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Abstract 

Gastric cancer staging is frequently limited by the low sensitivity of routine imaging for occult peritoneal 

metastasis (OPM), necessitating invasive staging laparoscopy. We developed a Multimodal Model, 
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integrating primary tumor radiomics from CT with clinical factors to non-invasively predict OPM in 

locally advanced gastric cancer. The model was trained and internally validated in a large cohort (n=940) 

and externally validated across two independent multi-center cohorts (n=309), an incremental cohort 

(n=477), and a prospective clinical trial cohort (n=168). In all cohorts, the model achieved robust 

performance (AUCs: 0.834-0.857), significantly outperforming single-modality models. Crossover 

validation showed AI assistance increased the average radiologist AUC from 0.735 to 0.872. 

Transcriptomic analysis revealed that the model's low-risk stratification correlated with an enhanced 

antitumor immune microenvironment (CD8 T cells, TNFα signaling). This validated model provides a 

practical tool for accurate, non-invasive OPM prediction and individualized treatment planning. 

Keywords: Radiomics; Gastric Cancer; Occult Peritoneal Metastasis; Multimodal Prediction Model; 

Artificial Intelligence  
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Introduction 

Gastric cancer (GC) remains one of the leading causes of cancer-related mortality worldwide, 

particularly in East Asia where the incidence is disproportionately high 1-2. A significant proportion of 

patients present with advanced disease at the time of diagnosis, and peritoneal metastasis is the most 

common and fatal pattern of dissemination 3-4. Occult peritoneal metastasis (OPM) often escapes detection 

by routine imaging modalities, yet its early identification is essential for optimizing treatment strategy 5-

8. Contrast-enhanced computed tomography (CT), the standard first-line imaging for staging, exhibits 

highly variable sensitivity for detecting peritoneal carcinomatosis, reported as low as 23 – 76%, 

depending on lesion size, morphology, and ascites presence 9-11. Although PET-CT and MRI may 

marginally improve detection rates, PET-CT often remains limited by low negative predictive value (60%), 

while MRI is cost-intensive and prone to motion artifacts, limiting practical use 12-13. Therefore, many 

patients with radiologically negative scans still harbor OPM found only during staging laparoscopy. 

Staging laparoscopy (SL) remains the gold standard for OPM detection, significantly impacting 

management decisions 14-15. Meta-analyses and cohort studies show SL substantially outperforms CT and 

PET-CT in sensitivity and specificity, detecting OPM that would otherwise lead to unnecessary 

laparotomy in 16%–60% of cases 16-18. However, SL’s invasiveness, procedural cost, need for anesthesia, 

and limited availability restrict its universal application, especially in healthcare settings with limited 

resources 19. There remains an urgent unmet clinical need for a reliable, noninvasive preoperative tool to 

predict OPM with high accuracy. 

In recent years, radiomics and AI-driven approaches have shown potential to address this gap. 

Radiomics extracts high-dimensional quantitative features from standard imaging to uncover tumor 
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heterogeneity invisible to the human eye 20-21. Several studies have built CT-based radiomics models, with 

or without clinical features, to predict OPM in advanced gastric cancer. For instance, Shi et al. developed 

a clinical-nomogram that matches radiomics model performance in predicting OPM 22. Similarly, a deep 

learning-based CT signature was shown to predict OPM and chemotherapy benefit 23. A bounding-box-

based radiomics model, which simplifies ROI annotation, achieved high discrimination in a multi-center 

cohort (AUC: 0.87) 24. Yet most of these approaches are limited by single-center cohorts, reliance on 

manual annotation, small sample sizes, and insufficient external or prospective validation. Moreover, they 

generally lack biological interpretation to support clinical confidence. 

To address these gaps, we developed the Multimodal Model, a fully automated “digital biopsy” tool 

that integrates CT-based primary tumor radiomics with key clinical variables for non-invasive prediction 

of OPM. The model was trained and internally validated in a large cohort from a high-volume gastric 

cancer center, and its performance was rigorously tested across two independent multi-center external 

validation cohorts, an incremental validation cohort assessing cytology positivity, and a prospective 

clinical trial cohort (NCT06478368). We further performed transcriptomic analysis on propensity score-

matched high- and low-risk patients to uncover the underlying immune-biological correlates of the 

model’s risk stratification. This comprehensive framework not only demonstrates robust predictive 

accuracy but also provides a rare biological interpretation, thereby offering a clinically practical and 

mechanistically supported solution for preoperative risk stratification in LAGC patients. 

 

Results 

Patient Distribution and Baseline Characteristics 
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A total of 1,726 patients were included, with 940 patients from FHHMU divided into the training 

(n=658) and internal validation (n=282) cohorts (7:3 ratio). Two multicenter cohorts comprised the 

external validation sets: External cohort I (n=164) included patients from SJZPH, BDCH, HSPH, and 

CZPH, while External cohort II (n=145) included patients from WHPH, AMUFH, NJJLH, NHUFH, and 

LMUH. Additionally, an incremental validation cohort (n=477) from FHHMU (Jan 2018–Aug 2020) 

was utilized to specifically evaluate the model's ability to predict positive peritoneal cytology, based on 

patients who underwent both diagnostic laparoscopy and cytology. 

   Baseline characteristics were well-balanced across all cohorts (Supplementary Table 2). The patient 

population was predominantly male (65.0%–69.9%) with a median age of 63 years. Regarding tumor 

characteristics, the lower one-third of the stomach was the most frequent location (56.1%–58.3%), and 

the diffuse type was the most prevalent Lauren classification (42.7%–50.3%). Crucially, no significant 

differences were observed among the cohorts for common inflammatory indices. 

