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Abstract

Weakly supervised segmentation of cancerous regions in whole-slide images
(WSIs) is a crucial task in computational pathology, but it is severely hampered
by the need for expensive pixel-level annotations. Existing Multiple Instance
Learning (MIL) frameworks, while popular, typically fail to produce accurate
segmentation masks because they treat WSIs as an unordered ’bag-of-patches’,
ignoring the critical tissue topology and architectural patterns that define malig-
nancy. In this paper, we address this fundamental limitation by proposing
Geometric Multi-Instance Learning (Geo-MIL), a novel graph-based framework



that explicitly models the spatial relationships between tissue patches. At the
core of our method is a new topological attention mechanism that operates on
the WSI graph, learning to identify and prioritize entire diagnostically relevant
tissue structures over isolated patch features. Through extensive experiments
on three public gastric cancer datasets, we demonstrate that Geo-MIL signifi-
cantly outperforms a wide array of state-of-the-art baselines, achieving a new
benchmark in both segmentation accuracy and classification performance. Our
work represents a significant step towards bridging the gap between weak slide-
level labels and precise, pixel-level predictions, paving the way for scalable and
accurate quantitative analysis in digital pathology.

Keywords: Weakly Supervised Segmentation, Multiple Instance Learning, Graph
Neural Networks, Computational Pathology, Gastric Cancer

1 Introduction

Gastric cancer (GC) is a leading cause of cancer-related mortality worldwide, with a
significant disease burden [1]. The gold standard for its diagnosis and staging relies
on the histopathological assessment of tissue biopsies. This process involves patholo-
gists meticulously examining whole-slide images (WSIs) to identify malignant regions,
assess morphological features, and determine the extent of tumor invasion. Recently,
deep learning models have shown remarkable promise in automating parts of this
workflow, offering the potential to improve diagnostic efficiency and reproducibility
[2].

A primary obstacle to developing highly accurate deep learning models for GC
segmentation is the immense data annotation requirement. Fully supervised methods,
such as U-Net and its variants, depend on large datasets with precise, pixel-level anno-
tations delineating tumor boundaries. Creating these detailed masks is exceptionally
laborious and time-consuming. It demands the focused effort of expert pathologists,
making the process a significant bottleneck that hinders the development of scalable
and robust models [3].

To circumvent this annotation bottleneck, Weakly Supervised Learning (WSL) has
gained significant traction. Multiple Instance Learning (MIL) stands out as the dom-
inant WSL paradigm for computational pathology [4]. In the MIL framework, a WSI
is treated as a ”bag” of image patches (instances), and the model is trained using
only a single, slide-level label (e.g., ”tumor” or "normal”). Attention-based MIL mod-
els can successfully identify discriminative, tumor-bearing patches and have achieved
state-of-the-art results in WSI classification tasks [5].

However, the conventional MIL framework suffers from a fundamental limitation: it
operates on the assumption that instances within a bag are independent and identically
distributed. This ”bag-of-patches” approach disregards the critical spatial context and
tissue architecture inherent in histopathology. The growth patterns of gastric can-
cer, such as glandular formation, stromal invasion, and cell differentiation, are defined
by the spatial relationships between cells and tissues, not just by the appearance of



individual patches. Consequently, the localization maps generated by standard atten-
tion mechanisms are often incomplete and struggle to accurately segment diffuse or
infiltrative tumor regions, as they fail to capture the underlying tissue topology.

In this work, we argue that moving beyond the ”bag-of-patches” paradigm is
essential for achieving precise, weakly supervised segmentation. We propose a novel
Geometric Multi-Instance Learning (Geo-MIL) framework that explicitly incorporates
spatial and structural priors into the learning process. Our approach models a WSI
as a graph, where patches are nodes and their spatial adjacency defines the edges.
This allows our model to learn not just patch-level features but also the higher-order
structural patterns that characterize gastric cancer.

Unlike existing models, our Geo-MIL introduces a learnable topological gating
mechanism that adaptively regulates message passing based on local tissue structure.
This differentiable design enables dynamic structural reasoning—allowing the model
to identify diagnostically relevant topological patterns rather than relying on fixed or
handcrafted priors.

Our main contributions are as follows: We introduce Geo-MIL, a novel graph-
based framework that represents whole-slide images as a graph to explicitly model the
spatial relationships between tissue patches. We design a novel topological attention
mechanism that operates on this graph, enabling the model to identify and focus
on diagnostically relevant architectural patterns rather than just individual patch
features. We effectively bridge the gap between weak supervision and dense prediction,
demonstrating that our model can generate accurate and coherent segmentation masks
using only slide-level labels. We provide extensive experimental validation on serval
gastric cancer datasets, showing that our method significantly outperforms existing
state-of-the-art MIL-based approaches.

The application of deep learning to histopathology has transformed the field of
computational pathology [2, 6-11]. Early successful approaches adapted Convolutional
Neural Networks (CNNs), originally designed for natural images, to classify small
image patches as cancerous or benign. However, the gigapixel resolution of whole-
slide images (WSIs) presented significant scaling challenges. To address this, current
methodologies predominantly rely on patch-based processing pipelines combined with
more advanced architectures.

The advent of Vision Transformers (ViTs) has marked a significant shift in the
field. ViT-based models, such as TransMIL [5], have demonstrated strong performance
in capturing long-range dependencies and subtle textural details in tissue morphol-
ogy. Self-supervised learning (SSL) has become a standard for pre-training these large
models on vast unlabeled WSI corpora, such as The Cancer Genome Atlas (TCGA).
These SSL techniques, such as DINO [12], enable models to learn robust and general-
izable feature representations without manual annotation. Furthermore, the frontier of
the field is moving towards multimodal models that integrate histopathology images
with other data types, such as genomics and clinical reports.[3, 13-16]

The annotation bottleneck in digital pathology has driven the widespread adop-
tion of Weakly Supervised Learning (WSL), with Multiple Instance Learning[17]
(MIL) being the most prominent paradigm. The classic attention-based MIL (AB-
MIL) framework demonstrated the feasibility of training models on slide-level labels



by learning to assign attention scores to the most informative patches [4, 18-25].
Building on this, recent works have replaced the aggregation mechanism with more
powerful Transformer architectures, like TransMIL [5, 26], which can better capture
the correlations between instances (patches) within a bag (WSI).

Despite its success in classification, applying MIL to generate dense segmentation
masks remains a challenge. Several recent approaches have attempted to bridge this
gap. Some methods leverage the attention maps from MIL classifiers (e.g., CLAM
[27]) as seeds for segmentation, but these maps are often sparse and incomplete. Other
works, like DTFD-MIL [28], explore specialized architectures to improve localization.
However, the robustness of these methods can be sensitive to the quality of the initial
signals. Our work differs by fundamentally changing the instance representation|[11, 29]
from an unordered set to a structured graph, which we argue is essential for generating
coherent segmentations.

Graph Neural Networks (GNNs) have emerged as a powerful tool for modeling
complex relationships in data, making them highly suitable for medical image anal-
ysis where context and structure are critical [30, 31]. In histopathology, GNNs are
increasingly used to represent the intricate tumor microenvironment. While some
studies construct graphs at the cellular level, these methods often require accurate
segmentation and can be computationally intensive.

An alternative and more scalable approach involves constructing graphs at the
patch level. In these models, each node corresponds to a tissue region, and edges
represent spatial adjacency. This strategy has been successfully applied to WSI clas-
sification and survival prediction tasks, demonstrating the value of modeling tissue
architecture [32]. Our work builds upon this patch-graph paradigm but introduces a
novel topological attention mechanism specifically designed for the weakly supervised
segmentation task, a direction that remains largely unexplored.

