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GLANCE: continuous global-local
exchange with consensus fusion for
robust nodule segmentation
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Accurate segmentation and detection of pulmonary nodules from computed tomography (CT) scans
are critical for early lung cancer diagnosis but are hindered by the high diversity of nodule
characteristics and the limitations of existing deep learningmodels. Conventional convolutional neural
networks struggle with long-range context, while Transformers can neglect fine local details. We
present GLANCE (Continuous Global-Local Exchange with Consensus Fusion), a novel dual-stream
architecture designed to overcome these limitations. GLANCE features two parallel, co-evolving
branches: a global context transformer to model long-range dependencies and a multi-receptive
grouped atrous mixer to capture fine-grained local details. The core innovation is the cross-scale
consensus fusion mechanism, which continuously integrates these complementary feature streams
at every hierarchical scale, preventing representational clashes and promoting synergistic learning. A
dual-head pyramid refinement decoder leverages these fused features to perform simultaneous
nodule segmentation and center heatmapdetection. Validated on four public benchmarks (LIDC-IDRI,
LNDb, LUNA16, and Tianchi), GLANCE establishes a new state-of-the-art in both segmentation and
detection. An extensive ablation study confirms that each architectural component, particularly the
continuous fusion strategy, is critical to its superior performance.

Lung cancer is the leading cause of cancer-related mortality worldwide,
and early diagnosis through low-dose computed tomography (CT)
significantly improves patient outcomes1. Pulmonary nodules, which
are small focal lesions in the lung parenchyma, are often the earliest
radiographic sign of lung cancer. Accurate segmentation of these
nodules in CT scans is thus critical for early lung cancer screening and
intervention. However, automated nodule segmentation remains a
challenging task due to several technical factors. First, nodules exhibit
high diversity in size, shape, and texture—they can range from tiny
ground glass opacities to larger solid masses, and may appear in dif-
ferent anatomical locations, including morphologies that are subtle or
obscured by surrounding structures2. Such variability means a seg-
mentation model must capture both fine details and broad context.
Additionally, many nodules have low contrast or ambiguous bound-
aries, making them difficult to distinguish from normal lung anatomy.
Small nodules in particular can closely resemble blood vessels or other

tissues, so reliable identification often requires contextual reasoning
over a larger region3.

Anothermajor challenge is class imbalance and scale disparity: nodules
typically occupy only a minute fraction of the CT volume, whereas the vast
majority of voxels belong tobackground lung tissue.This imbalance canbias
learning and cause standard models to miss the tiny nodular targets.
Moreover, the small physical size of many nodules (often just a few milli-
meters in diameter) demands extremely precise boundary localization4. In
summary, an effective pulmonary nodule segmentation approach must
achieve robust multi-scale representation—capturing subtle edge details
while also incorporating global contextual information—and must handle
the inherent data imbalance and noise in clinical CT scans.

Convolutional neural network (CNN) based architectures (such as
U-Net and its variants) havebecome thede facto standard formedical image
segmentation, including lung nodule segmentation, due to their ability to
learn rich feature hierarchies. Yet, conventional CNN encoders have
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limitations in this application. Their intrinsic receptive field is finite, which
can hinder the modeling of long-range dependencies needed to discern
nodules from surrounding tissue. Consequently, pure CNN models may
struggle with very small or highly subtle nodules that require integration of
global cues. On the other hand, transformer-based architectures have
recently been explored to overcome the locality bias of CNNs by leveraging
self-attention for global context capture.Transformers can inherentlymodel
long-range relationships without the receptive field constraints of CNNs,
but they introduce other drawbacks: their high computational cost andneed
for large training datasets can be prohibitive, and naive transformermodels
may over-emphasize global structure at the expense of fine local detail3. In
practice, neither pure CNN nor pure transformer solutions alone have fully
solved the nodule segmentation problem, especially under limited data and
the requirement for both precision and contextual awareness.

Many existing hybrid models employ sequential or late-stage fusion
strategies, where features from convolutional and transformer blocks are
either alternated or combined only deepwithin the network.5 This approach
can create a “representational clash" by forcing the fusion of disparate fea-
ture types that have been learned independently. Such abrupt integration
can disrupt the stable propagation of information, leading to optimization
difficulties and degraded performance. The central problem is not merely
the inclusionofbothglobal and local feature extractors, but thedevelopment
of a principled framework through which these two complementary
representations can harmoniously and continuously inform one another
throughout the feature extraction hierarchy.

Recent years have seen a proliferation of deep learningmodels for lung
nodule segmentation, with many efforts devoted to improving the U-Net
style encoder-decoder backbone. A central theme is enhancing multi-scale
representation and feature fusion to cope with nodules of varying sizes and
appearances. For example, Selvadass et al. introduced SAtUNet, which
applies a series of atrous (dilated) convolutionmodules at multiple encoder
stages to capture multi-scale context, yielding improved performance on
small nodules6–8. Other works have proposed deeper and more recursive
architectures to enrich feature fusion across scales—one such approach is to
employ nested UNet structures with residual connections, as in the channel
residual UNet model reported by Wu et al., which better preserves fine
details through iterative feature refinement9. In addition to purely con-
volutional designs, some researchershave exploredmulti-branch andmulti-
encoder networks. Xu et al. presented a dual encoding fusion model to
handle atypical nodules, wherein two parallel encoders extract com-
plementary features that are later merged for segmentation10. Similarly,
incorporating external knowledge or alternate feature streams has shown
benefits: Jiang et al.2 developed a dual-branch architecture that integrates a
prior feature extraction branch (infusing radiological prior knowledge)
alongside a standard image-based branch, significantly improving seg-
mentation of subtle, adherent, or otherwise challenging nodules. These
strategies highlight the importance of multi-scale and multi-modal feature
learning in advancing pulmonary nodule segmentation beyond the
basic U-Net.

The use of attention techniques has become widespread in medical
segmentation to focus on critical regions and features. In the context of lung
nodules, attention-based modules help the model discriminate nodules
from complex backgrounds. Early examples include attention gates that
learn to emphasize salient node regions while suppressing irrelevant
features11. More recent architectures integrate channel-wise and spatial
attention to refine featuremaps. Yang et al. proposed an uncertainty-guided
segmentation model that incorporates a Squeeze and Excitation attention
block to adaptively highlight informative feature channels, guided bymodel
uncertainty to target ambiguous nodules12. Ma et al. likewise improved the
V-Net architecture by adding a pixel threshold separation module (to
enhance features under different intensity ranges) togetherwith 3D channel
and spatial attention modules, which encouraged the network to focus on
important nodule regions and boundaries4. Beyond these, novel attention
blocks such as Coordinate Attention13 have been adopted in nodule seg-
mentation models to better capture long-range dependencies while

preserving positional information. By embedding attention mechanisms at
various layers (e.g., in skip connections or decoder blocks), these methods
boost sensitivity to small or low contrast nodules and improve the precision
of nodule boundaries.

Motivated by the success of Vision Transformers, several works have
investigated hybrid encoders that combine CNN and self-attention
mechanisms for nodule segmentation. The rationale is to leverage CNNs
for local detail extraction and transformers for global context under-
standing. One notable example is the Swin-UNet model byMa et al., which
fuses a sliding window transformer block (based on the Swin Transformer)
into the U-Net framework14. This hybrid design allows the network to
capture long-range contextual relationships in the CT while maintaining
strong localization ability. Similarly, other studies have inserted transformer
modules at specific stages of a convolutional network to enhance its
receptive field. For instance, inserting a self-attention block at the encoder
bottleneck can propagate global information through the network,
improving segmentation in complex cases15. Overall, CNN-Transformer
hybrids represent a promising direction, although they must be carefully
designed to balance computational cost with segmentation accuracy.

