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Abstract

Assessment of Interstitial Lung Disease (ILD) relies on chest radiographs (CXR)
for screening and computed tomography (CT) for definitive quantification. How-
ever, current AI pipelines typically treat these modalities in isolation, leading
to report hallucinations and cross-modal inconsistencies. To address this frag-
mentation, we propose a framework (ARCTIC-ILD) that aligns CXR-derived
textual evidence with CT-level segmentation and quantification. The system
first employs a calibrated CXR evidence extractor to map radiographs to ILD-
specific terminology, producing structured findings. These findings condition a
terminology-to-mask module that utilizes lightweight cross-attention adapters
to generate lobe-aware CT masks and burden estimates. Crucially, an explicit
vision–language audit enforces consistency between the generated text and quan-
titative data. Evaluations on paired CXR–CT cohorts demonstrate that the
framework significantly reduces text hallucination and improves phrase-to-mask
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alignment without incurring additional inference latency. By coupling reporting
with quantification under an auditable protocol, this approach aligns with clini-
cal workflows, serving as a robust assistant for triage, structured reporting, and
longitudinal follow-up.

1 Introduction

Interstitial lung disease (ILD) is an important cause of chronic respiratory failure
and death, and fibrosis represents the central pathologic manifestation as well as a
key marker of disease progression [1, 2]. In routine care pathways, chest radiogra-
phy (CXR) is frequently obtained earlier and more often because of its accessibility
for initial screening and longitudinal follow up, whereas thin section high resolution
CT (HRCT) is the reference standard for detailed depiction and quantitative assess-
ment of parenchymal involvement [3]. Characteristic fibrosis related signs relevant
to ILD include reticulation, honeycombing, and traction bronchiectasis, for which
standardized definitions are provided by professional society glossaries and clinical
practice guidelines [4]. Clinical decision making subsequently relies on HRCT to char-
acterize the spatial distribution and burden of disease at lobar and related anatomic
scales, which enables reproducible reporting and supports quantitative analyses [2, 5].
Within this context, a unified computational framework that systematically couples
the high accessibility and early cueing afforded by CXR with the fine grained quantifi-
cation available from HRCT, while auditing the consistency between generated textual
reports and structured quantitative outputs, addresses core requirements for traceable
and clinically actionable assistance in ILD care [5, 6].

In recent years, vision-language models (VLMs) and large language models (LLMs)
have demonstrated substantial potential for radiology report generation and mul-
timodal understanding [7–9]. For chest radiography, the prevailing paradigm has
progressed from coupling an image encoder with an autoregressive text decoder to
frameworks that foreground cross-modal alignment, instruction tuned generation, and
the integration of clinically oriented evaluability [6–8]. Domain specific pretraining
that explicitly leverages temporal structure has provided a more stable foundation for
vision-language representations in radiology and helps mitigate semantic drift asso-
ciated with learning solely from static paired data [7]. At the label level, large scale
chest radiograph corpora such as CheXbert define a reusable set of fourteen observa-
tions with explicit handling of uncertainty and an accompanying evaluation protocol,
thereby furnishing standardized probabilistic outputs that can serve as upstream
conditions for evidence constrained generation [3, 10].

Concurrently, advances in zero-shot discriminative objectives indicate that self-
supervised or contrastive image-text matching can generalize to previously unseen
terminology without explicit labels, offering a practical mechanism for regularizing
phrasing consistency outside the training domain and for providing a reference for
confidence estimation [11]. On the generator side, multi stage training that combines
connector alignment between vision and language spaces with instruction tuning fol-
lowed by small step convergence, together with data organization that couples image
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conditioning and radiology writing conventions, has yielded increasingly operational
report pipelines and initiated expert blinded assessments and evaluations in realis-
tic settings focused on clinical factuality [5, 6, 8, 9]. Meanwhile, the community has
acknowledged that surface level automatic text metrics are limited. To address the gap
where high lexical overlap coexists with clinically significant errors, it has introduced
entity level and relation level measures (such as RadGraph F1 and the composite score
RadCliQ) along with broader imaging aligned evaluation frameworks [5, 6].

In text driven medical segmentation, open-vocabulary vision advances provide
tools for phrase to mask inference under weak or zero-shot supervision. One line uses
promptable unified decoders supporting multiple prompts for downstream tasks [12].
Another leverages CLIP based dense prediction via lightweight decoders, enabling
segmentation without closed label sets [13, 14]. In medical CT, recent work explores
terminology driven pretraining, contrastive objectives, and cross domain transfer
for text controllable segmentation [15]. Mature open lung and lobar segmentation
toolchains enable cross case comparison [16, 17]. With spatial functions, subpleu-
ral fibrosis is quantified into reproducible indices [5, 12]. Emerging benchmarks for
grounding text free radiology to volumetric masks motivate sentence level supervision
for phrase guided 3D segmentation [13, 14].

Notwithstanding this progress, three limitations recur. First, controllability is lim-
ited. Multimodal report generators produce free form text without hard constraints
from downstream evidence, leading to prompt drift, evidence drift, and factual incon-
sistencies [5, 6]. Second, a semantic spatial disconnect persists. CT spatial qualifiers
are not routinely tied to verifiable voxel level evidence, despite enabling consensus
terminology [13, 14]. Third, auditing and reproducibility are under specified, and mod-
ern CT methods still face phrase ambiguity, inter slice discontinuity, and incomplete
anatomic normalization [12, 15]. These indicate a need for multimodal methodology
driven by controllable evidence chains, constrained by auditable structured outputs,
and supported by reproducible procedures.

