the reference
test results at any time of the study. Variability in scanning equipment,
image formats, patient demographics, and disease characteristics was con-
sidered to reflect real-world conditions. In addition, we discuss PPC’s utility
as an AI-based diagnostic test within routine CRC workflows and its
potential to streamline the diagnostic processes to enable faster turn-
around times.

Results
Blinded validation results of PANProfiler colorectal
Thekeyperformance characteristics fromtheblindedvalidationare given in
Table 1. The results demonstrate consistently strong performance of the
PPC model across all three independent cohorts. High overall percent
agreement (OPA), positive percent agreement (PPA), and negative percent
agreement (NPA) were observed, with C-statistics exceeding 0.92 in all
cases. The model delivered particularly robust results on the largest cohort
(L1-UK-CRC-SVS-1-BLIND). The test replacement rate (TRR) varied
across datasets but remainedhighoverallwithonly 13.45%of tested samples
returning an Indeterminate result. These findings support the gen-
eralisability and clinical potential of PPC across different institutions and
regions in the UK.

Performance of PANProfiler Colorectal across diverse
subpopulations
To demonstrate the generalisability of PPC across different regions within
the UK, results from all institutions were analysed together. To this end, we
included the I1-UK-CRC-CZI-1-DEV cohort as an additional site to
represent Scotland. Since this dataset was validated using 5-fold cross-
validation rather than a blind evaluation, it is not included in the main
results. The I1-UK-CRC-CZI-1-DEV cohort, consisting of 1,125WSIswith
a prevalence of 13.6%, demonstrated strong performance, achieving an
OPA of 86.49% (95% CI: 83.80-88.89%), PPA of 97.41% (95% CI: 92.63-
99.46%), NPA of 84.44% (95%CI: 81.34-87.21%), a C-statistic of 0.928, and
a TRR of 65.2% (95%CI: 62.29-67.94%). Thesemetrics are within the range

Fig. 1 | CRCdiagnostic pathwaywith andwithout PANProfiler Colorectal (PPC).
A The standard diagnostic pathway for CRC begins with the collection of tissue
samples (biopsy or resection). Tissue sections are cut from FFPE blocks, mounted
onto glass slides and stained with H&E. These slides are examined by a pathologist,
who assesses the presence of tumour and, where present, its grade. Upon con-
firmation of malignancy, additional testing is performed to assess MSI/MMR status.
IHC is commonly used to evaluate the expression of MMR proteins (MLH1, PMS2,
MSH2, andMSH6), while PCR/NGS can be used to detect changes in the number of
repeats in microsatellite loci, characteristic of MSI. These biomarkers are important

for guiding treatment decisions, including the use of immunotherapy. Integrating
PPC, a digital test, into routine pathological workflow has the potential to streamline
the diagnostic process, reducing the turnaround times from days or weeks to min-
utes (see also Supplementary Fig. S3), potentially reducing the pressure on histo-
pathology services, and enabling timely treatment decisions. B Overview of PPC’s
end-to-end deep learning pipeline, including data preprocessing steps, background
removal, detection of relevant tissue, tiling and colour normalisation, and selection
of tiles for biomarker profiling. PPC’s deep learning architecture consists of a feature
extractor and proprietary aggregation, attention and classification modules.
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of the blind performance results (shown in Table 1), which assessed per-
formance in England, Wales, and Northern Ireland.

Cohort characteristics
The breakdown of resections and biopsies for development and blind
cohorts are provided in Supplementary Table S1. Study population demo-
graphics, including age and sex distribution, are detailed in Supplementary
Table S2. The mean age across the cohorts ranged from 65.6 to 68.9 years
(standarddeviation: 11.6 to 12.8 years).Males comprised 52-57%ofpatients
across cohorts, while females accounted for 43-48%, consistent with pre-
viously reported figures in the literature2. Tumour site distribution is pre-
sented inSupplementaryTables S3,with the colonbeing themost frequently
affected site, which aligns with published data25,26. Supplementary Table S4
shows the breakdown of histological subtypes across different cohorts.
Adenocarcinoma was the predominant histological subtype, observed in
73.24–94.4% of cases, in agreement with prior studies27. It was followed by
mucinous adenocarcinoma, with a prevalence of 5.56–20.42% across
cohorts.