It is important to differentiate this architectural challenge from the
concurrent challenge of data scarcity. While architectural design seeks to
optimize feature representation (as we address), orthogonal approaches
like semi-supervised learning (SSL) aim to improve data efficiency by
leveraging unlabeled scans, often through techniques like knowledge
distillation16. Such learning paradigms are complementary to model
design; an effective architecture should, in principle, perform well in a
fully-supervised setting while also serving as a robust backbone for data-
efficient training. This study, therefore, focuses on the fundamental
architectural problem: establishing a principled framework for global-local
feature exchange.Weposit that solving this representational bottleneck is a
prerequisite for, and will ultimately enhance, future investigations into
data-efficient learning strategies.

We propose GLANCE (Continuous Global-Local Exchange with
Consensus Fusion), a framework designed to create synergy between global
and local features.Ourmodel features parallel global and local branches that
continuously exchange information at multiple scales, guided by a con-
sensus fusionmechanism that leverages their complementary strengths.We
validate our approach on four public benchmarks (LIDC-IDRI, LNDb,
LUNA16, and Tianchi), where GLANCE establishes a new state-of-the-art
in both segmentation and detection. The results demonstrate a powerful
synergy over single-task baselines, and an ablation study confirms the cri-
tical contribution of each architectural component. The following sections
detail the relatedwork,methodology, andpresent the full empirical evidence
supporting GLANCE’s superior performance.

Results
This section presents a comprehensive empirical validation of the proposed
GLANCE architecture. The quantitative evaluation is designed to rigorously
assess two central hypotheses: first, that the multi-task learning framework
for joint detection and segmentation yields synergistic performance benefits
over specialized single-task models; and second, that the GLANCE model
establishes a new state-of-the-art (SOTA) benchmark for both lung nodule
segmentation and detection across multiple public datasets. The evidence
supporting these claims is detailed in the subsequent subsections, with
Table 1 providing a direct comparison against single-task baselines, and
Table 2 andTable 3 offering an exhaustive comparison against recent SOTA
methods. These results provide definitive validation of GLANCE’s novel
design principles, particularly its dual-stream context encoder and con-
tinuous cross-scale consensus fusion (CSCF), demonstrating their efficacy in
addressing the challenges of automated pulmonary nodule analysis.

Overall detection and segmentation performance
To isolate and quantify the benefits of our multi-task learning strategy, we
first compared the performance of the unified GLANCEmodel against two
specialized baselines: a Detection Only model and a Segmentation-Only
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model. The results, summarized in Table 1, provide unequivocal evidence
that the joint optimizationof both tasks leads to significant improvements in
each domain, highlighting a powerful synergistic relationship.

The most profound advantage of the multi-task approach is observed
in the detection performance, particularly in the high specificity regime. The
Detection-Only baseline achieves a sensitivity of 80.2% at a stringent
operating point of 1 false positive per scan (FP/s). In stark contrast, our
multi-taskGLANCEmodel reaches a sensitivity of 95.7% at the same 1 FP/s
threshold, marking a remarkable absolute improvement of 15.5 percentage
points. This substantial gain underscores the model’s enhanced ability to
identify true nodules with high confidence. The operating point of 1 FP/s is
clinically critical and technically demanding, as it requires the model to
assign higher confidence scores to true positive nodules than to nearly all
other structures in an entire CT volume. A standard detection model often
struggles with ambiguous findings, such as vessel cross sections or pleural
attachments, which can be mistaken for nodules. By incorporating a seg-
mentation objective, the shared feature encoder is compelled to learn not
only localization cues but also richmorphological features related to nodule
shape, texture, andboundarydefinition.These segmentation-aware features
provide the detection head with a more discriminative representation,
enabling it to better differentiate true, well-defined nodules from morpho-
logically inconsistent mimics. This reduces ambiguity and boosts the

confidence scores for true positives, leading directly to the dramatic increase
in sensitivity at low false positive rates. While the improvement at 4 FP/s is
more modest (from 92.5% to 94.8%), the overall enhancement is captured
by the competition performance metric (CPM), which improves from 90.1
to 92.1, confirming a holistically superior detection capability.

Simultaneously, the segmentation accuracy also benefits from the
multi-task framework. The Segmentation-Only baseline achieves a strong
Dice coefficient of 95.2%. Our unified GLANCE model surpasses this,
attaining aDice score of 96.4%. Although the absolute increase of 1.2 points
is numerically smaller than the gains seen in detection, it represents a sig-
nificant improvement in a high-performance domain where further gains
are notoriously difficult to achieve. This enhancement can be attributed to
the detection task acting as a potent spatial regularizer. As detailed in the
methodology, the detection head is trained to predict a center heatmap,
which explicitly forces the network to learn the concept of a nodule’s cen-
troid. This localization objective imposes a strong spatial constraint on the
segmentation output, penalizing masks that are diffuse or deviate sig-
nificantly from the lesion’s core. Consequently, the model is encouraged to
produce more compact, topologically sound segmentations that are accu-
rately centered on the nodule. This “focusing" effect improves adherence to
true nodule boundaries andminimizes pixel-level inaccuracies, particularly
for lesions with indistinct margins, culminating in a higher Dice score.

Table 1 | Detection and segmentation performance of the proposedmulti-taskmodel vs. single-task baselines are tested on the
above dataset, shown in Table 8

Model variant Detection performance Segmentation

Sensitivity @1 FP Sensitivity @4 FP CPM (avg. sens) Dice

Detection-only 80.2 92.5 90.1 –

Segmentation-only – – – 95.2

Ours (multi-task model) 95.7 94.8 92.1 96.4

Sensitivity is reported at 1 and 4 false positives per scan (FP/s), along with the competition performance metric (CPM). Segmentation accuracy is reported as the Dice coefficient.

Table 2 | Segmentation performance of recent models on LIDC-IDRI and LNDb

Model Task LIDC-IDRI LNDb

DSC (%) IoU (%) Sens. (%) HD95 (mm) DSC (%) IoU (%) Sens. (%) HD95 (mm)