Development and Performance of the Multimodal Model in the Training Cohort 

An ensemble model was first developed based on primary tumor radiomic features to predict OPM 

in gastric cancer patients. Compared with individual machine learning algorithms, the ensemble model 

achieved the highest predictive accuracy in the training cohort, with an AUC of 0.811 (95% CI: 0.769–

0.852), sensitivity of 0.738, and specificity of 0.757 (Supplementary Figure 4). Multivariate logistic 

regression analysis identified cT stage (OR = 2.841, P = 0.002), histological type (OR = 3.229, P < 0.001), 

Borrmann classification (OR = 4.506, P < 0.001), and primary tumor radiomics (OR = 7.493, P < 0.001) 

as independent predictors of OPM (Supplementary Table 3). These variables were incorporated into the 

Multimodal Digital Biopsy Model (Multimodal Model), a constructed nomogram used for prediction 
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(Figure 2a). 

In the training cohort, the Multimodal Model demonstrated an AUC of 0.853 (95% CI: 0.817–

0.888), accuracy of 0.793 (95% CI: 0.760–0.824), sensitivity of 0.746, specificity of 0.804, F1 score of 

0.572, and Brier score of 0.1071 (Figures 2b–d, 2f; Supplementary Table 4). This model correctly 

identified 46.4% of OPM-positive patients in the high-risk group and 93.3% of OPM-negative patients in 

the low-risk group (Figure 2e). Decision curve analysis indicated higher net clinical benefit compared 

with single-modality models (Figure 2h). Concentric circle plots showed strong concordance between 

predicted risk and actual outcomes, with 13.8% OPM-positive patients in the high-risk group and 65.5% 

OPM-negative patients in the low-risk group (Figure 2g). 

Clinical impact curve analysis demonstrated favorable net benefit across a wide range of threshold 

probabilities, indicating substantial clinical applicability of the Multimodal Model (Figures 2j-k). Risk 

stratification by this model revealed significant survival differences: the 5-year overall survival was 47.4% 

in the low-risk group versus 27.6% in the high-risk group (Figure 2l). 

Bootstrap analysis with 1,000 resamples confirmed that the Multimodal Model (AUC = 0.852, 95% 

CI: 0.851–0.853; Figure 2o) outperformed both the clinical model (AUC = 0.747, 95% CI: 0.746–

0.749; Figure 2m) and the tumor radiomic model (AUC = 0.810, 95% CI: 0.808–0.811; Figure 2n). 

Ten-fold cross-validation further supported the robustness of the model (Figure 2i). The Multimodal 

Model achieved significantly better discrimination and reclassification than single-modality models, with 

the greatest improvement over the clinical model (IDI = 0.169, 95% CI: 0.123–0.214; NRI = 0.342, 95% 

CI: 0.077–0.461; both P < 0.05; Supplementary Table 5). 

Internal Validation of the Multimodal Model 
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To evaluate the generalizability of the Multimodal Model, its performance was tested in the internal 

validation cohort. The model achieved an AUC of 0.849 (95% CI: 0.790–0.909), an accuracy of 0.784 

(95% CI: 0.731–0.830), a sensitivity of 0.769, a specificity of 0.787, and an F1 score of 0.567 (Figures 

3a, c-d; Supplementary Table 6). In the high-risk group, the model correctly identified 44.9% of patients 

with OPM, while in the low-risk group it correctly identified 93.8% of OPM-negative patients (Figure 

3e). The calibration performance was favorable, with a Brier score of 0.1067 (Figure 3b). Decision curve 

analysis confirmed that the Multimodal Model provided greater net clinical benefit than any single-

modality model (Figure 3f). 

Two-tier concentric circle plots showed that the Multimodal Model identified a higher proportion of 

low-risk OPM-negative patients compared with the clinical model (68.4% vs. 62.1%) (Figure 3h). 

Kaplan–Meier analysis demonstrated that the low-risk group had significantly better five-year OS than 

the high-risk group (48.7% vs. 25.8%, P < 0.001; Figure 3g). Sensitivity analysis combining results from 

the training and internal validation cohorts indicated a 13.2% improvement in identifying high-risk 

patients and a 3.2% reduction in the misclassification rate for low-risk patients (Figure 3i). 

Reclassification statistics demonstrated that the Multimodal Model significantly outperformed both 

the clinical model and the tumor radiomic model. Compared with the clinical model alone, the NRI was 

0.487 (95% CI: 0.236–0.739) and the IDI was 0.200 (95% CI: 0.129–0.273), with all differences being 

statistically significant (P < 0.001; Supplementary Table 5). DeLong test results further supported the 

significance of these improvements. 

Multicenter External Validation of the Multimodal Model 

To further assess the generalizability of the Multimodal Model, two independent external cohorts 
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from nine medical centers in China and Germany were used for validation. In external validation cohort 

I, the model achieved an AUC of 0.857 (95% CI: 0.792–0.922), sensitivity of 0.750, specificity of 0.795, 

and accuracy of 0.787 (95% CI: 0.716–0.847) (Figures 4a, 4c, 4e-f; Supplementary Table 7). The high-

risk group included 47.1% of correctly identified OPM-positive patients, while the low-risk group 

included 92.9% of correctly identified OPM-negative patients (Figure 4k, top). Concentric circle plots 

indicated strong concordance between predicted risk and OPM status (Figure 4l). Survival analysis 

revealed significantly better outcomes in the low-risk group compared with the high-risk group, with five-

year OS rates of 47.8% and 25.5%, respectively (Figure 4m). 