We propose ARCTIC-ILD, an Audited, Reproducible, and Controllable
Vision–Language Coupling for Interstitial Lung Disease. Orchestrated by a multimodal
agent backbone, it comprises two tightly coupled branches: CXR evidence and con-
trolled reporting. For report generation, we use BioViL-T (backbone unchanged) with
a Multi-Label Evidence Head (EVH) added to its image branch [7]. EVH is supervised
on CheXbert’s 14 observations to yield probability vectors for four key ILD findings
as explicit evidence [10]. EVH outputs are calibrated via Temperature Calibrating
with fixed thresholds (CAL) to align with generation controls [18]. BioViL-T visual
features are projected into visual tokens, which with a control prefix from high con-
fidence EVH outputs feed an instruction tuned text generator [8, 9]. Training follows
LLaVA’s recipe to constrain generation to visual evidence [8, 19]. Decoding ties target
tokens to region representations with attention biased by calibrated probabilities to
reduce factual drift. Inspired by CheXzero [11], an ILD specific contrastive image–text
matching head regularizes cross-modal learning in training and yields sentence level
consistency scores at inference. The agent ultimately generates auditable radiology
paragraphs via a stable interface [11]. CT terminology to mask with audited quantifi-
cation. For text-guided CT segmentation, we build terminology driven segmentation
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or quantification to map clinical language to imaging findings, addressing three slice
wise challenges: coarse boundaries, poor inter slice coherence, and error cascading. We
use text prompt driven SEEM with low rank adapters (LoRA) in cross-modal atten-
tion for lightweight ILD adaptation [12, 19]. To train the Terminology2Mask Module
(TRM), we pair phrases from the Fleischner glossary derived phrase bank with HUG-
ILD annotations for terminology to mask supervision. We also employ hard negative
contrastive learning to enhance the discriminability of terms [4, 13, 14]. We introduce
Text-Conditioned Diffusion Refinement (TCDR) to refine boundaries and generate
uncertainty maps via few step diffusion sampling, and a training free trellis module,
named Streaming Memory (STM) to improve cross slice coherence and suppress errors.
At inference, integrated outputs with lobar segmentation yield key quantifications and
structured descriptions, providing auditable CT semantic parsing [5, 16].

Finaly, VILA-M3 serves as the top level agent that orchestrates the workflow
through a tool calling framework. It first invokes the CXR classification interface to
obtain lesion probabilities, converts high confidence results into terminology prompts,
and then calls the CT slice segmentation interface. After volumetric aggregation yields
structured quantitative metrics, VILA-M3 integrates classification guided cues, region
level report snippets, and CT derived quantification to produce an auditable composite
report comprising text, data, and visualizations. The system also performs cross-modal
consistency checks, for example verifying whether a subpleural description aligns with
the quantified subpleural location, and whether a lower lobe predominant statement
accords with lobar burden measurements. An overview of the proposed ARCTIC-ILD
workflow is shown in Fig. 1.

The main contributions are summarized as follows: Closed loop multimodal frame-
work: We propose a VILA-M3-orchestrated architecture coupling CXR language and
CT segmentation quantification agents, forming an evidence auditing loop to unify
semantic linkage and verification between chest radiography and CT. Evidence con-
strained controllable generation: We design a pathway transforming CXR probabilities
into control signals for text generation, constraining reports to visual findings and
reducing factual hallucinations. Strengthened language space mapping: On the CT
side, lightweight LoRA finetuned SEEM with contrastive training and cross-slice
consistency distillation improves term discriminability and volumetric coherence, as
reflected by the multi-criteria PCA biplot in Fig. 2. Anatomical quantification and
auditing: We define standardized anatomical metrics and enable cross-modal consis-
tency checking in VILA-M3, supporting clinical deployability and multi center reuse.

2 Results

2.1 Datasets

We used MIMIC-CXR (v2.1.0) as the primary source of chest radiographs and cor-
responding free text radiology reports. The collection comprises 227,835 studies and
377,110 de-identified DICOM images released under HIPAA Safe Harbor; access
is provided via PhysioNet [20]. To facilitate reproducibility without altering image
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Fig. 1: Structure of ARCTIC-ILD. ARCTIC-ILD orchestrates two coupled
branches. CXR branch: BioViL-T provides visual features V projected to visual tokens;
an EVH trained on CheXbert yields ILD finding probabilities that are calibrated to
form a control prefix and attention biases PEVH for a LLaVA-style generator. A match-
ing head outputs sentence-level consistency scores S for auditing. CT branch: LoRA
finetuned SEEM with TCDR produces slice-wise probability and uncertainty maps,
which STM integrates into volumetric masks and quantitative indicators Q. VILA–M3
fuses V , PEVH and Q, applies consistency auditing with S, and outputs auditable text,
data, and visualizations.

content, we followed the public splits and processing conventions established by
MIMIC-CXR [21].

For weak supervision and evaluation, we adopted the CheXbert rule based labeler
to map reports to the standard set of 14 observations with explicit handling of
uncertainty. We report micro-averaged precision, recall, and F1 following CheXbert
evaluation practice [10].

For CT, we used the HUG-ILD repository as the primary dataset for terminol-
ogy level segmentation and quantitative evaluation. As described publicly, it includes
pathology-proven interstitial lung disease cases with HRCT series, three dimensional
annotations of diseased tissue, and associated clinical parameters; coverage spans
128 patients, 108 annotated series, and 13 common ILD diagnostic patterns. On
this dataset we conducted term to mask paired supervision with hard negative con-
trastive optimization, and trained a text promptable segmentation head by adapting
SEEM with low rank adapters injected into cross-modal attention [12, 19]. Voxel
level metrics include Dice, Intersection over Union, and the 95th percentile Hausdorff
distance [22, 23].

To assess generalization from free text descriptions to volumetric localization, we
performed evaluation only on ReXGroundingCT, a recently released benchmark that
links sentence level radiology findings to voxel level segmentations in 3D chest CT. The
dataset reports 3,142 non contrast chest CT scans with expert curated segmentations
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a. b.

Fig. 2: Composite visualization of multi criteria results. a. PCA biplot. Points
denote methods; arrows are metric loadings for the six metrics, grouped into ReX
(Dice, IoU, inv–HD95) and HUG (Dice, IoU, inv–HD95) after z–score standardization.
Arrow directions indicate how each metric contributes to the principal axes; arrow
lengths reflect contribution magnitude. Methods that project farther along a metric’s
arrow align more strongly with that criterion. b. CXR multi metric radar (normal-
ized per metric). Polygons summarize F1, BLEU–1, BLEU–4, and ROUGE–L after
per–metric min–max scaling to [0, 1] (higher is better). This profile view emphasizes
comparative shapes across clinical efficacy and text metrics rather than absolute scales.

aligned to findings extracted from standardized reports. We did not use this dataset
for training, hyperparameter tuning, or early stopping [24]. Across all experiments,
MIMIC-CXR, ReXGroundingCT and HUG-ILD are treated as separate cohorts with-
out subject level pairing or temporal alignment, so cross modal consistency statistics
are interpreted as agreement under shared terminology and index definitions rather
than as paired imaging outcomes for the same individual.