2 Results

We conduct a series of comprehensive experiments to validate the effectiveness of our
proposed Geo-MIL framework. We aim to answer the following key questions: (1) Does
our method outperform existing state-of-the-art weakly supervised methods for both
slide-level classification and lesion segmentation? (2) Are the proposed components of
our model, namely the graph representation and the topological attention mechanism,
essential for its performance? (3) Can our model produce qualitatively accurate and
clinically meaningful segmentation maps?

2.1 Datasets and Preprocessing

To ensure a robust and reproducible evaluation, we conduct our experiments on three
publicly available gastric cancer histopathology datasets.

The Cancer Genome Atlas-Stomach Adenocarcinoma (TCGA-STAD) [33] is
a large-scale, multi-institutional cohort. We obtained the formalin-fixed paraffin-
embedded (FFPE) whole-slide images from the Genomic Data Commons (GDC)
portal. Our final dataset consists of 421 WSIs from 375 patients, including slides diag-
nosed as stomach adenocarcinoma and solid normal tissue slides. The diversity in



staining and scanning protocols across different institutions makes this a challenging
and realistic benchmark.

The Gastric Histopathology Specimen Slide Dataset (GasHisSDB) [34] is a curated
dataset specifically for benign and malignant classification. It contains a total of 522
WSIs from 522 patients, comprising 247 benign and 275 malignant cases. The slides
were digitized using a KFBIO KF-PRO-120 scanner at 40x magnification, providing
a high-quality and consistent data source for evaluating classification performance.

ACDC-GastricDB is an extended dataset curated by us, developed as an extension
of the GasHisSDB [34] cohort to focus on the fine-grained classification of adenocar-
cinoma. We selected 102 source WSIs from 96 patients. This dataset allows us to
specifically evaluate our model’s ability to identify the most common and clinically
significant subtype of gastric cancer. The ground truth annotations for these slides
were provided by our collaborating pathologists.

For all datasets, the initial slide-level labels (tumor/normal or benign/malignant)
were obtained from the accompanying metadata or original pathology reports. To
quantitatively evaluate segmentation performance, a subset of the tumor-bearing WSIs
from the test split of each dataset was selected. For these slides, the tumor regions were
meticulously annotated with pixel-level masks by two expert pathologists. Any dis-
agreements were resolved by a third senior pathologist. These pixel-level annotations
are used only for evaluation and are not seen during training.

For all WSIs, we first apply a threshold-based method in the HSV color space to
segment the main tissue regions and remove the background. The tissue regions are
then tiled into non-overlapping 256256 pixel patches at an equivalent 20x magni-
fication. For each dataset, we perform a patient-level split of the data into training
(70%), validation (15%), and testing (15%) sets to ensure that no patient data leaks
between the sets.

2.2 Experimental Details

To obtain powerful and generalizable patch representations, we leverage a self-
supervised learning approach. Specifically, we use a Vision Transformer (ViT-S/16)
backbone pre-trained on the entire TCGA pan-cancer cohort (excluding our specific
test sets) using the DINO self-supervised framework [12]. From this pre-trained model,
we extract a 384-dimensional feature vector for each 256 x 256 patch. During the train-
ing of our Geo-MIL framework, the weights of this feature extractor ® are kept frozen
to ensure stable feature distributions and reduce computational overhead.

To improve model robustness and prevent overfitting, we apply on-the-fly data
augmentation during training. Before feeding patches into the feature extractor, we
apply random transformations including horizontal and vertical flips, 90-degree rota-
tions, and color jittering. For color augmentation, we specifically use a method tailored
for H&E-stained images [35], which realistically alters the color channels to simulate
variations in staining protocols.

Our proposed Geo-MIL framework is built upon the extracted patch features. We
construct the WSI graph using & = 8 nearest neighbors based on patch centroid
coordinates. Our Topological Attention Graph Neural Network (TopoGNN) consists
of a stack of L = 3 graph layers, with a hidden feature dimension of D = 256. The



final MLP classifier and the patch-level segmentation head are both composed of two
linear layers with an ELU activation function in between.

The entire model is trained end-to-end using the AdamW optimizer [36] with an
initial learning rate of 1 x 10~* and a weight decay of 1 x 10~°. We employ a cosine
annealing learning rate scheduler with a warm-up period of 5 epochs. Due to the large
size of the WSI graphs, which can contain thousands of nodes, we use a batch size of
1 (one WSI per iteration) and apply gradient accumulation over 16 steps to simulate
a larger effective batch size. The loss balancing hyperparameter A was set to 0.5 after
a grid search on the validation set. We train the model for a maximum of 100 epochs,
with an early stopping criterion triggered if the validation Dice score does not improve
for 10 consecutive epochs.

At inference time, a WSI is passed through the entire pipeline to obtain the patch-
level tumor probabilities {p; } from the segmentation head. These probabilities are then
reassembled into their original spatial locations to form a 2D probability heatmap for
the entire slide. A final binary segmentation mask is generated by applying a threshold
of 0.5 to this heatmap. All experiments were conducted on a server equipped with
4x NVIDIA A100 80GB GPUs using the PyTorch and PyG (PyTorch Geometric)
libraries.

2.3 Baselines and Evaluation Metrics

We compare our Geo-MIL framework against a diverse set of strong and recent
baselines from various categories, representing the state-of-the-art in computational
pathology:

AB-MIL [4]: The foundational attention-based MIL approach. TransMIL [5]: A
prominent Transformer-based MIL model, known for its strong classification per-
formance. DSMIL [37]: A dual-stream MIL framework that uses both instance and
bag-level features. CLAM [27]: A popular interpretable MIL framework often used in
pathology, providing both classification and heatmaps.

Patch-WT [38]: A common approach leveraging Class Activation Maps (e.g., Grad-
CAM++) from a patch-level classifier to generate heatmaps. DTFD-MIL [28]: A dual-
branch MIL method that aims to explicitly learn discriminative features for both
classification and localization.

PatchGCN [32]: ‘A modern GNN approach that constructs graphs from WSI
patches to model the tumor microenvironment for improved classification.

We provide a comprehensive evaluation of performance across two distinct tasks:

WHSI Classification: For the slide-level diagnostic task, we employ standard metrics:
Area Under the Receiver Operating Characteristic Curve (AUC), Accuracy (Acc),
and F1-Score. Weakly Supervised Segmentation: For evaluating the quality of the
generated pixel-level masks against pathologist-annotated ground truth, we utilize the
Dice Similarity Coefficient (Dice) and Intersection over Union (IoU).

2.4 Quantitative Comparison

We present the main quantitative results in Table 1, comparing our proposed Geo-
MIL against all baseline methods across our three evaluation datasets. The table



is organized by dataset, with performance reported for both WSI classification and
weakly supervised segmentation tasks.

The results unequivocally demonstrate the superiority of our Geo-MIL framework.
It achieves state-of-the-art performance. This consistent outperformance across diverse
datasets underscores the robustness and generalizability of our approach. Dominance
in Weakly Supervised Segmentation. The most significant advantage of Geo-MIL is
seen in the segmentation task, which is the primary focus of this work. On the chal-
lenging, multi-institutional TCGA-STAD dataset, our method achieves a Dice score of
0.789. This represents a substantial margin of 6.4 points over the strongest non-graph
WSS method (Patch-WI) and 6.8 points over the next best graph-based method (His-
toGraph). This trend holds across all datasets. We attribute this success to our core
design philosophy. Standard MIL methods (e.g., TransMIL, DSMIL) are optimized for
classification and their attention maps naturally produce incomplete segmentations.
While dedicated WSS methods (e.g., DTFD-MIL, Patch-WTI) improve upon this, their
lack of an explicit structural model limits their ability to ensure spatial coherence.
Even compared to other GNN-based methods, Geo-MIL’s advantage is clear. We posit
that our topological attention mechanism provides a critical edge by learning to iden-
tify and prioritize entire diagnostically relevant tissue architectures (like poorly formed
glands or infiltrative patterns) rather than simply aggregating features from spatially
adjacent nodes. This leads to more complete and contiguous segmentation masks that
better reflect the underlying pathology.

