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Clinically informed semi-supervised
learning improves disease annotation and
equity from electronic health records: a
glaucoma case study
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Clinical notes represent a vast but underutilized source of information for disease characterization,
whereas structured electronic health record (EHR) data such as ICDcodesare often noisy, incomplete,
and too coarse to capture clinical complexity. These limitations constrain the accuracy of datasets
used to investigate disease pathogenesis and progression and to develop robust artificial intelligence
(AI) systems. Toaddress this challenge,we introduceCi-SSGAN (Clinically InformedSemi-Supervised
Generative Adversarial Network), a novel framework that leverages large-scale unlabeled clinical text
to reannotate patient conditions with improved accuracy and equity. As a case study, we applied Ci-
SSGAN toglaucoma, a leading cause of irreversible blindness characterized bypronounced racial and
ethnic disparities. Trained on ademographically balanced subset of 349587 unlabeled ophthalmology
notes and 2954 expert-annotated notes (drawn from an institutional corpus of 2.1 million notes), Ci-
SSGAN achieved 0.85 accuracy and 0.95 AUROC, representing a 10.19% AUROC improvement
compared to ICD-based labels (0.74 accuracy, 0.85 AUROC). Ci-SSGAN also narrowed subgroup
performance gaps, with F1 gains for Black patients (+ 0.05), women (+ 0.06), and younger patients
(+ 0.033). By integrating semi-supervised learning and demographic conditioning, Ci-SSGAN
minimizes reliance on expert annotations, making AI development more accessible to resource-
constrained healthcare systems.

Artificial intelligence (AI) and large language models (LLMs) are trans-
forming healthcare by uncovering insights from complex medical data that
are often inaccessible in routine clinical decision-making. Domain-specific
language models such as BioClinical BERT1–3, Med-PaLM4,5, MedGemma6,
and GPT7–10 have demonstrated remarkable capabilities in processing
clinical text, enabling applications from disease classification to clinical
reasoning and question-answering.

Approximately 80% of clinically relevant information in electronic
health records (EHRs) is found inunstructured clinical notes, which capture
nuanced patient presentations, physician reasoning, and disease progres-
sion in ways that structured labels, such as ICD codes, often fail to

represent11. Despite their richness, clinical notes remain largely under-
utilized for large-scale research and model development12. In contrast, ICD
codes and other structured EHR labels are widely used but are known to be
noisy13, incomplete, and often too coarse for tasks requiring fine-grained
annotation. This mismatch leaves researchers with inaccurate datasets that
limit both clinical insights and the reliability of AI systems built upon them.

Clinical practice generates vast amounts of unlabeled notes, and our
tertiary academic center institution alone has over 250 million, including
two million ophthalmology records (as illustrated in Fig. 1a). Obtaining
expert labels at this scale is impractical, leaving abundant data largely
unusable for supervised learning. Expert clinical grading remains the gold
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standard for disease classification, yet obtaining such labels at scale is costly
and time-consuming. However, fully supervised models, including BERT
variants1,2,14, require large, high-quality labeled datasets that are rarely
available for specialized disease classification tasks.

Furthermore, EHR labels in their current form can reinforce biases and
overlook important subgroups, especially for diseases with complex subtypes
or variable presentations. When combined with limited labeled data, these
biases reduce model reliability and underscore the need for frameworks that
harness unstructured clinical data while promoting equitable performance.
When training data lacks demographic diversity or contains label noise,
supervised models perform substantially worse11,15,16. For example, prior
studies have shown that feature-dependent label noise, annotator disagree-
ments, or limited diversity in training corpora can degrade performance, and
these effects are not fully corrected by fine-tuning17,18.

To address label scarcity, systemic biases, and the underutilization of
abundant unlabeled clinical notes, we propose Ci-SSGAN (Clinically
Informed Semi-Supervised Generative Adversarial Network), a framework
explicitly designed to ensure equitable performance across demographic
groups (as illustrated in Fig. 1b). The framework achieves higher accuracy
with substantially fewer labeled examples. It ensures reliable outcomes and
reduces disparities by conditioning semi-supervised generation on unla-
beled clinical text and patient characteristics. Unlike standard semi-
supervised GANs19,20 which use only noise as their generator inputs, Ci-
SSGAN introduces three key innovations: (1) a clinically informed gen-
erator that integrates embeddings from unlabeled clinical text with demo-
graphic conditions and noise, creating synthetic data that is both clinically
meaningful and demographically representative; (2) multi-conditional
learning that explicitly incorporates race, gender, and age to combat dataset
imbalance and ensure consistent performance across all subgroups; and (3)
a systematic equity framework using our proposed Parity Violation (PV)
score to quantify and minimize disparities in positive and negative pre-
dictive values across demographics.

We evaluatedCi-SSGAN in glaucoma subtype detection, a disease that
highlights both the opportunities and challenges of AI in healthcare.
Glaucoma is the leading cause of irreversible blindnessworldwide, projected
to affect 80 million people by 2040 with considerable racial, ethnic and

socioeconomic disparities making it a compelling test case for equitable AI.
Additionally, ICD coding for glaucoma classification has particularly poor
specificity21 (less than 50%) and achieves only ~81% accuracy22, with sys-
tematic undercoding, overcoding, and subtype misclassification that
undermine reliable labeling. Glaucoma exemplifies both the global burden
of disease, and the equity challenges that Ci-SSGAN aims to address. Pro-
nounceddisparities exist across race, gender, and age groups23–30,making it a
compelling real-world test case for equitable AI.

This combination of global burden, pronounced disparities and
imperfect structured labels, makes glaucoma an ideal real-world setting to
evaluate Ci-SSGAN. By leveraging over two million unlabeled ophthal-
mology notes alongside a smaller expert-annotated set, our framework
demonstrates how semi-supervised learning can address the labeled-data
bottleneck while promoting equitable performance across subgroups.
Although glaucoma serves as our case study, the approach can be general-
ized to other diseases where unlabeled notes are abundant but equitable
performance remains elusive.

Results
Patients demographics and clinical characteristics
The labeled dataset comprised 2954 notes for 1105 patients (53.5% female)
and the unlabeled dataset contained 349587 notes for 108574 patients (59%
female) who received care at the Massachusetts Eye and Ear (MEE) oph-
thalmology department from May 2015 to December 2024.

The participants’ age at the timeof study ranged from30 to 90 years for
both datasets, with median of 62 and 68 for labeled and unlabeled datasets,
respectively. The patients’ demographics in the labeled dataset include
41.7% White or Caucasian, 29.6% Black or African American, and 28.7%
Asian. The unlabeled dataset showed similar racial distribution with 40.2%
White or Caucasian, 19.5% Black or African American, and 40.3% Asian
patients. Table 1 shows demographics and clinical characteristics of the
patients in both datasets.

Model performance and equity analysis
To comprehensively demonstrate the advantages of our proposed semi-
supervised learning method, We trained all methods with 25%, 50%, and
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Fig. 1 | Overview of the Ci-SSGAN framework. a Abundant unlabeled ophthal-
mology notes compared with limited expert annotations. b Ci-SSGAN generator
combines unlabeled text embeddings (blue arrow), demographics (orange arrow),
and noise (dashed black arrow) to produce synthetic data, with the discriminator
classifying glaucoma subtypes and output evaluated to ensure fairness by measuring

each subgroup disparities. Non-GL=non-glaucoma, OAG/S= open angle glaucoma/
suspect, ACG/S= angle closure glaucoma/suspect, XFG/S= exfoliation glaucoma/
syndrome, PDG/S= pigmentary dispersion glaucoma/syndrome, and SGL= sec-
ondary glaucoma. R= real, F= fake. Parts of this figure were created with
BioRender.com.
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100% of the labeled notes and evaluated at the patient level. Unless stated
otherwise, higher is better for Accuracy/F1/AUROC/AUPRC, and lower is
better for the Parity-Violation (PV) score. The labeled dataset (1105
patients, 2954 notes) was split into 90% for model development (1000
patients, 2660 notes) and 10%as a held-out test set (105 patients, 294 notes).
Within the 90% development partition, we performed stratified 5-fold
cross-validation at the patient level, ensuring demographic balance across
folds. For each fold, approximately 80% of the development patients were
used for training, 10% for early stopping, and 10% for fold-specific valida-
tion. This process yielded five independently trained models per method
and per labeled data fraction. All five models from each configuration were
evaluated on the identical held-out test set, and reported metrics represent
mean ± standard deviation across the five models’ predictions on this fixed
test set. We evaluated the performance of Ci-SSGAN at each labeled data
fraction against two fully supervised models (Base BERT1 and BioClinical
BERT2), as well as the standard SSGAN19,20. For classification, we defined six
outcome classes: non-glaucoma (Non-GL), open-angle glaucoma/suspect
(OAG/S), angle-closure glaucoma/suspect (ACG/S), exfoliation glaucoma/
syndrome (XFG/S), pigmentary glaucoma/syndrome (PDG/S), and sec-
ondary glaucoma (SGL). These categories were chosen to reflect clinically
relevant subtypes with sufficient representation for model training and
evaluation.