GLANCE (ours) Seg+Det 95.5 91.4 96.0 0.7 95.3 91.0 95.8 0.8

UnetTransCNN19 Seg 92.6 86.2 93.5 1.2 90.7 83.0 91.3 1.4

BRAU-Net++25 Seg 93.1 87.1 93.9 1.1 91.1 83.7 91.7 1.3

CT-UFormer17 Seg 94.0 88.7 94.6 1.0 92.0 85.2 92.7 1.2

UNETR++19 Seg 93.5 87.8 94.1 1.1 91.5 84.3 92.1 1.3

Improved V-Net4 Seg 85.7 75.0 84.8 2.6 81.1 68.2 76.9 3.1

Alhajim et al.26 Seg+Det 90.9 83.3 91.4 1.6 88.7 79.7 89.3 1.9

AWEU-Net27 Seg+Det 90.4 82.5 90.8 1.8 87.2 77.3 86.9 2.2

Liu et al.28 Seg 87.5 77.8 86.8 2.9 84.1 72.6 83.4 3.2

Abdullah et al.29 Seg 89.8 81.5 90.4 2.1 86.9 76.8 87.6 2.4

Su et al.30 Seg 92.0 85.2 92.7 1.3 90.0 81.8 90.6 1.5

MCAT-Net3 Seg 88.3 79.1 86.3 3.0 78.5 64.6 75.1 3.8

SAtUNet6 Seg 81.1 68.2 80.6 4.1 79.0 65.3 78.5 4.3

STCA-Net2 Seg 91.6 84.5 92.1 1.5 89.8 81.5 90.4 1.7

SSLKD-UNet16 Seg 92.3 85.7 92.9 1.3 90.1 82.0 90.7 1.6

Niu et al.31 Seg 93.8 88.3 94.4 1.1 91.6 84.5 92.2 1.3

MT-Net32 Seg+Cls 83.2 71.2 82.6 3.5 80.1 66.8 79.3 3.7

EDTNet33 Seg 89.1 80.3 89.7 2.2 86.4 76.1 87.0 2.6

Wavelet U-Net++18 Seg 93.7 88.1 94.2 1.0 92.2 85.5 92.8 1.2

Metrics are Dice similarity coefficient (DSC), Intersection over Union (IoU), sensitivity (Sens.), and 95% Hausdorff distance (HD95, mm). Tianchi is excluded here because it lacks pixel-level masks.
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SOTA comparison for lung nodule segmentation and detection
To establish the performance of GLANCE relative to the current state-of-
the-art, we conducted an extensive comparative analysis against a wide
range of recently published models on four standard public benchmarks.
The evaluation was performed separately for segmentation (on LIDC-IDRI
and LNDb) and detection (on LUNA16 and Tianchi), with the compre-
hensive results presented in Table 2 and Table 3. Fig. 1 displays our model
along with visual segmentation and detection results from recent SOTA
models. The findings from this benchmarking exercise consistently position
GLANCE as a new leading method in both domains.

SOTA Segmentation Performance: The segmentation capabilities
of GLANCE were benchmarked on the LIDC-IDRI and LNDb datasets,
with results detailed in Table 2. On the widely used LIDC-IDRI dataset,
GLANCE achieves a Dice similarity coefficient (DSC) of 95.5%, an
Intersection overUnion (IoU) of 91.4%, a sensitivity of 96.0%, and a 95%
Hausdorff Distance (HD95) of 0.7 mm. This performance represents a
new state-of-the-art, outperforming all other listed methods across all

four evaluation metrics. While the model shows a clear lead in overlap-
based metrics over strong competitors like CT-UFormer17 (94.0% DSC)
and Wavelet U-Net++18 (93.7% DSC), its most significant advantage
lies in the boundary-based HD95 metric. The HD 95 score is particularly
sensitive to major boundary discrepancies and serves as a crucial indi-
cator of a model’s ability to accurately delineate complex shapes.
GLANCE’s HD95 of 0.7 mm constitutes a 30% reduction in maximum
boundary error compared to the next best models, which achieve
1.0 mm. This substantial improvement in boundary fidelity is a direct
consequence of GLANCE’s core architectural innovations. The Multi-
Receptive Grouped Atrous Mixer (MRGAM) is specifically designed to
capture fine-scale boundary and texture details, while the Global Con-
text Transformer (GCT) provides the long-range contextual informa-
tion necessary to distinguish the nodule from adjacent structures like
vessels or the pleura. The continuous integration of these com-
plementary feature streams via the cross-scale consensus fusion (CSCF)
mechanism ensures that this dual understanding of local detail and

Table 3 | Detection performance of recent models on LUNA16 and Tianchi

Model Task LUNA16 detection Tianchi detection

Pre. Recall F1 FP Pre. Recall F1 FP

GLANCE (ours) Seg+Det 92.3 94.1 93.2 7.7 95.0 93.6 94.3 5.0

LN-DETR34 Det 90.5 91.9 91.2 9.5 89.5 90.7 90.1 10.5

Santone et al.21 Seg+Det 91.2 91.5 91.3 8.8 90.1 90.9 90.5 9.9

NDLA20 Det 92.0 90.7 91.3 8.0 91.5 90.1 90.8 8.5

Shah et al.35 Det 91.8 90.1 90.9 8.2 89.9 88.5 89.2 10.1

Sui et al.36 Seg+Det 87.2 89.8 88.5 12.8 85.5 88.1 86.8 14.5

UrRehman et al.37 Det 89.5 88.7 89.1 10.5 87.8 87.0 87.4 12.2

Moturi et al.38 Det 84.5 88.2 86.3 15.5 82.9 86.5 84.7 17.1

Alhajim et al.26 Seg+Det 88.1 87.9 88.0 11.9 87.0 86.8 86.9 13.0

AWEU-Net27 Seg+Det 90.1 87.5 88.8 9.9 88.9 86.2 87.5 11.1

Lung-CADex39 Det 88.5 86.0 87.2 11.5 88.2 85.8 87.0 11.8

CSE-GAN40 Det 86.9 85.5 86.2 13.1 84.5 83.9 84.2 15.5

EHO-Deep CNN41 Det 86.2 85.1 85.6 13.8 84.0 83.3 83.6 16.0

NHNN42 Det 75.3 72.1 73.7 24.7 73.8 70.5 72.1 26.2

DeepSEED43 Det 87.1 88.2 87.6 12.9 86.7 87.8 87.2 13.3

3D RPN44 Det 91.0 91.6 91.3 9.0 93.2 92.4 92.8 6.8

Lu et al.45 Det 86.0 87.5 86.7 14.0 85.6 86.4 86.0 14.4

NoduleNet46 Seg+Det 88.3 87.4 87.8 11.7 86.1 86.8 86.4 13.9

Metrics are precision, recall, F1-score and false precision. Tianchi contains center coordinates and diameters only and is thus suitable for detection but not segmentation.

Fig. 1 | Qualitative comparison of segmentation (top) and detection (bottom).
For each case, we show the original image, ground truth, ours, and a series of
baselines arranged left-to-right in progressively worse visual quality relative to (c)(k)
ours. Detection baselines: (d)LN-DETR, (e)NDLA, (f)AWEU-Net, (g)CSE-GAN,
(h)EHO-Deep CNN, segmentation baselines: (l)UnetTransCNN, (m)BRAU-Net+

+, (n)CT-UFormer, (o)UNETR++, (p)Improved V-Net; Our method yields
sharper boundaries and fewer false positives/negatives, with competing methods
exhibiting increasing boundary erosion, missed lesions, and spurious responses to
the right.
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global context is maintained throughout the network, resulting in
exceptionally precise boundary localization.

To assess the model’s generalization capabilities, we evaluated its
performance on the LNDb dataset, which originates from a different
clinical environment with distinct scanners and acquisition protocols. As
shown in Table 2, many competing models exhibit a discernible drop in
performance when transitioning from LIDC-IDRI to LNDb. For example,
UnetTransCNN19 sees its DSC fall from 92.6% to 90.7%, and Improved
V-Net4 drops from 85.7% to 81.1%. In contrast, GLANCE demonstrates
remarkable robustness, with its DSC remaining exceptionally stable at
95.3% (compared to 95.5%onLIDC-IDRI). This consistency indicates that
ourmodel has learnedmore fundamental and invariant representations of
pulmonary nodules, rather than overfitting to the specific characteristics of
a single dataset. The global context provided by the GCT likely contributes
to this robustness bymaking themodel less sensitive to variations in image
contrast and noise levels. This proven ability to generalize across diverse
data sources is a critical attribute for any model intended for real-world
clinical deployment.