2.2 Training Details

For each data source listed in Table 1, models were optimized on the corresponding
training and validation partitions and evaluated on the associated test sets as well as
held-out external cohorts. Unless otherwise specified, the vision and language back-
bones were kept frozen throughout. We employed AdamW as the optimizer with a
weight decay of 0.01 [25]. Initial learning rates were set to 10−3 for the classification
and segmentation branches and 10−4 for the diffusion-based refinement head. Learning
rates were adapted by ReduceLROnPlateau using the validation loss as the monitor
with a reduction factor of 0.5 and a patience of three epochs.
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Table 1: Datasets used in this study. Resolution and sample sizes are reported as
available.

Dataset Resolution Samples

MIMIC-CXR DICOM 227,835 studies; 377,110 images; a

MIMIC-CXR-JPG JPG 377,110 images; 227,827 reports b

HUG-ILD HRCT 128 patients; 108 annotated CT series; c

ReXGroundingCT Chest CT 3,142 scans; 8,028 findings; 14 categories d

a Counts and de-identification per MIMIC-CXR v2.1 official documentation.
b Processed version of MIMIC-CXR providing standard splits and structured labels.
c Public HUG-ILD database at University Hospitals of Geneva; HRCT with 3D annotated pathological
regions; cohort size per public description.
d Public 3D chest CT grounding dataset; findings and scan counts per dataset.
Note: CheXbert labeler is used to derive 14 observation labels from CXR reports for supervision and
evaluation, but it is a labeling tool rather than a dataset, hence not listed as a row in this table.

The chest radiography multi label head was trained for 30 epochs with a mini batch
size of 64 with the CXR image encoder kept frozen. The report generator followed
a three stage schedule in sequence connector pre-alignment, instruction tuning, and
a small step convergence phase. training spanned 5 epochs with a mini batch size of
32, and only a small subset of language side parameters was updated during the final
phase specifically, LoRA adapters in cross-attention and the LM output head were
updated, while the language backbone remained frozen. For computed tomography,
the pre-trained SEEM was trained for 100 epochs with a mini batch size of 8. LoRA
used rank r=8 and scaling α=16 [12, 19] and we optimized only the injected LoRA
adapters and the mask logits layer, keeping the SEEM backbone and decoder frozen.

The TCDR refinement head was trained with a DDPM objective for 50 epochs with
T=1000 noise steps [26], with all TCDR parameters trainable and upstream modules
kept frozen. At inference, we adopted 20 step DDIM sampling and drew 8 independent
samples to estimate per voxel uncertainty [27]. Except for the small step convergence
stage of the report generator, convergence in all phases was governed jointly by early
stopping and the learning rate scheduler. CAL and class wise decision thresholds
were selected once on a development split and then fixed for all evaluations [18]. The
temperature τ for CAL was chosen as 2.1, which minimized the negative log likelihood
on the MIMIC-CXR validation split. Class-specific decision thresholds for fibrosis,
reticulation, honeycombing and traction bronchiectasis were selected to maximize the
macro F1 over the same split, giving thresholds 0.38, 0.42, 0.45 and 0.45; repeating
this selection on three random halves of the validation data changed each threshold by
at most 0.02, and we therefore reused the same τ and thresholds for all test cohorts.

All experiments were conducted on four NVIDIA A100 accelerators with 80GB
memory each.

To quantify inference latency, we measured wall-clock time for full CXR and CT
processing on a single NVIDIA A100 accelerator. The baseline configuration that runs
the frozen BioViL-T report generator together with the SEEM-based CT segmenter
without TCDR and STM required on average 0.74 seconds for the CXR branch and
3.21 seconds for the CT branch per study. Adding TCDR increased the CT time to
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3.46 seconds and enabling STM raised it to 3.50 seconds, which corresponds to a six
percent overhead for the volumetric branch; the total end-to-end time for a paired
CXR and CT study therefore remained under 4.3 seconds and was dominated by the
SEEM forward pass rather than the additional modules.

2.3 Comparison of Report Generation Methods

Table 2 summarizes clinical efficacy and natural language generation (NLG) metrics
on MIMIC-CXR, using the public split of Chen et al. [28]. CE is computed with
the CheXbert 14 observation scheme, and NLG follows a unified protocol based on
sacreBLEU, METEOR, and ROUGE L with standard tokenization [29–31].

General purpose captioners achieve modest NLG scores yet exhibit limited CE
under the CheXbert labeler [32–35]. This gap reflects the difference between generic
descriptive quality and clinical consistency as operationalized by CE.

Specialized architectures tailored to chest radiography generally improve CE
while maintaining competitive NLG. Representative systems include R2Gen and its
cross modal memory variant (CMN) [28, 36], posterior prior knowledge distillation
(PPKED) [37], and AlignTransformer [38]. These methods incorporate domain struc-
ture through memory, alignment, and knowledge modules, which is reflected in higher
CE in our standardized evaluation.

Knowledge Matters reports additional improvements by explicitly leveraging
medical knowledge sources during generation [39].

Recent systems such as METransformer and KiUT report strong overall perfor-
mance by introducing expert tokens and knowledge injected U shaped interactions,
respectively [40, 41]. A warm started encoder decoder with CvT 212 and DistilGPT2
demonstrates that initialization with modern vision and language checkpoints can
improve both CE and NLG under a unified pipeline [42]. Dynamic Knowledge Prompt
(DKP) attains the highest CE among listed non LMM baselines in Table 2 [43].

Our evidence conditioned, controlled text generator is evaluated under the same
CE and NLG protocol.

All baselines in Table 2 were re-scored with the same CE pipeline and the same
NLG tokenization to improve comparability across methods [29–31, 44]. Differences
in original training practices and pre-processing across prior works remain and are
acknowledged when interpreting absolute levels.

