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Accurate delineation of pulmonary nodules in chest computed tomography (CT) is essential for early
lung cancer diagnosis and treatment planning. However, voxel-wise segmentation methods often
produce fragmented masks and inconsistent topology due to low contrast, anatomical variability, and
imaging noise. We propose CoreFormer, a segmentation framework that models nodules through
structural core anchoring and geodesic shape decoding. CoreFormer identifies the intrinsic
topological core of each nodule and generates continuous boundaries guided by anatomy-aware
geodesic paths. Itis built upon a Swin Transformer backbone and a dual-branch decoder consisting of
a Structural Core Predictor and a Context-Aware Shape Decoder, enhanced by Feature Manifold
Regularization for discriminative feature learning. Extensive experiments on four public datasets-
LIDC-IDRI, LNDb, Tianchi-Lung (MosMedData), and NSCLC-Radiomics-demonstrate that
CoreFormer achieves state-of-the-art boundary accuracy and topological fidelity, offering robust and

high-fidelity pulmonary nodule segmentation.

Lung cancer remains the leading cause of cancer-related mortality world-
wide, and a patient’s prognosis is heavily dependent on the stage at which the
disease is detected'. In this context, pulmonary nodules-small, localized
opacities in the lung tissue-have emerged as critical early indicators of
potential malignancy. The accurate and reproducible delineation of these
nodules in computed tomography (CT) scans is therefore a cornerstone of
modern thoracic oncology. It provides essential information for differential
diagnosis, guides clinical decisions regarding biopsies or follow-up imaging,
and is indispensable for treatment planning, such as defining surgical
margins or radiation targets>’. However, manual segmentation by radi-
ologists is a labor-intensive and time-consuming process that is prone to
significant inter- and intra-observer variability, making it a bottleneck in
high-throughput screening programs and longitudinal studies. This has
created an urgent need for automated, reliable, and efficient segmentation
algorithms.

The advent of deep learning, particularly convolutional neural
networks (CNNs), has catalyzed a paradigm shift in medical image
analysis, leading to significant advances in automated pulmonary nodule
segmentation”’. The predominant approach has been to frame the task as
a dense, voxel-wise classification problem, typically employing encoder-
decoder architectures like the U-Net® and its 3D variants’. While these
models have achieved considerable success, their performance is often

hampered by their reliance on local convolutional operations, which can
struggle to capture global shape context. This fundamental limitation
leads to several persistent challenges: (1) the generation of fragmented or
noisy masks, particularly for nodules with low contrast or ambiguous
borders with adjacent structures like blood vessels or the pleural wall; (2)
a failure to preserve topological consistency, resulting in anatomically
implausible shapes for small or irregularly formed nodules; and (3) a
heavy reliance on large datasets with exhaustive, voxel-level annotations,
which are exceptionally expensive and difficult to acquire in the medical
domain.

To overcome the limitations of discrete, grid-based representations, a
new class of methods based on continuous or implicit representations has
recently gained prominence in computer vision and medical imaging®"".
These techniques model object boundaries as the zero-level set of a con-
tinuous function, such as a Signed Distance Function (SDF), which inher-
ently ensures smooth and topologically coherent surfaces. However, existing
implicit models are often suboptimal for medical applications. Their typical
reliance on a global coordinate system and a simple Euclidean distance
metric fails to account for the fact that lesion morphology is intimately
intertwined with the local anatomical context. The “distance” from a
nodule’s center to its boundary is rarely a straight line but rather a path that
must navigate complex tissue structures.
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In this work, we propose CoreFormer, a novel segmentation frame-
work that addresses the limitations of both voxel-wise and conventional
implicit methods by introducing the principles of structural core anchoring
and geodesic shape decoding. CoreFormer revolutionizes the implicit
representation paradigm by modeling each nodule not from an abstract
single point, but from its intrinsic structural core-a more descriptive and
topologically stable representation like its skeleton or centerline. Our key
insight is that a nodule’s complex topology is better captured by this rich
structural anchor, and its boundary is more faithfully defined by a con-
tinuous field that evolves along geodesically optimal paths. These paths are
learned to respect the underlying anatomy, effectively navigating through
and around different tissue types. This formulation fundamentally enhances
the model’s ability to segment nodules with irregular, complex, or attached
morphologies where traditional methods often fail.

The CoreFormer architecture is built upon a powerful Swin Trans-
former backbone, which excels at capturing both local details and long-
range dependencies in a hierarchical manner. This is followed by a
sophisticated dual-branch decoder designed for synergistic operation. The
first branch, the Structural Core Predictor, leverages high-level semantic
features to identify the nodule’s topological skeleton. The second branch, the
Context-Aware Shape Decoder, then uses this predicted core as an anchor,
synthesizing it with multi-scale features to compute a continuous SDF. This
decoding is achieved using learned, anatomy-aware geodesic distances and
attention mechanisms. To further enhance robustness, we introduce a novel
training scheme, Feature Manifold Regularization, which explicitly struc-
tures the latent feature space to ensure high separability between nodular
and non-nodular tissue features.

We conducted a comprehensive evaluation of CoreFormer on four
public benchmark datasets: LIDC-IDRI’, LNDb", Tianchi-Lung, and
NSCLC-Radiomics. The results demonstrate that our approach consistently
and significantly outperforms a wide range of strong baselines across
multiple metrics, including Dice, Hausdorff distance, and boundary preci-
sion. Our work underscores the superiority of a paradigm that combines
strong topological priors with anatomy-aware shape decoding for achieving
high-fidelity medical image segmentation.

Our key contributions are summarized as follows: We introduce
CoreFormer, a novel segmentation model that moves beyond point-based
representations by utilizing a structural core anchor and a learned, geodesic
shape decoding process. This unique combination achieves state-of-the-art
accuracy and produces topologically consistent segmentations for pul-
monary nodules. We design a sophisticated and synergistic architecture
featuring a dual-branch decoder for explicit core prediction and context-
aware shape generation. The model is further enhanced by a novel Feature
Manifold Regularization scheme that promotes a more discriminative and
robust feature space, improving overall performance. We provide extensive
empirical evidence on multiple real-world CT datasets, demonstrating that
CoreFormer not only sets a new standard in segmentation accuracy but also
excels in boundary fidelity and topological integrity, highlighting its
robustness and clinical potential.