Tumour grade and pathological stage data are summarised in Sup-
plementary Tables S5-S7. These tables also provide the distribution of MSI
and dMMR status within each cohort. Moderately differentiated was the
most prevalent histological grade, consistent with the literature27. Poorly
differentiated carcinoma was more frequently observed in patients with
MSI-H/dMMRcompared to thosewithnon-MSI-Hor proficientmismatch
repair (pMMR), a finding also supported by earlier studies21. Tumour stage
varied across cohorts, with stage II and III being themost common.MSI-H/
dMMRprevalence was highest in stage II cases. Compared to the published
literature, this studyobserveda lower proportionof stage IVdiagnoses and a
higher proportion of stage II cases26,28. However, the association between
lower tumour stage and increased MSI-H/dMMR prevalence is consistent
with previous findings29.

Impact of backbone model on performance
The self-supervised learning (SSL)-pretrained backbone outperformed the
ImageNetbackbone across allmetrics in thefive-fold cross-validationon the
L1-UK-CRC-SVS-1-DEV cohort (see Supplementary Table S8 and Sup-
plementary Fig. S1). It achieved a higher C-statistic (0.96 vs. 0.93), OPA
(95.25% vs. 91.48%), PPA (95.51% vs. 87.78%), and NPA (95.19% vs.
92.39%). Additionally, the TRR was slightly higher for SSL (84.03% vs.
83.12%). Consequently, the SSL-based model, demonstrating optimal per-
formance, was selected for the blinded validation study.

Explainability and interpretability of deep learning models
We unblinded and analysed 61 images from the L1-UK-CRC-SVS-1-
BLINDcohort, with a breakdownof 16 true positives (TP), 18 true negatives
(TN), 7 false positives (FP), 6 false negatives (FN), 8 indeterminate negatives
(IN), and 6 indeterminate positives (IP). In Figs. 2, 3, and Supplementary
Fig. S2, example images demonstrate how ourmodels direct their attention,
by overlaying the “attention heatmaps” (B) onto the originalWSIs (A). The
same panel also highlights the regions of interest selected based on the
model’s attention.

To analyse the predictions correctly classified by the model, we
visualised the heatmaps for TP and TN cases. For TP cases, regions with
high attention scores predominantly aligned with tumour tissue, such as
poorly/moderately differentiated areas with medullary features, TILs, and
adenocarcinoma with mucinous features (Fig. 2, A-B). In TN cases (Fig. 2,
right), the model’s attention was directed toward tumour regions featuring
moderately differentiated adenocarcinomas.

To analyse the predictions incorrectly classified by the model, we
visualised the heatmaps for FP and FN cases (Fig. 3). FP predictions were
focused on poorly differentiated regions, which could explain the mis-
classification, as poor differentiation is often linked to MSI-H/dMMR
tumours (Fig. 3, left). For aFNcase (Fig. 3, right), themodel concentratedon
regions ofmoderately differentiated adenocarcinoma, likely contributing to
the misclassification.T
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To investigate the model’s indeterminate predictions, we visualised
heatmaps for the IN and IP cases (Supplementary Fig. S2). Our analysis
suggests that indeterminate predictions may arise from conflicting or
ambiguous morphological signals. For instance, some non-MSI-H/pMMR
(IN) cases presented with features typically associated with MSI-H/dMMR
status (e.g., poor differentiation, TILs,mucinous features), while otherswere
confounded by factors like limited tumour tissue or contained non-specific
features such as moderate differentiation. Similarly, most indeterminate
MSI-H/dMMR (IP) cases exhibited a substantial degree of well ormoderate
differentiation.