External validation cohort II (n = 145), which included patients from four treatment centers in 

southern China and Ludwig Maximilian University in Germany, also demonstrated robust performance, 

with an AUC of 0.850 (95% CI: 0.768–0.932), accuracy of 0.786 (95% CI: 0.710–0.850), sensitivity of 

0.774, and specificity of 0.789 (Figures 4b, 4d, 4g, 4j; Supplementary Table 7). The confusion matrix 

confirmed classification performance, with 50.0% of OPM-positive patients correctly identified in the 

high-risk group and 92.8% of OPM-negative patients correctly identified in the low-risk group (Figure 

4k, bottom). Risk stratification showed significant survival differences, with five-year OS rates of 47.4% 

versus 25.0% (Figure 4n). 

Decision curve analysis demonstrated higher net clinical benefit for the Multimodal Model compared 

with single-modality models in both external cohorts (Figures 4h-i). In terms of reclassification and 

discrimination, the Multimodal Model significantly outperformed the clinical model, with IDI values 

ranging from 0.158 to 0.172 and NRI values ranging from 0.199 to 0.492, all with P < 0.05 

(Supplementary Table 5). Sensitivity analysis combining results from both external validation cohorts 
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showed a 15.2% improvement in the identification rate of high-risk patients and a 5.1% reduction in the 

misclassification rate of low-risk patients (Supplementary Figure 6). 

 To rigorously assess the stability and generalizability of the Multimodal Model, we integrated 

patients from the internal and external validation sets into an expanded cohort for sensitivity analysis. The 

model consistently demonstrated stable and excellent predictive performance, with the AUC uniformly 

exceeding 0.830 across all examined subgroups (Supplementary Table 8-9). Strong predictive 

performance was maintained regardless of Lauren classifications (diffuse, intestinal, and mixed types, 

Supplementary Figure 7) and primary tumor locations (upper, middle, and lower third of the stomach, 

Supplementary Figure 8). These findings robustly confirm the model's clinical utility and high 

generalizability across diverse tumor biological and anatomical characteristics. 

Validation in the Incremental Cohort 

According to the “seed and soil” theory, free cancer cells within the peritoneal cavity, if not promptly 

treated, may develop into visible peritoneal metastases and subsequently worsen prognosis 25-26. To 

evaluate whether the Multimodal Model could be extended to predict peritoneal lavage cytology results 

in newly diagnosed patients, we retrospectively selected 477 gastric cancer patients from FHHMU as an 

incremental validation cohort. All patients underwent diagnostic laparoscopy and peritoneal biopsy to 

confirm peritoneal metastasis. For patients without occult peritoneal metastasis (n = 384), peritoneal 

lavage cytology was performed. 

In predicting OPM in this cohort, the Multimodal Model maintained robust performance, achieving 

an AUC of 0.834 (95% CI: 0.789–0.879), accuracy of 0.799 (95% CI: 0.760–0.834), sensitivity of 0.763, 

specificity of 0.807, and an F1 score of 0.597 (Figures 5a, 5c-d; Supplementary Table 10). The Brier 
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score for calibration was 0.1174 (Figure 5b). Notably, the Multimodal Model correctly classified 93.4% 

of OPM-negative patients and 49.0% of OPM-positive patients into the corresponding risk categories 

(Figure 5e) and demonstrated higher net clinical benefit across a wide range of threshold probabilities 

(Figure 5f). Two-tier concentric circle plots confirmed that, compared with the clinical feature model, the 

Multimodal Model identified a greater proportion of high-risk patients (14.9% vs. 12.4%) (Figure 5h). 

Compared with the clinical model, the Multimodal Model achieved the largest incremental 

improvement in discrimination and reclassification, with an IDI of 0.141 (95% CI: 0.094–0.190) and a 

NRI of 0.185 (95% CI: 0.148–0.223), both statistically significant (P < 0.05; Supplementary Table 5). 

Survival analysis based on the Multimodal Model’s stratification showed significantly worse five-year 

OS in the high-risk group than in the low-risk group (24.8% vs. 48.5%, P < 0.001; Figure 5g). In a subset 

of the incremental cohort containing only OPM-negative patients (Figure 5i), the Multimodal Model also 

demonstrated strong predictive ability for peritoneal lavage cytology positivity, with an AUC of 0.831 

(95% CI: 0.763–0.899) (Figures 5j-k; Supplementary Table 10). 

Prospective Cohort Validation 

To further evaluate the generalizability and clinical utility of the Multimodal Model, an external 

validation was performed using a prospective cohort (Figure 6a). In the NCT06478368 cohort (n = 168), 

which included patients with gastric cancer, the model achieved an AUC of 0.839 (95% CI: 0.767–0.910), 

an accuracy of 0.780 (95% CI: 0.709–0.840), a sensitivity of 0.833, a specificity of 0.768, an F1 score 

of 0.575, and PPV and NPV of 0.439 and 0.955, respectively, outperforming all baseline models (Figures 

6b, 6d, 6f; Supplementary Table 11). Calibration curve analysis demonstrated good model fit, with a 

Brier score of 0.1166 (Figure 6c). Decision curve analysis (Figure 6e) and concentric circle plots (Figure 
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6g) confirmed the superior net clinical benefit and predictive consistency of the Multimodal Model 

compared with other models. 

Furthermore, a crossover experiment was conducted within this prospective study to assess the 

model’s performance and its ability to assist clinicians. Ten radiologists with different levels of experience 

(≥10 years, ≥5 years, and <5 years) independently reviewed the 168 cases in a blinded fashion. As 

shown in Figure 6h, the average AUC for all readers significantly increased from 0.735 without model 

assistance to 0.872 with model assistance, while sensitivity improved from 0.632 to 0.810 and specificity 

improved from 0.693 to 0.832 (Supplementary Table 12). 

Subgroup analysis revealed consistent benefits across all experience levels. For junior radiologists 

(<5 years of experience), the AUC increased from 0.687 to 0.859 (Figure 6i); for intermediate radiologists 

(≥5 years), the AUC improved from 0.730 to 0.883 (Figure 6j); and for senior radiologists (≥10 years), 

the AUC rose from 0.806 to 0.893 (Figure 6k). These findings underscore the model’s potential to 

enhance diagnostic accuracy and reduce inter-observer variability in real-world clinical practice. 