Performance improvements with Ci-SSGAN were consistent in both
note-level and patient-level analyses (see Fig. 2, Table 2 and Supplementary
Figs. S1 and S2), confirming the robustness of its gains over Base BERT, Bio
BERT, and standard SSGAN regardless of evaluation granularity. Across all
labeled data fractions, Ci-SSGAN achieved the highest Accuracy, AUC-PR,
and AUCROC, with improvements over Base BERT and Bio BERT parti-
cularly pronounced in low-data settings (AUC-PR þ0.091 and þ0.092 at
25%). Standard deviations across 5 folds were consistently low, indicating
stable performance across runs.

When utilizing only 25% of labeled data (Fig. 2), Ci-SSGAN achieved
notable gains over Base BERT, increasing overall accuracy from 0.78 to
0.843 and F1 score from 0.747 to 0.809 (P < 0.001). With 100% of labeled
data (Supplementary Fig. S3), overall Accuracy and F1 score rose further,
from 0.844 to 0.873 and from 0.81 to 0.86, respectively, comparedwith Base
BERT (P < 0.001).

Performance was stratified by demographic subgroups (Fig. 2 and
Supplementary Fig. S3). To evaluate fairness, we applied our PV score,
which measures disparities in positive and negative predictive values across
groups (seeMethods). Lower PV scores reflectmore equitable performance.

For race subgroups, with 25% labels (Fig. 2a), Ci-SSGAN achieved the
highest Accuracy/F1 across Asian, Black, and White cohorts; its PV was
0.056, lower thanBase BERT0.133 andBio-Clinical BERT0.158, but higher
than SSGAN0.027.With 100% labels (Supplementary Fig. S3a), Ci-SSGAN
again led onAccuracy/F1 and achievedPV= 0.023,matching SSGAN0.023
and below Base BERT 0.032 and Bio-Clinical BERT 0.077.

For gender subgroups, with 25% labeled data (Fig. 2b), Ci-SSGAN
achieved the highest predictive performance (Accuracy/F1) for females
(0.830/0.802) and males (0.857/0.809), exceeding SSGAN, Base BERT, and
Bio-Clinical BERT. For fairness, Ci-SSGAN was second-best (PV = 0.007),
below Base BERT (0.037) and Bio-Clinical BERT (0.066) and slightly above
SSGAN (0.003). With 100% labeled data (Supplementary Fig. S3b), Ci-
SSGAN again led on Accuracy/F1 (female 0.895/0.897; male 0.850/0.840;
overall 0.873/0.860) and achieved the lowest PV (0.003 vs SSGAN 0.014,
Base BERT 0.020, Bio-Clinical BERT 0.028).

Across age strata (years), Ci-SSGAN consistently achieved the stron-
gest predictive performance. With 25% labeled data (Fig. 2c), accuracy/F1
were 0.836/0.707 for 30–55 y, 0.844/0.817 for 55–70 y, and 0.843/0.807 for
≥70 y; corresponding values were 0.784/0.700, 0.794/0.786, and 0.792/0.748
for SSGAN; 0.789/0.674, 0.749/0.656, and 0.790/0.765 for Base BERT; and
0.787/0.649, 0.730/0.689, and 0.749/0.720 for Bio-Clinical BERT. Fairness,
assessed by the PV score, also favored Ci-SSGAN at 25% (PV = 0.025 vs
SSGAN 0.063, Bio-Clinical BERT 0.088, Base BERT 0.211). With 100%
labels (Supplementary Fig. S3c), Ci-SSGAN achieved higher accuracy and
F1-scores across all age groups; its PV was 0.041, lower than Bio-Clinical
BERT (0.095) and SSGAN (0.075), and slightly higher than Base
BERT (0.035).

Class-wise performance evaluation of the model using PR and ROC
analyses demonstrated that Ci-SSGAN achieved the highest overall AUC-
PR (0.893), despite an AUC-ROC of only 0.001 below Base BERT (Fig. 3).
Ci-SSGAN achieved higher precision and recall across most classes, with
notably high AUC-PR scores for OAG/S (0.932), ACG/S (0.961), and XFG/
S (0.919). For SGL, the rarest class, Ci-SSGAN achieved an AUC-PR of
0.714, substantially outperforming other models. These gains were con-
sistent at 100% labeled data (Supplementary Fig. S4).

Model interpretability and reliability analysis
To fully characterize models’ behavior, we analyzed feature representation
patterns, predictive uncertainty, and token-level interpretability.

The UMAP visualizations in Fig. 4 show that Ci-SSGAN learns
more distinct and well-separated patient-level clusters across demo-
graphic groups compared to regular SSGAN. Each point represents a
patient embedding, derived by averaging note-level feature representa-
tions from the discriminator’s final shared layer. Clinically, these clusters
correspond to patients with similar disease characteristics, demographic
profiles, and glaucoma subtypes, indicating that Ci-SSGAN organizes
patients into clinicallymeaningful groups rather than overlapping latent
spaces. These visualizations provide empirical validation that the
3-dimensional demographic conditioning vector effectively biases gen-
erated samples despite its lower dimensionality compared to noise
(100D) and text embeddings (768D). Quantitatively, Ci-SSGAN
achieved higher silhouette scores for race (0.68), gender (0.72), and
age (0.57) compared to SSGAN (0.52, 0.26, and 0.17), reflecting clearer
group separation and reduced feature overlap. This improvement is
especially pronounced for gender, where Ci-SSGAN’s score (0.72) was
significantly higher than SSGAN’s (0.26; P < 0.05), demonstrating that
demographic-specific information is better preserved in the learned
feature space when clinical context is incorporated. This demographic
separation demonstrates that the generator successfully learns to pro-
duce samples that reflect their conditioning demographics, preventing
mode collapse toward majority populations (Supplementary Fig. S15).

Table 1 | Demographics and baseline characteristics of the
patients are included in the study

Characteristics Labeled Dataset Unlabeled Dataset

Number of patients 1105 108574

Number of notes 2954 349587

Age (years)

Mean ± SD 60.4 ± 15.5 65.4 ± 15.0

Median (range) 62 (30–90) 68 (30–90)

Age groups, n (%)

30–55 131 (11.9) 21134 (19.5)

55–70 374 (33.8) 40436 (37.2)

>=70 600 (54.3) 47004 (43.3)

Gender, n (%)

Female 591 (53.5) 64059 (59)

Race, n (%)

Asian 317 (28.7) 43764 (40.3)

Black or African American 327 (29.6) 21174 (19.5)

White or Caucasian 461 (41.7) 43636 (40.2)

The data are presented in form of n(%) or mean ± SD. For model input, age was normalized to [0, 1]
usinguniform linear scaling (range: 30–90years); genderwasbinary encoded (Female = 0,Male = 1);
race was encoded as White/Caucasian = 0, Black/ African American = 1, Asian = 2. Patients with
Unknown/Other gender or race categories were excluded.
N number of patients.
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Across race, gender, and age subgroups, Ci-SSGAN consistently
exhibited the lowest predictive uncertainty (Fig. 5), with median entropy
values of 0.243 at 25% labeled data and 0.263 at 100% labeled data, com-
pared with SSGAN (0.5 and 0.6), Base BERT (0.727 and 0.458), and Bio
BERT (0.687 and 0.447).