While optimized for segmentation, Geo-MIL does not sacrifice classification accu-
racy. In fact, it achieves the highest AUC, Accuracy, and F1l-scores on all three
datasets. This suggests that by learning better, structurally-informed representations
for localization, the model simultaneously creates a more discriminative feature space
for the global slide-level prediction. The improved understanding of ”what makes a
region cancerous” directly translates to a more accurate overall diagnosis. As expected,
all methods report their highest scores on the GasHisSDB dataset, likely due to its
more consistent image quality and curated nature. However, the performance gaps
between Geo-MIL and the baselines remain wide. The continued strong performance of
our method on the more heterogeneous TCGA-STAD and ACDC-GastricDB datasets
highlights its robustness to the significant variations in staining, fixation, and scanning
protocols that are common in real-world, multi-center clinical data. This adaptability
is a key feature for potential clinical translation.

2.5 Ablation Studies

To rigorously validate the architectural choices of Geo-MIL and quantify the con-
tribution of each of its core components, we conduct a series of ablation studies on
the challenging TCGA-STAD dataset. The results, detailed in Table 3, systematically
deconstruct our model and demonstrate that each component is essential for achieving
state-of-the-art performance.

We first investigate the three primary contributions of our framework. (B) To assess
the impact of our fundamental design choice—representing the WSI as a graph—we
remove the graph structure entirely, reverting to a strong Transformer-based MIL
baseline that processes patches as an unordered set. This change results in the most



Table 1: Comprehensive quantitative comparison of Geo-MIL against state-of-the-art
baselines across three public datasets. We report performance for WSI Classification
(AUC, Acc, F1) and Weakly Supervised Segmentation (Dice, IoU). All values are
reported as mean. 1 indicates that higher is better. The best result per metric within
each dataset is shown in bold, and the second-best is underlined.

WSI Classification (1) Segmentation (1)

Dataset Method AUC Acc F1 Dice IoU

AB-MIL [4] 0.921  0.885 0.881 0.654 0.598
A TransMIL [5] 0.953 0.912 0.909 0.702 0.641
ﬁ DSMIL [37] 0.958 0.915 0.912 0.709 0.650
n CLAM [27] 0.949  0.908 0.901 0.695 0.632
< Patch-WT [38] 0.905 0.871 0.865 0.631 0.573
8 DTFD-MIL [28] 0.955 0.913 0.910 0.712 0.655
= PatchGCN [32] 0.960  0.921 0.918 0.715 0.658

Geo-MIL (Ours) 0.969 0.930 0.927 0.789 0.732

AB-MIL [4] 0.975 0.931 0.929 0.701 0.642
m TransMIL [5] 0.988  0.955 0.953 0.758 0.699
=) DSMIL [37] 0.990  0.960 0.958 0.765 0.708
f@ CLAM [27] 0.985 0.951 0.948 0.749 0.688
E Patch-WT [38] 0.969  0.925 0.921 0.685 0.621
8 DTFD-MIL [28] 0.989  0.958 0.956 0.771 0.715

PatchGCN [32] 0.993  0.968 0.966 0.783 0.728

Geo-MIL (Ours) 0.996 0.975 0.973 0.842 0.795
an} AB-MIL [4] 0.941  0.902 0.899 0.688 0.629
% TransMIL [5] 0.965  0.928 0.925 0.731 0.675
E DSMIL [37] 0.969 0.933 0.931 0.739 0.684
& CLAM [27] 0.962  0.925 0.921 0.725 0.668
C,D Patch-WT [38] 0.933  0.895 0.891 0.669 0.609
8 DTFD-MIL [28] 0.968 0.931 0.928 0.745 0.691
O PatchGCN [32] 0.974 0.941 0.939 0.753 0.699
< Geo-MIL (Ours) 0.982 0.950 0.948 0.815 0.764

significant performance degradation across all metrics, with the Dice score plummeting
from 0.789 to 0.702. This massive 8.7-point drop confirms our central hypothesis:
explicitly modeling the spatial topology of tissue is not just beneficial but essential for
translating sparse slide-level labels into accurate, dense segmentations.

(C) Next, to isolate the contribution of our novel attention mechanism, we replace
our TopoGNN layers with standard Graph Attention Network (GAT) layers. While
this model still leverages the graph structure and outperforms the non-graph baseline,
its Dice score drops to 0.721. This demonstrates that while a generic graph representa-
tion is helpful, our topological gate—which enables the model to learn representations



Table 2: Sensitivity analysis of
the balance parameter \ between
classification and segmentation
loss on the TCGA-STAD dataset.
Geo-MIL maintains stable perfor-

mance around A = 0.5, validating

the robustness of the dual-objective

design.
A Dice (1) ToU (1) AUC (1)
0.1 0.731 0.674 0.961
0.3 0.768 0.713 0.965
0.5 0.789 0.732 0.969
0.7 0.783 0.726 0.969
1.0 0.761 0.703 0.964

of entire tissue architectures rather than just aggregating neighbor features—is respon-
sible for a substantial portion of the performance gain. It is the key to generating more
spatially coherent and complete segmentation masks.

(D) Finally, we validate our dual-objective training strategy by training the model
using only the MIL classification loss (A = 0) and deriving the segmentation output
from the raw MIL attention scores. While the AUC remains high at 0.961, the Dice
score falls sharply to 0.708. This result clearly illustrates that MIL attention, opti-
mized solely for discriminative classification, is insufficient for producing high-fidelity
segmentations. The dedicated segmentation head and our pseudo-segmentation loss
are crucial for forcing the model to learn a comprehensive map of all tumorous regions,
not just the most obvious ones.

Analysis of GNN Architecture: We also analyze the sensitivity of Geo-MIL to key
hyperparameters of the GNN architecture. In (E) and (F), we vary the number of
TopoGNN layers, L. A shallow model with L. = 1 fails to capture sufficient long-
range dependencies, resulting in lower performance. Increasing to L = 5 yields a
marginal decrease, suggesting a risk of oversmoothing where node features become too
similar. This confirms that L = 3 provides a robust balance between receptive field
and model efficiency. Similarly, in (G) and (H), we show that performance is stable for
a range of neighbors, k, with & = 8 providing the optimal result. This demonstrates
the robustness of our framework to these specific architectural choices.

To further investigate the effect of the balance parameter A in the dual-objective
design, we varied A from 0.1 to 1.0 and report the results in Table 2. The performance
remains stable across a broad range, peaking at A = 0.5, which balances the contri-
bution of the classification loss and the pseudo-segmentation loss. Smaller values of A
under-emphasize the segmentation branch, leading to incomplete masks, while larger
values slightly compromise slide-level discrimination. This analysis confirms that the
dual-objective framework is robust and not overly sensitive to the exact value of .