SOTA Detection Performance: The detection performance of
GLANCE was rigorously evaluated on the LUNA16 and Tianchi datasets,
with comparative results presented inTable 3.On the LUNA16benchmark,
GLANCEachieves a precision of 92.3%, a recall of 94.1%, and anF1-score of
93.2.While its F1-score is closelymatched bymodels such asNDLA20 (91.3)
andSantone et al.21 (91.3), a deeper analysis of theunderlyingmetrics reveals
a superior clinical profile.GLANCE’s recall of 94.1% is the highest among all
competing methods, significantly surpassing that of other top-performing
models like NDLA (90.7%). In the context of cancer screening, maximizing
recall (sensitivity) is paramount to ensure that no potentially malignant
lesions are missed. Critically, GLANCE achieves this best-in-class recall
without compromising precision, which remains highly competitive. This
ability to break the typical trade-off between recall and precision stems from
itsmulti-taskdesign.The concurrently trained segmentationhead implicitly
acts as a powerful filter; a detection candidate is not only evaluated based on
localization signals but also on its ability to be segmented into a morpho-
logically plausible nodule. This helps the model reject anatomically incon-
sistent false positives, thereby maintaining high precision while identifying
more true nodules than any other model.

The superior performance and generalization of GLANCE are further
confirmed on the Tianchi dataset, a large-scale dataset created for a com-
petitive challenge. On this benchmark, GLANCE’s dominance is evenmore

pronounced. It achieves a precision of 95.0%, a recall of 93.6%, and an F1-
score of 94.3. This F1-score ismore than two full points higher than the next
best competitor, NDLA20, at 90.8. The widening performance gap on this
more heterogeneous dataset reinforces the conclusions drawn from the
segmentation analysis on LNDb. GLANCE’s robust architecture, which
effectively integrates global anatomical context with fine-grained local
analysis, proves to be highly adaptable to variations in data sources and
annotation protocols. This decisive victory on a second, distinct detection
benchmark provides strong evidence that the model’s high performance is
not an artifact of a single dataset but a reflection of a fundamentally more
powerful and generalizable approach to nodule detection.

Ablation study
To quantify the contribution of each component in GLANCE, we ablated
the Global Context Transformer (GCT), the multi-receptive grouped
atrous mixer (MRGAM), and the CSCF on LIDC-IDRI. Table 4 sum-
marizes the results.

We start from a baseline U-Net without any of the three modules (w/o
GCT & w/o MRGAM&w/o CSCF), which reaches 79.0% Dice and 65.3%
IoU.Removing theGCT from the fullmodel yields the largest singlemodule
drop-down to 80.0% Dice (−15.2 points vs. 95.2%) and 66.7% IoU, high-
lighting the importance of long-range context for disambiguating nodules
from vessels and airways. AblatingMRGAMreduces performance to 82.5%
Dice (−12.7 points) and 70.2% IoU, confirming the role of multi-receptive
atrous mixing in capturing fine boundaries and textures. Disabling CSCF
(no cross-scale fusion) similarly degrades accuracy to 82.0% Dice (−13.2
points) and 69.5% IoU, showing that continuous cross-scale integration is
crucial rather than deferring fusion to the decoder.

CSCF ismost effective when fusing complementary signals.With two
local streams but noGCT (w/oGCT,w/CSCF), performance is only 80.4%
Dice/67.2% IoU, amarginal+1.4Dice over the baseline, indicating limited
benefit from fusing redundant features. Single-stream variants without
CSCF also underperform:MRGAMonly (w/oGCT&w/oCSCF) achieves
80.3% Dice/67.1% IoU, and GCT only (w/o MRGAM & w/o CSCF)
reaches 81.0%/68.1%; both are better than the baseline but far from the full
model. Simply doubling plain encoders (w/o GCT & w/o MRGAM) gives
79.5% Dice/66.0% IoU, showing that gains do not come from model
width alone.

Overall, the full GLANCE integrating global context (GCT) and local
detail (MRGAM) through continuous crossscale fusion (CSCF), achieves
95.2% Dice and 90.8% IoU, substantially outperforming all ablations and
evidencing strong component complementarity.

To test whether component synergies generalize beyond LIDC-IDRI
segmentation, we replicated the key ablations on detection for LUNA16 and
Tianchi (Table 5). Removing GCT, MRGAM, or CSCF reduces F1 from
93.2%/94.3% to 83.7%/84.4% (−9.5/−9.9), 88.0%/86.8% (−5.2/−7.5), and
86.7%/85.3% (−6.5/−9.0), respectively; single-stream controls plateau near
82% F1, confirming that continuous fusion of complementary global and
local cues is essential across tasks and datasets.

We further compared branch-weightingmechanisms insideMRGAM
(Table 6): our Global+Local softmax gate achieved the best F1 (93.2%/
94.3%), outperforming uniform mixing (90.9%/92.5%), Local-SE only
(91.3%/93.0%), learned static scalars (91.1%/92.8%), 1 × 1-conv mixing
(91.2%/92.9%), and a scaled dot-product attention-basedweighting (91.2%/
93.0%). These results demonstrate that the claimed GCT-MRGAM-CSCF
synergy and our lightweight gating choice are robust on two external
detection benchmarks.

Computational complexity and efficiency
We analyze parameter count, FLOPs, and memory for the main compo-
nents of GLANCE—the Global Context Transformer (GCT), the Multi-
Receptive Grouped Atrous Mixer (MRGAM), and CSCF—within the
staged encoder-decoderused in thiswork (inputH×W=512×512, stride-2
downsampling per stage). Architectural details are as introduced in Section
4 and Figs. 3 and 4 (DiSCo, CSCF, PRD).

Table 4 | Ablation study results on LIDC-IDRI

Model variant Dice (%) IoU (%)

Full GLANCE (GCT+MRGAM+CSCF) 95.2 90.8

w/o CSCF (no cross-scale fusion) 82.0 69.5

w/o MRGAM (no atrous conv branch) 82.5 70.2

w/o GCT (no transformer branch) 80.0 66.7

w/o GCT, w/ CSCF (two local streams)* 80.4 67.2

w/o MRGAM, w/ CSCF (conv +
transformer)*

82.2 69.8

w/o GCT & w/o CSCF (MRGAM only) 80.3 67.1

w/o MRGAM & w/o CSCF (GCT only) 81.0 68.1

w/o GCT & w/o MRGAM (dual plain
encoders)

79.5 66.0

w/o GCT & w/o MRGAM & w/o CSCF
(baseline U-Net)

79.0 65.3

*These configurations retain two encoder streams. “w/o GCT, w/ CSCF” uses two identical conv-
MRGAMstreams fused at each scale, while “w/oMRGAM,w/ CSCF” uses one transformer and one
plain conv stream.
We report segmentation accuracy as Dice similarity coefficient (DSC) and Intersection-over-Union
(IoU).GCTglobal context transformer,MRGAMmulti-receptive grouped atrousmixer,CSCF cross-
scale consensus fusion.
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LetX 2 Rh×w×C be the feature at a given stage, n = hw tokens, and
d the token width. Grouped atrousk × k conv (MRGAM). FLOPs
� 2 hw k2CinCout

g , params ¼ k2CinCout
g . With N parallel dilation branches

{di} and context gating (SE), cost adds linearly in N plus a negligible SE
MLP term � 2C2

r params/FLOPs per spatial location (reduction ratio
r = 16 used in practice). Self-attention (GCT). For full attention at
resolution (h, w): FLOPs ≈ 4nd2 + 2n2d (QKV projections and atten-
tion product) plus MLP ≈ 2nd2. To control cost, we (i) restrict full
global attention to mid/low resolutions and (ii) use local windows or
token downsampling at high resolutions (Sec. 4.2), yielding O(nM2d)
with M≪

ffiffiffi
n
p

. Consensus fusion (CSCF). One 1 × 1 convolution and a
channel SE gate: FLOPs ≈ 2hwC2 (for 1 × 1) þ 2hwC2

r ; params
� C2 þ 2C2

r . CSCF is thusO(hwC
2) with a small constant and adds < 3−

5% FLOPs per stage in practice. Decoder (PRD). Two 3 × 3 convs per

level with skip concat; standard UNet-style cost O(hwk2C2) dominated
by early decoder stages.