When increasing the labeled fraction from 25% to 100%, the change in
median entropy was minimal for Ci-SSGAN (�5.3%), indicating stable
confidence even in low-label regimes, whereas SSGAN showed a 16.9%
reduction, Base BERT 34.1%, and Bio BERT 32.0%, reflecting greater

dependency on labeled data for uncertainty reduction. This trend was
consistent across racial groups (Asian, Black, White), gender groups (male,
female), andage ranges (30–55, 55–70,≥70),with theperformance gapmost
pronounced under the 25% labeled data condition. Figure 5 illustrates these
results.

Clinically, these results indicate that Ci-SSGAN not only improves
classification performance but also delivers markedly more reliable pre-
dictions. Supplementary Fig. S5 supports this by showing class-wise
probability radar plots where Ci-SSGAN predictions form tightly clustered,

Fig. 2 | Performance comparison of Ci-SSGAN, SSGAN, Base BERT, and Bio
BERTmodels across. aRacial groups, bGender groups, and cAge groups using 25%
of the labeled data. Left panels show accuracy (solid bars) and F1-score (hatched
bars) for each subgroup and overall performance. Right panels present

corresponding parity violation scores, indicating fairness across demographic sub-
groups. Ci-SSGAN consistently achieves higher accuracy and F1-scores with lower
parity violations compared to other models. The results are presented on five CV
folds. Acc Accuracy, F1 = F1- macro.
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high-confidence outputs (mean confidence = 0.990, ACC= 0.890) com-
pared with the more dispersed, less certain outputs of standard SSGAN
(mean confidence = 0.975, ACC = 0.829).

Gradient-weighted token attribution, averaged across five folds, shows
model-specific patterns of feature use (Fig. 6). For display, we first select the
top 20 tokens per model after HIPAA filtering and then renormalize their
scores to sum to 1.0 within eachmodel. Under this convention, Ci-SSGAN
exhibits a concentrated profile, with the wordpiece “igmentary” (from
pigmentary glaucoma) accounting for 0.478 of the displayed attribution,
followed by “glaucoma” (0.102) and “pseudoexfoliation” (0.019), consistent
with clinically focused conditioning. SSGAN is more diffuse (maximum
0.195 for “fovea”), Base BERT the most dispersed (maximum 0.103 for
“cyclophotocoagulation”), and Bio-Clinical BERT similarly diffuse (max-
imum 0.073). The maximum displayed attribution share is 6.5-fold higher
forCi-SSGANthan for Bio-Clinical BERT (0.478 vs 0.073), suggestingmore
concentrated, disease-oriented token selection with architectural clinical
conditioning. Because the plot reflects relative attribution among the top
tokens aggregated across notes, it should be interpreted as a comparative
profile rather than evidence of token frequency; per-class token profiles are
provided in Supplementary Fig. S6.

Prediction performance of Ci-SSGAN subtype detection versus
ICD code labels on the test dataset
We further demonstrate that our model can outperform ICD code-based
labels, using glaucoma subtype detection as a test case which suffer from
coarse and noisy ICD codes, frequently requiring re-annotation. Ci-SSGAN
yielded confusion matrices with reduced cross-subtype misclassifications
and closer alignmentwith expert clinical grading comparedwith ICD-based
labels (Fig. 7). Of the 105 test patients, 94 had ≥1 ICD code that mapped
unambiguously to a glaucoma subtype; the remaining 11 lacked a mapped
code or had only non-specific/suspect codes and were excluded from the
ICD confusion matrix.

Ci-SSGANachieved higher performance than ICD-based labels across
all evaluation metrics (Fig. 8 and Supplementary Fig. S7). Overall accuracy
was significantly higher for Ci-SSGAN (0.853) compared with ICD-based
labels (0.744,P < 0.05), with substantial per-class improvements inNon-GL
(0.818 vs. 0.636, P < 0.05), OAG/S (0.955 vs. 0.773, P < 0.05), and ACG/S
(0.929 vs. 0.500, P < 0.05). Similarly, the overall F1 score was greater for Ci-
SSGAN (0.855 vs. 0.744, P < 0.05), with the largest margins in Non-GL
(0.750 vs. 0.519, P < 0.05), OAG/S (0.857 vs. 0.739, P < 0.05), and ACG/S
(0.929 vs. 0.636, P < 0.05).

Froma clinical standpoint, the improvements inAUROCandAUPRC
are substantial. Relative to ICD, Ci-SSGAN achieved a higher AUROC
(0.949 vs 0.847, P < 0.01), with per-class gains inNon-GL (þ0.151), OAG/S

(þ0.117), and ACG/S (þ0.208) (P < 0.05 each). AUPRC (which is sensitive
to class prevalence and emphasizes precision at high recall) also improved
overall (0.847 vs 0.619, P < 0.01). The largest per-class AUPRC gains were
observed for Non-GL (þ0.401, indicating fewer false positives across
glaucoma subtypes), OAG/S (þ0.262), and ACG/S (þ0.309) (P < 0.05
each). Although AUPRC is particularly informative for rarer subtypes, we
report it for all classes, including the majority Non-GL class, to provide a
complete per-class view. Overall performance metrics for all models are
summarized in Table 3.

Benchmarking
We benchmarked Ci-SSGAN (trained on 100% of labeled data) against
state-of-the-art large language models including GPT-4o8, Med-Gemma
4B6, and LLaMA-3.2-3B31 using zero-shot classification on the test set of 294
clinical notes from 105 patients (Table 4). All clinical notes were de-
identified and notes longer than 512 tokens were split into overlapping
segments of 512 tokens (with 64-token overlap) to preserve context con-
tinuity. To ensureHIPAA compliance, GPT-4o was accessed throughMass
General Brigham’s AI Zone platform, a secure environment built on
Microsoft Azure AI Foundry and approved for protected health informa-
tionprocessing,withmodelparameters configuredas temperature=0.8, top-
p = 1.0, andmaximum token length of 4096.Med-Gemma 4B and LLaMA-
3.2-3B were downloaded from Hugging Face and deployed locally using
identical prompts. Ci-SSGAN achieved higher overall performance across
all evaluation metrics (accuracy: 0.840, F1: 0.843, AUC-ROC: 0.949, AUC-
PR: 0.852), substantially outperformingGPT-4o (accuracy: 0.641, F1: 0.655,
AUC-ROC: 0.785, AUC-PR: 0.515) with absolute improvements of 19.9
percentage points in accuracy, 18.8 percentage points in F1 score, 16.4
percentage points in AUC-ROC, and 33.7 percentage points in AUC-PR.
GPT-4o showedmarginally higher accuracy than Ci-SSGAN for the XFG/S
subtype (0.752 vs. 0.750), while Ci-SSGAN outperformed all LLMs across
the remaining five glaucoma subtypes.