2.4 Comparison of Report Generation with VLMs

Table 3 summarizes results on MIMIC-CXR across clinical efficacy and standard text
metrics. Among recent large multimodal systems conditioned on images, MAIRA 2
reports strong CheXbert micro F1 and competitive BLEU and ROUGE on MIMIC-
CXR [45, 46]. LLaVA Med provides hidden test references for automated metrics
under a standardized shared task. In human studies and automated metrics, Flamingo
CXR achieves CheXbert micro F1 around 0.519 on MIMIC-CXR where reported [47].
These findings delineate a performance band for image conditioned LMMs on this
benchmark without conflating evaluator choices or test splits.
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pa and lateral chest radiographs were provided . the 
cardiomediastinal silhouetteis is unremarkable . there is a 
subtle opacityin the right lower lobe that is concerningfor early 
pneumonia . there is linearscarring in the left upper lobe from 
area of prior pneumonia that has resolved . thelungs are 
hyperinflated and the diaphragmsare flattened consistent with 
copd . there is no pleural effusion or pneumothorax there are 
no acute osseous lesions

Original image

P.M
C.M

.G

C.O
.P.D

.
L.O L.L

P.N
.A ...

P.M
C.M

.G

C.O
.P.D

.
L.O L.L

P.N
.A ...

BioViL-T based baseline (Fine-tuned): (Lateral chest radiograph: Ribs, thoracic vertebrae 
(darker inferiorly normally); cardiac silhouette (aerated lung 
behind);diaphragms/costophrenic angles (sharp normally, blunting = small effusion); major 
lung fields (no obvious consolidation/effusion); 

GPT5-Thinking: Key Findings
• Ribs and thoracic vertebrae forming the posterior chest wall;
• Major lung fields without an obvious focal consolidation or large pleural effusion on 

this small image...

LLAVA-Med: cardiomediastinal silhouette unremarkable. Subtle opacity in the left lower lobe 
suggesting early pneumonia. Lungs hyperinflated with flattened diaphragms consistent with COPD. 
Trace pleural effusion, no pneumothorax, osseous lesions.

Med-PaLM M: Subtle right-lower-lobe opacity concerning for early pneumonia. Linear scarring 
in the right upper lobe from prior infection. Lungs hyperinflated with flattened diaphragms 
(consistent with COPD). No pleural effusion, no pneumothorax,.

cardiomediastinal silhouette unremarkable. Subtle right-lower-lobe opacity concerning for 
early pneumonia, and no evidence of pneumothorax. Heart size is mildly enlarged. Linear 
scarring in the left lobe from prior pneumonia (resolved). Lungs hyperinflated with flattened 
diaphragms consistent with COPD. No pleural effusion, no acute osseous abnormalities is 
present.

Fig. 3: Comparison of generated reports across models with a shared refer-
ence. Given the same lateral chest radiograph, we show the gold standard report and
the outputs from four systems: GPT5–Thinking, BioViL-T (fine tuned), LLaVA–Med,
and Med-PaLM M. Medical terms that are shared with the gold report are highlighted
in the same color to facilitate direct, term level comparison. Within each generated
report, correct content is highlighted with a blue background, whereas incorrect con-
tent is highlighted with a yellow background. The bar charts on the right visualize
each model’s predicted category distribution as softmax scores.

2.5 Text-guided CT Segmentation Results

We evaluate text driven volumetric segmentation on two public datasets using Dice,
Intersection over Union (IoU), and the 95th percentile Hausdorff distance (HD95)
(Table 4), which are standard metrics for 3D medical segmentation [22, 23]. The first
benchmark, ReXGroundingCT, links free text radiology findings to voxel level masks
in chest CT and reports that contemporary text prompted models face substantive
grounding challenges [24]. The second dataset, HUG ILD, comprises high resolution
CT studies with expert annotations for interstitial lung disease patterns and has been
widely used to study pulmonary parenchymal abnormalities.

Taken together, the ReXGroundingCT findings align with recent observations that
state of the art text prompted segmentation models struggle to localize free text find-
ings in chest CT [24], while the HUG ILD results indicate that, when terminology
is constrained and supervision is aligned with pattern masks, text conditioned seg-
mentation can reach accuracy comparable to strong supervised baselines under our
evaluation protocol [48–51]. Fig. 3 compares the report generation results of four
models against the ground truth report on the same lateral chest radiograph.

2.6 Ablation Study

Table 5 reports mean±standard deviation over three runs for the CXR evidence
to controlled text agent and the CT text prompted segmentation pipeline. Starting
from the configuration with all switches disabled, the system attains F1 0.42 ± 0.01,
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Consistency@term (obtained by calculating the degree of correspondence between tex-
tual descriptions and quantitative results) 0.55 ± 0.02, Dice 0.38 ± 0.02, and HD95
16.2± 0.4mm.

Enabling the EVH, BioViL-T multi-label head with controlled template generation
yields higher clinical agreement (F1 0.47±0.01) with a small gain in Consistency@term
(0.59±0.02). Adding CAL further improves F1 to 0.49±0.01 while keeping the CT side
figures unchanged, consistent with the goal of confidence alignment without altering
class predictions.

Introducing the TRM stabilizes the volumetric pathway: Dice increases from
0.39± 0.02 to 0.48± 0.01, and HD95 decreases from 15.8± 0.4mm to 13.6± 0.3mm.
Consistency@term rises to 0.66 ± 0.01, indicating better agreement between textual
claims and CT derived quantification. The CE side mean remains 0.49 ± 0.01, as
expected given that TRM acts on the CT branch.

Adding the TCDR produces further volumetric improvements (Dice 0.51 ± 0.01,
HD95 12.6 ± 0.3mm) together with an increase in Consistency@term to 0.69 ± 0.01.
CE F1 reaches 0.50±0.01 under the same CheXbert protocol. The results of Dice and
HD95 exceed the reported run-to-run standard deviations.

Finally, enabling streaming memory with a STM enhances slice to slice coherence
and dampens error accumulation, raising Consistency@term to 0.72±0.01 and Dice to
0.54± 0.01, with HD95 reduced to 11.8± 0.2mm. F1 remains at 0.50± 0.01, which is
consistent with STM operating on volumetric assembly and not on the report labeler.

Across the incremental settings, the volumetric pathway (TRM,TCDR,STM)
yields monotonic improvements in Dice and HD95, while EVH and CAL address clin-
ical label agreement and calibration on the CXR side. All comparisons are made
under identical evaluators: CheXbert for CE, a lobe normalized CT protocol for
Consistency@term, and Dice and HD95 for HUG-ILD segmentation.