Pulmonary Nodule Segmentation: Segmentation of pulmonary
nodules in chest CT scans is a long-standing problem in medical imaging.
Early approaches relied on classical image processing techniques, such as
thresholding, region growing, or level sets'*"*, which are sensitive to noise
and lack generalization to nodules with diverse shapes and intensities. With
the emergence of large-scale public datasets such as LIDC-IDRI’ and
LUNAL16", deep learning-based methods have become dominant.

CNNs, especially 2D and 3D U-Net architectures®’, have demon-
strated strong performance in volumetric medical segmentation tasks.
Extensions such as V-Net"’, Dense V-Net', and Attention U-Net'” further
enhance representation learning and spatial awareness. However, these
voxel-wise segmentation models often produce spatially inconsistent masks
for small or irregular nodules, due to their reliance on local receptive fields
and discrete prediction structures.

Continuous and Implicit Representations: To overcome the limitations
of discrete voxel grids, recent research has explored continuous and implicit

representations for medical image segmentation. Inspired by neural implicit
functions™, methods such as Neural Implicit Segmentation'’ and SIREN-
based organ modeling® represent anatomical structures as continuous
fields, enabling smoother boundary reconstructions. In'’, authors proposed
STUNet for shape-aware implicit nodule segmentation, combining CNNs
with signed distance fields. These methods offer superior geometric flex-
ibility but often operate on global coordinate systems or rely on a simple
Euclidean distance metric. Our work significantly advances this direction by
proposing a locally-anchored implicit model where the distance metric is not
Euclidean but a learned, anatomy-aware geodesic distance, and the anchor is
a structured, topological prior (the core) rather than a simple coordinate or
latent code.

Center-Guided and Shape-Aware Models: Center-guided representa-
tions have recently emerged as a promising paradigm, particularly in
instance segmentation and keypoint localization”*”". In the medical domain,
models such as CENet” predict lesion centers to guide segmentation
boundaries, improving robustness to surrounding noise and occlusion.
Similarly, radial or polar representations have been applied to organs with
centralized topology (e.g., the liver or eyes)™. While effective, these
methods typically rely on a single point (a zero-dimensional prior), which is
insufficient for capturing the morphology of elongated, branching, or highly
irregular lesions. For instance, in the case of a complex, bi-lobed or
“dumbbell-shaped" lesion, a single predicted center point could erroneously
fall into the non-lesion space between the lobes, providing a poor and
misleading anchor for shape generation and failing to capture the object’s
complete topology.

In contrast, our method generalizes this concept by replacing the
single-point center with a one-dimensional structural core, providing a
much richer and more stable topological prior. A predicted core in the
dumbbell example would naturally form a line spanning both lobes, per-
fectly capturing the underlying structure. Consequently, our shape decoding
process, which follows learned geodesic paths from this core, is funda-
mentally more powerful and flexible than simpler radial or polar evolutions.

Label Efficiency and Feature Learning: Label efficiency is crucial in
medical image analysis, where expert annotations are expensive. Semi-
supervised approaches aim to leverage unlabeled data through consistency
regularization®, self-training’, or pseudo-labeling”’. More recently, shape-
constrained semi-supervised frameworks™* have shown that integrating
strong priors can lead to improved generalization. Our work contributes to
this area from a different perspective. Instead of focusing on semi-
supervised algorithms, we enhance label efficiency by building powerful
inductive biases directly into our architecture via the structural core and
geodesic path priors. Furthermore, our proposed Feature Manifold Reg-
ularization acts as a strong form of supervision on the feature space itself,
forcing the model to learn more discriminative and better-organized
representations. This structured feature space leads to improved general-
ization and more robust performance, especially in data-scarce regimes.

Results
Experimental setup
Datasets: To rigorously evaluate the generalization capability of our model,
we selected four public datasets with significant heterogeneity, as illustrated
in Fig. 1. These datasets present a notable domain gap: LIDC-IDRI* and
LNDb" primarily contain nodules from lung cancer screening programs,
which vary in size and texture. In contrast, NSCLC-Radiomics™ consists of
large, irregularly shaped tumors from diagnosed non-small cell lung cancer
patients, while MosMedData’' features diffuse, amorphous ground-glass
opacities characteristic of COVID-19 lesions. This diversity in pathology,
lesion morphology, and imaging protocols creates a challenging testbed for
assessing the model’s robustness and its ability to generalize to unseen data
distributions, which is a critical requirement for clinical applicability.
LIDC-IDRI includes 1,018 thoracic CT scans with pulmonary nodules
annotated independently by four radiologists. Following prior works®, we
extract nodules > 3 mm and retain voxels with three or more annotators’
consensus. Scans are resampled to an isotropic spacing of 1 x 1 x 1 mm.
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LIDC-IDRI

Fig. 1 | Examples from the four evaluation datasets
(LIDC-IDRI, LNDb, MosMedData, and NSCLC-
Radiomics). The significant visual differences in
lesion appearance-ranging from small, well-defined
nodules to large, complex tumors and diffuse
infectious lesions-highlight the domain gap across
the datasets, providing a robust benchmark for
evaluating the model’s cross-domain generalization
performance.

LNDb MosMedData NSCLC-Radiomics

Table 1 | Summary of the four public datasets utilized in the experiments

Dataset Scans Labeled ROIs Pathology Resolution

LIDC-IDRI 1018 2687 nodules Nodule screening 1x1x1mm
LNDb 294 1032 nodules Nodule screening 1x1x1mm
NSCLC-Radiomics 422 422 tumors Lung cancer 1x1x1mm
MosMedData 1110 50 masks COVID-19 lesions 1x1x1mm

The table details the number of scans and labeled regions of interest (ROls), the associated pathology, and the standardized resolution for each dataset.

LNDD contains 294 chest CT scans acquired during a lung cancer
screening program in Portugal. It provides expert-annotated masks and
diagnosis metadata. Nodules >3 mm are extracted and resampled to a
uniform voxel size. Due to limited volume, we use 5-fold cross-validation.

NSCLC-Radiomics™ consists of 422 CT scans of non-small cell lung
cancer (NSCLC) patients, with radiologist-delineated tumor contours
provided in RTSTRUCT format. We convert annotations into binary masks
and extract lesion-centered patches. The diverse scanner vendors and
clinical variability make it ideal for testing cross-domain robustness.