Human-AI comparative validation study
To evaluate clinical validity, we assessed model performance against
independent annotations from three fellowship-trained glaucoma
specialists on 218 clinical notes (details in Supplementary Figs.
S8 and S9). Model-reviewer concordance varied by grader (Table 5):
accuracy 0.591–0.842 (mean: 0.728), Cohen’s κ 0.434–0.788 (mean:
0.621), and macro F1-score 0.624–0.782 (mean: 0.722). Despite varia-
bility in class assignments, the model maintained strong discriminatory
ability across all reviewers (AUROC: 0.814–0.948, mean: 0.899;
AUCPR: 0.650–0.851, mean: 0.770). This variation reflects inherent
subjectivity in glaucoma classification, as inter-rater reliability among

Table 2 | Class-wise comparison of all trained models on different data fractions

Labeled data Fraction Model Accuracy AUC-PR AUCROC PV score

25% (250 patients with 3081 total notes) Ci-SSGAN �0:8710:03 0:8930:03 0:956 ± 0:01 0.029

SSGAN 0:859 ± 0:04 0:802 ± 0:06 0:941 ± 0:03 0.031

Base BERT 0:824 ± 0:05 0:867 ± 0:05 0:957 ± 0:04 0.127

Bio BERT 0:781 ± 0:06 0:801 ± 0:04 0:907 ± 0:03 0.104

50% (500 patients with 6162 notes) Ci-SSGAN 0:8830:02 0:9010:01 0:9630:02 0.024

SSGAN 0:849 ± 0:03 0:851 ± 0:05 0:957 ± 0:04 0.034

Base BERT 0:851 ± 0:04 0:870 ± 0:02 0:954 ± 0:03 0.081

Bio BERT 0:801 ± 0:01 0:845 ± 0:06 0:941 ± 0:04 0.075

100% (1000 patients with 12324 notes) Ci-SSGAN 0:8970:02 0:9040:03 0:968 ± 0:01 0.022

SSGAN 0:847 ± 0:05 0:885 ± 0:06 0:967 ± 0:03 0.037

Base BERT 0:871 ± 0:07 0:882 ± 0:04 0:953 ± 0:03 0.029

Bio BERT 0:826 ± 0:06 0:888 ± 0:02 0:969 ± 0:05 0.053

Values are presented in form of Mean ± SD. Bold values show the best scores. Standard deviations are calculated across 5 folds.
*Mean ± SD.
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Fig. 3 | Precision–Recall and ROC curves comparing. a Ci-SSGAN, b SSGAN,
c Base BERT, and d Bio BERT for multi-class glaucoma subtype and non-glaucoma
classification. Each curve shows performance for a specific class, including five
glaucoma subtypes and non-glaucoma, with a “Random” baseline for reference

showing as dashed line. Ci-SSGAN is designed to condition the generator based on
clinical context, while SSGAN is designed without clinical context. Base BERT and
Bio BERT are fully supervised baselines. The results are presented on five CV folds.
All models were trained using 25% of the labeled data.

Fig. 4 | UMAP projections of learned feature embeddings from Ci-SSGAN (top)
and SSGAN (bottom). a, d colored by race,b, e gender, and c, f age groups. Each point
is a sample, with proximity reflecting similarity in the 256-dimensional discriminator

feature space. Ci-SSGAN produces more compact, well-separated clusters across
demographics, indicating improved feature organization when incorporating clinical
context. Features are from the best fold trained on 25% labeled data.
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Fig. 5 | Uncertainty analysis across demographic groups for models trained with
25% and 100% of labeled data. Violin plots show entropy distributions for four
models across. a race, b gender, and c age groups. Light colors indicate 25% training
data; dark colors indicate 100%data. Ci-SSGAN (gray)maintains lowest uncertainty
( < 0.2 entropy) regardless of data size, while BERT models (red/green) show high

uncertainty with 25% data (0.6–1.4 entropy) that reduces substantially with 100%
data (0.2–0.4 entropy). SSGAN (blue) exhibits intermediate performance. The
horizontal line indicates the median and the error bars represent the minimum and
maximum values observed for each group.
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Fig. 6 | Gradient-weighted token attribution by model. Wordpiece-level attribu-
tions are normalized per note to sum to 1 and then averaged across notes (5-fold
CV). To avoid rare-token artefacts, only tokens that appear in≥ 50 notes ( ≥ 100 total
occurrences) are considered. Bars show the mean normalized attribution share for

the top 20 tokens per model. Values printed on the bars represent the distribution of
attribution mass among the displayed top tokens, not corpus-level frequency.
Models trained by 25% of labeled data were used to extract these tokens.

Fig. 7 | Confusion matrices comparing Ci-SSGAN and ICD-based labels against
expert clinical grading for glaucoma subtypes. a Ci-SSGAN predictions derived
from free-text clinical notes.b ICD-based subtype assignments derived fromstructured
billing codes. Ci-SSGAN demonstrates fewer cross-subtype misclassifications and
stronger concordancewith expert labels across all six subtypes:Non-GL,OAG/S,ACG/

S, XFG/S, PDG/S, and SGL. ICD-based labels were assigned using predefined diag-
nostic codemappings,withaprioritizationhierarchyappliedwhenmultiple codeswere
present. Of 105 patients in the test cohort, 94 had at least one valid ICD code. The
remaining 11 had no linked billing record or only non-specific/suspect codes (e.g.,
H40.9/365.9), which we do not use for subtype assignment.
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human experts showed moderate-to-substantial agreement (pairwise
Cohen’s κ: 0.646–0.831, mean: 0.74; Supplementary Table S2). Detailed
per-reviewer metrics are in Supplementary Fig. S10.

Discussion
This study demonstrates that clinically informed semi-supervised gen-
erative modeling can help address two long-standing challenges in health-
care AI: the scarcity of reliable labels and the inequities in subgroup
performance, by harnessing abundant unlabeled clinical notes. Glaucoma
exemplifies the urgency of these challenges and the potential of Ci-SSGAN
to mitigate them, particularly for under-represented groups such as Black
patients, females, and younger individuals who experience worse disease
outcomes23,24,29,30. Biases in structured EHR labels, especially when com-
bined with limited annotations, have been shown to undermine model
reliability11,15,16, and prior work highlights how feature-dependent noise,
annotator disagreement, and limited diversity in training corpora degrade
performance in ways that fine-tuning alone cannot resolve17,18. While semi-
supervised GANs have attempted to address data scarcity, they typically
depend on noise or broad demographic inputs19,20,32,33, reducing their ability
to capture clinically meaningful signals. Unlike standard SSGAN models
used in image classification19,20,33, where the generator is conditioned only on

noise or limited demographics, Ci-SSGAN introduces three key innova-
tions: integration of note embeddings to capture clinical context, multi-
conditional learning to counter subgroup imbalance, and an explicit fairness
objective using the PV metric.

Across varying amounts of labeled data, Ci-SSGAN consistently out-
performed both supervised and semi-supervised baseline models (Table 2
andFigs. 2 and3). Its conditional generationonclinical embeddings enabled
robust improvements even with limited annotations, and these benefits
extended to high-label settings where other models typically plateau. For
example, with only 25% labeled data, Ci-SSGAN achieved an accuracy of
0.871 ± 0.03, surpassing SSGAN (0.859 ± 0.04) and Base BERT
(0.824 ± 0.05), alongside a substantial AUC-PR improvement (+ 0.091
over BioBERT). These advantages persisted as labeled data increased with
the framework achieving over 9% higher precision–recall performance
compared to standard supervised approaches, illustrating its ability to
extract value from unlabeled notes while maintaining equitable subgroup
performance.We also benchmarkedCi-SSGANagainst three large general-
purpose medical language models (GPT-4o8, Med-Gemma 4B6, and
LLaMA-3.2-3B31) to contextualize its task-specific performance (Table 4).
Across key metrics, Ci-SSGAN achieved 19.9 to 33.7 percentage-point
higher accuracy and F1-scores relative to GPT-4o, reflecting the benefit of
domain-specific semi-supervised training. GPT-4o showed a slight edge on
the XFG/S subtype (0.752 vs. 0.750), consistent with its broader linguistic
coverage. Despite being medical-domain specific, Med-Gemma 4B showed
limited zero-shot performance (accuracy: 0.160), demonstrating that even
specialized medical LLMs require task-specific adaptation for fine-grained
clinical classification. These results highlight that integrating structured
clinical context and demographic conditioning can improve task-specific
performance for ophthalmology-specific note classification tasks compared
with general medical LLMs.