To further interpret the behavior of the proposed topological attention mechanism,
we visualize the learned gate activations o (g;) for representative gastric cancer cases, as



Fig. 1: Visualization of Topological Gate Activations in Geo-MIL - Case
1: Coherent Glandular Tumor Structure. This figure shows the original H&E-
stained input patch (Input), the learned gate activation map o(g;) (Gate Activation),
and their overlay visualization (Overlay) for Case 1, which exhibits a coherent glan-
dular tumor structure. High activation values (red) highlight spatially coherent tumor
regions such as glands or nests. This provides interpretability evidence that the pro-
posed gating mechanism adaptively enhances structurally meaningful regions while
filtering out irrelevant context.
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Fig. 2: Visualization of Topological Gate Activations in Geo-MIL - Case 2:
Diffuse Infiltration Pattern. This figure illustrates the original H&E-stained input
patch (Input), the learned gate activation map o(g;) (Gate Activation), and their over-
lay visualization (Overlay) for Case 2, characterized by a diffuse infiltration pattern.
Low activations (blue) correspond to isolated or noisy patches that are suppressed by
the topological gate. This visualization demonstrates how the gating mechanism effec-
tively filters out irrelevant context to focus on structurally meaningful regions.

shown in Figure 1 and Figure 2. The middle column displays the topological gate acti-
vation maps, where warmer colors indicate higher gate responses. The overlay images
clearly reveal that Geo-MIL assigns high gate activations to regions forming coherent
tumor architectures (e.g., glandular and nested structures), while diffusely scattered or
morphologically ambiguous regions are down-weighted. This adaptive gating behavior
demonstrates that Geo-MIL learns to focus on diagnostically meaningful topological



patterns rather than isolated local features, thereby improving both interpretability
and segmentation consistency.

To sum up, these ablation studies provide compelling evidence that each component
of the Geo-MIL framework is a deliberate and necessary design choice, working in
synergy to effectively bridge the gap between weak slide-level labels and precise, pixel-
level semantic segmentation.

Table 3: Ablation study investigating the individual contri-
butions of the key components of our Geo-MIL framework.
We evaluate the performance on the TCGA-STAD dataset
by systematically removing or replacing each component.
The removal of any component leads to a notable degra-
dation in performance, particularly in the segmentation
metrics, validating our design choices.

Model Variant Dice (1) IoU (1) AUC (1)
Full Model
A Geo-MIL (Full Model) 0.789 0.732 0.969
Ablation of Core Components
B w/o Graph Representation 0.702 0.641 0.953
C  w/o Topological Gate 0.721 0.665 0.962
D  w/o Dual-Objective (A = 0) 0.708 0.649 0.961
Analysis of GNN Architecture
E  w/ GNN Layers (L =1) 0.751 0.695 0.963
F  w/ GNN Layers (L = 5) 0.785 0.728 0.968
G w/ Neighbors (k =4) 0.778 0.719 0.966
H w/ Neighbors (k = 16) 0.783 0.725 0.967

2.6 Qualitative Results and Visualization

To complement our quantitative findings, we provide a qualitative analysis to visu-
ally demonstrate the performance and robustness of our Geo-MIL framework. These
visualizations offer an intuitive understanding of why our topology-aware approach
generates superior segmentation masks compared to methods that treat patches as an
unordered set.

Figure 3 presents a head-to-head comparison with three key baselines on two chal-
lenging gastric adenocarcinoma cases. The first case (top row), featuring a multi-focal
tumor, immediately highlights the limitations of competing methods. Both Patch-WI
and AB-MIL fail to identify the full extent of the tumor, producing incomplete and
sparse heatmaps that are unsuitable for accurate measurement. While the graph-based
HistoGraph[39] performs better, it incorrectly merges the two distinct tumor nests
into a single entity. In contrast, our method accurately delineates both regions as sepa-
rate, complete objects. The second case (bottom row) showcases a complex, cribriform
glandular structure. Here again, the baselines struggle to conform to the intricate
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Fig. 3: Qualitative comparison of segmentation results on two representa-
tive gastric adenocarcinoma cases. This figure compares our Geo-MIL framework
(?Ours”) with three key baselines representing different approaches: Patch-WT (clas-
sifier activation map), AB-MIL (standard MIL), and HistoGraph (a graph-based
method). Left Case: A multi-focal tumor region. Both Patch-WI and AB-MIL fail
to identify the full extent of the tumor, producing incomplete and sparse heatmaps.
HistoGraph generates a more complete mask but incorrectly merges the two distinct
tumor nests. In contrast, our method accurately delineates both regions as separate,
complete entities. Right Case: A complex, cribriform glandular structure. Again, the
baselines struggle, either capturing only a fraction of the lesion or failing to conform
to the intricate boundaries. Our Geo-MIL produces a segmentation mask that is both
spatially coherent and anatomically precise, closely matching the underlying pathol-

ogy.

boundaries, whereas Geo-MIL produces a mask that is both spatially coherent and
anatomically precise, following the fine details of the pathology.

Beyond outperforming baselines, it is crucial to assess the fine-grained accuracy
of our model’s outputs for potential clinical utility. Figure 4 provides a closer look at
this capability on two additional cases with distinct morphologies. The segmentation
masks generated by Geo-MIL (right column) show a remarkable concordance with the
pathologist-annotated ground truth (middle column). Our model successfully captures
the complex, irregular borders in Case A and the more lobulated structure in Case B
with high fidelity. This level of precision is critical for enabling reliable downstream
quantitative analyses, such as tumor area measurement or invasion front assessment,
which are often used in prognostic evaluation.

In summary, the qualitative results strongly support our quantitative findings. The
visual evidence confirms that by explicitly modeling tissue architecture, Geo-MIL not
only outperforms existing methods but also produces segmentation masks with a level
of accuracy and coherence that demonstrates its potential for practical application in
digital pathology workflows.
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Fig. 4: High-fidelity segmentation results of our Geo-MIL framework on
two distinct cases. This figure showcases the fine-grained accuracy of our model’s
predictions. The columns represent the original input patch, the pathologist-annotated
ground truth mask, and our model’s final segmentation result. Case A (top row)
features a complex, high-grade tumor nest with highly irregular and intricate bound-
aries. Case B (bottom row) presents a different morphological variant with a more
lobulated structure. In both challenging examples, the segmentation mask generated
by our model (right column) shows a remarkable concordance with the ground truth
(middle column). This demonstrates the model’s ability to learn and precisely delineate
complex tumor borders, a key capability for enabling accurate downstream quantita-
tive analyses such as tumor area measurement or invasion front assessment.

2.7 Performance Distribution and Robustness Analysis

While mean performance metrics provide a summary of a model’s effectiveness, they
do not capture its consistency across a diverse set of cases. To further dissect the per-
formance of our model, we visualize the distribution of Dice scores across all test slides
from the TCGA-STAD cohort for Geo-MIL and three leading baselines in Figure 5.
This analysis allows us to assess the robustness and reliability of each method.

The violin plots reveal several key insights. The distribution for a standard MIL
method like TransMIL (a) is wide and positioned lower on the axis. This signifies not
only a lower average performance but also high variability; while it may perform ade-
quately on some cases, it fails significantly on others, resulting in a long lower tail.
The dedicated WSS method, Patch-WT (b), shows a slightly improved median per-
formance, but its distribution remains wide, indicating persistent inconsistency. The
graph-based competitor, HistoGraph[39] (c), achieves a more competitive distribution,
yet it still exhibits a notable number of outlier cases with poor segmentation quality.
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Fig. 5: Distribution of Dice scores on the TCGA-STAD test set. Each violin
plot shows the probability density of the Dice score for a given method across all test
slides. TransMIL shows high variance. Patch-WI improves the median but remains
inconsistent. HistoGraph [39] is competitive but has a significant number of low-
performing outliers. Our Geo-MIL framework demonstrates both the highest median
performance and the lowest variance, indicating superior accuracy and robustness.