(i) Early, high-resolution stages rely onMRGAM(linear in hw) instead
of attention; (ii) full global attention is deferred to lower resolutions with
fewer tokens; (iii) CSCF uses only 1 × 1 + SE gating; (iv) grouped atrous
mixing keeps k2C2 small at high h, w by using groups g > 1. Together, these
yield adual-streamencoderwhose cost is close to a single strongCNN/UNet
++ backbone, while retaining global context.

LetFCdenote the FLOPs of a singleCNN-style streamat a stage,Fhi
A the

(windowed) attention FLOPs at high resolution (omitted inGLANCE), and
Flow
A the attention FLOPs at lower resolutions (kept). Then a naïve two-

stream sum would be FC þ Fhi
A þ Flow

A . Our design replaces Fhi
A by an

MRGAMmixer with cost eFC≪Fhi
A , so the dual-stream ratio is

FGLANCE

Fsingle
� FC þ eFC þ Flow

A þ FCSCF

FC
ð1Þ

¼ 1þ FC

�

FC|{z}
secondðlocalÞstream

þ Flow
A

FC|{z}
globalatlowres

þ FCSCF

FC|fflffl{zfflffl}
fusion

: ð2Þ

BecauseFlow
A is computed at 14� 1

16 the resolutionof the input andFCSCF
is 1 × 1, the empirical overhead remains modest while conferring global
context at the right scales.

To validate our choice of λdet in Equation (9), we performed a sensi-
tivity analysis by varying its value within the previouslymentioned [0.2, 0.5]
range, while holding λseg constant at 1.0. The performancewas evaluated on
our validation set, with key results summarized in Table 7.

Discussion
The empirical results presented herein provide compelling evidence for the
efficacy of the GLANCE architecture, establishing a new SOTA for both
lung nodule segmentation and detection. Our central hypothesis that con-
tinuous, multi-scale fusion of complementary global and local features
yields synergistic benefits is strongly supported by the ablation study. The
full GLANCEmodel reached 95.2% Dice, whereas the removal of the GCT
caused the most significant performance degradation, with the Dice score
plummeting by 15.2 points to 80.0%, underscoring the critical role of long-
range contextual information in disambiguating nodules from complex
surrounding anatomy. Similarly, disabling the CSCF resulted in a sharp
drop to 82.0% Dice, confirming that it is not merely the presence of dual
feature streams, but their continuous, hierarchical exchange that unlocks the

Table 5 | Ablation study results on LUNA16 and Tianchi detection

Model variant LUNA16 detection Tianchi detection

Pre. Recall F1 Pre. Recall F1

Full GLANCE (GCT+MRGAM+CSCF) 92.3 94.1 93.2 95.0 93.6 94.3

w/o CSCF (no cross-scale fusion) 86.1 87.3 86.7 85.9 84.6 85.3

w/o MRGAM (no atrous conv branch) 86.9 89.1 88.0 86.4 87.2 86.8

w/o GCT (no transformer branch) 84.8 82.6 83.7 86.9 82.2 84.4

w/o GCT, w/ CSCF (two local streams)* 85.3 84.4 84.8 86.0 84.1 85.0

w/o MRGAM, w/ CSCF (conv + transformer)* 87.5 88.6 88.1 87.6 88.0 87.8

w/o GCT & w/o CSCF (MRGAM only) 81.9 80.6 81.2 82.7 80.9 81.8

w/o MRGAM & w/o CSCF (GCT only) 82.7 82.0 82.4 83.6 81.6 82.6

w/o GCT & w/o MRGAM (dual plain encoders) 79.8 81.0 80.4 80.4 82.0 81.2

baseline U-Net 77.6 82.7 80.0 78.3 83.8 81.0
*These configurations retain two encoder streams. “w/o GCT, w/ CSCF” uses two identical conv-MRGAM streams fused at each scale, while “w/oMRGAM, w/ CSCF” uses one transformer and one plain
conv stream.
We report precision, recall, and F1-score. GCT global context transformer, MRGAMmulti-receptive grouped atrous mixer, CSCF cross-scale consensus fusion.

Table 7 | Sensitivity analysis for the detection lossweight (λdet)

λdet Seg. dice (%) Det. sens @ 1 FP/
s (%)

Det. CPM (avg. sens)

0.2 96.1 94.8 91.7

0.3 (Ours) 96.4 95.7 92.1

0.4 96.0 95.3 91.9

0.5 95.7 94.6 91.3

Performance is measured by segmentation dice and detection sensitivity @ 1 FP/s and CPM.

Table 6 | MRGAM branch-weighting mechanisms on LUNA16
and Tianchi detection

Weighting mechanism LUNA16 detection Tianchi detection

Pre. Recall F1 Pre. Recall F1

Global+Local softmax (ours) 92.3 94.1 93.2 95.0 93.6 94.3

Uniform (1/N) 90.1 91.8 90.9 93.0 92.0 92.5

Local-SE only 90.8 91.9 91.3 93.4 92.6 93.0

Static scalars (learned) 90.5 91.7 91.1 93.2 92.4 92.8

1 × 1-Conv mixing (no gating) 90.6 91.8 91.2 93.3 92.6 92.9

Scaled dot-product attention 90.7 91.8 91.2 93.4 92.7 93.0

We report precision, recall, and F1-score.
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architecture’s full potential. The model’s superior boundary delineation,
evidenced by a state-of-the-art 95% Hausdorff Distance of 0.7mm on
LIDC-IDRI, a 30% reduction in boundary error over the next-best com-
petitor, can be directly attributed to the synergy between the GCT’s con-
textual awareness and theMRGAM’s proficiency in capturing fine-grained
texture. Furthermore, the multi-task learning framework demonstrated a
clear symbiotic relationship between segmentation and detection. The
inclusion of a segmentation objective dramatically improved detection
sensitivity at a clinically critical threshold of 1 false positive per scan,
increasing it from 80.2% to 95.7%. This suggests the segmentation task acts
as a potent morphological regularizer, compelling the shared encoder to
learn features that help reject anatomically implausible false positives.
Conversely, the detection task’s center-heatmap prediction provides a
strong spatial prior that refines segmentation boundaries, boosting the Dice
score from 95.2% to 96.4%. This synergy, combined with the model’s
demonstrated robustness across datasets with different scanners and
annotation protocols, maintaining a stable Dice score of 95.5% on LIDC-
IDRI and 95.3% on LNDb, underscores the potential of the GLANCE
framework as a generalizable and clinically relevant tool for automated
pulmonary nodule analysis.

Methods
GLANCE (Continuous Global-Local Exchange with Consensus Fusion),
shown in Fig. 2 is a sophisticated, hybrid encoder-decoder architecture
meticulously engineered for high fidelity, arbitrary-oriented object detec-
tion. This architecture is conceived as a direct response to the inherent
limitations of prevailing computer vision paradigms. While traditional
CNNs excel at extracting rich, localized feature hierarchies, their effective-
ness is constrained by a fundamentally local receptive field, which impedes
the modeling of long-range spatial dependencies. Conversely, Vision
Transformers (ViTs) have demonstrated remarkable capabilities in cap-
turing global context through self-attention mechanisms, yet standard
implementations can suffer from a loss of fine-grained local detail and
encounter training instabilities, particularly in very deep configurations.