Importantly, Ci-SSGAN semi-supervised design enables remarkable
label efficiency.Comparing25%to100% labeleddata (SupplementaryTable
S1), performance gains were modest (accuracy +0.036, F1+ 0.039,
AUROC+ 0.007, AUCPR+ 0.026), indicating that the model extracts
near-optimal information from unlabeled notes. This efficiency lowers the
barrier to AI development, enabling strong results without exhaustive
annotations, which is particularly valuable for rare diseases,

Fig. 8 | Comparison of Ci-SSGAN and ICD code–based labeling across glaucoma
subtypes and non-glaucoma cases in terms of Accuracy, F1 Score, AUC-ROC,
and AUC-PR. Each bar represents performance for a specific class, with the
“Overall” category summarizing all classes. Ci-SSGAN uses both labeled and
unlabeled data with clinical context, whereas ICD code labels rely solely on diagnosis

codes from medical records. Improvements were most pronounced in challenging
subtypes such as primary angle-closure glaucoma (ACG/S), open-angle glaucoma
(OAG/S), and Non-GL cases. AUROC and AUCPR calculated using one-vs-rest
strategy with macro-averaging across six glaucoma classes.

Table 3 | Overall performance summary of Ci-SSGAN vs.
ICD code

Metric ICD
Code

Ci-
SSGAN
(25%)

Ci-
SSGAN
(100%)

Gain vs.
ICD (25%)

Gain vs.
ICD
(100%)

Accuracy 0.743 0.773 0.853 þ2.96 þ10.91

F1 score 0.746 0.765 0.856 þ1.93 þ10.97

AUROC 0.847 0.942 0.949 þ9.46 þ10.19

AUCPR 0.625 0.821 0.847 þ19.62 þ22.22

All values are calculated on the test dataset. Bold values show the best scores. AUROCandAUCPR
calculated using one-vs-rest strategy with macro-averaging across six glaucoma classes. Bold
values indicate the best-performing result for eachmetric across the comparedmethods (ICD code,
Ci-SSGAN (25%), and Ci-SSGAN (100%)).
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underrepresented groups or when resources are limited. Notably,
improvements remained substantial evenwith 100% labeled data (Table 3),
not contradicting the label-efficiency advantage but highlighting com-
plementary effects: in low-label regimes, Ci-SSGAN leverages unlabeled
notes to compensate for limited supervision, while in high-label regimes it
combines full supervised signal with adversarially generated diversity,

pushing beyond the ceiling of purely supervised models. While BERT
variants plateau once additional labels no longer reduce uncertainty, Ci-
SSGANcontinues to improve by preserving rare subtypes anddemographic
variability, a capability enabled by our strategic racial balancing approach
combined with stratified augmentation across race, gender, and age groups
(see Methods). This multi-level balancing strategy ensures adequate
representation of Black and Asian patients, who are disproportionately
affected by glaucoma but historically underrepresented in medical AI
datasets23–25,27–30,34, as well as intersectional subgroups that may have unique
disease presentations. By conditioning the generator on demographics
sampled from this intentionally balanced distribution rather than the ori-
ginal imbalanced institutional data (75% White, 7% Black, 5% Asian), the
modelmaintains representation of rare disease-demographic combinations
across all subgroups, preventing the mode collapse toward majority popu-
lations that commonly occurs inGANs trained on imbalanceddata35,36. This
demographic conditioning mechanism, combined with our diversity loss
and clinical consistency objectives, ensures that synthetic samples reflect the
full spectrum of patient presentations rather than converging on the most
common patterns, explaining why Ci-SSGAN’s margin of improvement
canappear larger at 100% labeleddata even though relative efficiency ismost
impactful with limited data.

Ci-SSGAN also producedmore discriminative feature representations
and reduced predictive uncertainty (see Supplementary Fig. S5), supporting
reliable outputs across demographic subgroups. Attribution analysis further
showed that the model concentrated attention on disease-specific terms
(e.g., “pigmentary,” “pseudoexfoliation”), with over six-fold greater attri-
bution focus compared to Bio BERT. This sharper reliance on clinically
meaningful features provides mechanistic insight into why the framework
achieves both improved performance and interpretability. Importantly,
while BERTmodels became increasingly confident only asmore labels were
added, Ci-SSGANmaintained the lowest overall uncertainty and preserved
sensitivity to rare subtypes. This balance between certainty and diversity
prevents overconfident errors and underscores the framework’s design to
promote equitable performance.

When benchmarked against ICD-based glaucoma coding, Ci-SSGAN
showedmarkedly higher concordancewith expert grading (Table 3 and Fig.
8), particularly for open-angle and angle-closure subtypes and in distin-
guishing non-glaucoma cases. These results highlight how leveraging
unlabeled notes can overcome the coarse granularity and systematic mis-
classification inherent to structured coding. From an equity perspective, PV
scores were substantially reduced across race, gender, and age, with notable
gains for Black patients (þ6.7% F1 vs. Bio BERT), illustrating that con-
ditioning generative models on unlabeled clinical text offers a viable path to
mitigating potential systemic biases.

Although our case study focused on glaucoma, the architecture is
conceptually applicable to other medical conditions with abundant clinical
documentation but limited labels, such as diabetic retinopathy staging37–39,
age-related macular degeneration classification40–42, cardiac disease risk
stratification43–45, or psychiatric disorder classification46–48. The main lim-
itation preventing validation in these areas is the lack of large-scale, expert-
annotated note datasets, which constrains systematic evaluation beyond
glaucoma. While further validation will be needed once such resources
become available, our results suggest that multi-conditional semi-super-
vised learning on unstructured text has the potential to improve accuracy,
reliability, and fairness in diverse healthcare contexts.

Table 4 | Benchmarking Ci-SSGAN against state-of-the-art
large languagemodels for automatedglaucomaclassification

Model Class Samples Accuracy F1
score

AUROC AUCPR

GPT-4o Non-
GL

38 0.474 0.451 0.689 0.273

OAG/S 60 0.667 0.537 0.741 0.362

ACG/S 49 0.601 0.625 0.766 0.461

XFG/S 55 0.752 0.793 0.858 0.679

PDG/S 45 0.801 0.816 0.883 0.701

SGL 47 0.552 0.709 0.775 0.613

Overall 294 0.641 0.655 0.785 0.515

Med-
Gemma

Non-
GL

38 0.184 0.187 0.534 0.141

OAG/S 60 0.451 0.274 0.491 0.201

ACG/S 49 0.122 0.135 0.492 0.165

XFG/S 55 0.073 0.098 0.488 0.184

PDG/S 45 0.045 0.062 0.486 0.151

SGL 47 0.085 0.101 0.484 0.157

Overall 294 0.160 0.143 0.496 0.167

LLaMA-
3.2

Non-
GL

38 0.421 0.552 0.703 0.412

OAG/S 60 0.834 0.565 0.774 0.391

ACG/S 49 0.184 0.305 0.590 0.302

XFG/S 55 0.364 0.421 0.640 0.301

PDG/S 45 0.712 0.736 0.836 0.586

SGL 47 0.660 0.554 0.761 0.369

Overall 294 0.529 0.522 0.717 0.394

Ci-
SSGAN

Non-
GL

38 0.818 0.750 0.915 0.722

OAG/S 60 0.955 0.857 0.955 0.863

ACG/S 49 1.000 0.970 0.994 0.962

XFG/S 55 0.750 0.828 0.942 0.880

PDG/S 45 0.667 0.800 0.939 0.835

SGL 47 0.853 0.855 0.949 0.847

Overall 294 0.840 0.843 0.949 0.852

LLMs (GPT-4o, Med-Gemma, LLaMA-3.2) were evaluated in zero-shot setting without fine-tuning
on our glaucoma dataset, representing realistic deployment scenarios. Ci-SSGAN was trained on
our institutional data. The bold values indicate the best-performing results within each class and
metric across the evaluated models.