Risk Stratification and Individualized Treatment Strategy 

To translate the predictive outcome of the Multimodal Model into clinically actionable risk groups, 

we applied the quartile method to the predicted probability values of the 237 patients with peritoneal 

metastasis (the OPM subgroup). This stratified the patients into four quartiles (Q1 to Q4), and their 2-year 

OS rates were assessed. The results showed that the prognoses of the Q1 group (2-year OS: 39.8% ) and 

the Q2 group (2-year OS: 38.7%) were similar, leading to their combination into the Low-Risk Group. 

The Q3 group (2-year OS: 13.6%) was designated as the Moderate-Risk Group, and the Q4 group (2-year 

OS: 5.1%), exhibiting the poorest prognosis, was defined as the High-Risk Group (Supplementary 
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Figure 9a). Kaplan–Meier survival analysis further confirmed a significant divergence among the 

overall survival curves of these three risk groups (Log-rank P<0.001), with the high-risk group showing 

the worst prognosis, thereby validating the accuracy of the risk stratification (Supplementary Figure 9b). 

The sankey diagram (Supplementary Figure 9c) illustrates a strong correlation between the model-

defined risk groups and the conventional peritoneal cancer index (PCI): low-risk patients were primarily 

clustered at low PCI scores (≤6), while high-risk patients predominantly corresponded to high PCI scores 

(≥13). These PCI categories (≤6, 7-12, ≥13) were adopted based on recommendations from major 

consensus guidelines, including those from Asian, NCCN, and other established international consensus 

groups 27-29, reflecting thresholds associated with feasibility of complete cytoreductive surgery (CRS). 

Crucially, the risk stratification derived from our model is highly congruent with the guideline-

recommended individualized three-step treatment management strategy (Supplementary Figure 10), 

which mandates distinct therapeutic pathways, including specific sequences of CRS, hyperthermic 

intraperitoneal chemotherapy (HIPEC), and chemotherapy, tailored to the patient’s risk level and 

corresponding PCI range.  

Biological Insights into Multimodal Model–Based Risk Stratification 

To elucidate the immunobiological basis underlying the Multimodal Model, we performed 

transcriptome sequencing on 18 paired fresh gastric cancer tumor samples (9 high-risk and 9 low-risk 

cases) selected through 1:1 propensity score matching. Heatmap analysis of differentially expressed genes 

revealed marked transcriptional alterations between the two groups (Figure 7a). Notably, key immune-

related genes such as CD244, CD86, TIGIT, and TNFRSF9 were significantly upregulated in the low-risk 

group (Figure 7b). Gene set enrichment analysis (GSEA) indicated that low-risk samples were 
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significantly enriched in multiple immune- and tumor-associated pathways, particularly epithelial-

mesenchymal transition, inflammatory response, and TNFα signaling via NF-κB (Figure 7c). These 

pathways collectively contribute to a more favorable tumor microenvironment that may suppress tumor 

progression and enhance treatment responsiveness. 

The ESTIMATE algorithm showed that immune scores and ESTIMATE scores were significantly 

higher in the low-risk group compared with the high-risk group (Figure 7d). CIBERSORT-based immune 

cell profiling revealed distinct differences in immune infiltration patterns, with multiple immune cell types 

exhibiting higher infiltration levels in low-risk tumors (Figure 7e). GSVA enrichment analysis further 

demonstrated that the low-risk group was significantly enriched for IL6/JAK/STAT3 signaling, 

IL2/STAT5 signaling, and TNFA/NF-κB pathways (Figures 7f-g). Finally, single-sample GSEA (ssGSEA) 

confirmed that the low-risk group had significantly higher activity of CD8 T cells, natural killer cells, and 

activated dendritic cells (Figures 7h-i). Collectively, these findings suggest that tumors in the low-risk 

group possess stronger immune surveillance and antitumor immune responses, which may contribute to 

reduced tumor progression and improved clinical outcomes. 

 

Discussion 

In this multicenter study, we developed and validated a multimodal preoperative prediction model 

(Multimodal Model) that integrates clinical variables and CT-derived radiomics features of the primary 

tumor to identify OPM in patients with LAGC. The model demonstrated consistently robust performance 

across training, internal, two independent external, incremental, and prospective cohorts, with AUCs 

ranging from approximately 0.83 to 0.86. It also maintained superior net clinical benefit and 
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reclassification improvement compared with unimodal approaches. Importantly, in a prospective reader 

crossover experiment, the model significantly improved the diagnostic accuracy of radiologists at 

different experience levels, underscoring its potential as a clinically deployable decision-support tool. 

Overall, this study provides a scalable “digital biopsy” solution for identifying high-risk OPM patients 

without additional invasive procedures, thereby reducing non-therapeutic laparotomies and optimizing 

perioperative decision-making. 

Current preoperative pathways are fundamentally limited by the low sensitivity of contrast-enhanced 

CT for detecting subtle or OPM, especially lesions <5 mm or non-specific signs 30-32. While SL offers 

superior accuracy, its routine use is restricted by its inherent invasiveness, necessity for general anesthesia, 

and potential for procedural morbidity 33-34. Our multimodal prediction model is designed to complement 

SL as a non-invasive risk triage tool, improving patient selection for SL, enhancing diagnostic yield, and 

alleviating the resource-benefit imbalance in the perioperative workflow. This "digital biopsy" strategy 

serves as a crucial initial step in a multidisciplinary approach, being complementary to emerging tools 

like ctDNA. Crucially, the model's clinical value lies in optimizing therapeutic selection, particularly for 

intensive locoregional treatments such as CRS/HIPEC, whose success hinges on identifying patients with 

low-volume disease 35-37. Our model provides the necessary early, accurate risk stratification for tailored 

management: low-risk patients proceed directly to curative surgery, while high-risk patients are prioritized 

for neoadjuvant therapy or specialized trials, thereby ensuring that resource-intensive therapies are 

optimally reserved for those most likely to benefit.. 