GLANCE is foundedupona set of core principles designed to synergize
the strengths of both approaches while mitigating their respective weak-
nesses. The architectural philosophy is rooted in amodular, problem-driven

composition, where each component is selected to address a specific chal-
lenge within the complex object detection pipeline. The foundational
principles are as follows: Dual-Stream Context Encoder (DiSCo): two co-
evolving streams process the image at matched resolutions:(i) a Global
Context Transformer (GCT) that models long-range dependencies; (ii) a
Multi-ReceptiveGroupedAtrousMixer (MRGAM) that captures fine-scale
texture and boundaries over multiple receptive fields. Cross-Scale Con-
sensusFusion (CSCF): a lightweight integrator that fuses the global and local
streams at every scale, ensuring uninterrupted propagation and exchange of
global and local evidence throughout the network. Pyramid Refinement
Decoder (PRD): an upsampling pathway with attention-gated skips from
CSCFoutputs, followedby adual head that produces (i) anoduleprobability
map and (ii) a center heatmap for detection.

The dual-stream design with continuous global-local exchange
addresses the instability observed when convolutional and transformer
features are forced to alternate or to act on mismatched inputs; prior work
shows that alternating stacks can disrupt the stable transmission of global
and local cues, degrade training, and reduce accuracy. Our fusion before
each downsampling strategy explicitly avoids that pitfall by making the two
streams mutually conditioning and continuously fused across scales.

Notation and preprocessing
Let a lungCT slice be I 2 RH ×W .We apply lungwindowing ([−1000, 400]
HU). This Hounsfield Unit (HU) range is a standard in clinical radiology,
selected to optimize the visual contrast of lung parenchyma (approx.−700
HU) and soft-tissue nodules (approx. −100 to +100 HU) while clipping
signals from dense bone (>400HU) and external air (<−1000 HU) that are
irrelevant to this task. We clamp intensities to this interval and linearly
rescale to [0, 1].

To increase the proportion of informative pixels and stabilize learning
by removing large, feature-sparse regions, we optionally extract a coarse
lung mask and crop to its bounding box. Slices are then resized to a fixed
working resolution (H=W=512). This 512×512 resolution is selected as a
standard, empirically-validated trade-off: it preserves sufficient spatial
detail to resolve small micronodules while remaining computationally
tractable for deep learning on modern GPU hardware, balancing fidelity
withmemory constraints. During training, we sample full slices or patches

Fig. 2 |GLANCE (continuous global-local exchangewith consensus fusion) overview.Adual-stream, encoder-decoder architecture for pixel-precise nodule segmentation
and slice-level detection on 2D thoracic CT. GLANCE is built around three original components.
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that include at least one positive nodule mask when available (hard-
example mining).

Dual-Stream Context Encoder (DiSCo)
DiSCo shown in Fig. 3 produces scale-aligned feature pyramids
fFð1Þ; . . . ; FðLÞg for both global and local streams. Each stage downsamples
by a factor of 2 (spatial) and increases channels.

Global Context Transformer (GCT): Overlapping patch embedding:
Overlapping patch embedding. We embed I via a shallow convolution E
(kernel 4 × 4, stride 4) to produce Xð1Þ 2 RH

4 ×
W
4 ×C1 . Overlapping con-

volutional embeddings preserve local structure and stabilize early tokeni-
zation while serving the transformer with context-rich tokens, a practice
shown to be effective in hybrid biomedical segmentation.

Self-attention block: At a generic stage k, flatten X(k) to nk tokens of
width dk. Multi-head self-attention (MHSA) is

MHAðXÞ ¼ ½�h
i¼1AttðXWQ

i ;XW
K
i ;XW

V
i Þ�WO; ð3Þ

AttðQ;K;VÞ ¼ SoftmaxðQK
>ffiffiffiffiffi
dk

p ÞV : ð4Þ

A position embedding is added at the first transformer stage to retain
spatial relations. After MHA, we apply a two-layer MLP with GeLU, with
pre-norm and residual connections. To respect computational economy at
high resolutions, we restrict full global attention tomoderate/low-resolution
stages and use local windows or token-downsampling early; replacing early
global attention with a specialized convolutional mixer is both effective and
efficient when token counts are large. GCT outputs a pyramid fFðkÞg g

L

k¼1
(global stream).

Multi-Receptive Grouped Atrous Mixer (MRGAM):

Motivation and design: Grouped atrous (dilated) 3 × 3 convolutions at
different dilation rates capturemulti-scale contextwhile keepingparameters
and FLOPsmodest. Usingmultiple grouped atrous branches in parallel has
been shown to fuse complementary receptive fields effectively and to reduce
computational burden compared with dense convolutions or attention at
the same resolution.

Given XðkÞ 2 Rh×w×C , MRGAM applies N parallel grouped atrous
convolutions fCdi;ggNi¼1 with dilation fdig and group size g, followed by a
residual blend:

Ui ¼ σðCdi;g ðXðkÞÞÞ; F
ðkÞ
‘ ¼ XðkÞ þ

XN
i¼1

αiUi; ð5Þ

where σ is ReLU, and αi are adaptive branchweights computed by a context
gate that conditions on both streams (details below). A practical triplet is
fdig ¼ f1; 3; 5g with moderate grouping, balancing detail and context.

Complexity. For feature size h × w and kernel k × k, the attention cost
grows as OððhwÞ2Þ in token length, whereas grouped atrous mixing costs
Oðhwk2C2

g Þ and scales linearly in spatial size; at early stages (large hw), this
makes MRGAM a principled mixer.

Context-gated weighting. To let global evidence steer local receptive
field selection, we obtain αi via a squeeze excite gate:

α ¼ Softmax ðW2ϕ ðW1½GAPðFðkÞ‘ Þ k GAPðFðkÞg Þ�ÞÞ; α 2 RN ;
X
i

αi ¼ 1

ð6Þ

with global average pooling (GAP), concatenation ∥,MLP ðW1;W2Þ, andϕ
= ReLU. Intuitively, when the global stream indicates vessel-like linearity,
the gate can upweight larger dilations to better encompass elongated
context; for isolated spherical patterns, it prefers d = 1. MRGAM produces
fFðkÞ‘ g

L

k¼1 (local stream).

Fig. 3 | Dual Stream Context Encoder (DiSCo). A global transformer path models long-range dependencies while a local convolutional path captures fine structure; their
features are aligned across scales and fused through context-aware gating.
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Algorithm 1. Global Context Transformer (GCT) Stage
1: procedure GCT-StageFin, k, PE
2: Input:Fin (Input feature map from previous stage, or image I

for k = 1).
3: Input:k (Current stage index).
4: Input: PE (Positional Embedding, used only for k = 1).
5: Output:FðkÞg (Global context feature map for stage k).
6: ⊳ Overlapping patch embedding and

downsampling
7: X(k)

← ConvEmbedk(Fin) ⊳ e.g., Conv(kernel=4, stride=4)
for k = 1

8: if k = 1 then
9: X(k)

← X(k) + PE ⊳ Add positional embedding at the
first stage

10: end if
11: ⊳ Flatten feature map to a sequence

of tokens
12: T ← Flatten(X(k))
13: ⊳ Transformer Block with Pre-Norm
14: T0  LayerNormðTÞ
15: T0  MHSAðT0Þ ⊳Multi-Head Self-Attention as inEq. (1)
16: T  T þ T0 ⊳First residual connection
17: T0  LayerNormðTÞ
18: T0  MLPGeLU ðT0Þ ⊳ Two-layer MLP with GeLU activation
19: T  T þ T0 ⊳ Second residual connection
20: ⊳Reshape tokens back to spatial featuremap
21: FðkÞg  ReshapeAsðT;XðkÞÞ
22: return FðkÞg
23: end procedure

Cross-scale consensus fusion
At each scale k, CSCF shown in Fig. 4 synthesizes the two streams into a
single consensus map FðkÞc and feeds it back as the input to the next stage
mixers in both streams. This preserves continuous global-local transmission
and avoids the alternate stacking contradiction highlighted in prior analyses
of hybrid encoder-decoders.