MosMedData’ offers 1,110 chest CT studies including COVID-19
patients and healthy controls. A labeled subset contains infection region
annotations, which we use to assess generalization to non-nodular, irregular
lesions. Although this task differs from nodule segmentation, it stresses
boundary coherence and shape awareness under pathological changes.

"Only a subset of 50 studies contain expert-annotated segmentation
masks. A detailed summary of the datasets used in our experiments is
provided in Table 1.

Preprocessing and Data Augmentation: A standardized preprocessing
pipeline was applied to all CT volumes to ensure consistency and optimize
them for the neural network. Initially, the raw Hounsfield Unit values were
clipped to a range of [—1000, 400] to isolate the lung parenchyma and other
relevant soft tissues while discarding extreme values corresponding to air or
bone. The clipped volumes were then normalized to a floating-point range
of [0, 1] to stabilize the training process. For computational efficiency and to
maintain a consistent input size, we extracted 3D patches of 64 x 64 x 64
voxels, each centered on a region of interest (ROI). To enhance the model’s
robustness and prevent overfitting, especially given the variability in medical
imaging, we employed a comprehensive online data augmentation strategy.
This included random affine transformations, such as rotations (up to £10%)
and scaling (up to +20%), to simulate variations in patient positioning and
scanner geometry. Additionally, we applied intensity jittering to account for
differences in contrast and brightness, and elastic deformations to model
non-rigid anatomical variations.

Ground-Truth and Implementation Details: To ensure reproducibility,
we provide key implementation details here. The ground-truth skeletons
required for supervising the Structural Core Predictor were generated using

the skeletonize 3d function from the Python scikit-image
library, a standard morphological thinning algorithm. For the Feature
Manifold Regularization described in section “Feature Manifold Regular-
ization”, dynamic sub-manifold discovery was performed using the
K-Means clustering algorithm, with the number of clusters (k = 3) chosen
via cross-validation.

Training Protocol: All models were implemented within the PyTorch
deep learning framework, utilizing the MONAI library for its specialized
tools in medical image analysis. Our proposed CoreFormer model was
trained end-to-end using the Adam optimizer, which is well-suited for high-
dimensional parameter spaces. The initial learning rate was set to 1 x 107*
with a weight decay of 1 x 10~ for regularization, and a batch size of 4 was
used. To facilitate stable convergence, a learning rate scheduler was
employed to automatically reduce the learning rate whenever the validation
loss reached a plateau. Each model was trained for a maximum of 300
epochs, with performance on a validation set monitored every 10 epochs. An
early stopping mechanism, triggered by a lack of improvement in the
validation Dice score, was used to select the best-performing model
checkpoint and prevent overfitting. For a rigorous and fair comparison, all
baseline methods, including 3D U-Net, V-Net, nnU-Net, and STUNet, were
trained under the exact same data splits, augmentation schemes, and opti-
mization settings.

Evaluation Metrics: To conduct a thorough and multifaceted assess-
ment of segmentation quality, we employed four widely-accepted metrics
that collectively evaluate volumetric overlap, boundary accuracy, and con-
tour fidelity. For volumetric accuracy, we used the Dice Similarity Coefficient
(DSC), which measures the spatial overlap between the predicted mask (P)
and the ground-truth mask (G). It is defined as:

2[PNG|
DSC = ———
[P + 1G]

To specifically assess the precision of the predicted boundaries, a critical
factor for clinical applications, we utilized three complementary metrics.
The Hausdorff Distance (HD) measures the maximum surface distance
between the predicted and ground-truth boundaries, thus quantifying the
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Table 2 | Quantitative comparison on the LIDC-IDRI and LNDb datasets

Method LIDC-IDRI LNDb

Dicet HD| ASSD| BF11 Dice? HD| ASSD| BF11
3D U-Net 84.2 3.64 1.29 81.5 82.7 3.89 1.35 79.3
V-Net 85.0 3.45 1.22 82.3 83.1 3.67 1.28 80.1
Attention U-Net 85.8 3.31 1.17 83.2 83.9 3.52 1.24 81.2
nnU-Net 86.5 3.21 1.14 83.7 84.6 3.35 117 82.8
STUNet 871 298 109 842 852 308 103 839
TransUNet 85.9 3.12 1.12 83.1 84.1 3.40 1.20 82.0
UNETR 86.3 3.05 1.11 83.5 84.7 3.20 1.15 82.6
CoreFormer (Ours) 88.7 2.54 0.93 87.6 86.4 2.89 0.91 86.1

We report Dice (%), Hausdorff Distance (HD, mm), Average Symmetric Surface Distance (ASSD, mm), and Boundary F1 Score (BF1, %). Best results are in bold, second best are underlined.

worst-case localization error. The Average Symmetric Surface Distance
(ASSD) computes the average of the bidirectional boundary distances,
offering a more global measure of contour alignment. Finally, the Boundary
FI Score (BF1) calculates the precision-recall F1 score for boundary voxels
within a 2-voxel tolerance, providing a direct evaluation of the contour’s
correctness.

Hardware and Computational Cost: All experiments were conducted
on a workstation with dual NVIDIA RTX 3090 GPUs. While the full
training of CoreFormer on LIDC-IDRI took ~6 h, the inference perfor-
mance s critical for clinical deployment. For a 64 x 64 x 64 input patch, the
average inference time of CoreFormer is ~720 ms, broken down as follows:
Swin Transformer Backbone (350 ms), Structural Core Predictor (60 ms),
Cost Map Generation & FMM (210 ms), and the Context-Aware Shape
Decoder (100 ms). For comparison, a baseline 3D U-Net takes ~410 ms.
While CoreFormer is more computationally intensive, we argue this modest
increase is a justifiable trade-off for the significant gains in accuracy and
reliability, with the total time remaining well within practical limits for
clinical workflows.

Comparison with state-of-the-art methods

To situate CoreFormer within the current landscape of medical image
segmentation, we conducted a rigorous comparison against a comprehen-
sive suite of state-of-the-art (SOTA) methods. These baselines span classic
convolutional architectures (3D U-Net, V-Net), attention-augmented
models (Attention U-Net), highly optimized frameworks (nnU-Net),
advanced implicit representation techniques (STUNet), and leading
Transformer-based approaches (TransUNet, UNETR). Our analysis is
presented in three parts: performance on established nodule segmentation
benchmarks, evaluation of cross-domain generalization, and a statistical
analysis of the results.