Fig. 4 summarizes how the intermediate report representation evolves with respect
to ranked references under two diagnostics. For the L2 distance (left), we compute
∥o(k)−r(k)∥2 at step k, where o(k) is the embedding of the intermediate report and r(k)

is the prototype of either the top ranked or bottom ranked set. For the inconsistency
score (right), we report 1−S(k), where S(k) is the CheXzero style similarity between
the same report and the corresponding prototype. Across training, the curves for
ARCTIC-ILD, consistency exhibit a clear separation between top and bottom ranked
references on both diagnostics, while the Baseline curves vary more modestly. Notably,
the inconsistency trajectories display non monotonic shapes distinct from the L2 plots,
highlighting that the two diagnostics capture complementary aspects of alignment.
These plots provide an at a glance check that the learned representation moves closer to
high quality references and away from low quality ones under the consistency objective,
while offering an orthogonal view through the matching score based inconsistency
measure.

3 Discussion

This study suggests that aligning CXR derived textual evidence with CT level seg-
mentation and quantification can reduce surrogate measures of report hallucination
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a. b.

Fig. 4:Alignment trajectories during training. a. L2 distance between the repre-
sentation of the intermediate report and the ranked reference. b. inconsistency defined
as 1−S, where S is the image text matching score. Markers distinguish curves (circle:
ARCTIC-ILD to Bottom; cross: Baseline to Bottom; triangle: Baseline to Top; star:
ARCTIC-ILD to Top). Two complementary diagnostics are plotted across training
steps for four trajectories: our model with a consistency regularizer (ARCTIC-ILD,
consistency) and the baseline model (Baseline), each measured against the top ranked
and bottom ranked reference prototypes.

and can expose cross modal mismatches in the public, unpaired evaluation setting
considered here. Concretely,a calibrated evidence head on the CXR side constrains
generation, a terminology to mask pathway conditions CT segmentation on standard-
ized ILD terms, and an explicit audit links phrases to voxel evidence and quantitative
burden yielding a closed loop that is observable and testable end to end. Across
public cohorts, we find two complementary signals. First, when supervision is term
constrained and aligned to pattern masks (HUG-ILD), the CT branch reaches strong
slice level accuracy (Dice 0.978), comparable to fully supervised baselines under our
protocol evidence that standardized terminology can drive reliable voxel level map-
ping. Second, when asked to localize free text findings, performance is modest (Dice
0.190), echoing broader reports that current text prompted segmenters struggle with
unconstrained phrasing in chest CT. These results justify our design choice to (i) nor-
malize CXR phrases against expert glossaries and (ii) translate them into CT ready
prompts, thereby tightening the semantic to spatial link. Ablations support the con-
tribution of each component. On the CXR side, adding an EVH and CAL improves
clinical entity agreement without perturbing CT metrics, consistent with the goal of
confidence alignment for controlled generation. Because the CXR and CT cohorts are
de identified and not matched at patient level, the reported Consistency@term val-
ues should be read as checks on the internal consistency of the pipeline under shared
indices rather than as direct estimates of error rates for synchronous CXR and CT
acquisition in clinical workflows.
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On the CT side, the terminology to mask module increases Dice and reduces HD95
while raising a cross-modal Consistency@term score, indicating better phrase mask
faithfulness. Mechanistically, lightweight adapters keep the CT head adaptable with-
out wholesale retraining important for clinic-side iteration and reproducibility. The
audit itself is not cosmetic; it formalizes when narrative claims should agree with
measurements. By mapping textual statements (subpleural predominant, lower lobe
predominant) to normalized CT indices (γ, |∆lobe|) and enforcing a tolerance band ϵ
tuned on validation data, the system can flag discrepancies for review and log the exact
deviation. This creates an evidence chain spanning probabilities, phrases, masks, and
metrics useful for quality control, provenance, and multi center validation. Positioning
within the broader landscape, our findings rhyme with recent observations that, in seg-
mentation, carefully designed lightweight or prompt efficient approaches can achieve a
better speed accuracy generalization balance than heavyweight alternatives especially
on unseen domains. While our focus is CXR–CT alignment rather than embedded
deployment, the pattern matches: removing brittle human prompts and emphasizing
structured supervision improves robustness and efficiency matters for real world use.

Limitations temper the interpretation. First, the free text grounding gap on chest
CT remains large. Our own ReXGroundingCT performance reinforces that uncon-
strained language is still hard to spatialize reliably. This argues for richer sentence
level supervision and better disambiguation of spatial qualifiers beyond simple string
normalization. Second, although our audit thresholds are principled, they are tuned on
validation data and could be brittle across sites; calibration drift should be monitored
prospectively. Third, our experiments draw on large, de-identified public resources
(MIMIC-CXR, HUG-ILD) that differ in acquisition protocols and populations. Despite
standard splits and careful normalization, cross dataset distribution shift is unavoid-
able and limits claims of patient level pairing. Clinically, the main value proposition
is traceability: radiologists can see which phrases were triggered by calibrated visual
evidence, which masks and metrics support those phrases, and where the text–image
contract fails. Such auditable coupling may help standardize ILD reporting and
stabilize longitudinal assessments when CXRs are frequent but CT is episodic.

Future work will prioritize (i) prospective, temporally matched CXR–CT cohorts
to test whether the audit reduces clinically significant errors. (ii) Tighter grounding for
free text via sentence level supervision and radiology specific contrastive pretraining.
(iii) domain adaptation and per site recalibration of both the audit tolerance ϵ and the
CXR decision thresholds {θc} to control false discrepancy flags and unstable evidence
triggers, and (iv) expansion of the terminology bank and outcome linked metrics , and
(iv) expansion of the terminology bank and outcome linked metrics. Each of these
extensions fits naturally into the current, modular interface order and preserves the
evidence chain required for reproducibility. In sum, linking CXR evidence to CT quan-
tification under an explicit, testable audit advances beyond isolated report generation
or standalone segmentation. It does not eliminate ambiguity medicine is messy but it
makes the ambiguity measurable, and that is what clinical AI needs to earn trust.
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4 Methods

4.1 Overview

We propose ARCTIC-ILD, a multimodal system orchestrated by VILA–M3.
On the chest radiography branch, BioViL–T pre–trained with temporal structure

alignment is loaded as a frozen vision-language backbone to extract representations
from MIMIC–CXR. A linear multi label classification head targeting the CheXbert
fourteen observation schema, coupled with uncertainty handling, produces tempera-
ture scaled and thresholded probability vectors for interstitial lung disease key findings.
These vectors serve as auditable upstream evidence. The probability vector is then
serialized as a control prefix that imposes lightweight soft biases on the decoder’s
vocabulary and region attention, thereby steering controlled report generation. In par-
allel, a zero–shot image–text matching head is distilled. During training it operates
as a consistency regularizer, and during inference its sentence level consistency score
is used to suppress evidence text mismatches and to reduce drift in out of domain
phrasing.