Table 5 | Model performance against independent glaucoma specialist reviewers

Samples Accuracy F1 score AUROC AUCPR Kappa (%) Agreement (%)

R1 76 0.842 0.760 0.948 0.809 78.801 84.211

R2 76 0.75 0.782 0.936 0.851 64.053 78.899

R3 66 0.591 0.624 0.814 0.650 43.357 73.291

Metrics includeaccuracy,macroF1-score, AUROC,AUCPR,Cohen’s kappa (%), and agreement (%).R1-R3: fellowship-trained reviewers.Bold values indicate thehighest performance for eachevaluation
metric across the independent glaucoma specialist reviewers (R1-R3).
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We explicitly acknowledge several limitations we faced in this study.
Data were drawn from a single academic health system; external validation
is required to ensure generalizability across institutions and note types.
Smaller demographic groups (Hispanic/Latinx, Indigenous, multi-racial)
were underpoweredand shouldbe included in future equityanalyses. Expert
annotations, while highly consistent (kappa� 0.90), may reflect prevailing
clinical biases. From a translational perspective, future deployment of Ci-
SSGAN would likely require integration into clinical decision-support
systems (CDS)with careful evaluationof human–AIcollaboration strategies
(e.g., clinician override, uncertainty visualization, and workflow co-design),
to ensure safe and equitable use in practice. In the present study, we
implemented several rigorous validation strategies to establish reliability: (1)
expert adjudication by six fellowship-trained glaucoma specialists who
independently labeled the test set (Cohen’s κ = 0.90), providing gold-
standard ground truth; (2) prospective human-in-the-loop validation
comparing model predictions against independent annotations from three
fellowship-trained glaucoma specialists across 218 clinical notes, demon-
strating substantial human-AI concordance (mean accuracy=0.728,
Cohen’s κ = 0.621, AUROC= 0.899; See Table 5 and Supplementary
Fig. S10) that aligns with the moderate-to-substantial inter-rater reliability
observed among human experts themselves (mean κ = 0.74); (3) compar-
ison with ICD-based coding to assess concordance with existing clinical
documentation systems (Table 3 andFig. 8); and (4) comprehensive fairness
evaluation across demographic subgroups to identify potential biases. These
analyses collectively provide strong evidence of technical performance and
algorithmic fairness under controlled conditions. Nevertheless, prospective
human–machine comparative studies remain essential to determine clinical
utility. Such studies should evaluate clinician-AI collaborative workflows
with respect to diagnostic accuracy, time efficiency, and decision support;
assess real-world outcomes such as time-to-diagnosis, referral appro-
priateness, and vision preservation; and examine implementation factors
including user acceptance, workflow integration, automation bias, and
safety through failure mode and uncertainty analyses. While conducting
such trials will require institutional reviewboard approval, EHR integration,
and significant clinical resources beyond the scope of this methodological
development, the current work provides the technical foundation and
empirical justification for future prospective validation efforts. To further
improve interpretability, the next version of Ci-SSGANwill incorporate an
auxiliary reasoning head designed to generate explicit rationales for each
classification decision. This head will be trained jointly with the dis-
criminator to map latent text representations to interpretable concepts or
concise natural-language explanations, thereby linking predictive accuracy
to clinical transparency. In parallel, future extensions could integrate ima-
gingmodalities such asOCT and visualfield data with clinical text to enable
multimodal glaucoma modeling and progression prediction, as demon-
strated in our prior hybrid structural-functional fusion frameworks49.
Integrating such structured reasoning modules will enable clinicians to
review not only the predicted subtype but also the model’s supporting
rationale as an essential step toward trustworthy deployment of generative
models in clinical practice.While ourUMAP analysis (Fig. 4) and subgroup
performance metrics (Figs. 2 and 3) provide strong empirical evidence that
3-dimensional demographic conditioning effectively biases generated
samples toward their conditioned demographics, future work could
incorporate explicit auxiliary demographic prediction as an additional
discriminator head. This would provide direct supervision for demographic
coherence andenable quantitative assessment ofwhether generated samples
accurately reflect their conditioning demographics, complementing the
current implicit validation through the discriminator’s conditional evalua-
tion of sample realism. Such explicit demographic supervision could further
improve fairness by ensuring generated samples maintain appropriate
demographic characteristics throughout training.

Building on these considerations, future work should include multi-
center validation to ensure robustness across diverse populations and pro-
spective clinical evaluation to measure outcomes such as time-to-diagnosis
and vision preservation. In addition to methodological safeguards such as

differential-privacy training and threat modeling, improved note-derived
annotations could directly enable construction ofmore accurate cohorts for
large-scale epidemiologic and genetic studies, as well as better-powered
clinical trials. Integration into CDS systems could facilitate more accurate
patient labeling, risk stratification, and referral triaging, thereby enhancing
early detection and timely care. Comprehensive fairness audits, including
intersectional subgroup analyses and debiasing strategies, remain essential
to address residual disparities. Finally, co-designed workflows with clin-
icians and patients (particularly in under-resourced communities) will be
key to translating technical advances into equitable care delivery.

In conclusion, this study demonstrates that semi-supervised generative
model, when grounded in clinical context and demographic information,
can simultaneously improve accuracy and equity in healthcare AI. By
leveraging abundant unlabeled notes, Ci-SSGAN reduces dependence on
large, annotated datasets and helps preserve subgroup performance that
often degrades in low-data settings. These findings highlight the broader
potential of clinically informed semi-supervised learning to address both
data scarcity and systemic bias in real-world applications.

Methods
The Institutional Review Board atMass General Brigham (MGB) approved
this study, which adhered to the ethical guidelines outlined in the
Declaration of Helsinki for research involving human participants. Given
the retrospective design, the requirement for informed consent was waived.

Inclusion and exclusion criteria
In our Mass Eye and Ear (MEE) dataset, which encompasses over 250
million clinical notes, we included notes from the ophthalmology depart-
ments comprising 3.2% of total notes. We filtered the notes with dates
between May 2015 and December 2024. The majority of physician-
generatednotes are concentrated in twoprimary categories: “ProgressNote”
and “Assessment and PlanNote,” collectively totaling over 90million notes.
The notes vary in length with minimum and maximum lengths of 1 and
386561 characters, respectively (interquartile range = 455–1672 characters).
For analysis, we applied the following inclusion criteria: (1) note length
between 200 and 5000 characters (approximately 40–1100 tokens); (2)
patients aged≥30 years; and (3) race limited toWhite orCaucasian, Black or
African American, and Asian patients due to sample size considerations for
other demographic groups. A sliding window approach was used for longer
notes exceeding the tokenizer’smaximum length of 512 tokens to split them
into overlapping chunks of 512 tokens (overlap = 64) to ensure context
continuity. The resulting source corpus comprises 2129171 notes from
327814 patients (88.2%White, 6.8%Black or AfricanAmerican, 5%Asian),
from which we derived two distinct datasets for model training: (1) an
unlabeled dataset of 349587 notes from 108574 patients, selected through
stratified random sampling to ensure demographic balance across race,
gender, and age groups; and (2) a labeled dataset created through expert
curation as described below. Supplementary Fig. S11 shows the department
specialties, note type, and note length distribution in the source corpus.