Performance on Nodule Segmentation Benchmarks: As detailed in
Table 2, CoreFormer establishes a new state-of-the-art on both the LIDC-
IDRI and LNDbD datasets, demonstrating superior performance across all
evaluation metrics.

On the large-scale LIDC-IDRI dataset, CoreFormer achieves a Dice
score of 88.7%, surpassing the next-best method, STUNet, by a significant
margin of 1.6%. More importantly, the improvements in boundary-specific
metrics are particularly pronounced. CoreFormer achieves the lowest
Hausdorff Distance (2.54 mm) and Average Symmetric Surface Distance
(0.93 mm), and the highest Boundary F1 Score (87.6%). This substantial
enhancement in boundary fidelity directly validates our core hypothesis: the
proposed geodesic shape decoding, anchored to a structural core, generates
smoother, more anatomically plausible contours than methods relying on
voxel-wise classification or simpler implicit representations.

This superior performance is consistently maintained on the LNDb
dataset, which features different acquisition protocols and higher image
noise. CoreFormer again leads in all metrics, achieving a Dice score of 86.4%
and a Boundary F1 Score of 86.1%. The consistent gains across both datasets

Table 3 | Cross-dataset generalization performance on
NSCLC-Radiomics and MosMedData

Method NSCLC-Radiomics MosMedData

Dicet HD| BF11 Dicet HD| BF11
3D U-Net 78.4 4.92 744 75.2 5.10 71.5
V-Net 79.0 4.78 75.0 75.6 4.85 72.2
Attention U-Net 79.5 4.60 75.8 76.1 4.73 73.0
nnU-Net 80.3 4.38 76.7 76.9 4.45 741
STUNet 811 402 782 775 413 752
TransUNet 79.7 4.36 76.1 76.2 4.42 73.8
UNETR 80.5 4.15 77.4 77.0 4.25 74.6
CoreFormer 83.2 3.67 80.3 78.8 3.88 77.0
(Ours)

All models are trained on LIDC-IDRI and directly evaluated (without fine-tuning) on the target
datasets. Metrics include Dice (%), Hausdorff Distance (HD, mm), and Boundary F1 Score (BF 1, %).

underscore the robustness of our framework. While Transformer-based
models like UNETR show competitive results, they are outperformed by
CoreFormer, suggesting that their powerful feature extraction capabilities,
while beneficial, lack the explicit geometric and topological priors needed for
high-fidelity segmentation. Similarly, while STUNet confirms the value of
continuous representations, CoreFormer’s use of a structural skeleton as an
anchor-rather than a single point-provides a more stable and descriptive
prior for complex nodule morphologies, leading to more accurate and
reliable shape generation.

Cross-Dataset Generalization: To assess the real-world utility and
robustness of our model, we performed a challenging cross-dataset gen-
eralization experiment. Models were trained exclusively on LIDC-IDRI and
then directly evaluated on two unseen target datasets-NSCLC-Radiomics
and MosMedData-without any fine-tuning. As shown in Table 3, Cor-
eFormer demonstrates exceptional generalization capabilities.

On NSCLC-Radiomics, which contains large, non-spherical lung
tumors, CoreFormer achieves the best performance across all metrics, with a
Dice score of 83.2% and a Boundary F1 score of 80.3%. This result is
particularly significant, as it shows that the inductive biases of our model,
designed for nodules, successfully transfer to more complex and varied
tumor morphologies. The emphasis on smooth geometric evolution from a
core structure allows it to handle these challenging shapes better than
conventional voxel-based methods, which often produce fragmented
boundaries.

Similarly, on the MosMedData dataset, which features highly irregular
and multi-focal infectious lesions from COVID-19 patients, CoreFormer
again delivers the top results (78.8% Dice, 77.0% BF1). This task is chal-
lenging for models that lack strong shape priors. Our method’s core-
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Table 4 | Statistical comparison of Dice (%) and Hausdorff
Distance (HD, mm) between CoreFormer and other SOTA
methods on LIDC-IDRI

Method Dice (%) HD (mm)

Mean = Std p-val Mean = Std p-val
3D U-Net 84.2+4.3 <0.001 3.64+1.12 <0.001
V-Net 85.0+3.9 <0.001 3.45+1.05 <0.001
Attention U-Net 85.8+3.7 0.002 3.31+1.01 0.003
nnU-Net 86.5+3.6 0.007 3.21+£0.94 0.011
STUNet 87.1+£3.2 0.021 2.98+0.85 0.034
UNETR 86.3+3.4 0.013 3.05+0.91 0.020
CoreFormer 88.7+2.6 - 2.54+0.72 -
(Ours)

Results are reported as mean + Std over the test set. p values are computed using paired t-tests.
Values in bold indicate statistical significance (o < 0.05).

Table 5 | Ablation study results on the LIDC-IDRI dataset

Variant Dice? HD| ASSD| BF1t
CoreFormer (full) 88.7 2.54 0.93 87.6
w/o Structural Core 86.9 3.12 1.17 84.9
Predictor

w/o CAS-Decoder 86.1 3.34 1.26 83.7
w/o Feature Manifold 85.4 3.45 1.33 82.8
Regularization

Replace w/Voxel 85.0 3.58 1.41 81.9
Classifier

This table demonstrates the performance impact of removing or modifying key architectural
components of the CoreFormer model. “Replace w/Voxel Classifier” refers to replacing the entire
dual-branch decoder with a conventional voxel-wise decoder. Metrics include Dice (%), Hausdorff
Distance (HD, mm), Average Symmetric Surface Distance (ASSD, mm), and Boundary F1 Score
(BF1, %). Best results in bold.

92

conditioned geodesic modeling acts as a powerful form of regularization,
suppressing noisy predictions and preserving shape coherence even for
amorphous structures. These results confirm that CoreFormer’s archi-
tectural principles provide a versatile and robust foundation that generalizes
far beyond its initial training domain.

Statistical Significance and Prediction Stability: To verify the reliability
of our findings, we conducted a statistical analysis on the LIDC-IDRI test set
using paired f-tests, with the results presented in Table 4. The analysis
reveals that CoreFormer not only achieves the highest mean performance
but also exhibits the greatest prediction stability. With a mean Dice score of
88.7% and the lowest standard deviation (2.6), our model demonstrates
consistently high accuracy across diverse nodule appearances, unlike
competing models which show higher variance.