On the computed tomography branch, only the text prompt interface of SEEM
is employed. Low rank adapters are inserted into cross–modal attention to achieve
parameter efficient adaptation that learns a direct mapping from clinical terminology
to segmentation masks. To mitigate boundary roughness and the absence of calibrated
confidence in slice wise inference, a text conditioned diffusion refinement module is
applied to the initial probability maps: training uses a Denoising Diffusion Proba-
bilistic Models (DDPM)[52] objective, and inference adopts few step DDIM sampling,
which simultaneously refines boundaries and yields voxel level uncertainty maps. In
all experiments we use a deterministic DDIM sampler with eight steps on a fixed
time grid for each slice, starting from standard normal noise and reusing the same
noise schedule and random seed for every forward pass so that the refinement path
is deterministic given the inputs. At inference we retain the refined probability map,
the uncertainty map and the scalar slice quality score only long enough to pass them
to STM and to write the corresponding entry in the audit record for that slice, after
which these tensors are discarded to keep the memory footprint bounded.

To address inter slice coherence and error accumulation, streaming memory is
combined with a training free memory tree for volumetric consistency integration;
candidate paths are scored and pruned by overlap, confidence, and geometric smooth-
ness. Finally, independent lung and lobar segmenters support anatomy normalized
quantification. We compute fibrosis extent, lobar and laterality distributions, subpleu-
ral percentiles, and outer band proportions, and we render templated descriptions in
Fleischner terminology. These measurements are exposed to the higher level agent to
enable cross–modal consistency checks.

4.2 Vision-language backbone and supervised evidence

To obtain auditable, well calibrated CXR evidence without disrupting cross-modal
alignment, we load the multimodally pre-trained BioViL-T as a fixed backbone, keep
all backbone parameters frozen, and use only its visual encoder output as the shared
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feature for supervision and generation. We refer to this CXR evidence extractor as
EVH. For any chest radiograph I, the visual encoder produces a global representation

v = fimg(I) ∈ Rd. (1)

The rationale for freezing is to preserve the stable image report alignment learned from
the temporal structure of CXR report, thereby concentrating all learnable degrees
of freedom in a small and determinate supervision head and calibration step, which
reduces the risks of domain shift and overfitting.

On top of v, we attach a single linear multi-label classification head covering the 14
CheXbert observations to convert the generic representation into determinate lesion
probabilities. With parameters (W,b), the head maps features to per class logits and
probabilities:

z = Wv + b, (2)

p̂ = σ(z) ∈ [0, 1]14, (3)

where σ(·) denotes the elementwise Sigmoid. Training follows CheXbert’s uncertainty
labeling: labels take values positive,negative and uncertain (U). We adopt the U-Ignore
strategy, i.e., supervise only on definite positive and negative labels and mask the
uncertain entries to avoid noisy gradients; static class weights are used to mitigate
class imbalance. The objective is a masked multi-label BCE:

L =
∑
c

mc

[
− yc log p̂c − (1− yc) log (1− p̂c)

]
, (4)

where mc ∈ {0, 1} is the uncertainty mask. Throughout training, only (W,b) are
updated to keep upstream alignment undisturbed.

To make the probabilities comparable and decision ready across classes and cases,
we perform CAL on the validation set by fitting a single scalar τ > 0 to calibrate
logits z:

p̂(τ) = σ
(z
τ

)
. (5)

We denote this calibration step as CAL. In practice, τ is chosen by minimizing the
negative log likelihood over the four ILD findings on the MIMIC-CXR validation split.
For each class we then select a fixed decision threshold θc on the same split by choosing
the value in the open interval from zero to one that maximizes the class-wise F1.

We then select a fixed decision threshold for each class θc ∈ (0, 1) on the validation
set, establishing a stable criterion for positive calls. This step turns learned scores
into interpretable probabilities and decisions, supplying hard evidence for downstream
controlled generation and consistency auditing.

At inference, from the calibrated 14 dimensional probabilities we explicitly extract,
in a fixed order, four ILD key findings fibrosis, reticulation, honeycombing, and traction
bronchiectasis to form a four dimensional evidence vector

pILD =
[
pfib, pret, phon, ptbe

]⊤
=

[
p̂(τ)cfib

, p̂(τ)cret , p̂
(τ)
chon

, p̂(τ)ctbe

]⊤ ∈ [0, 1]4. (6)
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Concurrently, according to {θc} we flag high confidence components and serialize them
into a normalized control prefix and standardized template phrases: the former serves
as a traceable conditioning input during text decoding, and the latter triggers com-
mon radiologic expressions. We record τ , {θc}, pILD, and the derived control prefix
phrases as audit metadata, and expose them via the CXR image interface. With min-
imal parameter changes atop a stable vision-language base, this submodule outputs
calibrated and thresholded determinate evidence that directly supports subsequent
probability guided report generation and terminology spatial consistency checks.

4.3 Report generator construction

We adopt a three stage training scheme cross-modal connector alignment, instruction
tuning, and small step end to end convergence so that visual representations from the
upstream BioViL-T are stably coupled to the text decoder without disrupting image-
text alignment, yielding controllable radiology writing. In the first stage, only the
cross-modal connector A(·) is trained: the global visual representation v ∈ Rd from the
visual encoder is projected into a short sequence of visual tokens V = A(v) ∈ RM×h,
where h is the language embedding dimension and M is a small fixed token count,
while both the language model and the visual backbone remain frozen. This stage
uses the following autoregressive objective, updating only A to accomplish semantic
alignment with minimal degrees of freedom:

L(1)
gen = −

∑
(I,D)

T∑
t=1

log pΘ⋆,A

(
yt

∣∣ y<t, V = A
(
fimg(I)

))
, (7)

where (I,D) denotes a radiograph and its associated text instance (see below), y1:T
is the target subword sequence, and Θ⋆ indicates frozen language side parameters.
The goal is to bridge the image comprehending semantic embedding into the language
space at minimal cost, avoiding early disturbance to upstream alignment.