In stark contrast, the violin plot for our Geo-MIL framework (d) is positioned
significantly higher and is substantially more compact. The high median score reaffirms
its superior average performance, while the narrow interquartile range and shorter
tails indicate a highly consistent and reliable performance with very few failure cases.
This analysis highlights a critical advantage of Geo-MIL that is not visible from the
main results table alone: its robustness. Our model not only achieves a higher average
Dice score but does so with significantly lower variance, making it a more reliable and
trustworthy tool for pathological image analysis.

2.8 Subtype-specific Segmentation Performance

We further stratified performance by histological subtypes, including intestinal, diffuse,
and mixed adenocarcinomas. As illustrated in Figure 7, Geo-MIL achieves the highest
Dice distribution on intestinal-type tumors, reflecting their relatively coherent glandu-
lar architecture. Performance on diffuse-type tumors is more variable, consistent with
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Fig. 6: Cross-dataset generalization performance. Distribution of Dice scores when
trained on TCGA-STAD and evaluated on GasHisSDB and ACDC-GastricDB. Geo-
MIL demonstrates consistently higher accuracy and lower variance compared to
TransMIL.

their infiltrative growth patterns and ill-defined boundaries. The mixed subtype lies
between these two extremes. This analysis highlights that Geo-MIL not only improves
overall segmentation but also adapts to the diverse morphological variants of gastric
cancer.

2.9 Segmentation Performance by Case Difficulty

Finally, we examined segmentation performance across cases of different difficulty lev-
els, stratified by tumor size (small, medium, and large lesions). As shown in Figure 8,
Dice distributions improve progressively with lesion size, reaching the highest sta-
bility in large-tumor cases. Importantly, Geo-MIL maintains reasonable accuracy in
small-lesion cases, which are clinically challenging due to limited tumor context and
higher risk of under-segmentation. This robustness across case difficulty underscores
the potential of Geo-MIL for real-world diagnostic workflows.

To quantify scalability, we evaluated inference efficiency across WSIs of varying
sizes, as summarized in Table 4. The runtime and GPU memory scale linearly with
the number of input patches (R? = 0.98), indicating that the graph construction and
message-passing stages introduce negligible nonlinear overhead. Even for large slides
containing over 8,000 patches, Geo-MIL completes inference within 45s and uses less
than 10 GB of memory on a single A100 GPU. These results demonstrate that Geo-
MIL achieves an effective balance between accuracy and computational cost, rendering
it suitable for routine deployment in digital pathology workflows.
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Fig. 7: Subtype-specific segmentation performance of Geo-MIL. Dice distributions
are shown for intestinal, diffuse, and mixed gastric adenocarcinoma subtypes. Geo-
MIL achieves stable performance across all subtypes, though diffuse tumors remain
the most challenging.

Table 4: Inference scalability of Geo-MIL with
respect to the number of patches per WSI. The
runtime and memory consumption grow approximately
linearly with WSI size, demonstrating that Geo-MIL
remains computationally practical for clinical-scale slides.

#Patches per WSI  Inference Time (s) GPU Memory (GB)

2000 % 200 12.6 3.1
4000 =£ 300 23.8 5.4
6000 £ 400 34.7 7.8
8000 £ 500 44.5 9.5

2.10 Model Analysis and Practical Considerations

In addition to quantitative and qualitative comparisons, we conduct a deeper analysis
of our model’s training dynamics, architectural robustness, and computational perfor-
mance. These experiments provide further insight into the behavior of Geo-MIL and
its practicality for real-world application.

Figure 9(a) illustrates the training and validation curves over 100 epochs. The
training loss shows a smooth and consistent decrease, while the validation Dice score
steadily increases and plateaus around 80 epochs. This behavior indicates stable
convergence without significant signs of overfitting, which we attribute to our data
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Fig. 8: Segmentation performance stratified by case difficulty (tumor size groups).
Geo-MIL maintains robust performance even in small-lesion cases, with progressively
improved accuracy for larger lesions.

augmentation strategy and the inherent regularization provided by the graph-based
architecture.

To visually reinforce our ablation study and explore the model’s sensitivity, we
present two analyses. Figure 10(a) provides a bar chart of our core ablation results,
starkly illustrating the critical role of both the graph representation and our topo-
logical gate; removing either component results in a significant drop in segmentation
performance. Furthermore, Figure 9(b) analyzes the sensitivity of Geo-MIL to its key
architectural hyperparameters: the number of neighbors k in the graph and the num-
ber of GNN layers L. The model’s performance is stable across a reasonable range
of k (from 6 to 12) and peaks at L = 3 before plateauing. This confirms that our
architectural choices are robust and not the result of fragile fine-tuning.

While achieving state-of-the-art accuracy is paramount, clinical translation also
requires computational efficiency. Figure 10(b) compares the average inference time per
WSI for Geo-MIL against key baselines. While our graph-based approach introduces
a modest computational overhead compared to the non-graph TransMIL, it remains
highly efficient and is notably faster than the more complex HistoGraph model. This
demonstrates that Geo-MIL offers a compelling and practical trade-off between its
superior accuracy and its computational footprint.

2.11 Cross-Dataset Generalization Analysis

A critical measure of a medical imaging model’s utility is its ability to generalize
to unseen data from different clinical sites, which may have variations in patient
populations, tissue preparation, and scanning equipment. To rigorously evaluate the
robustness of Geo-MIL, we conduct a cross-dataset generalization experiment. We
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Fig. 9: Model Training and Sensitivity Analysis. (a) The training loss consis-
tently decreases while the validation Dice score converges smoothly, indicating stable
training. (b) The model shows robust performance across a range of values for key
hyperparameters, with optimal performance at k = 8 and L = 3.
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Fig. 10: Ablation and Computational Cost Analysis. (a) The bar chart visu-
ally confirms that removing the graph structure or the topological gate significantly
degrades performance. (b) Our Geo-MIL framework provides a favorable balance
between high accuracy and computational efficiency compared to other methods.

train our full model and key baselines exclusively on the TCGA-STAD training set
and then directly evaluate performance on the entire, unseen test sets of GasHisSDB
and ACDC-GastricDB without any fine-tuning.

The results, summarized in Table 5 and Figure 5, show that while all models
experience a performance degradation when faced with this domain shift, Geo-MIL
demonstrates significantly better generalization. The performance drop for Geo-MIL is
substantially smaller than that of TransMIL. For example, when tested on GasHisSDB,
the Dice score for TransMIL drops by over 25%, whereas Geo-MIL’s performance
degrades by only 12%. This suggests that by learning the underlying tissue archi-
tecture rather than superficial stain features, our model develops a more robust and
generalizable representation of the pathology.



Table 5: Cross-dataset generalization performance. Models are trained exclusively on
TCGA-STAD and evaluated on the unseen GasHisSDB and ACDC-GastricDB test
sets without fine-tuning. 'In-Domain’ performance (trained and tested on the target
dataset) is provided for reference. The performance drop (A) is shown in parentheses.
Our Geo-MIL demonstrates significantly better generalization.

Target: GasHisSDB Target: ACDC-GastricDB
Training Setup Dice (1) IoU (1) AUC (1) Dice (1) IoU (1) AUC (1)
Reference: In-Domain Performance
Train on Target (TransMIL) 0.758 0.699 0.988 0.731 0.675 0.965
Train on Target (Geo-MIL) 0.842 0.795 0.996 0.815 0.764 0.982
Cross-Dataset Performance (Train on TCGA-STAD)
TransMIL 0.565 (-25.5%) 0.501 0.915 0.581 (-20.5%) 0.518 0.903
Geo-MIL (Ours) 0.741 (-12.0%) 0.685  0.961  0.709 (-13.0%) 0.651  0.945

Table 6: Impact of Macenko stain normalization on cross-dataset
generalization performance (Dice Score). Models were trained on
TCGA-STAD and evaluated on the GasHisSDB test set.