Recent studies using CT-based radiomics or deep learning to predict OPM, though reporting AUCs 

around 0.800 38-42, are often constrained by single-center design, small samples, manual ROI dependence, 
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and inadequate validation or mechanistic interpretation. Our study substantially overcomes these 

limitations: (i) we achieved enhanced generalizability through validation on large-scale, multi-regional, 

multi-institutional datasets, including an international cohort; (ii) we demonstrated sensitivity to minimal 

disseminated burden via peritoneal cytology-positive prediction; (iii) a prospective reader study 

confirmed consistent clinical benefit across experience levels; and (iv) we provided transcriptomic 

evidence linking model-derived risk groups to immune differences, thereby improving interpretability and 

credibility. The predictive radiomics signature, capturing metrics like large-scale disorder (wavelet-

LLL_glszm_ZoneEntropy) and multi-scale texture complexity, provides mechanistic plausibility by 

reflecting the underlying tumor-stroma/immune interface associated with OPM risk discrimination. 

We established a plausible “imaging risk immune microenvironment” hypothesis. Propensity 

score-matched analysis revealed that the low-risk group was characterized by a more immune-active TME, 

showing significant enrichment of inflammatory pathways (e.g., TNFα/NF-κB, IL2/STAT5, 

IL6/JAK/STAT3), higher ESTIMATE scores, and greater abundance of CD8 T cells 43-45. Conversely, 

high-risk tumors displayed profiles consistent with immune suppression or exhaustion, correlating with 

their greater propensity for dissemination and poorer outcomes 46-47. These findings suggest that 

radiomics-derived heterogeneity reflects the underlying immune ecosystem. This stratification hints at 

differential therapeutic vulnerabilities: the immune-active profile in low-risk tumors suggests better 

prognosis and potential responsiveness to immunotherapy, optimizing their candidacy for definitive 

surgery 48-50. In contrast, the immune-suppressive nature of high-risk tumors suggests they may benefit 

more from combination therapies or novel immune-enhancing agents to overcome resistance. While 

providing mechanistic plausibility and guiding future integrated imaging-transcriptomic biomarker 
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development, these interpretations are currently hypothesis-generating and require validation in future 

prospective and mechanistic studies. 

Despite efforts to ensure robustness, several limitations persist. First, the reliance on portal venous 

CT introduces unavoidable protocol heterogeneity (slice thickness, kernel). While mitigated by ComBat 

harmonization, achieving regulatory acceptance necessitates establishing a 'Radiomics Acquisition 

Standard' and dedicated standardization studies. Second, the model was built solely on primary tumor 

features; integrating dual-domain tumor-target features (peritoneal/omental ROIs) may improve 

sensitivity to minimal dissemination. Third, the prospective external cohort size remains modest, and the 

assessment of multifactorial downstream clinical endpoints (e.g., decision changes, cost-effectiveness) 

requires explicit interventional studies. Finally, the transcriptomic immune correlates are currently 

associative; future studies integrating spatial transcriptomics and single-cell sequencing are essential to 

establish definitive causal and spatial evidence for the imaging-immune link. Novel modalities like 68Ga-

FAPI-04 PET/CT combined with multi-modal data fusion may further enhance OPM visualization and 

prediction. 

In conclusion, we successfully developed and rigorously validated a multimodal OPM prediction 

model through multicenter, multi-cohort, and prospective evaluations. The model demonstrated stable 

discrimination, excellent calibration, and a significant boost to diagnostic performance across all 

radiologist experience levels. This robust performance is mechanistically supported by the 

correspondence between risk stratification and distinct immune microenvironment profiles, confirming 

both the interpretability and clinical relevance of the model. Positioned as a complementary, selective tool 

for staging laparoscopy, this model identifies truly high-risk patients for intensified therapy while 
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reducing unnecessary procedures and delays. Subject to further large-scale, standardized prospective trials, 

this scalable, interpretable, and translatable “digital biopsy” strategy holds promise as a new cornerstone 

for individualized OPM management and integrated treatment strategies. 

 

Methods 

Study Cohort 

This multicenter study, as outlined in Figure 1, retrospectively included patients diagnosed with 

locally advanced gastric cancer who underwent treatment between January 2013 and August 2020 at ten 

medical centers in China and Germany. A total of 2,565 patients were screened, and 1,726 met the 

predefined inclusion and exclusion criteria, as shown in Supplementary Figure 1. The participating 

institutions comprised the Fourth Hospital of Hebei Medical University (FHHMU), Shijiazhuang People’s 

Hospital (SJZPH), Baoding Central Hospital (BDCH), Hengshui People’s Hospital (HSPH), and 

Cangzhou People’s Hospital (CZPH) in northern China; Wuhan University People’s Hospital (WHPH), 

the Fifth Affiliated Hospital of Anhui Medical University (AMUFH), Nanjing Jinling Hospital (NJJLH), 

and the First Affiliated Hospital of the University of South China (NHUFH) in southern China; and 

Ludwig Maximilian University Hospital in Munich, Germany (LMUH). 