Crucially, the performance improvements are statistically significant.
The computed p values for both Dice and HD comparisons against all
baseline methods are well below the 0.05 threshold, with most being less
than 0.01. For instance, the improvement over a strong baseline like STUNet
is significant for both Dice (p =0.021) and HD (p = 0.034). This statistical
validation confirms that the performance gains achieved by CoreFormer are
not attributable to random chance or dataset bias. The combination of
superior mean accuracy, lower prediction variance, and statistically sig-
nificant improvements provides compelling evidence that our proposed
method introduces a meaningful and robust advancement over existing
segmentation models.

Ablation studies

To rigorously validate the architectural design of CoreFormer and quantify
the contribution of its individual components, we conducted a series of
ablation studies on the LIDC-IDRI dataset. These experiments system-
atically deconstruct the framework to isolate the impact of the Structural
Core Predictor, the Context- Aware Shape Decoder (CAS-Decoder), and the
Feature Manifold Regularization scheme.

Dissection of CoreFormer’s Architectural Components: Our analysis,
summarized in Table 5 and Fig. 2, demonstrates that each component of the
CoreFormer architecture plays a critical and synergistic role in achieving
state-of-the-art performance. The full, unmodified model serves as the
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Fig. 2 | Visualization of the ablation study results. The bar chart compares the Dice Score and Boundary F1 Score for the full CoreFormer model and its variants with
specific components removed or replaced, highlighting the contribution of each component to overall performance.
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Fig. 3 | Qualitative comparison of segmentation
results on representative CT slices. This figure
visually contrasts the segmentation masks produced
by the full CoreFormer model with those from
ablated variants against the ground truth (GT). The
variants shown are: a model without the Context-
Aware Shape Decoder (‘w/o CAS-Decoder') and a
model without the Structural Core Predictor (‘w/o
SCP"). This comparison illustrates the improve-
ments in boundary adherence and topological con-
sistency achieved by the full model.

Image

GT w/o Decoder w/o SCP CoreFormer

Table 6 | Performance comparison between the proposed
dual-branch decoder and a conventional voxel-wise decoder

Dataset Voxel Decoder Dual Decoder (Ours)
Dice? HD| BF1t Dice?t HD| BF1t

LIDC-IDRI 85.0 3.58 81.9 88.7 2.54 87.6

LNDb 83.3 3.67 80.4 86.4 2.89 86.1

NSCLC- 79.6 4.21 75.0 83.2 3.67 80.3

Radiomics

MosMedData 76.4 4.53 72.5 78.8 3.88 77.0

The evaluation is conducted across all four datasets to demonstrate the consistent superiority of our
proposed decoder architecture.
Bold values indicate the best performance in each row.

benchmark, achieving a Dice score of 88.7% and a Boundary F1 score of
87.6%, with the lowest boundary errors (2.54 mm HD and 0.93 mm ASSD).

Removing the Structural Core Predictor and relying on a geometric
center forces the model to anchor its shape generation process without
anatomical guidance. This results in a notable performance drop (Dice to
86.9%, BF1 to 84.9%) and a significant increase in boundary error (HD to
3.12mm). The qualitative results in Fig. 3 (column “w/o SCP”) visually
confirm this, showing segmentation masks that are noticeably offset and
asymmetric, underscoring the importance of learning an intrinsic,
anatomically-aware core.

Ablating the Context-Aware Shape Decoder (CAS-Decoder) leads to a
further decline across all metrics (Dice to 86.1%, BF1 to 83.7%). As seen in
Fig. 3 (column “w/o Decoder”), this variant produces irregular and frag-
mented masks. This highlights the decoder’s crucial function in evolving a
smooth and continuous boundary along learned geodesic paths, a capability
that a conventional decoder lacks.

The removal of the Feature Manifold Regularization during training
results in the poorest performance among the module removal variants
(Dice of 85.4%). Although this module is not active during inference, its
absence during training leads to a less discriminative feature space, which
consequently hampers the downstream prediction and decoding tasks. This
confirms that explicitly structuring the latent space is vital for robust feature
learning.

Finally, replacing the entire dual-branch decoder with a standard
Voxel-wise Classifier, which mimics a conventional U-Net-like architecture,

causes the most substantial performance degradation (Dice to 85.0%, BF1 to
81.9%). This variant struggles to maintain spatial continuity and fails to
leverage any geometric priors, resulting in the jagged, fragmented, and
anatomically inconsistent masks shown in Fig. 3. The sharp decline in
boundary metrics (HD of 3.58 mm, ASSD of 1.41 mm) unequivocally
demonstrates the limitations of purely local, voxel-level predictions and
highlights the superiority of our global, shape-aware generation process.

Superiority of the Dual-Branch Geodesic Decoder: To further isolate
and emphasize the contribution of our novel decoder architecture, we
conducted a direct comparison between our dual-branch decoder and a
conventional voxel-wise decoder across all four evaluation datasets. The
results, presented in Table 6, show a consistent and significant performance
advantage for our proposed design.

On the LIDC-IDRI dataset, our decoder architecture boosts the Dice
score by 3.7 points and the Boundary F1 score by a remarkable 5.7 points,
while reducing the Hausdorff Distance by over 1 mm. This trend is robustly
maintained across the other datasets. On LNDDb, the improvements (43.1%
Dice, +5.7% BF1) demonstrate strong generalization to different scanner
protocols. The benefits are even more pronounced on the cross-domain
datasets. For the large, complex tumors in NSCLC-Radiomics, our decoder
yields a 3.6-point gain in Dice and a 5.3-point gain in BF1. For the amor-
phous COVID-19 lesions in MosMedData, it achieves a 2.4-point increase
in Dice and a 4.5-point increase in BFI.

These results validate the core intuition behind our method. Voxel-
wise decoders make independent, local decisions, which often leads to noisy
and topologically inconsistent predictions. In contrast, our continuous,
geodesic formulation regularizes the entire segmentation process, evolving
the boundary smoothly from a learned anatomical anchor. The consistently
larger gains in boundary-centric metrics (HD and BF1) compared to the
volumetric Dice score highlight that our method specifically remedies the
primary structural weaknesses of conventional segmentation approaches,
resulting in more robust, accurate, and anatomically plausible results.