Method In-Domain Cross-Dataset Cross-Dataset
(No Norm) (+ Stain Norm)

TransMIL 0.758 0.565 0.638 (+7.3 pts)

Geo-MIL (Ours) 0.842 0.741 0.795 (+5.4 pts)

Table 7: Preliminary cross-cancer evaluation of Geo-MIL on
the TCGA-COAD dataset. The model trained on gastric cancer data
(TCGA-STAD) is directly applied to colorectal cancer slides (TCGA-
COAD) without fine-tuning. Geo-MIL maintains high Dice and IoU scores,
demonstrating its potential generalizability to other epithelial cancers.

Dataset Cancer Type Dice (1) IoU (1)

TCGA-STAD Gastric adenocarcinoma 0.789 0.732
TCGA-COAD Colorectal adenocarcinoma 0.776 £+ 0.031 0.718 £ 0.027

To further investigate the impact of stain variation, we applied a Macenko stain
normalization technique [40] to the target test sets. As shown in Table 6, normalization
improves the performance of all methods, confirming that stain variation is a major
component of the domain shift. However, Geo-MIL maintains its superior performance
even after normalization, indicating its advantages are rooted in its architectural
design, not just color invariance. This rigorous cross-dataset evaluation confirms the
superior generalization ability of Geo-MIL, a critical attribute for building reliable and
deployable computational pathology tools.

To evaluate robustness under domain shift, we compared the Dice score distri-
butions of Geo-MIL and TransMIL when trained on TCGA-STAD and tested on
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Fig. 11: Qualitative comparison of cross-domain segmentation before
and after stain normalization. Each row shows a representative case from the
GasHisSDB dataset. Column (1) presents the original WSI patch; Column (2) shows
Geo-MIL predictions before Macenko normalization (red overlay), where color shift
and contrast variation cause partial under-segmentation; Column (3) shows predic-
tions after normalization (green overlay), yielding more coherent tumor boundaries
and reduced false positives; Column (4) provides the pathologist-annotated ground-
truth (GT) mask for reference. Normalization enhances inter-domain consistency while
preserving tissue morphology.

GasHisSDB and ACDC-GastricDB. As shown in Figure 6, Geo-MIL exhibits consis-
tently higher Dice scores with narrower distributions across both external datasets.
In contrast, TransMIL shows a lower median and larger variance, particularly on
GasHisSDB, where the performance degradation exceeds 25%. These findings indicate
that explicitly modeling tissue topology enables Geo-MIL to generalize more effectively
across heterogeneous clinical cohorts.

As shown in Figure 11, stain normalization effectively mitigates color and illumi-
nation discrepancies between domains. Before normalization, Geo-MIL occasionally
under-segments low-contrast tumor regions and introduces spurious detections due to
stain bias. After normalization, the segmentation overlays exhibit smoother contours
and improved alignment with the pathologist-annotated ground truth. These results
visually corroborate the quantitative improvements reported in Table 6, demonstrat-
ing that Geo-MIL generalizes robustly across heterogeneous staining conditions while
maintaining high morphological fidelity.

To further verify the generalization capability of Geo-MIL across different epithelial
cancer types, we conducted a preliminary cross-cancer evaluation on the TCGA-COAD
dataset, which contains colorectal adenocarcinoma WSIs. Without any architectural
modification or fine-tuning, Geo-MIL trained on gastric cancer data (TCGA-STAD)
achieved a Dice score of 0.776 £+ 0.031 and an IoU of 0.718 4+ 0.027 (Table 7). These
results indicate that the proposed topology-aware reasoning is not specific to gas-
tric morphology but effectively captures structural regularities common to epithelial
malignancies, such as glandular organization and stromal invasion. This experiment



highlights Geo-MIL’s potential as a generalizable framework for weakly supervised
segmentation across cancer domains.

2.12 Quantitative Validation of Topological Attention
Rationale

To further empirically validate the rationale behind our Topological Attention Mecha-
nism, we conducted a targeted quantitative analysis of the generated attention maps.
The core hypothesis of our design is that explicitly modeling neighbor interactions
enables the model to distinguish between coherent tumor structures and isolated noisy
patches. If this rationale holds, the attention maps generated by Geo-MIL should
exhibit significantly higher spatial overlap with the ground truth masks compared to
those generated without the gating mechanism.

We compared the Intersection over Union (IoU) scores of the attention maps gen-
erated by the full Geo-MIL framework against the variant without the topological gate
(Table 3, Row C). The results demonstrate that removing the topological gate causes
the IoU to drop significantly from 0.732 to 0.665. This substantial improvement of
6.7% in IoU directly supports our design rationale: the topological gating mechanism
effectively suppresses irrelevant background noise and enhances the model’s ability
to localize complete, structurally coherent tumor regions rather than just disjointed
patches.

3 Discussion

In this work, we addressed the critical challenge of weakly supervised segmentation
in computational pathology. We demonstrated that by moving beyond the conven-
tional 'bag-of-patches’ paradigm and explicitly modeling the spatial topology of tissue
through our novel Geo-MIL framework, it is possible to generate high-fidelity segmen-
tation masks from only slide-level labels. Our quantitative results showed a significant
performance leap over twelve state-of-the-art baselines, and our qualitative analysis
confirmed the model’s ability to delineate complex and diffuse tumor patterns that
confound other methods. The success of Geo-MIL is largely attributable to its topo-
logical attention mechanism. Unlike standard MIL or generic GNN approaches that
focus on the features of individual patches or their immediate neighbors, our method
learns to recognize and prioritize entire architectural patterns. The ablation studies
confirmed that this structure-aware reasoning is the key differentiator, allowing the
model to distinguish pathologically significant structures from isolated, noisy artifacts.
This represents a step towards models that learn not just cellular atypia, but the very
tissue-level disorganization that defines malignancy, mirroring the diagnostic process
of a human pathologist.

Because Geo-MIL models structural relations rather than disease-specific fea-
tures, it can be directly extended to other epithelial cancers such as colorectal and
breast carcinoma. In particular, the topological attention mechanism learns archi-
tectural regularities—for example, differentiating coherent glandular formations from
diffuse infiltration—which are fundamental histomorphological traits shared across
many tumor types. Preliminary experiments on 30 colorectal WSIs (TCGA-COAD



subset) achieved a Dice of 0.776 + 0.031, confirming the potential of Geo-MIL as a
generalizable framework for epithelial malignancies beyond gastric cancer.

From a clinical perspective, Geo-MIL’s ability to produce spatially coherent tumor
maps from weak labels opens new possibilities for scalable digital pathology applica-
tions. The generated segmentation masks can serve as reliable surrogates for manual
annotations in tasks such as tumor—stroma ratio computation, quantification of tumor
burden, or assessment of invasion front irregularity—all of which are established prog-
nostic biomarkers in oncology. Moreover, these topology-aware representations could
facilitate downstream modeling of tumor microenvironment organization, thereby
supporting precision pathology and computational histology at scale.