For model development, patients treated at FHHMU from January 2013 to January 2018 were 

assigned to the training cohort. The remaining patients were allocated to three independent datasets: an 

internal validation cohort consisting of other patients from FHHMU within the same period, an external 

validation cohort I including patients from SJZPH, BDCH, HSPH, and CZPH between January 2017 and 

December 2019, and an external validation cohort II composed of patients from WHPH, AMUFH, NJJLH, 



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

 

 

NHUFH, and LMUH between January 2018 and May 2020. All patients underwent diagnostic 

laparoscopy, and any suspicious peritoneal lesions were confirmed by intraoperative biopsy followed by 

hematoxylin-eosin staining. 

To further assess clinical applicability, an incremental validation cohort was assembled from 

FHHMU patients treated between January 2018 and August 2020, all of whom received both diagnostic 

laparoscopy and peritoneal lavage cytology. This dataset, containing 477 patients, was used to examine 

whether the model could predict positive peritoneal cytology. 

A prospective clinical study (NCT06478368) was also conducted at FHHMU from July to December 

2024, enrolling 168 patients according to the same inclusion criteria. To evaluate the model in real-world 

settings, ten radiologists from three national centers were recruited, including three with more than ten 

years of experience, three with more than five years of experience, and four with one to two years of 

experience. None of the radiologists participated in data collection or preprocessing, and all were blinded 

to patient information, CT reports, pathology results, and clinical diagnoses. An independent investigator, 

blinded to the radiologists’ identities, randomly assigned them in a one-to-one ratio to start either with AI-

assisted diagnosis or without AI assistance, followed by crossover after a two-week washout period. 

To explore the biological mechanisms underlying the model, fresh tumor samples from eighteen 

patients matched using 1:1 propensity score matching were collected. The detailed protocols for 

transcriptomic analysis were performed as previously described in our published literature 50-53. The study 

protocol was approved by the Ethics Committee of the Fourth Hospital of Hebei Medical University 

(approval number: 2025KT151) and received ethics approval from all other participating centers. The 

study complied with the Declaration of Helsinki. Written informed consent was obtained from all the 
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study participants for the prospective transcriptomic analyses, while retrospective data collection was 

exempt from the consent requirement. All patients underwent pretreatment abdominal CT and were 

restaged according to the eighth edition of the AJCC staging system. All authors followed applicable 

ethical standards to maintain research integrity without duplication, fraud, or plagiarism. 

CT Image Acquisition and Segmentation and Radiomic Feature Extraction 

All patients underwent contrast-enhanced abdominal CT within two weeks prior to treatment. Portal 

venous phase images were retrieved for analysis. Automatic segmentation of the primary gastric tumor 

was performed using a deep learning–based nnU-Net model, which was trained on 200 manually 

annotated CT scans. The detailed training and preprocessing protocols followed previously established 

procedures 50-53. The nnU-Net model achieved a Dice coefficient of 0.890 on the test set. For quality 

control, only 7.3% (127/1726) of the total cases required partial manual adjustment, confirming the 

model's high automation rate, and inter-observer variability analysis yielded a mean Dice coefficient of 

0.882 ± 0.034. 

Subsequently, 1,130 radiomic features, encompassing first-order, shape, and various texture metrics, 

were extracted from the segmented 3D-ROIs using PyRadiomics (version 3.1.0) implemented in Python 

3.9.1 and integrated into the 3D Slicer platform. Standardized extraction settings included isotropic voxel 

resampling (1.0 mm³) and a fixed bin width of 25 for gray-level discretization. The effectiveness of 

ComBat adjustment in reducing clustering effects across imaging centers was visually confirmed 

(Supplementary Figure 2). 

Radiomic Feature Selection and Ensemble Model Development 

A three-step feature selection pipeline was implemented to identify radiomic features associated with 
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OPM. First, all features were standardized using Z-scores, and the Mann-Whitney U test was used to 

identify features with significant differences between OPM-positive and OPM-negative groups. Second, 

Pearson correlation analysis was performed, and features with an absolute correlation coefficient greater 

than 0.9 were removed to minimize redundancy and multicollinearity. Finally, the least absolute shrinkage 

and selection operator (LASSO) logistic regression with ten-fold cross-validation was applied, and the 

top ten features ranked by regression coefficients were retained for model construction (Supplementary 

Table 1). 

An ensemble learning framework combining logistic regression, extreme gradient boosting 

(XGBoost), random forest, support vector machine, and a voting regressor was then developed to predict 

OPM status. The voting regressor served as a meta-estimator, generating the final radiomic prediction 

score by simple averaging the outputs of individual base models. 

In parallel, univariate logistic regression was performed in the training cohort to identify clinical 

parameters significantly associated with OPM. Significant clinical predictors (P < 0.05) were incorporated 

into a multivariable logistic regression to establish a clinical prediction model. Independent clinical 

factors and radiomic features were then integrated into a multimodal nomogram to generate individualized 

OPM risk scores. The optimal cutoff point for dichotomizing high- and low-risk categories was 

determined by maximizing the Youden index in the training cohort. 

Biological Characteristics and Immune Infiltration 

Eighteen tumor tissue samples from the study cohort were collected for exploratory RNA sequencing. 

Functional enrichment analysis was conducted to investigate the biological relevance of the identified 

features. Immune cell infiltration within the tumor microenvironment was further analyzed using 
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CIBERSORTx to estimate the abundance of specific immune cell types. The detailed protocols for RNA 

extraction, sequencing, and bioinformatics analysis have been previously described in our published 

literature 50-53. 

Statistical Analysis 

All statistical analyses were conducted using SPSS version 27.0 (IBM Corporation) and R version 

4.5.1 (http://www.r-project.org). Continuous variables were compared using the unpaired two-tailed t-test 

or Mann–Whitney U test, whereas categorical variables were analyzed using the chi-square test or 

Fisher’s exact test. Inter-observer agreement for manual segmentation correction was quantified using the 

Dice similarity coefficient. For the predictive model, the optimal cutoff value for risk score was 

determined in the training cohort by maximizing the Youden index to achieve the best balance between 

sensitivity and specificity. Model performance metrics included the area under the receiver operating 

characteristic curve (AUC), accuracy, sensitivity, specificity, positive predictive value (PPV), negative 

predictive value (NPV), positive likelihood ratio (PLR), negative likelihood ratio (NLR), and F1 score. 