Boundary and topology consistency analysis

Beyond volumetric accuracy, a critical measure of a segmentation model’s

clinical utility is its ability to preserve structural and topological fidelity. To

investigate this, we performed a detailed analysis using both boundary-

aware and topology-sensitive metrics on the LIDC-IDRI dataset.
Quantitative Analysis: The quantitative results, presented in Table 7,

show that CoreFormer consistently and significantly outperforms all
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baseline methods in preserving structural integrity. Our model achieves a
Boundary F1 Score of 87.6%, a substantial improvement over strong base-
lines like STUNet (78.2%) and nnU-Net (76.7%). This indicates that the
boundaries generated by CoreFormer are more accurately aligned with the
ground truth, a crucial requirement for applications like treatment planning
where precise margins are essential. Furthermore, CoreFormer records the
lowest boundary errors, with a Hausdorff Distance of 2.54 mm and an
Average Symmetric Surface Distance of 0.93 mm. These superior results
reflect a reduction in both maximum and average boundary deviations,
which can be directly attributed to our model’s geodesic decoder that gen-
erates smooth, anatomically-guided contours.

A key differentiator of our method is its ability to maintain topological
correctness. The Euler Similarity Index (ESI), which measures the similarity
of topological features like connected components and holes, is highest for
CoreFormer at 0.94. In contrast, conventional voxel-based methods like 3D
U-Net and V-Net score much lower (0.81 and 0.83, respectively), as their
local, pixel-wise decision process often leads to spurious fragments or the
incorrect merging of structures. This demonstrates the efficacy of our
center-driven, continuous representation in producing outputs that are not
only accurate but also structurally and topologically faithful.

Qualitative Analysis: The quantitative improvements are strongly
supported by qualitative evidence, as shown in Fig. 4. Across several chal-
lenging cases, CoreFormer consistently produces segmentation masks that
are visually superior to those of other state-of-the-art methods like UNETR
and STUNet. The boundaries generated by our model are smoother and

Table 7 | Boundary and topology consistency metrics on the
LIDC-IDRI dataset

Method Dicet HD| ASSD| BF11 ESIt
3D U-Net 84.2 3.64 1.38 741 0.81
V-Net 85.0 3.45 1.29 75.0 0.83
nnU-Net 86.5 3.21 1.14 76.7 0.86
STUNet 87.1 2.98 1.08 78.2 0.88
CoreFormer 88.7 2.54 0.93 87.6 0.94
(Ours)

Higher BF1 and Euler Similarity Index (ESI) indicate better boundary alignment and topological
preservation. Lower HD and ASSD reflect more accurate boundary localization.

more tightly aligned with the true anatomical contours of the nodules, even
in regions with low contrast or complex shapes. In contrast, the baseline
methods, while generally accurate, often exhibit minor deviations, jagged
edges, or less precise delineation, particularly for smaller or irregularly
shaped nodules.

For instance, in the challenging case involving a nodule with an internal
void, our model correctly preserves this topological feature, whereas con-
ventional voxel-based methods often fail, either filling the hole or frag-
menting the mask. This visual evidence reinforces our quantitative findings,
demonstrating that CoreFormer’s geodesic shape evolution, guided by a
structural core prior, naturally enforces a level of global coherence and
smoothness that is absent in methods relying on local information alone.
This results in segmentations that are not only more accurate by the
numbers but are also more anatomically plausible and visually reliable,
which is a critical requirement for deployment in clinical decision-making
pipelines.

Model interpretability via attention visualization

To better understand the model’s decision-making process and verify that it
learns clinically relevant features, we visualized its internal attention
mechanisms. As shown in the heatmaps in Fig. 5, the model demonstrates a
strong ability to focus its computational resources precisely on the regions of
interest. The high-activation areas (shown in red and yellow) closely align
with the ground-truth nodule locations across various cases, including those
with irregular shapes and subtle appearances. Notably, the model not only
attends to the core of the nodule but also accurately highlights its boundaries
and peripheral features, such as spiculation. This indicates that our model
has learned to identify key diagnostic characteristics, providing a more
interpretable and trustworthy segmentation result.

Semi-supervised segmentation performance

A key challenge in medical imaging is the high cost of acquiring expert
annotations, making it crucial for models to perform well with limited
labeled data. To evaluate CoreFormer’s label efficiency, we conducted a
semi-supervised segmentation experiment on the LIDC-IDRI dataset,
progressively reducing the proportion of labeled training data from 100%
down to just 5%. We compared our method against several strong baselines:
a standard fully-supervised Voxel Baseline (U-Net), Mean Teacher, which
leverages consistency between a student model and an exponential moving
average of its weights (the teacher), FixMatch, which combines pseudo-

Fig. 4 | Qualitative comparison with state-of-the-
art methods. These examples from three different
cases visualize the segmentation results of our
method against the ground truth (GT) and two
strong baselines, UNETR and STUNet, highlighting
the superior boundary accuracy of CoreFormer.

UNETR STUNet

Ours
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Fig. 5 | Visualization of the model’s spatial attention mechanism. For each case
(row), we show the original CT image, the ground-truth mask (GT Mask), and the
corresponding attention heatmap. The heatmaps demonstrate that the model
accurately focuses on the pulmonary nodule area, with heightened attention on the
prominent features along the nodule’s boundary, validating its ability to capture
clinically relevant information for segmentation.

Table 8 | Semi-supervised segmentation performance (Dice
score, %) on the LIDC-IDRI dataset under different labeled
data proportions

Method 5% 10% 25% 100% (Full)
Voxel Baseline (U-Net) 58.1 65.2 74.9 85.0
Mean Teacher 61.8 67.5 77.9 86.0
FixMatch 62.5 68.8 775 86.3
ST++ 63.0 69.1 78.2 86.5
CoreFormer (Ours) 68.5 741 81.5 88.8

labeling with consistency regularization, and ST++, another advanced
semi-supervised framework.

The results, presented in Table 8 and visualized in Fig. 6, demonstrate
the decisive superiority of CoreFormer across all levels of supervision. In the
extremely data-scarce regime with only 5% of labels, CoreFormer achieves a
Dice score of 68.5%, outperforming the standard U-Net baseline by a
remarkable 10.4 points and surpassing even advanced methods like ST++
by 5.5 points. This substantial performance gap is maintained as more labels
are introduced, with CoreFormer leading all competitors at the 10% and
25% levels. This indicates that our model is significantly more effective at
leveraging unlabeled data.