The ability to generate accurate segmentation masks from weak labels has profound
practical implications. It could drastically reduce the annotation burden required to
develop robust Al tools, accelerating research and clinical deployment. Accurate, auto-
mated segmentation is a foundational step for a host of downstream quantitative
analyses, such as calculating tumor-stroma ratio, assessing tumor burden, or precisely
defining the invasive front—all of which are powerful prognostic biomarkers. Our work
provides a pathway to unlock these analyses at scale without the need for labori-
ous pixel-wise annotation. However, we acknowledge certain limitations and areas for
future work. Despite its efficiency compared to some graph models, Geo-MIL is inher-
ently more computationally intensive than non-graph methods; future work could
explore graph sparsification or model quantization to improve scalability. While we
validated our model on three diverse datasets, its performance on rarer gastric cancer
subtypes or on images with significant staining artifacts remains to be explored.

Another promising direction is the integration of multimodal data. The graph-
based nature of Geo-MIL provides a natural interface for fusing heterogeneous biomed-
ical modalities. Incorporating genomic, transcriptomic, or spatial omics features
as node attributes could enable more comprehensive and biologically interpretable
models, bridging histopathological morphology with molecular phenotype. Such mul-
timodal extensions would further advance the goal of holistic, topology-informed
computational diagnosis and prognosis.

In this paper, we introduced Geo-MIL, a novel graph-based framework for weakly
supervised gastric cancer segmentation from whole-slide images. By constructing a
graph to represent tissue topology and designing a novel topological attention mech-
anism, our model learns to identify complex architectural patterns indicative of
malignancy, overcoming the critical limitations of standard MIL approaches. Through
extensive experiments on three public datasets, we demonstrated that Geo-MIL signif-
icantly outperforms a wide array of state-of-the-art methods, producing segmentation
masks of remarkable accuracy and coherence from only slide-level labels. Our work
represents a significant step towards reducing the annotation bottleneck in computa-
tional pathology and paves the way for the development of robust, scalable Al tools
for quantitative cancer diagnostics.
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Fig. 12: Overview of the Geo-MIL framework and performance comparison.
(Top-Left) The core Geo-MIL architecture, where WSI patches are encoded, formed
into a graph, and processed by a TopoGNN layer to generate a tumor probability
heatmap. (Middle-Left & Bottom-Left) Diagrams illustrating related concepts
in segmentation and attention-based patch processing. (Right) Experimental results
comparing Geo-MIL (Ours) against baseline methods on (a) inference speed (FPS)
and (b) segmentation accuracy (Dice Score).
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4 Method

In this section, we present our proposed Geometric Multi-Instance Learning (Geo-MIL)
framework for weakly supervised gastric cancer segmentation. We begin by formalizing
the problem within the MIL paradigm. We then provide a detailed overview of the Geo-
MIL architecture, followed by in-depth descriptions of its key components: WSI graph
construction, the topological attention graph neural network, and the dual-objective
training strategy.

4.1 Preliminaries and Problem Formulation

In the context of computational pathology, a Whole-Slide Image (WSI) is a gigapixel-
resolution image that is too large to be processed directly by standard neural networks.
A common practice is to divide the WSI into a set of non-overlapping patches.

Let a WSI be denoted as a bag X = {x1,Xa,...,Xx}, where x; € RIXWxC jg
the i-th patch (instance) from a total of N tissue-containing patches. Each bag X is
associated with a single binary slide-level label Y € {0,1}, where Y = 1 indicates
the presence of at least one cancerous patch in the WSI, and Y = 0 indicates its



absence. This constitutes a standard Multiple Instance Learning (MIL) problem. The
instance-level labels for each patch x; are unknown during training.

The primary goal of our work is to move beyond simple slide-level classification.
We aim to solve the more challenging task of **weakly supervised segmentation**.
Formally, given only the slide-level labels {(X;, Yj)}évil for a training dataset of M
WSIs, our objective is to train a model f that can predict a dense segmentation mask
M e {0, 1} W’ for any given WSI, where H' and W' are the dimensions of the
downsampled WSI. The mask M should accurately localize all cancerous regions at
the patch level.

4.2 Geo-MIL Framework Overview

The core limitation of standard MIL is its ”bag-of-patches” assumption, which discards
the crucial spatial arrangement of tissue structures. To overcome this, our Geo-MIL
framework explicitly models the underlying tissue topology by representing the WSI
as a graph. The overall pipeline, illustrated in Figure 12, consists of four main stages:
Patch Feature Extraction: Each WSI is first tiled into thousands of patches. A power-
ful, pre-trained feature extractor (e.g., a Vision Transformer) is used to encode each

patch x; into a low-dimensional feature vector h@(o)' WSI Graph Construction: We con-
struct a graph G = (V, £) for each WSI. The set of nodes V corresponds to the patches,

with their initial features being {hgo)}. The set of edges € connects spatially adjacent
patches, thereby preserving the tissue’s geometric layout. Topological Attention GNN:
The constructed graph is processed by our novel Topological Attention Graph Neu-
ral Network (TopoGNN). This network learns structure-aware node representations
by considering not only the features of individual patches but also the architectural
patterns of their local neighborhoods. Dual-Objective Learning: The final node repre-
sentations are used for two concurrent tasks: (1) a global pooling mechanism aggregates
the node features to predict the slide-level label Y, and (2) a node-level classifier pre-
dicts the probability of each patch being cancerous, generating a pseudo-segmentation
mask that is trained using the MIL attention scores as a supervisory signal.

4.3 WSI Graph Construction

To encode the spatial relationships discarded by standard MIL, we represent each
whole-slide image (WSI) as a graph. After tissue segmentation and patch extraction,
each patch x; is associated with its spatial coordinates (cf,c!) in the WSI. A pre-
trained feature extractor ®, such as a ViT trained on ImageNet or self-supervised
on a large pathology dataset, is used to obtain the initial node feature embedding
h{” = &(x;) € RP.

The graph for a WSI is defined as G = (V, ), where V = {1,2,..., N} is the set of
nodes (patches). The edges £ are constructed based on spatial proximity. Specifically,
we use a k-Nearest Neighbors (k-NN) algorithm: an edge (7, j) is added to & if patch
j is among the k nearest neighbors of patch ¢ based on the Euclidean distance of their
centroids. This graph structure effectively transforms the unordered set of patches into
a structured representation that captures the local tissue topology.
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Fig. 13: Illustration of the Topological Gating Mechanism on a Mini-Graph.
This schematic depicts a simplified six-node example with two clusters representing
normal (pastel blue) and tumor (pastel red) tissue regions. The central node i is
highlighted with a learnable gate o(g;), which adaptively controls the blending between
the node’s intrinsic feature h; and its neighborhood descriptor s;.

To ensure reproducibility and to clarify implementation details, our WSI graph
construction follows four explicit stages: Tissue Segmentation: The background regions
of each WSI are removed using a threshold-based segmentation in the HSV color
space, isolating the foreground tissue mask. Patch Tiling:The remaining tissue region
is divided into non-overlapping 256 x 256 pixel patches at an equivalent 20x magnifi-
cation. Each valid patch x; corresponds to one node v; € V. Node Features: For each
patch, we extract a 384-dimensional representation using a self-supervised ViT-S/16
backbone (pre-trained on TCGA-scale pathology data via DINO). These embeddings
are frozen during Geo-MIL training to stabilize feature distributions and reduce com-
putational cost. Edge Construction: Each node retains its spatial centroid (¢¥,c!) in
micrometer coordinates. We construct edges £ using a k-Nearest Neighbors algorithm
(k = 8 by default). For each node i, we connect it to its eight nearest spatial neighbors,
forming bidirectional edges (i, 7) and (7, 7). The edge weights are inversely proportional
to the Euclidean distance between centroids, normalized to [0, 1], thereby encoding
fine-grained spatial adjacency.

This process yields a sparse but topologically meaningful graph representation,
where each node corresponds to a localized tissue patch, and edges model the physical
continuity of histological structures.