We implement CSCF as a residual, channel aware fusion:

ZðkÞ ¼ BNð½FðkÞg k FðkÞ‘ �Þ
FðkÞc ¼ γðkÞ � Conv1 × 1ðZðkÞÞ þ ðFðkÞg þ FðkÞ‘ Þ

ð7Þ

where γðkÞ 2 RC is a channel gate from a squeeze excite on Z(k), and ⊙
denotes channel wise multiplication. The fused FðkÞc is shared as input to
both the next GCT and MRGAM blocks, ensuring that each subsequent
block operates on already fused features rather than being forced to extract
global (resp. local) information from a purely local (resp. global) input. This
parallel then fuse pattern matches empirical observations that continuous
exchange andmulti-scale fusion yield stable training and superior boundary
accuracy in biomedical segmentation.

Algorithm 2. Multi-Receptive Grouped Atrous Mixer (MRGAM) Stage 1:
procedureMRGAM-StageXðkÞ; FðkÞg ; fdigNi¼1; g

2: Input:X(k) (Input local feature map for stage k).
3: Input:FðkÞg (Global context feature map fromGCT at the same

stagek).
4: Input:fdigNi¼1 (Set of dilation rates, e.g., {1, 3, 5}).
5: Input:g (Group size for convolutions).
6: Output:FðkÞ‘ (Local context feature map for stage k).
7: ⊳ Context-gated weighting based

on both streams
8: vℓ ← GlobalAveragePooling(X(k)) ⊳ Squeeze local features
9: vg  GlobalAveragePoolingðFðkÞg Þ ⊳Squeezeglobal features
10: v ← Concatenate(vℓ, vg)

11: α SoftmaxðMLPðvÞÞ ⊳Compute adaptive branchweights as
in Eq. (4)

12: ⊳Apply parallel grouped atrous convolutions
13: Fmix ← 0
14: for i = 1 to N do
15: Ui  ReLUðCdi;g ðXðkÞÞÞ ⊳ Cdi;g is a grouped conv with

dilation di
16: Fmix ← Fmix + αiUi ⊳ Aggregate features with adaptive

weights
17: end for
18: ⊳ Residual blend to produce the final local

feature map
19: FðkÞ‘  XðkÞ þ Fmix ⊳ As in Eq. (3)
20: return FðkÞ‘
21: end procedure

Pyramid refinement decoder (PRD) and dual heads
Starting from the bottleneck FðLÞc , PRD shown in Fig. 4 upsamples (and
detailed in Algorithm 3) by a factor of 2 per stage. At decoder stage k we
concatenate the upsampled feature with the encoder’s consensus skip FðkÞc ,
then refine via a residual block:

DðkÞ ¼ R ðUpðDðkþ1ÞÞ k FðkÞc Þ ð8Þ

whereR is two 3 × 3 conv-BN-ReLU units with a residual shortcut. Skips
carry both global and local signals (already fused), a design that has been
linked to improved contour fidelity in biomedical segmentation.

Segmentation head. A 1 × 1 convolution maps D(1) to logits S 2
RH ×W ; bY ¼ σðSÞ 2 ½0; 1�H ×W is the nodule probability.

Detection head. In parallel, a center heatmap head predicts bH 2
½0; 1�H ×W with peaks at nodule centroids. Ground truth heatmaps H are
generated by placing a Gaussian of radius proportional to the nodule dia-
meter at each annotated centroid. During inference, non-maximum sup-
pression on bH yields candidate detections, optionally filtered by the
segmentation mask to suppress vascular false positives.

Algorithm 3. Pyramid Refinement Decoder (PRD) and Dual Heads
1: procedure PRD-DecodefFðkÞc g

L
k¼1

2: Input:fFðkÞc g
L
k¼1 (Pyramid of fused encoder features

from CSCF).
3: Output:bY (Nodule probability map), bH (Center heatmap).
4: Define:Rð�Þ (Residual refinement block, e.g., 2x 3 × 3 Conv-

BN-ReLU).
5: Define:Up( ⋅ ) (Upsampling operation, e.g., Transposed Conv

or Bilinear).
6: Define:σ( ⋅ ) (Sigmoid activation function).
7: ⊳ Initialize decoder bottleneck
8: DðLÞ  FðLÞc
9: ⊳ Iterative upsampling and refinement loop
10: for k = L − 1 down to 1 do
11: Dup ←Up(D(k+1)) ⊳ Upsample previous decoder stage
12: Sk  FðkÞc ⊳ Get encoder skip-connection at scale k
13: Dconcat ← Concatenate(Dup, Sk) ⊳ As in Eq. (6)
14: DðkÞ  RðDconcatÞ ⊳Refine fused features
15: end for
16: ⊳ Final dual-head prediction from the highest

resolution D(1)

17: S Conv1 × 1ðDð1ÞÞ ⊳ Segmentation logits
18: bY  σðSÞ ⊳ Nodule probability map
19: Hlogits  Conv1 × 1ðDð1ÞÞ ⊳ Detection logits (separate

1 × 1 conv)
20: bH σðHlogitsÞ ⊳ Center heatmap
21: return bY; bH
22: end procedure
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Pulmonary CT-specific adaptations
Small, variable-sized nodules and their frequent adjacency to vessels or
pleura put conflicting demands on context and detail. GLANCE addresses
these by design: Scale diversity. MRGAM’s parallel dilations {1, 3, 5} cover
micronodules through larger lesions in one operation, with grouped kernels
reducing parameter/FLOP growth at high spatial resolutions. Context dis-
ambiguation. GCT supplies long-range cues (lung position, vessel trajec-
tories). Fusing streams before each downsampling preserves this context as
features coarsen, combating the global/local alternation issue reported in
hybrid stacks. Boundary precision. Decoder skips bring high-resolution
consensus features intoPRD, improving boundary accuracy of juxta-pleural
nodules without sacrificing robustness.

Implementation and training details
Allmodelswere implementedusingPyTorch and trainedonNVIDIAA100
GPUs. We specify our hyperparameters as follows: we used the AdamW
optimizer with an initial learning rate of 1e-4, a weight decay of 0.05, and a
batch size of 8. The learning rate was managed by a Cosine Annealing with

Warm Restarts schedule with an initial cycle length (T0) of 20 epochs. To
enhancemodel robustness andprevent overfitting,we applied standarddata
augmentations, including random rotations (±15 degrees), random scaling
(±10%), and minor elastic deformations.

Given ground-truth mask Y ∈ {0, 1}H×W and center heatmap H ∈ [0,
1]H×W, we optimize a compound loss

L ¼ λsegðLDiceðbY;YÞ þ LBCEðbY;YÞÞ þ λdetLfocalðbH;HÞ; ð9Þ

Based on the sensitivity analysis detailed in Table 7, the weights for all
reported results were finalized at λseg = 1.0 and λdet = 0.3.

LDiceðbY ;YÞ ¼ 1� 2
PbYY þ ϵPbY þP

Y þ ϵ
ð10Þ

PairingDice with BCE is a strong baseline in biomedical segmentation
under class imbalance and is widely adopted in unified benchmarking.