This strong performance in low-data regimes stems directly from the
powerful inductive biases inherent in our model’s architecture. The struc-
tural core anchoring and geodesic shape decoding act as a potent shape
regularizer. While conventional consistency-based methods can propagate
errors through noisy pseudo-labels at the pixel level, CoreFormer’s structural
prior constrains the shape generation process to be anatomically plausible.
By forcing the segmentation to evolve coherently from a predicted core, our
method effectively suppresses noise and preserves semantic boundaries,
enabling a more stable and effective learning signal from unlabeled data.

Furthermore, the scalability of CoreFormer is evident as the amount of
labeled data increases. The performance gap between our method and the
baselines persists even with full supervision, where CoreFormer achieves the
highest Dice score of 88.8%. This confirms that the architectural benefits are
not merely a low-data crutch but provide a fundamental advantage across
the entire supervision spectrum. These results underscore the robustness
and label efficiency of our framework, positioning it as a highly practical
solution for clinical scenarios where annotated data is often a limited and
valuable resource.

Discussion

In this paper, we introduced CoreFormer, a novel framework that
reconceptualizes pulmonary nodule segmentation through the princi-
ples of structural core anchoring and geodesic shape decoding. By first
identifying a nodule’s intrinsic topological skeleton and subsequently
evolving its boundary along learned, anatomy-aware geodesic paths,
our method directly addresses the critical limitations of conventional
voxel-wise approaches, namely their tendency to produce fragmented
boundaries and topological inconsistencies, especially for complex
lesions. This is realized through an architecture that integrates a Swin
Transformer backbone with a sophisticated dual-branch decoder and a
novel Feature Manifold Regularization scheme, ensuring high struc-
tural fidelity and precise boundary delineation even under challenging
imaging conditions.

Through extensive experiments on multiple public datasets, Cor-
eFormer was shown to consistently outperform a wide range of strong
segmentation baselines across both volumetric and boundary-specific
metrics, empirically validating the efficacy of our architectural design. This
superior performance stems from the powerful inductive biases embedded
within our framework. The explicit modeling of a structural core and geo-
desic paths, coupled with a highly structured feature space, endows the
model with exceptional generalization capabilities and significantly
improved label efficiency. This makes our framework particularly well-
suited for the medical domain, where the scarcity of comprehensive
annotations remains a major bottleneck.

In advancing the state-of-the-art, CoreFormer demonstrates the pro-
found impact of integrating deep topological priors with anatomy-aware
implicit modeling. Future work will focus on extending this powerful
paradigm to more complex, multi-class segmentation of thoracic structures
and to the dynamic tracking of lesions over time for monitoring lung cancer
progression. Furthermore, integrating our framework with shape-aware
uncertainty modeling could further enhance its reliability for real-world
clinical deployment. Ultimately, CoreFormer offers a robust and powerful
solution that paves the way for more reliable automated analysis in clinical
practice.

Methods

Overall architecture

As shown in Fig. 7, the overall framework of CoreFormer comprises a
hierarchical Swin Transformer backbone, a dual-branch decoder, and a
feature manifold regularization module. Our proposed framework
introduces a novel paradigm for pulmonary nodule segmentation by
shifting from traditional voxel-wise classification to a structured, shape-
aware generative process. The core of our method lies in a cascaded
architecture that first identifies the intrinsic topological core of a nodule
and then grows the segmentation boundary outward in a context-aware
manner. The entire architecture, as illustrated in the main framework
diagram, consists of three integral components: a hierarchical Swin
Transformer backbone for feature extraction, a dual-branch decoder
comprising a Structural Core Predictor and a Context-Aware Shape
Decoder (CAS-Decoder), and a training-specific Feature Manifold
Regularization module designed to learn a highly discriminative latent
space. The final segmentation is supervised by a loss Lg,,, while the
training process is augmented by a core prediction loss and the reg-

ularization loss Lp,,.
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performance gap is particularly pronounced under low-label regimes (5-10%),
demonstrating the effectiveness of diffusion-based shape regularization.

Fig. 6 | Performance comparison under semi-supervised settings with varying
labeled data ratios (5%, 10%, 25%, 100%). CoreFormer consistently outperforms
voxel-based and consistency-regularized methods across all supervision levels. The
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Fig. 7 | Overview of the proposed framework. The input 3D CT volume is pro-
cessed by a hierarchical Swin Transformer backbone, yielding multi-scale feature
maps (Froy, Fuias Frign)- These features feed into a dual-branch decoder. The
Structural Core Predictor uses high-level features Fy;;, to predict a core probability
map Pc,,., from which a structural Core Anchor S is derived. The Context-Aware

Shape Decoder (CAS-Decoder) takes the anchor S and all feature maps as input,
utilizing a pipeline of a lightweight CNN, Fast Marching Method (FMM), an
Attention Block, and an MLP to generate the final predicted mask. During training,
the Feature Manifold Regularization module provides an additional supervisory
signal, Lp,,, to structure the feature space.
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Fig. 8 | Conceptual Illustration of the Feature
Manifold Regularization Module. a A set of high-
dimensional feature vectors are sampled from the
backbone’s output Fpg, using ground truth masks
for guidance. b These features are dynamically
clustered, identifying not only primary classes
(‘Nodulart, ‘Non-nodular) but also finer-grained
sub-manifolds within them. ¢ Two graphs are con-
structed: a within-manifold graph (G", blue arrows)
connecting samples in the same sub-cluster, and a
between-manifold graph (G’, cyan arrows) con-
necting samples from different primary classes.

d The regularization loss function then optimizes
the feature space to enforce within-manifold com-
pactness (minimizing L,,,) and between-
manifold separability (maximizing inter-cluster
distance, related to Lg,,).
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Hierarchical Swin Transformer backbone

The foundation of our model is a hierarchical Swin Transformer backbone,
engineered to efficiently extract both fine-grained local details and long-
range global semantic context from the input 3D CT volume. The input
volume is initially divided into non-overlapping 3D patches, which are then
projected into a high-dimensional embedding space via a linear embedding
layer. These tokenized embeddings are processed through a series of Swin
Transformer Encoder Layers. As detailed in the framework diagram, each
encoder layer is built upon a standard Multi-head Self-Attention (MSA)
module and a Shifted-Window based Multi-head Self-Attention (SW-
MSA) module. This windowing mechanism restricts self-attention com-
putation to local windows, significantly improving computational effi-
ciency, while the shifting strategy facilitates cross-window connections,
enabling the model to learn global interactions. To produce a hierarchical
representation, patch merging layers are inserted between stages, which
reduce the spatial resolution of the feature maps while increasing their
channel depth. This process yields a set of multi-scale feature maps, denoted
as Frow» Fagias and Frygy. Fro,, retains high-resolution spatial information
crucial for precise boundary delineation, whereas Fyj;y, captures abstract,
high-level semantic information essential for understanding the nodule’s
overall structure and location.