Compared with prior MIL frameworks that treat WSIs as unordered patch sets, this
graph formulation explicitly preserves geometric context. It provides the foundation
for our topological attention mechanism, which leverages these spatial relationships to
learn structure-aware features. The resulting graph-based representation enables Geo-
MIL to reason about architectural organization—such as gland formation and stromal
invasion—that defines gastric cancer pathology.

4.4 Topological Attention Graph Neural Network (TopoGNN)

This module is the core of our framework. Its goal is to learn powerful node representa-
tions by aggregating information from neighboring patches in a way that is sensitive to



local architectural patterns. The TopoGNN consists of L stacked graph learning layers.
Each layer updates the node features based on a topological attention mechanism.

Let hl(-l) be the feature vector of node ¢ at layer [. The update rule from layer [ to
I+ 1 is as follows.

First, we compute attention coefficients based on a standard Graph Attention
Network (GAT) formulation. The coefficient e;; between node ¢ and its neighbor j € N;
is computed as:

el!) = LeakyReLU (aT [W<l>h§” ||W<”h§.”D (1)
where W is a learnable linear transformation, || denotes concatenation, and a
is a learnable weight vector. These coefficients are then normalized across the
neighborhood of each node using the softmax function:

ol = softmax; (e

1
0y _ exp(e};)
ij

Oy —"7 2)
T e explel)

The aggregated feature from neighbors is then JEN agé)W(l)h;.l).

Our key innovation is to make this process sensitive to the local structure. We
introduce a gating mechanism that modulates the node’s feature based on the charac-
teristics of its local neighborhood. For each node i, we define its 1-hop local subgraph
G;. We generate a ”structural descriptor” sl(.l) for this subgraph by applying a simple
aggregation function over the features of its constituent nodes:

o__1 [y h 3
S’L |-/\/.1‘ + 1 1 + Z Vi ( )
JEN;

El) captures the average feature representation of the local tissue
0

%

This descriptor s

architecture. We then compute a gate value g
to incorporate this structural information:

that dynamically decides how much

gzgz) — 0y (W_fll) [hE”HsE”} + bé”) (4)

where Wél) and bg) are learnable parameters of a linear layer and o is the sigmoid

function. The gate modulates the original node feature to produce a structure-aware
(OR

)

feature h
0 g0 on + (- ) o o

where © is the element-wise product. This gated feature flgl) now contains a blend
of the node’s intrinsic features and the contextual features of its surrounding tissue
structure.

Finally, the updated node representation thl) is obtained by combining the
self-representation with the aggregated neighborhood information, followed by a



non-linearity:

JEN;
This process is repeated for L layers to allow information to propagate across the
graph, enabling the model to learn representations based on higher-order tissue
architectures.

Figure 13 provides an intuitive illustration of the proposed topological gating mech-
anism. Each node represents a tissue patch, and the central node ¢ dynamically fuses
its own feature with the aggregated representation of its local subgraph through the
gating factor o(g;). This design enables Geo-MIL to reason over tissue-level topology
rather than relying solely on Patch-Wlise similarity.

The design of our TopoGNN moves beyond standard graph-based MIL approaches.
A natural question arises: why is this added complexity necessary for weakly super-
vised segmentation? While positional encodings in Transformers can provide location
information, they do not explicitly model the rich neighborhood structure of tissue.
How can a model differentiate between a cluster of tumor cells forming a gland ver-
sus tumor cells diffusely infiltrating stroma? A graph representation directly encodes
this adjacency and connectivity, providing a more natural substrate for learning these
architectural patterns.

Furthermore, one might ask: what specific advantage does our topological gating
mechanism offer over a standard Graph Attention Network (GAT)? A standard GAT
learns to weight the importance of neighboring nodes based on their features alone.
It may struggle to distinguish if a high-attention node is an isolated anomaly or part
of a larger, pathologically significant structure. Our topological gate addresses this
directly. By generating a ”structural descriptor” of the local neighborhood and using
it to modulate the node’s own feature, the model learns to ask a more sophisticated
question: not just ”is this patch important?”, but rather, ”is this patch important
given the context of its surrounding tissue architecture?” This allows the model to
up-weight features that form coherent structures and suppress those that are likely
noise or isolated artifacts—a critical capability for generating clean and contiguous
segmentation maps from noisy, slide-level signals.

Compared with previous models, our approach introduces a fundamentally differ-
ent concept: a learnable topological gating mechanism. Rather than relying on fixed
or handcrafted topological descriptors, Geo-MIL learns to dynamically regulate infor-
mation propagation between nodes according to the local tissue architecture. This
enables adaptive structural reasoning—the model automatically emphasizes glandular
or nested tumor patterns while attenuating spatially incoherent regions—a capability
that previous graph-based MIL frameworks lack. From a theoretical perspective, this
gating mechanism can be interpreted as a form of topology-conditioned attention that
explicitly aligns message passing with morphological priors, bridging the gap between
handcrafted topology modeling and end-to-end differentiable learning.



4.5 Training Objective

Our model is trained end-to-end using a dual-objective function that combines a slide-
level classification loss with an instance-level pseudo-segmentation loss.

After the final TopoGNN layer, we have a set of node features {th), cey hs\f)}. To
obtain a single vector representation for the entire WSI (bag), we use an attention-
based pooling mechanism. The attention score w; for each node is computed as:

exp (W, tanh(Va (b{)7))

(2

7
Z;V=1 exp (wfftt tanh(Vatt(th))T)) ™

w; =

where w,¢; and V4 are learnable parameters. The final slide representation H is a
weighted sum of the node features:

N
H=> wh" (8)
=1

This representation is passed through a classifier (e.g., an MLP) to predict the
slide label Y. The slide-level MIL classification loss L is the standard binary
cross-entropy:

Lot = = (Y log(¥) + (1= Y) log(1 = V) (9)

To generate a segmentation mask, we attach a lightweight segmentation head (a
simple MLP) to each final node feature hl(-L)7 which outputs a probability p; that patch
i is cancerous. The key challenge is the absence of ground truth patch labels. We lever-
age the attention scores {w;} from the MIL pooling layer as a weak supervisory signal.
Intuitively, patches with high attention scores are the most likely to be cancerous. We
formulate a loss Lsg that encourages the segmentation head’s predictions {p;} to be
consistent with this signal.

One final question is: why employ a dual-objective with a separate segmentation
head instead of simply using the MIL attention scores {w;} as the final output? Atten-
tion scores are optimized for a discriminative classification task; they only need to
highlight enough evidence to classify the slide correctly, which often results in sparse
and incomplete heatmaps. By training a dedicated segmentation head to predict a
probability for every patch, and using the MIL attention as a guiding signal, we force
the model to learn a more comprehensive and dense representation of all potential
tumor regions, leading to more complete segmentations.

For a positive slide (Y = 1), we expect at least one patch to have a high tumor
probability. We enforce this with a max-based loss:

2
coz = (1 o ) (10)

i=1,...,



For a negative slide (Y = 0), we expect all patches to have low tumor probability:

N
Lig= (11)
i=1

The total pseudo-segmentation loss is Lseg = I(Y = 1) LB +1(Y = 0)LEE, where I(+)
is the indicator function.
The final objective function is a weighted sum of the two losses:

'Ctotal = 'Cmil + AACseg (12)

where A is a hyperparameter that balances the contribution of the classification
and segmentation tasks. During inference, the patch-level probabilities {p;} from the
segmentation head are used to reconstruct the final heatmap and segmentation mask.

4.6 Ethics approval and consent to participate

These data are all public datasets and do not involve additional ethical approval or
patient privacy.
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