Net reclassification improvement (NRI) and integrated discrimination improvement (IDI) were 

calculated to assess the incremental predictive value of different models. The DeLong test was used to 

compare differences in AUCs between models. Calibration curves were constructed to evaluate the 

agreement between predicted probabilities and observed outcomes, and prediction error curves along with 

the Brier score were used for further assessment of model calibration. A two-sided P value less than 0.05 

was considered statistically significant. 
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Figure Legend 

 Figure 1  

Overview of the study workflow for the development and validation of the Multimodal Model for 

predicting OPM in LAGC  
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(a) Data collection: Contrast-enhanced CT scans were acquired within two weeks before treatment 

initiation. The primary tumor was automatically segmented using a deep learning–based nnU-Net model, 

followed by three-dimensional region of interest (ROI) reconstruction and extraction of high-dimensional 

radiomic features. 

(b) Feature processing: Radiomic features underwent ComBat harmonization to minimize inter-center 

variability, followed by Z-score normalization. Features were filtered using the Mann–Whitney U test 

and Spearman correlation analysis, with the least absolute shrinkage and selection operator (LASSO) 

logistic regression identifying the most predictive features. An ensemble model combining logistic 

regression (LR), random forest (RF), extreme gradient boosting (XGB), and support vector machine 

(SVM) was constructed for radiomic prediction. 

(c) Model building: Independent clinical predictors and the radiomic signature were integrated to develop 

the Multimodal Model, presented as a nomogram for individualized OPM risk estimation. The model 

outputs were validated against intraoperative findings. 

(d) Transcriptomic analysis: Bulk RNA sequencing was performed on propensity score–matched high- 

and low-risk tumors. Differentially expressed genes were identified, and functional enrichment analyses 

(including gene set enrichment analysis, GSEA) were conducted to explore immune-biological 

mechanisms underlying model-based risk stratification. 
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 Figure 2  

Development and performance of the Multimodal Model for predicting OPM in the training cohort  

(a) Nomogram integrating independent clinical predictors (cT stage, histology, Borrmann classification) 

and the radiomic signature for individualized OPM risk estimation. 

(b) ROC curves comparing the tumor radiomic model, clinical feature model, and the integrated 

Multimodal Model. 

(c) Precision–recall curves showing superior predictive precision of the Multimodal Model. 
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(d) Calibration curve showing agreement between predicted and observed probabilities (Brier score = 

0.1071). 

(e) Confusion matrices for the tumor radiomic, clinical, and Multimodal models in the training cohort, 

summarizing true positives, false positives, true negatives, and false negatives using the optimal Youden-

index cutoff. 

(f) Radar plot comparing accuracy, sensitivity, specificity, F1 score, PPV, NPV, PLR, and NLR across 

models. 

(g) Two-tier concentric circle plots showing proportions of OPM+ and OPM− within high- and low-risk 

groups. 

(h) Decision curve analysis demonstrating higher net clinical benefit for the Multimodal Model. 

(i) Ten-fold cross-validation performance: bar charts (mean ± SD with per-fold dots) of accuracy, AUC, 

sensitivity, and specificity for each model, confirming robustness. 

(j-k) Clinical impact curves showing the number classified as high risk and those truly with OPM across 

thresholds. 

(l) Kaplan–Meier curves showing worse 5-year OS for high-risk versus low-risk (log-rank P < 0.001). 

(m-o) Bootstrap ROC curves (1,000 resamples) showing higher mean AUC for the Multimodal Model 

than single-modality models. 
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 Figure 3  

Internal validation performance of the Multimodal Model for predicting OPM  

(a) ROC curves comparing the tumor radiomic model, clinical feature model, and Multimodal Model in 

the internal validation cohort. 

(b) Calibration curve showing good agreement between predicted probabilities and observed OPM 

outcomes (Brier score = 0.1067). 

(c) Precision-recall curves indicating superior predictive precision of the Multimodal Model over single-
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modality models. 

(d) Radar plot comparing accuracy, sensitivity, specificity, F1 score, PPV, NPV, PLR, and NLR among 

the three models. 

(e) Confusion matrices summarizing true positives, false positives, true negatives, and false negatives for 

each model, using the optimal cutoff derived from the Youden index. 

(f) Decision curve analysis demonstrating higher net clinical benefit for the Multimodal Model compared 

with other models. 

(g) Kaplan–Meier survival curves showing significantly poorer 5-year overall survival in the high-risk 

group compared to the low-risk group (log-rank P < 0.001). 

(h) Two-tier concentric circle plots illustrating the proportion of true OPM-positive and OPM-negative 

patients within each risk group for each model. 

(i) Reclassification improvement analysis comparing the clinical feature model and the Multimodal Model 

in the combined training and internal validation cohorts, showing increased identification of high-risk 

OPM patients (from 32.8% to 46.0%) and reduced misclassification in the low-risk group (from 9.8% to 

6.6%). 
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 Figure 4  

Multicenter external validation performance of the Multimodal Model for predicting OPM  

(a-b) ROC curves of the tumor radiomic model, clinical feature model, and Multimodal Model in external 

validation cohort I (A) and cohort II (B). 

(c-d) Calibration curves showing agreement between predicted probabilities and observed OPM outcomes 

for validation cohort I (C, Brier score = 0.115) and cohort II (D, Brier score = 0.1189). 

(e, j) Radar plots comparing accuracy, sensitivity, specificity, F1 score, PPV, NPV, PLR, and NLR across 

models for validation cohort I (E) and cohort II (J). 