Dual-branch core and shape decoder
Our dual-branch decoder is the centerpiece of the framework, responsible
for translating hierarchical features into a precise segmentation mask. It
operates in two sequential stages: core prediction and shape decoding.

The first stage, the Structural Core Predictor, aims to identify a
descriptive structural “skeleton” of the nodule, providing a robust anchor for
subsequent steps. Taking the highest-level semantic features F;g, as input,
this predictor employs a lightweight fully convolutional decoder to generate
a dense core probability map, P, € [0, 17" *" Each voxel in Pc,,
represents the probability of that location being part of the nodule’s struc-
tural centerline. At inference time, the Core Anchor S is derived from this
probability map through a fully automated, two-step online process inte-
grated into the pipeline. First, the map is binarized using a confidence
threshold of 0.5. Second, we apply the same 3D morphological thinning
algorithm used for generating the ground-truth skeletons to the binarized
map. This ensures consistency between training and inference and yields a
sparse set of connected voxels representing the final anchor. This module is
supervised by a dedicated loss, L,,,, computed between the predicted map
Pc,re and a ground-truth skeleton.

The second stage, the Context-Aware Shape Decoder (CAS-Decoder),
executes the final shape generation using the Core Anchor S as a geometric
prior. This module first concatenates the multi-scale features (Froy» Fasigs

Fhign) and processes them with a lightweight CNN to generate a voxel-wise
traversal cost map, with a Softplus activation ensuring all costs are positive.
Subsequently, the Fast Marching Method (FMM) algorithm is employed,
using S as the source to efficiently compute the shortest geodesic distance
from the core to every other voxel across this learned cost map. An Attention
Block then aggregates features along these geodesic paths to form a con-
textually rich representation for each voxel. Finally, a concluding MLP takes
this context-aware feature and the geodesic distance as input to regress a
final continuous signed distance field, which is thresholded to produce the
final predicted mask.

Feature manifold regularization

To learn a more discriminative and semantically structured feature space,
we introduce a Feature Manifold Regularization module, which is exclu-
sively active during the training phase. The overall workflow of the feature
manifold regularization process is illustrated in Fig. 8, which shows how
features are sampled, clustered, and organized into within- and between-
manifold graphs. This module explicitly sculpts the latent space of the high-
level features Fpjg by enforcing intra-class compactness and inter-class
separability, as detailed in the regularization diagram. The process unfolds
in four steps. First, for each training batch, a Semantics-Aware Sampling
strategy is employed. Leveraging the ground truth masks, we sample a
representative set of feature vectors from Fpg, that belong to distinct, pre-
defined semantic classes, primarily ‘Nodular' and ‘Non-nodular' tissues.
Second, these sampled features undergo Dynamic Sub-manifold Discovery.
For features within a major class (e.g., all ‘Nodular' samples), we apply an
unsupervised clustering algorithm to identify finer-grained sub-groups,
which may correspond to different nodule characteristics. This allows the
model to adaptively recognize the inherent heterogeneity within a single
class. Third, based on this clustering, we perform Multi-Level Adjacency
Graph Construction. A within-manifold graph (G") is built by connecting
feature vectors within each discovered sub-cluster, defining pairs that
should be pulled together. A between-manifold graph (G) is built by con-
necting feature vectors from different major classes (e.g., ‘Nodular" vs. ‘Non-
nodular"), defining pairs that should be pushed apart. Finally, a composite
regularization loss Lp,, is formulated from these graphs. The compactness
loss, L"Comp’ penalizes large distances between connected nodes in G,
thereby enforcing tightness within each sub-manifold (Equation 1):

Lowp= Y. Ifi=fill3

(fifea” )

Simultaneously, the separability loss, Lg,,, uses a margin-based formulation
to penalize small distances between nodes in G, forcing a clear separation
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between the feature representations of different classes (Equation 2):

,CSBP = Z max(0, m— || fi _fk”%)

2
(fifeG @

where m is a predefined margin. The total regularization loss is the sum
L Reg = [’Cump + ESep, guiding the backbone to learn features that are not
only effective for downstream tasks but are also inherently more robust and
separable.

Training objective

The overall model is trained end-to-end by optimizing a composite loss
function that combines the objectives from the primary segmentation task,
the auxiliary core prediction task, and the feature regularization module.
The total loss L, is a weighted sum of these individual components
(Equation 3):

Etatal = L:Seg + Acare[’Core + AregEReg

3)

Here, Lg,, is the primary segmentation loss (e.g., a combination of Dice and
cross-entropy loss) computed on the final predicted mask. £,, is the loss
for the Structural Core Predictor, ensuring the accurate localization of the
nodule’s skeleton. Ly, is the feature manifold regularization loss described
previously. The terms A, and A, are scalar hyperparameters that balance
the contribution of the auxiliary tasks. Based on empirical validation on a
held-out set to optimally balance the learning objectives, these weights were
set t0 Acore=1.0 and A, =0.1 in our experiments. This ensures that all
components of our architecture are synergistically optimized to produce
accurate, robust, and topologically sound segmentations.

Ethics approval and consent to participate

This study uses publicly available, de-identified CT imaging datasets (LIDC-
IDRI and LNDD), which do not require ethical approval or informed con-
sent under current data-sharing regulations.

Data availability

All datasets used in this study are publicly accessible from the following
sources:- LIDC-IDRI:  https://wiki.cancerimagingarchive.net/display/
Public/LIDC-IDRI- LNDb: https://Indb.grand-challenge.org/- Tianchi-
Lung: https://tianchi.aliyun.com/competition/entrance/231601/ informa-
tion- NSCLC-Radiomics: https://wiki.cancerimagingarchive.net/display/
Public/ NSCLC-Radiomics Code for the CoreFormer framework, training
scripts, and evaluation protocols will be made available upon reasonable
request. A public GitHub repository will be released after publication to
promote reproducibility.

Code availability

Code for the CoreFormer framework, training scripts, and evaluation
protocols will be made available upon reasonable request. A public GitHub
repository will be released after publication to promote reproducibility.
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