Overall, increased attention is observed on biologically meaningful
morphological features, such as poor differentiation, TILs, and mucinous
characteristics,which arewell-documentedas being associatedwithMSI-H/
dMMR. By contrast, well-differentiated tumours are commonly linked to
non-MSI-H/pMMR. Moderate differentiation, on the other hand, is not a
reliable discriminator ofMSI/MMR status, as it is observed in bothMSI-H/
dMMR and non-MSI-H/pMMR tumours23,24,30–33.

Themodel’s embedding spacewas also evaluated todeterminewhether
MSI-H/dMMR and non-MSI-H/pMMR cases could be separated.
Embedding spaces were visualised at both the slide level (Fig. 4A) and patch
level (Fig. 4B). The slide-level (classification) embedding space (Fig. 4A)
demonstrated clear separation between the MSI-H/dMMR and non-MSI-
H/pMMR classes. At the patch level, distinct regions for each class were
observed, with patches exhibiting similar morphology positioned closer
together in the embedding space. For example, MSI-H/dMMR patches in

one region formed clusters characterised by poorly differentiated adeno-
carcinoma, while another non-MSI-H/pMMR cluster of patches were
associated with moderately differentiated adenocarcinoma.

Discussion
This study evaluated the performance of AI-based PPC compared to
standard pathology MSI/MMR testing in a retrospective, blinded setting.
HighPPAandNPAdemonstrated that PPCaccurately identified bothMSI-
high/dMMR (Unstable) and non-MSI-high/pMMR (Stable) samples.
Additionally, of 3576WSIs, PPC returned definite results (TRR) for 86.55%
of images, indicating a potential significant reduction in the number of
standard pathology tests required.

Manyother studies have evaluatedAI-drivenmethods for determining
MSI/MMR status from WSIs34–39. These demonstrate the feasibility of AI-
derived image features for MSI/MMR detection. However, most have
focused on screening, where the primary target was identifying cases not
requiring further molecular or IHC testing. For instance, one study33 con-
ducted a blinded validation on 600 WSIs, reporting an area under the
receiver operating characteristic curve (AUC, i.e. the C-statistic) of 88% and
a sensitivity (i.e. PPA) of 96-98% with a TRR of 46-47%. Other studies
reported comparable or worse performance. For example, one study40

achieved TRRs of 44.12% for resections and 52.73% for biopsies with a
sensitivity of 95%. Moreover, another approach for MSI screening41 intro-
duced a deep learning (DL)-based classifier capable of replacing testing for
only 40% of CRC cases.

Fig. 2 | Explainability and interpretability visualisations for images correctly
classified by the model, where two true positive (TP) and one true negative (TN)
cases from the L1-UK-CRC-SVS-1-BLIND cohort are shown. AOriginalWSI and
two regions of interest (ROIs) beneath it (selected fromdifferent regions indicated by

the red boxes). B Attention scores with darker hues of red indicating high attention
and blue indicating low attention. C Annotated regions based on a classification of
the tissue, including adipose, background, debris, lymphocytes, mucus, smooth
muscle, normal colon mucosa, stroma, and tumour.
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Other AI-based approaches have addressed the problem from a diag-
nostic perspective, aiming to identify both MSI-high/dMMR and non-MSI-
high/pMMR cases. One diagnostic approach42 validated on 355 resections
and 341 biopsies, reported AUCs of 84.57% and 76.79%, sensitivity scores of
90.91% and 92.31%, specificity (i.e. NPA) scores of 95.13% and 95.36%, and
TRRs of 56.06% and 51.03%, respectively. Finally, a recent large-scale study23

byWagner et al. reported sensitivity scores of 98-99%and specificity scores of
44-56%.While there exist key differences in model architecture and training
data characteristics, our study’s higher specificity fundamentally stems from
different clinical goals and model designs. The Wagner et al. model was
developed for pre-screening, where a trade-off with specificity is accepted to
maximise sensitivity. In contrast, our tool is designed for diagnostic use,

requiring both high sensitivity and specificity. We achieve this by imple-
menting a three-tiered classification system (‘Stable’, ‘Unstable’, ‘Indetermi-
nate’), which allows themodel tomake definitive calls with higher confidence
by classifying ambiguous cases as ‘Indeterminate’. This methodological
choice is the primary driver of our higher specificity. Consequently, in con-
trast topreviousmethods, PPCdemonstrates remarkable diagnostic utility by
maintaining both high sensitivity and specificity. This also translates to great
practical application, with an overall TRR of 86.55%.