Clinical note curation and expert labeling
Notes were initially filtered by glaucoma-related keywords extracted from
the literature and online ophthalmology resources50. Using stratified ran-
dom sampling, we selected at least 50 patients per glaucoma subtype with
each patient having aminimumof twonotes, balancedby subtype, race, and
sex, yielding 1117 patientswith 4321 notes. Six fellowship-trained glaucoma
specialists independently reviewed the 4321 notes, with each note reviewed
by at least two clinicians to assign diagnosis (glaucoma/suspect, non-glau-
coma, or insufficient information) and, when applicable, glaucoma subtype
classification: open-angle glaucoma/suspect (OAG/S; including normal-
tension glaucoma, high-tension glaucoma, ocular hypertension, and open-
angle suspect), angle-closure glaucoma/suspect (ACG/S; including angle-
closure suspect), exfoliation glaucoma/syndrome (XFG/S), pigmentary
dispersion glaucoma/syndrome (PDG/S), and secondary glaucoma (SGL).
Discordant cases were adjudicated by consensus review. Inter-rater
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agreement on a 10% subset yielded Cohen’s kappa (κ)=0.90, indicating
excellent concordance. Following clinical review, notes were further filtered
by inclusion criteria (200-5000 characters, age ≥ 30 years, race limited to
Asian/Black/White) and exclusion criteria (duplicated, empty, or templated
notes), resulting in 2954 notes from 1105 patients. Notes with diagnostic
uncertainty (N = 81) or insufficient information (N = 30) were excluded
during this step. The final curated set comprised 2954 notes from 1105
patients distributed across six categories: OAG/S (N = 1211), ACG/S
(N = 174),XFG/S (N = 232), PDG/S (N = 383), SGL (N = 146), andNon-GL
(N = 808), serving as the ground truth for model training and evaluation.
The workflow for dataset generation, including data collection, preproces-
sing, and labeling, is shown in Supplementary Fig. S12. Annotations were
collected andmanaged using REDCap (Research Electronic Data Capture),
a secure, HIPAA-compliant web-based platform provided by MGB, which
ensured standardized data entry, audit trails, and secure storage of all
reviewer assessments.Annotationwasperformedat thenote level,with each
clinical note receiving an independent diagnostic label based on the clinical
information documented at that specific encounter. Patients with multiple
notes could have different labels across time points, reflecting disease pro-
gression, diagnostic refinement, or clinical evolution. Among the 1105
patients, 132 patients (12%) exhibited diagnostic transitions across
sequential notes (Supplementary Fig. S13), with themost common patterns
including progression from Non-GL to OAG/S (43 patients). For patient-
level evaluation, a predefined priority hierarchy (XFG/S > PDG/S > SGL >
ACG/S >OAG/S > Non-GL) was applied to assign a single patient-level
label when multiple subtypes were present across notes, prioritizing the
most specific and clinically significant diagnosis.

Structured labels were also derived from ICD-10/ICD-9 billing codes
(pre- and post-October 2015) to construct an ICD-based baseline.Mapping
was: XFG/S: H40.14, 365.52; PDG/S: H40.13, 365.13; OAG/S (including
suspects and ocular hypertension): H40.1, H40.01, H40.02, H40.05, 365.1,
365.01, 365.04, 365.05; ACG/S: H40.2, H40.03, H40.06, 365.2, 365.02,
365.06; SGL:H40.3,H40.4,H40.5,H50.6, 365.3, 365.4, 365.5, 365.6. General
or nonspecific glaucoma codes were mapped to Non-GL. For patients with
multiple subtype codes, a predefined priority (XFG/S > PDG/S > SGL >
ACG/S >OAG/S > Non-GL) was applied to assign a single label, following
our prior mapping strategy51. These ICD-derived labels were used only for
the ICD-based baselines and for comparison with Ci-SSGAN.

Data preprocessing
To ensure adequate representation for equity-focused analysis, we imple-
mented strategic racial balancing inboth labeled andunlabeleddatasets. The
original institutional dataset exhibited substantial racial imbalance (75%
White, 7%Black, 5%Asian, 12%Others/Unknown). For the labeled dataset,
we selectednotes fromunderrepresented racial groups athigher rates during
the annotation process, yielding 1,182 White notes (40%), 886 Black notes
(30%), and 886 Asian notes (30%), compared to the original institutional
distribution. This strategic selection during annotation ensured adequate
sample sizes for Black and Asian patients, who are disproportionately
affected by glaucoma but historically underrepresented in medical datasets.
For the unlabeled dataset, we determined the minimum count across the
three selected races and sampled equal numbers of notes per racial group
(156,566 notes per race = 469,698 total notes), then applied age filtering
( ≥ 30 years), yielding 349,587 notes before augmentation. This balanced
sampling approach ensured that demographic vectors used for conditioning
the generator and discriminator during training reflected adequate repre-
sentation of all racial groups rather than the original institutional imbalance.
All notes were de-identified using the Philter package to ensure HIPAA
compliance52. Text was tokenized with BioClinical BERT2,3, and processed
using a sliding window strategy to handle the tokenizer’s 512-token limit.
Notes longer than 512 tokens were split into overlapping segments of 512
tokens (with 64-token overlap) to preserve context continuity. Each seg-
ment was padded if shorter than 512 tokens and wrapped with [CLS] and
[SEP] tokens. Demographics (age, gender, race) were encoded numerically,
with age normalized to 0-1 and categorical variables converted to integer

representations. Age was normalized using uniformmin-max scaling from
the observed range [30,90] years to [0, 1]. Gender was binary encoded
(Female=0, Male=1), with Unknown/Other categories excluded. Race was
encoded numerically (Asian=2, Black or African American=1, White or
Caucasian=0), with other racial categories excluded due to insufficient
sample sizes as described in the inclusion criteria. During model training,
demographic vectors for conditioning the generator and discriminatorwere
sampled directly from patient batches in these balanced datasets, ensuring
that synthetic samples reflected adequate representation across all racial
groups.

For model training, the labeled dataset was split into 90% for training
and validation (1000 patients, 2660 notes) and 10% for a held-out test set
(105 patients, 294 notes). Patient-level splits ensured that notes from the
same individual did not appear in both training and evaluation sets. Five-
fold cross-validation was used within the training partition, with a further
10% of patients in each fold set aside for early stopping.

To increase training diversity and further balance race-gender-age
distributions, we implemented a custom rule-based pipeline in Python 3.10
consisting of: (1) section shuffling; (2) synonym substitution using a
manually curated dictionary of 17 ophthalmology term sets; (3) bidirec-
tional abbreviation expansion from a 20-term clinical dictionary; (4) mea-
surement format standardization; and additional strategies including
modifier variation, neutral statement injection, procedure description var-
iation, and formatting noise. For each note, 2–5 strategies were randomly
selected, generating 1–5 variants per note. Augmentation rates were
adjusted by race, gender, and age groups to ensure balanced representation
across all demographic subgroups, including intersectional combinations,
in the final training data fed to themodels. Validation and test sets were not
augmented to maintain evaluation integrity. After augmentation, the
labeled training corpus increased from 2660 to 12825 notes, and the unla-
beledpartition increased from349587 to 1399568notes.Data preprocessing
and augmentation steps are illustrated in Fig. 9.

The proposed Ci-SSGAN architecture
We compared Ci-SSGAN against four baselines: Base BERT, BioClinical
BERT, and standard SSGAN (Full model architectures in Supplementary
Table S3). Both SSGAN and Ci-SSGAN incorporate demographic con-
ditioning in the generator (age, race, gender) and discriminator; the key
distinction is Ci-SSGAN’s additional use of unlabeled clinical text embed-
dings (768-dimensional) in the generator input. This design isolates the
contribution of clinical context: both semi-supervised models leverage
demographic information, but only Ci-SSGAN additionally incorporates
semantic information from unlabeled clinical notes. Base BERT and Bio-
Clinical BERT are fully supervised models without adversarial training.
Unlike regular SSGANs which only use random noise as input to the
generator19,32,33,53,54, Ci-SSGAN introduces a novel architecture where the
generator directly learns from unlabeled clinical text. The model comprises
three components: (1) a Bio-ClinicalBERT text encoder producing 768-
dimensional embeddings from clinical notes; (2) a clinically-informed
generator accepting 871-dimensional input, combining 100-dimensional
Gaussian noise, 3-dimensional demographics (age, race, gender), and cru-
cially, 768-dimensional unlabeled text embeddings; and (3) a dual-head
discriminator with shared feature extraction for both 6-class glaucoma
classification and real/fake discrimination. The 100-dimensional noise
vector was chosen based on established semi-supervised learning
literature19,32,33 and validated through experiments with 200D and 500D
alternatives. Monitoring discriminator and generator learning curves
(Supplementary Fig. S15) confirmed that 100D noise achieved healthy
adversarial balancewithoutmode collapse.While the demographic vector is
lower-dimensional (3D) than noise (100D) or text embeddings (768D), its
effectiveness is validated through UMAP clustering analysis (Fig. 4)
showing clear demographic separation in the learned feature space, and
through consistent subgroup performance (Figs. 2 and 3, Supplementary
Fig. S3) demonstrating the generator produces demographically appro-
priate samples.