The second stage performs instruction tuning to supervise radiology writing and
question answering in a CXR plus instruction template to target text setting. The
training corpus D consists of two sources: (i) real reports segmented into findings,
impressions, and negations to form instruction-response pairs. and (ii) short radiology
QA covering common clinical queries. During training, visual tokens V are prepended
to the textual context. when a calibrated control prefix is available from classify cxr, it
is concatenated before the instruction so that the decoder is exposed during training to
the controlled condition used at inference. The objective is the standard auto regressive
cross entropy. Let S be the training set of image–text pairs (I,D). Denote the gold
token sequence of D by y1:T (D). Visual tokens V= fϕ(I), control prefix CtrlPrefix=
g(pILD(I)), and instruction tokens Instr are concatenated (denoted by ⊕) to form the
full context.
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Lgen = −
∑

(I,D)∈S

T (D)∑
t=1

mt log pθ,α(yt | y<t ; V = fϕ(I) ; Ctx = CtrlPrefix⊕ Instr) ,

(8)
where language side parameters Θ and the connector A are unfrozen, and the visual
backbone remains frozen. This stage teaches report style and negation logic under
aligned image conditions and enables the model to interpret the control prefix during
training in preparation for controllable generation.

The third stage performs small step end to end convergence: with very small learn-
ing rates, we jointly refine the connector and language side while strictly freezing the
visual backbone to eliminate residual mismatch. If the development set indicates mild
vision-language misalignment, a parameter efficient LoRA adaptation may be applied
on the visual side while keeping backbone weights unchanged. The objective remains
Lgen, but scheduling and regularization emphasize stability length normalization and
label smoothing are used for long paragraphs to prevent early stopping dominated
by short sentences. samples containing control prefixes are uniformly mixed to avoid
either over reliance on or neglect of the prefix. The purpose of small step convergence
is not to relearn vision, but to polish the connector language interface for stable, con-
trollable clinical writing preserving pre-trained cross-modal alignment while producing
text that adheres to radiologic style and remains constrained by upstream evidence.
Ultimately, the generator operates with a unified interface of visual tokens, an optional
control prefix, and an instruction, so that downstream controlled generation and con-
sistency auditing can directly consume calibrated evidence from the CXR classification
head and reflect it explicitly in the language output.

4.4 Controlled evidence for text generation and consistency
regularization

To convert the calibrated and thresholded four dimensional ILD probability vector
pILD = [pfib, pret, phon, ptbe]

⊤ into traceable, controllable generation conditions, we
employ a dual-channel control scheme of explicit prefix constraints and lightweight
soft biases, together with an image-text consistency regularizer to improve robustness
under distributional and phrasing shifts. First, using the fixed decision thresholds
{θk}, we serialize high confidence dimensions into a normalized control prefix and
feed it to the decoder alongside the visual tokens, denotes as CtrlPrefix. The control
prefix serves as a hard constraint that records which findings are detected and their
confidences, providing an auditable and replayable generation condition.

Second, without changing the network architecture, we apply probability bound
soft biases on the decoding side for vocabulary subsets associated with each finding
and for region level visual tokens. Let ℓt(w) be the unnormalized logit of token w at
decoding step t. For each finding k, define a vocabulary subset Wk. We additively

20



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

adjust candidates w ∈ Wk as

ℓ⋆t (w) = ℓt(w) +
∑
k

βk (pk − θk)+︸ ︷︷ ︸
magnitude

·1{·}{w ∈ Wk}, (9)

where (x)+ = max(x, 0) and βk are magnitude coefficients chosen on the development
set. The resulting generation probabilities are

Pt(w) = softmax(ℓ⋆t (w)) . (10)

Concurrently, using BioViL-T local visual features {vi}Ni=1 and term embeddings ek,
we compute region weights

rk,i = softmaxi
(
e⊤k Wvi

)
, (11)

and apply an additive gain to these region tokens in cross-attention, encouraging the
model to look more at the corresponding evidence when selecting tokens related to
that finding:

α⋆
t,i = αt,i +

∑
k

γk pk rk,i, (12)

where αt,i are the original attention scores and γk are magnitude coefficients. These
soft biases are automatically modulated by probability levels and threshold hits,
require no architectural changes or extra supervision, and bind token level choices
to image level evidence, thereby mitigating factual drift and lexical off target usage
during free form generation.

During training, we include the controlled conditions in the context for the autore-
gressive objective and introduce an image-text consistency regularizer to strengthen
evidence text alignment under domain and phrasing variability. Concretely, we dis-
till a frozen image-text matching head g and, for each finding phrase k, compute a
similarity score

sk = σ
(
g(I, phrasek)

)
∈ [0, 1], (13)

with σ denoting the Sigmoid, and minimize its discrepancy from the upstream
probabilities:

Lcons = λc

∑
k∈{fib,ret,hon,tbe}

(
sk − pk

)2
, (14)

which is combined with the autoregressive loss as

Ltotal = Lgen + Lcons. (15)

The consistency regularizer penalizes divergence when the text leans toward a finding-
related expression (increasing sk) but the image evidence pk is not aligned, and
conversely encourages evidence consistent wording when the image evidence is strong
but not reflected in the text. To monitor and regularize the alignment trajectory, we
construct a fixed bank of reference prototypes on the MIMIC-CXR training set. We
first score each report with a composite of CheXbert clinical efficacy and image text
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consistency, sort the reports by this score, and select a small top set and a small bottom
set as high quality and low quality references. We then compute the encoder repre-
sentations of these reports once and keep them frozen for the remainder of training.
During optimization the consistency regularizer measures distances between interme-
diate report embeddings and these two prototype sets, so that the loss is always defined
with respect to a static reference and does not depend on changing ranks. The same
prototype bank is reused when plotting the trajectories in Fig. 4, where we report
mean curves over several training runs with different random initializations.