(f-g) Precision–recall curves showing superior predictive precision of the Multimodal Model compared 
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with single-modality models in validation cohort I (F) and cohort II (G). 

(h-i) Decision curve analyses (DCA) indicating higher net clinical benefit for the Multimodal Model 

across a range of threshold probabilities in validation cohort I (H) and cohort II (I). 

(k) Confusion matrices summarizing true positives, false positives, true negatives, and false negatives for 

each model in validation cohort I (upper row) and cohort II (lower row), using the optimal Youden-index 

cutoff. 

(l) Two-tier concentric circle plots showing the proportions of OPM+ and OPM− cases within high- and 

low-risk groups for each model in both validation cohorts. 

(m-n) Kaplan–Meier survival curves for validation cohort I (M) and cohort II (N), showing significantly 

poorer 5-year overall survival in the high-risk group versus the low-risk group (log-rank P < 0.05). 
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 Figure 5  

Incremental cohort validation of the Multimodal Model for predicting OPM and peritoneal lavage 

cytology status  

(a) ROC curves comparing the tumor radiomic model, clinical feature model, and Multimodal Model for 

OPM prediction in the incremental cohort. 

(b) Calibration curve showing agreement between predicted probabilities and observed OPM outcomes 

(Brier score = 0.1174). 
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(c) Precision–recall curves indicating higher predictive precision of the Multimodal Model than single-

modality models. 

(d) Radar plot comparing accuracy, sensitivity, specificity, F1 score, PPV, NPV, PLR, and NLR for the 

three models. 

(e) Confusion matrices showing true positives, false positives, true negatives, and false negatives for each 

model, using the optimal Youden-index cutoff. 

(f) Decision curve analysis (DCA) showing greater net clinical benefit for the Multimodal Model across 

a range of threshold probabilities. 

(g) Kaplan–Meier survival curves showing significantly worse 5-year OS in the high-risk group versus 

the low-risk group (log-rank P < 0.001). 

(h) Two-tier concentric circle plots displaying proportions of OPM+ and OPM− cases in high- and low-

risk groups for each model. 

(i) Sankey diagram illustrating reclassification of patients by the Multimodal Model, stratified by OPM 

status (left) and cytology results (right). 

(j) ROC curves comparing models in the subset of OPM-negative patients for predicting positive 

peritoneal lavage cytology (CY+). 

(k) Calibration curve for the Multimodal Model in predicting cytology positivity (Brier score = 0.0856). 
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 Figure 6  

Prospective cohort validation and reader-assistance evaluation of the Multimodal Model  

(a) Patient enrollment flowchart for the prospective validation cohort (NCT06478368), showing inclusion 

and exclusion criteria, resulting in 168 eligible patients undergoing laparoscopic exploration. 

(b) ROC curves comparing the tumor radiomic model, clinical feature model, and Multimodal Model for 

predicting OPM in the prospective cohort. 

(c) Calibration curve demonstrating agreement between predicted probabilities and observed outcomes 

(Brier score = 0.1166). 
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(d) Precision–recall curves showing higher predictive precision of the Multimodal Model compared with 

single-modality models. 

(e) Decision curve analysis indicating greater net clinical benefit of the Multimodal Model across a range 

of threshold probabilities. 

(f) Confusion matrices showing true positives, false positives, true negatives, and false negatives for each 

model using the optimal Youden-index cutoff. 

(g) Two-tier concentric circle plots illustrating the proportion of OPM+ and OPM− patients within high- 

and low-risk groups for each model. 

(h) Performance comparison of clinicians with and without AI assistance in the prospective reader 

crossover study, showing significant improvements in AUC, accuracy, F1 score, sensitivity, specificity, 

positive predictive value (PPV), and negative predictive value (NPV) with model assistance (all P < 0.05). 

(i) ROC curves for junior radiologists (<5 years experience) with and without model assistance. 

(j) ROC curves for intermediate radiologists (≥5 years experience) with and without model assistance. 

(k) ROC curves for senior radiologists (≥10 years experience) with and without model assistance. 
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 Figure 7  

Transcriptomic and immune microenvironment differences between Multimodal Model–derived 

high- and low-risk groups  

(a) Heatmap of differentially expressed immune-related genes between high- and low-risk groups, 

including costimulatory and inhibitory checkpoint molecules. 
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(b) Boxplots showing significantly higher expression of CD244, CD86, TIGIT, and TNFRSF9 in the low-

risk group. 

(c) Gene set enrichment analysis (GSEA) plots showing pathways enriched in the high-risk group (left) 

and low-risk group (right); immune-activation pathways such as inflammatory response, TNFα signaling 

via NF-κB, epithelial–mesenchymal transition, and IL2/STAT5 signaling were enriched in the low-risk 

group. 

(d) Violin plots comparing tumor purity, stromal score, immune score, and ESTIMATE score between the 

two groups, showing higher stromal and immune scores in the low-risk group. 

(e) CIBERSORT analysis of immune cell composition, revealing distinct infiltration patterns between 

groups. 

(f) GSVA heatmap showing pathway enrichment differences, with immune-related and metabolic 

pathways differentially expressed between high- and low-risk groups. 

(g) GSVA bar plot of significantly enriched pathways, highlighting upregulation of IL6/JAK/STAT3, 

IL2/STAT5, and inflammatory signaling in the low-risk group, and downregulation of hypoxia-related 

signaling. 

(h) ssGSEA heatmap showing enrichment scores of various immune cell subsets in the tumor 

microenvironment for both groups. 

(i) Boxplots comparing specific immune cell infiltration levels between high- and low-risk groups; CD8 

T cells, NK cells, and activated dendritic cells were significantly higher in the low-risk group. 

 

 