We evaluated the safety of PPC by comparing its performance to
standardMSI/MMRdetection tests, includingPCR forMSI testing and IHC
for MMR deficiency, based on results from clinical studies in the literature.
This is critical to show that PPC yields similar risk in the context of false

Fig. 3 | Explainability and interpretability visualisations for images incorrectly
classified by the model, where one false positive (FP) and one false negative (FN)
images from the L1-UK-CRC -SVS-1-BLIND cohort are shown. A Original WSI
and two ROIs beneath it (selected from different regions indicated by the red boxes).

B Attention scores with darker hues of red indicating high attention and blue
indicating low attention. CAnnotated regions based on a classification of the tissue,
including adipose, background, debris, lymphocytes, mucus, smooth muscle, nor-
mal colon mucosa, stroma, and tumour.
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negative and false positive results, as such there would be no greater risk of
adverse effects compared to the current standard of care. Aggregated data
from multiple studies primarily across the US and Europe15 indicate that
MSI testing (n = 3,476) has a sensitivity (PPA)of 93%(95%CI: 87-96%) and
a specificity (NPA) of 79% (95% CI: 70-86%), while MMR testing
(n = 3,091) shows a sensitivity of 91% (95%CI: 85-95%), and a specificity of
83% (95% CI: 77-88%). The National Institute for Health and Care Excel-
lence (NICE), England, reported similar figures8 forMSI testing (sensitivity:
91.3% [95% CI: 42.6-99.3%], specificity: 83.7% [95% CI: 63.8-93.7%]) and
IHC-based MMR testing (sensitivity: 96.2% [95% CI: 69.4-99.6%], specifi-
city: 88.4% [95% CI: 79.0-94.0%]). Recent studies report that concordance
betweenMSI testing andMMR IHC is increasing, especiallywhen sufficient
tumour DNA is present and unusual IHC patterns are taken into account
duringMMR testing43. PPC’s performance appears comparable to standard
pathology tests, however, direct head-to-head comparisons with other
studies are often challenging due to variations in patient cohorts, experi-
mental design, preanalytical protocols and the specific definitions of out-
comes. Therefore, any comparison of our results to other published data
should be interpreted with caution.

The integration of PPC into pathological workflows could offer sig-
nificant advantages, particularly in its ability to streamline diagnostic pro-
cesses byminimising reliance on time-intensive assays currently used as the
standard for biomarker testing. This reduction in testing could assist users,
such as pathologists and laboratory professionals, in managing growing
workloads and addressing staffing shortages19,20. By contrast, PPC can
generate biomarker results within minutes (Supplementary Fig. S3),
enabling pathology reports to be finalised simultaneously during the his-
tological assessment. Other potential benefits of PPC include lowering the
diagnostic burden on pathologists and lab professionals, allowing them to
dedicate more attention to complex cases. A digital test based on existing
H&E-stained slides offers positive environmental benefits by reducing the
need for additional wet laboratory procedures, minimising the use of toxic
chemicals and consumables common in conventional diagnostics. By
streamlining workflows and reducing the reliance on standard laboratory
testing, PPC also has the potential to deliver timely results and greater cost
efficiency for healthcare providers. Future work will include a health eco-
nomics analysis to evaluate its cost-effectiveness in real-world clinical
environments. In parallel, usability studies with target users will assess the
impact of PPC on user experience and workflow integration.