Fig. 4 | Cross-scale consensus fusion and pyramid refinement decoder (CSCF-
PRD): integrating global-local features and reconstructing dual outputs. Global
and local features are merged at each scale via CSCF and progressively upsampled

through the PRD. The final dual heads produce both a segmentation map and a
detection heatmap, enabling precise and interpretable multi-scale nodule analysis.
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Cosine Annealing with Warm Restarts Learning Rate Schedule: To
guide the optimization process, a dynamic learning rate schedule known as
Cosine Annealing withWarm Restarts is employed. This schedule has two
key components: Cosine Annealing:Within a given cycle of epochs (e.g., T0
epochs), the learning rate starts at an initialmaximumvalue and is smoothly
decayed to a minimum value (often close to zero) following the shape of a
cosine curve. This gradual, non-linear decay allows the optimizer to make
large exploratory steps early in the cycle and then slowly fine tune the
parameters as it approaches a minimum in the loss landscape. This smooth
descent helps the model converge into broad, stable minima, which are
associated with better generalization. Warm Restarts: At the end of each
cycle (after T0 epochs), the learning rate is abruptly reset to its initial
maximumvalue.The lengthof the subsequent cycle,Ti, canbekept the same
or progressively increased (Ti = Ti−1 × Tmult These periodic “restarts" pro-
vide a mechanism for the optimizer to escape from sharp, suboptimal local
minima that it may have converged to during the annealing phase. The
sudden increase in the learning rate propels the optimizer to a different
region of the loss landscape, allowing it to continue its search for a more
globally optimal solution. Deep supervision: Auxiliary segmentation heads
on intermediate decoder stages are supervised with downsampled masks
using a reduced weight ( × 0.3), accelerating convergence and improving
small object recall.

Datasets and annotations
The availability of high-quality annotated chest CTdatasets has been crucial
for advancing computer-aided diagnosis (CAD) of pulmonary nodules. In
particular, three public datasets have become widely used benchmarks for
lung nodule detection and analysis: the LIDC-IDRI dataset22, the LNDb
dataset23, and the Tianchi lung nodule dataset24. Each of these datasets
provides a different scope and annotationprotocol, offering complementary
resources for developing and validating nodule detection algorithms. We
provide here a description of each dataset and a comparative summary of
their characteristics (Table 8).

LIDC-IDRI dataset: The Lung ImageDatabaseConsortiumand Image
Database Resource Initiative (LIDC-IDRI) dataset is a landmark collection
of thoracic CT scans with comprehensive lesion annotations22. It contains
1018 CT scans from ~1010 patients, acquired from a multi-institutional
effort primarily in theUnited States. Each scanwas independently reviewed
by four experienced radiologists in a two-round reading process: first, each
radiologist marked lesions in a blinded fashion; then, in a second unblinded
round, they reviewed each other’s marks to finalize their own annotations
(without forced consensus). All pulmonary nodules ≥3mm in diameter
were annotated with detailed segmentations and were given subjective
ratings on nine characteristics (such as subtlety, spiculation, malignancy
likelihood). Nodules smaller than 3mm were also noted (as “non-mea-
sured” nodules) but not segmented or characterized in detail. The LIDC-
IDRI provides a rich reference standard with multi-observer annotations,
encompassing over 2600 distinct nodules in total across the dataset.

LNDb dataset: The Lung Nodule Database (LNDb) is a more recent
dataset designed to complement LIDC-IDRI by providing an external
validation cohort with a focus on radiologist variability and local clinical
practice23. LNDb consists of 294 chest CT scans collected from a single

hospital (CHUSJ in Porto, Portugal) between 2016 and 2018. The inclusion
criteria and annotation protocol for LNDb closely followed those of LIDC-
IDRI: radiologists annotated all nodules≥3mmwithmanual segmentations
and recorded the same set of nine nodule attributes used in LIDC-IDRI.
They also marked smaller nodules (<3mm) and certain non-nodule
radiographic findings that could bemistaken for nodules, providing amore
exhaustive labeling of potential findings in each scan. Five radiologists (each
with at least 4 years of experience) participated in the LNDb annotations.
Each scanwas read by at least one radiologist, and a subset of scans received
multiple independent readings (90 scans were annotated by three different
radiologists, 145 scans by two radiologists, and the remaining by a single
reader). This yielded a total of 1429 annotated findings (including all
nodules and non-nodule lesions) in the database, reflecting the presence of
up to a few nodules per scan on average. Notably, LNDb also includes eye-
tracking data recorded during the radiologists’ reading sessions, which can
facilitate studies of observer attention and human-AI interaction, although
these gaze data are supplementary to the core CT images and annotations.

Tianchi dataset: The Tianchi lung nodule dataset (named after the
Alibaba Tianchi competition platform) was released as part of an interna-
tional challenge for automated pulmonary nodule detection. It comprises
1000 low-dose chest CT scans (with600used for training and400 for testing
in the original challenge) with a total of 1244 labeled nodules24. For each
nodule, the dataset provides the lesion’s center coordinates and diameter
(approximate size) as the ground truth annotation. No segmentationmasks
or radiologist subjective ratings are included in this dataset; the annotations
are limited to nodule locations and sizes, reflecting its primary use for
detection algorithms. The annotated nodules range from ~3mm up to
30mm in diameter (with only one nodule slightly below 3mm), which is a
size range comparable to the inclusion criteria of LIDC-IDRI and LNDb.
Because the Tianchi data were prepared for competitive benchmarking, the
available labels are confined to the training portion (with the test set labels
withheld for challenge evaluation), and the emphasis is on providing a large
quantity of scans for algorithm development. This dataset offers a valuable
independent testbed from a different population (Chinese screening cases)
but lacks the multi-rater and richly characterized annotations present in
LIDC-IDRI and LNDb.

Comparative summary: Table 8 summarizes key attributes of the
LIDC-IDRI, LNDb, and Tianchi datasets. LIDC-IDRI remains the largest
public collection with detailed, multi-radiologist annotations, making it a
standard reference for training and internal validation of nodule analysis
methods. LNDb is smaller in scale but provides a highly curated set of scans
from a different clinical setting, useful for external validation and for
studying inter-observer variability (given its multiple readings and eye
tracking information). The Tianchi dataset approaches LIDC-IDRI in scale
and is valuable for testing generalizationof algorithmsonanexternal cohort;
however, its annotations are limited to nodule locations (without segmen-
tations or radiologist feature ratings). In combination, these three datasets
provide complementary resources: researchers can develop algorithms on
the extensive and richly annotated LIDC-IDRI set, validate robustness and
calibration using LNDb (which simulates a different clinical population and
reading process), and evaluate detectionperformance on a large held-out set
via the Tianchi challenge data.

Table 8 | Summary of three public lung nodule CT datasets

Dataset CT scans (patients) Lesions/nodules Readers per scan Annotation details

LIDC-IDRI 1018 (1010) > 2600 ≥ 3mm 4 Segmentation + 9-feature rating for each nodule; small nodules noted.

LNDb 294 (294) 1429 findings† 1–3 Segmentation+ 9-feature rating for nodules ≥3mm; small nodules and non-nodules also
marked.

Tianchi 1000 1244 nodules 1 Coordinates and diameter provided for each nodule; no segmentations or attribute
ratings.

LUNA16 888 1186 4 Nodules≥3mm (consensus of 3–4LIDC radiologists); coordinates anddiameter provided
†Includes all annotated findings (nodules of any size and non-nodule suspicious lesions).
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