https://doi.org/10.1038/s41746-025-02267-w Article

npj Digital Medicine |            (2026) 9:82 12

www.nature.com/npjdigitalmed


The discriminator employs dual heads with distinct supervision stra-
tegies. The source head performs real/fake discrimination supervised on all
samples (Lreal þ Lfake). The classifier head performs 6-class glaucoma
classification supervised exclusively on real labeled samples via focal loss
(Lsupervised). Generated samples do not require ground truth class labels; the
total discriminator loss (Lsupervisedþ Lreal þ Lfake) applies Lsupervised only to
real labeled samples, with this component masked for unlabeled and gen-
erated samples. During training, demographic vectors are maintained
consistently for each sample: when a synthetic sample is generated condi-
tioned on demographics d = (age, race, gender), the same demographic
vector d is provided to the discriminator when evaluating that sample,
ensuring the discriminator can properly assess whether the generated
sample is realistic for that specific demographic profile and enabling fair
evaluation across demographic subgroups. This architecture enables the
model to learnmedical language patterns from large unlabeled clinical notes
to improve classification accuracy when labeled data are scarce. Demo-
graphic vectors are sampled from the balanced training data (see Data
preprocessing), which combined strategic selection of notes from under-
represented racial groups at higher rates during annotation with stratified
augmentation across race, gender, and age dimensions. This multi-level
balancing strategy enables the generator to learn realistic demographic-
disease associations for all subgroups, including intersectional combinations
(e.g., young Black females, elderly Asian males), rather than being domi-
nated by majority populations. All BioClinicalBERT parameters were fine-
tuned (no freezing was applied), so both the transformer weights and the
fully connected layers were updated during training. The generator, dis-
criminator, and text encoder were trained jointly in an adversarial frame-
work using separate optimizers and hyperparameters with a multi-
component loss combining supervised focal loss, adversarial loss, feature
matching, clinical consistency, and diversity terms to address class imbal-
ance, preserve clinical semantics, and prevent mode collapse. A detailed
description of the model learning curves, model architecture, and full list of
loss functions are provided in the Figs. S14 and S15 and Tables S4 and S5 in
the Supplementary material. An overview of the proposed Ci-SSGAN
architecture, including the generator and discriminator components with
their inputs, is shown in Fig. 10.

Training protocol
Training was conducted using Python 3.10 and PyTorch 2.3.1 on eight
NVIDIA H100 GPUs 80 GB memory each) in a distributed data-parallel
setup. Hyperparameters, including learning rates for each model compo-
nent, were optimized using Optuna55 with 50 trials. The final selected
learning rates were 3 × 10�5 for the text encoder, 1 × 10�4 for the dis-
criminator, and 2 × 10�4 for the generator. Models were trained for up to

250 epochswith early stopping (patience= 11), batch size = 16, and gradient
clipping at a max norm of 0.5. Underrepresented classes, particularly SGL,
were upweighted using dynamically calculated class weights with a 5×
boost factor. Focal Loss (γ ¼ 2) was used to emphasize hard-to-classify
cases. The semi-supervised training framework incorporated 349853
unlabelednotes from155392 patients, utilized in both standard SSGANand
Ci-SSGAN training. Unlabeled embeddings were provided to the generator
alongside noise and demographics, enabling clinically relevant synthetic
sample generation and enhancing feature diversity. Model comparisons
wereperformedagainst baselinemodels (BaseBERTandBioClinical BERT)
trained with full parameter fine-tuning. Supplementary Table S6 shows the
full list of hyperparameters and model configurations.

Performance metrics and statistical analysis
Model performance was evaluated using accuracy, F1 score, area under the
receiver operating characteristic curve (AUROC), and area under the
precision–recall curve (AUCPR). These metrics assessed both overall
glaucomadetection accuracy anddemographic-specific performance across
racial, gender, and age subgroups, with analysis conducted at both note and
patient levels. Accuracy provides a global measure of correct classifications,
while the F1 score balances precision and recall, offering a clinically
meaningful view of how well the model detects glaucoma cases without
excessive false positives. AUROC measures the model’s ability to dis-
criminate between disease and non-disease across all decision thresholds.
AUCPR emphasizes precision in identifying true positive cases. For our
6-class glaucoma classification task, we computed both per-class and overall
AUROC/AUCPR metrics using the one-vs-rest (OvR) approach. For each
glaucoma subtype, we binarized the problem by treating the target class as
positive and all other five classes as negative, then calculated AUROC and
AUCPR using the predicted probability for the target class. Overall metrics
represent the unweighted mean (macro-average) across all six classes,
treating each class equally regardless of sample size.We selectedOvR rather
than one-vs-one (OvO) because OvR provides clinically interpretable per-
class metrics56, as each class is represented by one classifier only, allowing
direct inspection of class-specific decision boundaries; OvR is the most
commonly used strategy for multiclass classification and represents a
computationally efficient default choice; and OvR aligns with clinical
decision-making where each subtype must be distinguished from the
broader differential diagnosis57, whereas OvO would generate 15 pairwise
comparisons that are less interpretable for clinical applications. All AUROC
and AUCPR calculations were performed using scikit-learn (version 1.3.0).

We evaluated performance stratified by age groups (30–55, 55–70,
>=70 years), gender (female, male), and race (Asian, Black, White). To
quantify model’s bias across demographics, we introduce a new PV score

Fig. 9 | Overview of dataset characteristics and preprocessing pipeline. Patient
demographics, note types, and clinical note distributions are shown on the left.
Processed notes are then de-identified and augmented (token shuffling, synonym
substitution, abbreviation expansion, and full spelling), as illustrated on the right.

Data augmentationwas appliedwith stratified rates adjusted by race, gender, and age
groups to ensure balanced representation across all demographic subgroups in the
final training data.
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that simultaneously evaluates over-diagnosis and under-diagnosis dis-
parities acrossdemographicCategories (C) usingPPV andNPV. Thismetric
bridges model’s fairness with clinical practice by measuring disparities in
both false positive and false negative prediction rates and is formulated as:

PV score ¼ maxi;j CðgiÞ � CðgjÞ
�
�
�

�
�
�, Where CðgiÞ ¼ 2 × ðPPVðgiÞ×NPVðgiÞÞ

PPVðgiÞþNPVðgiÞ

Here, gi and gj are individual groups within that category. This for-
mulation bridges fairness with clinical practice by penalizing disparities in
both false-positive and false-negative rates. Prediction uncertainty for each
sample was determined using Tsallis entropy58, computed as

1
q� 1

� �

× 1�
Xn¼5

i¼0

log Pi
q

� �

 

where Pi is the predicted probability of class i. Given the class imbalance in
glaucoma subtype classification, we set the entropic parameter to q = 0.25,
which emphasizes uncertainty in rare classes andprovides greater sensitivity
to predictions involving underrepresented glaucoma types59.

All tests were two-sided with significance set at P < 0.05. Model per-
formance was compared across metrics, data fractions, and demographic
subgroups. Pairwise differences (accuracy, F1, AUROC,AUCPR, PV score)
were assessed using paired t-tests across five cross-validation folds. Sub-
group analyses (race, gender, age) used ANOVA with post-hoc t-tests.
Multiple comparisons were adjusted with Benjamini–Hochberg false dis-
covery rate (FDR) correction, and adjusted P < 0.05 was considered sig-
nificant. Analyses were performed in Python 3.10 using SciPy (v1.13) and
statsmodels (v0.14).

Data availability
The data that support the findings of this study can be obtained from the
corresponding author upon reasonable request.

Code availability
The codes for the proposed model are available at https://github.com/
Mousamoradi/Ci-SSGAN.
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