While PPC’s overall performance demonstrated significant promise,
certain aspects warrant additional exploration to improve theAI-based test.
Approximately 14% of samples returned an Indeterminate result, which
may be partially due to preanalytical factors such as suboptimal tissue
processing, staining or slide digitisation. Standardising andoptimising these
workflows will be key to increasing the proportion of assessable cases and
improving clinical usability. Indeterminate outcomes may also reflect
model uncertainty driven by morphological inconsistencies. Our visual

analysis of indeterminate cases showed they often contained conflicting
features, suchasnon-MSI cases presentingwithMSI-like features (e.g., TILs
and poor differentiation), non-specific features like moderate differentia-
tion, or confounding factors like limited tumour tissue, leading to an
indeterminate result (Supplementary Fig. S2). Expanding the training
dataset to include more diverse, representative cases could improve the
model’s ability to resolve such differences. In addition, a deeper investiga-
tion into the variability of validationmetrics such as TRR is needed to better
understand and refine PPC’s performance across different cohorts. All
institutions in the study were based in the UK, providing a strong foun-
dation within a well-characterised healthcare system. To build on these
findings and support broader applicability, future validation will benefit
from including samples from other regions and more diverse demo-
graphics.While this retrospective study offers valuable insights, prospective
studies in clinical environments will be key to further demonstrating PPC’s
performance and utility in real-world clinical settings. Such studies would
provide a critical understanding of PPC’s integration into routine pathology
workflows and assess its impact on patient outcomes. Finally, this study
utilised mostly resected tissue samples (Supplementary Table S1). Since
biopsies are more commonly used in routine clinical practice, future vali-
dation efforts will expand to include biopsy samples, further supporting the
test’s real-world applicability.

Taken together, these findings point to the potential of PPC as a pro-
ficient diagnostic tool capable of comparable levels of performance to cur-
rent standard-of-care testing. This paves the way towards improved
diagnostics, ensuring more accurate results and leading to the timely
establishment of MSI/MMR status for CRC cases.

Methods
Cohort characteristics for blinded validation
A total of 3576 WSIs from three different UK cohorts were used for the
multi-centred, blindedvalidationof PPC (Table 2).OnlyWSIs derived from
FFPE blocks of primary CRC were included in the analysis. WSIs of fresh
frozen samples, metastatic tumours from non-colorectal sites, and those
with less than 10% tumour content were excluded. Additionally, WSIs
failing visual assessment and quality control by pathologists due to excessive
tissue folds, air bubbles, pen marks, adhesive tape, out-of-focus regions,
pixel artefacts or other digital distortionswere also excluded. The number of
excluded images (n = 1234) accounted for 25.65% of the images originally
acquired from the three institutions (n = 4,810). The WSIs were acquired
using different scanners and stored in multiple image formats. MSI-H/
dMMR prevalence ranged from 12.52 to 20.60%. This is comparable to
global estimates2–4, which serve as the primary reference for clinical practice
in the UK. The make-up of each independent cohort was as follows:

L1-UK-CRC-SVS-1-BLIND. This cohort comprised 3,884 archival CRC
images, sourced from St James’s UniversityHospital (SJUH) in Leeds, UK,

Fig. 4 | Visualisation of the embedding space at slide and patch levels. The
embedding space of 61 whole slide images (WSIs) from the L1-UK-CRC-SVS-1-
BLIND cohort is visualised at both slide (A) and patch (B) levels.MSI-H/dMMRand
non-MSI-H/pMMR images and patches are shown in red and blue, respectively. The

slide level embeddings (A) are visualised using 2D t-SNE, while the top 100 scoring
attention tiles perWSI (B) are visualised using 3D t-SNE.An example of three closest
MSI-H/dMMR and non-MSI-H/pMMR patches (based on cosine distance) is
shown, taken from regions indicated by red and blue boxes, respectively.
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of which 3,124 had MSI/MMR status (391 Unstable and 2,733 Stable).
Tissue samples were scanned at 20/40x magnification using Leica Aperio
GT 450 DX, AT2 or Scanscope CS scanners and stored in SVS format.

W1-UK-CRC-CZI-1-BLIND. This cohort was composed of a total of 510
WSIs, sourced from Wales Cancer Biobank (WCB) in Cardiff, UK, of
which 54 had MSI/MMR status (11 Unstable and 43 Stable). Tissue
samples were scanned at 40x magnification and stored in CZI format.

N1-UK-CRC-SVS-1-BLIND. This cohort comprised 398WSIs collected
from Northern Ireland Biobank (NIB) in Belfast, UK (82 Unstable, 316
Stable). Tissue samples were scanned at 20/40x magnification using a
Leica Aperio AT2 scanner and stored in SVS format.

Cohort characteristics for development and calibration
A total of 2502WSIs of FFPE CRC specimens from four cohorts were used
for development, internal validation, and calibration of PPC (Table 3).
While samples from the blinded validation and development/calibration
cohorts may originate from the same institution, there is no case overlap
between these distinct cohorts. Each case included in the blinded validation
cohort is unique and has not been used in the development or calibration
phases of the model. The make-up of each cohort was as follows:

T1-US-CRC-SVS-1-DEV. This cohort consisted of 563 WSIs (78
Unstable and 485 Stable), acquired from The Cancer Genome Atlas
(TCGA) Colon (COAD) and rectal (READ) adenocarcinoma studies
(https://portal.gdc.cancer.gov/). It was used for model development and
internal validation. Tissue samples were scanned at 20/40xmagnification
and stored in SVS format.

I1-UK-CRC-CZI-1-DEV. This cohort consisted of 1,156 WSIs (159
Unstable and 997 Stable), sourced from the Industrial Centre for Artificial
IntelligenceResearch inDigitalDiagnostics (iCAIRD) in Scotland,UK. Itwas
used for model development and internal validation. Tissue samples were
scanned using Zeiss Axioscan at 40xmagnification and stored inCZI format.

L1-UK-CRC-SVS-1-DEV. This cohort consisted of 551 WSIs (109
Unstable and 442 Stable) collected from SJUH in Leeds. It was used for
internal validation and calibration. Tissue samples were scanned at 20/

40x magnification using Leica Aperio GT 450 DX, AT2 or Scanscope CS
scanners and stored in SVS format.

N1-UK-CRC-SVS-1-DEV. This cohort consisted of 130 WSIs (27
Unstable and 103 Stable) collected from NIB. It was used for internal
validation and calibration. Tissue samples were scanned at 20/40x magni-
fication using a Leica Aperio AT2 scanner and stored in SVS format.

Overview of PANProfiler colorectal
PPC is an AI-driven biomarker test developed to determine MSI/MMR
status from digitally scanned H&E-stained slides of FFPE primary CRC
specimens. PPC classifies MSI/MMR status as ‘Unstable’, Stable’ or ‘Inde-
terminate’. ‘Unstable’ was defined as MSI-high/dMMR (i.e. positive class),
while ‘Stable’ corresponded to pMMR/non-MSI-high (i.e. negative class).
An ‘Indeterminate’ result was returned when the test could not confidently
determine MSI/MMR status.

Performance characteristics and statistical procedures
PPC’s performance was evaluated through a comprehensive agreement
analysis with standard pathology tests, employing four key metrics: overall
percent agreement (OPA), positive percent agreement (PPA), negative
percent agreement (NPA) and test replacement rate (TRR), which mea-
sured the percentage of cases for which PPCwas able to provide a definitive
result. In addition, the C-statistic, equivalent to the area under the receiver
operating characteristic curve (AUC), was reported44,45. Formal definitions
of all performance metrics are provided in Supplementary Tables
S9 and S10.

Based on the expected prevalence of MSI-H/dMMR in colorectal
cancer (10-20%), a power analysis determined that a minimum of 140-245
cases would be required to achieve a 95% confidence level with a 5%margin
of error46. The sample size used in this study therefore exceeds the threshold
necessary to ensure adequate statistical power.

Artificial intelligence for establishing MSI/MMR status
PPC is powered by AI and digital pathology. The platform relies on a series
of DLmethods, a subset of AI that enables computers to learn patterns from
large datasets. Specifically, it can identify complex histomorphological fea-
tures in relevant parts of H&E-stained WSIs of CRC and use them to
determine MSI/MMR status47. Figure 1 illustrates the core preprocessing

Table 2 | Details of the cohorts used in the multi-centred, blinded validation study for PANProfiler Colorectal

Cohort Images received Images with verified MSI/MMR
statusa

Number of patients with verified MSI/
MMR statusa

MSI-H/dMMR prevalence %

L1-UK-CRC-SVS-1- BLIND 3,884 3,124 791 12.52

W1-UK-CRC-CZI-1- BLIND 510 54 54 20.37

N1-UK-CRC-SVS-1- BLIND 416 398 398 20.60

Combined Total 4810 3576 1243 13.53
aWSIs were excluded based on the study’s inclusion and exclusion criteria (see Methods: Cohort Characteristics), including pathological assessment and the availability of corresponding MSI/MMR
status.
Bold values are the combined totals across all cohorts.

Table 3 | Details of the cohorts used for development, internal validation and calibration of PANProfiler Colorectal

Cohort Images received Images with verified MSI/MMR
statusa

Number of patients with verified MSI/MMR
statusa

MSI-H/dMMR prevalence %

T1-US-CRC-SVS-1-DEV 625 563 554 13.85

I1-UK-CRC-CZI-1-DEV 1196 1156 1011 13.75

L1-UK-CRC-SVS-1-DEV 551 551 142 19.78

N1-UK-CRC-SVS-1-DEV 130 130 130 20.77

Combined Total 2502 2400 1837 15.54
aWSIs were excluded based on the study’s inclusion and exclusion criteria (see Methods: Cohort Characteristics), including pathological assessment and the availability of corresponding MSI/MMR status.
Bold values are the combined totals across all cohorts.
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and DL components that underlie PPC and how they are connected in an
end-to-end pipeline.

A DLmodel was trained to predict MSI/MMR status as follows. In the
first step, input WSIs were subdivided into image patches (i.e. tiles) of
256×256 pixels at a resolution of 1.0 microns per pixel (MPP). Proprietary
filtering algorithms were used to eliminate the background tiles and detect
tissue. AWSI was discarded from analysis if it contained fewer than 10 tiles
after the filtering process. Colour normalisation48 was applied to the
remaining tiles before they were assignedwith a reference biomarker status.

The selected pre-processed tiles were then used in an end-to-end DL
pipeline. This pipeline consisted of the following components: (1) a smart
samplingmodule used for extracting groups of tiles that are spatially adjacent
(referred to as windows); (2) a feature extractor CNN (i.e., an encoder) for
learning unique feature representations for each tile; (3) an attentionmodule
that aggregated the tile embedding into a slide level embedding,weighting the
features based on their relevance (using the attention scores) for the target
biomarker. The attention module was finally connected to a classification
layer that made the final diagnostic call on the biomarker status.

Explainability and interpretability of deep learning models
Understanding the internal mechanisms of DLmodels can provide insights
into how they detect visual patterns in tissue WSIs that may be correlated
with biological signals. Visualising the “black-box” nature of these models
offers valuable insights into the explainability of their outputs. A common
approach to visualising the spatial regions critical for determining bio-
marker status is overlaying tile-level attention on WSIs to create spatial
heatmaps. These heatmaps highlight the areas of the input image that have
the strongest influence on the biomarker result. DL models can identify
morphological patterns or visual features that are not immediately visible to
the human eyes and correlate them with the existence (or absence) of
biological signals, such as biomarker expression.We visualise the heatmaps
by overlaying the model attention onto the WSI in Figs. 2 and 3.

In addition, to enhance the interpretability of the models, a DLmodel
was developed and trained to classify various tissue types in CRC samples
using theNCT-CRC-HE-100Kdataset49. Themodel categorised tissues into
the following classes: adipose, background, debris, lymphocytes, mucus,
smoothmuscle, normal colonmucosa, stroma, and tumour.Thismodelwas
used to confirm whether the attention of the primary models was directed
toward relevantmorphological regions by overlaying the classificationmaps
onto the WSIs and comparing them with the attention heatmaps.

To gain deeper insights into the PPC model, its embedding space, a
lower-dimensional vector representation of image patches or whole slides,
was visualised. Patch-level embeddings were obtained by processing each
WSI through the model’s feature extractor, and the resulting vectors for
individual patches were stored. These patch embeddings were then aggre-
gated into slide-level embeddings using the model’s attention layer and
saved for eachWSI. The embeddings were visualised in TensorBoard using
t-distributed Stochastic Neighbour Embedding (t-SNE), a technique for
visualising high-dimensional data in two or three dimensions, with data
points organised by their respective classes (Fig. 4). To measure similarity
between embeddings, the cosine distance, a metric based on the angle
between two vectors, was used. For this analysis, a subset of 61 WSIs from
the L1-UK-CRC-SVS-1-BLIND cohort was unblinded, comprising
28 samples with MSI-H/dMMR and 33 with non-MSI-H/pMMR.

Development and validation strategies
We utilised an SSL framework (Mocov2) for pre-training base models,
allowing them to learn feature representations from unlabelled data and
develop robustness for diverse tasks50. Using the pre-trained SSLmodel as a
backbone, amodel was further fine-tuned through supervised learningwith
labels derived from reference MSI/MMR results. The SSL training datasets
consisted of 588 WSIs from the T1-US-CRC-SVS-1-DEV cohort. The
developmentdatasets (Table 3) consistedof 1,719WSIs (237Unstable, 1,482
Stable WSIs), including T1-US-CRC-SVS-1-DEV (n = 563, with 78

Unstable and 485 Stable WSIs), and I1-UK-CRC-CZI-1-DEV (n = 1,156,
with 159 Unstable, and 997 StableWSIs).

To determine the best model to be deployed for blinded validation,
different models were evaluated on the L1-UK-CRC-SVS-1-DEV cohort
using cross-validation. To this end, this cohort was divided into five equal-
sized folds. Amodel was fine-tuned, validated, and tested five times, cycling
through a few fold combinations. This ensured that the models were
thoroughly evaluated over the entirety of a cohort whileminimising the risk
of overfitting and providing a robust assessment of model performance.

Calibration refers to finding themost optimal decision thresholds for a
model. These thresholds help the model operate safely by allowing an
‘Indeterminate’ output when no definitive result can be provided. PPC’s
safety and effectiveness weremaintained across different sites by calibrating
cohort-specific thresholds for each biomarker. The decision boundaries
identified during the calibration process were applied to compute the final
model outputs, which were then used to calculate performance metrics on
the test set for each cohort (see Performance characteristics for details).

After determining the optimal configuration, PPCunderwent separate
calibrations on two cohorts before the blinded validation phase. Specifically,
calibration was performed on the L1-UK-CRC-SVS-1-DEV cohort, con-
sisting of 551WSIs (109Unstable and 442 Stable images), and the N1-UK-
CRC-SVS-1-DEV cohort, which included 130 WSIs (27 Unstable and 103
Stable). No calibration was performed for theWCB cohort (W1-UK-CRC-
CZI-1-BLIND), due to a low sample size.

Blinded validation
Authors from the University of Leeds conducted the blinded validation
across all three cohorts. MSI/MMR status associated with blinded cohorts
was not disclosed at any stage to the analysts. WSIs were analysed using
PPC, generating test results classified as Stable, Unstable, or Indeterminate.
These results were then shared with the clinical research team performing
the blinded validation, who constructed confusion matrices and calculated
performance metrics.

Data availability
The Cancer Genome Atlas (TCGA) used for training is publicly available
from the following link: [https://portal.gdc.cancer.gov/]. The additional
datasets used for training and blinded validation were obtained through
agreements between Panakeia Technologies Limited and the respective data
providers and are not publicly available.

Code availability
The software and AI algorithms used in the current study are Panakeia
Technologies Limited proprietary IP and cannot be shared.
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