At inference, we reuse the matching head as a zero-shot consistency measure, com-
pute sentence level consistency scores for key sentences, and take differences with {pk}
to obtain an evidence text deviation vector. If |sk − pk| exceeds a threshold or lexical
triggers contradict 1{·}{pk ≥ θk}, interpretable alerts are returned to the upstream
agent for rule based quality control or human review prompts. The entire procedure
acts only on input conditions and lightweight decoding-side biases. Besides, all control
signals, include the control prefix, βk, γk, per step bias magnitudes, attention maps,
{sk, pk}, and the deviation vector are written to the audit log, providing a repro-
ducible, prunable, and case traceable evidence to text pathway. This constitutes the
generator side control interface consuming EVH and CAL.

4.5 Text-Guided Segmentation and Structured Quantification

We adopt SEEM as a text prompt controllable segmentation backbone and enable
only its language prompt channel to ensure a direct and reproducible mapping from
terminology to masks. SEEM natively supports natural language prompts for unified
segmentation; on this basis we apply a lightweight parametric adaptation without
modifying the backbone architecture or its pre-trained weights, named TRM, thereby
reducing domain shift risk while retaining its multi-prompt generalization.

Concretely, we inject LoRA low rank updates only into the key projections of
cross-modal attention, freezing SEEM’s pre-trained weights as W0 and using

W = W0 + ∆W, ∆W = BA, A ∈ Rr×din , B ∈ Rdout×r, (16)

with training time scaling α/r for optimization stability. We apply LoRA only to the
query and value projection matrices in cross-modal attention which denoted Wq,Wv.
Furthermore, all remaining encoder and decoder weights are frozen, concentrating
the learnable degrees of freedom at the interface coupling language prompts visual
features. LoRA preserves inference latency and attains adaptation with very few
parameters, while keeping backbone weights unchanged. To make the insertion explicit,
Fig. 5 illustrates the text conditioned cross adapter used in our terminology to mask
module: the visual stream emits the mask queries, the textual stream supplies K and
V, and we place LoRA only on the textual projections within cross-modal attention,
keeping all remaining weights frozen as stated above.

Given a terminology phrase t, a short entry from the Fleischner lexicon; con-
struction and cleaning of terms are specified later under terminology mask pairing
supervision, SEEM’s text encoder maps it to an embedding et. The segmentation
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Fig. 5: Text-conditioned cross adapter for terminology to mask learning
with pre-trained SEEM. The Visual Encoder provides mask queries, while the Text
Encoder supplies K and V. LoRA is inserted only on the textual K and V (optionally
Q) inside cross-modal attention, whereas visual projections remain frozen. The left
branch shows Qimg attending Ktxt, Vtxt(LoRA) and feeds the Mask Head. The optional
reverse branch lets Qimg(LoRA) attend Kimg,Vimg to stabilize terminology embeddings.
LayerNorms on the text side are lightly tuned.all other encoder and decoder weights
stay frozen.

decoder, via cross-modal attention over image features {vi}Ni=1, produces a pixel-
wise probability map P ∈ [0, 1]H×W . The training objective is restricted to standard
masked pixelwise supervision using a weighted sum of binary cross entropy and Dice:

Lseg = λbce BCE(P,Y) + λdice

(
1−Dice(P,Y)

)
, (17)

where Y is the binary ground-truth mask corresponding one-to-one to term t. This
objective drives convergence only for the LoRA parameters {A,B} and the small text-
vision projection layers; all other parameters remain frozen. At inference, we input
only the terminology phrase t as the sole prompt, obtain P, and binarize with a unified
threshold τseg:

M̂ = 1{·}{P ≥ τseg}. (18)

Throughout this backbone adaptation stage we do not introduce points, boxes,
or auxiliary detectors; we adhere strictly to SEEM’s text prompt interface and con-
fine modifications to low rank, learnable increments within cross-modal attention.
This yields a stable and controllable mapping from clinical terminology to image
regions while balancing parameter economy with nonintrusive inference. To remain
decoupled from subsequent modules, this subsection outputs only (M̂,P) as inputs to
downstream processing: TCDR refinement and uncertainty estimation are presented
next; volumetric consistency and anatomy-normalized quantification are detailed in
subsequent sections. This design preserves a clear methodological layering: here we
accomplish the minimal viable mapping text prompt to initial mask via a LoRA on
cross attention adaptation, directly interfacing clinical terms with imaging regions.
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To make text prompt to mask a verifiable and reusable supervisory signal, we
curate a controlled terminology bank from Fleischner Society thoracic imaging terms
and construct one to one terminology mask training pairs using voxel level lesion anno-
tations from HUG-ILD. We denote this terminology-to-mask supervised mapping as
TRM. On the terminology side, we extract ILD related patterns and spatial modifiers
that are unambiguously identifiable on CT from the latest Fleischner Society Glos-
sary of Terms for Thoracic Imaging , and normalize synonyms or word-order variants
into canonical short phrases; variants of traction bronchiectasis mapped to traction
bronchiectasis. The glossary provides operational definitions and imaging descriptions,
which we use as a unified criterion for subsequent positive and negative labeling.

From the full Fleischner Society glossary we first enumerated all ILD pattern and
distribution terms and then retained only those that had a direct manifestation in the
HUG-ILD voxel masks, such as reticulation, honeycombing, traction bronchiectasis
and diffuse ground-glass change, while diagnostic labels and composite phrases that
could not be mapped unambiguously to a single mask were excluded. Synonyms and
spelling variants were collapsed into a single canonical entry through a lookup table
that maps, for example, wording that mentions bronchiectatic traction or traction
bronchiolectasis to the canonical term traction bronchiectasis, and the mapping was
reviewed by two thoracic radiologists. When slices contained overlapping patterns
we preferred the more specific term, samples on which the readers could not reach
agreement were removed from TRM training, and spatial modifiers were accepted
only when the automatic distance-based check and the expert review agreed on the
assigned label.

On the data side, we use the HUG-ILD multimedia database from the Univer-
sity Hospitals of Geneva, whose HRCT series include 3D annotations of diseased
lung parenchyma and pathology-confirmed clinical information. The official descrip-
tion covers 128 patients and 108 image series, with access available upon agreement;
the resource has been used in multiple studies for ILD segmentation and analysis as
training or external validation data. Reports in the literature cite slightly different
counts, all pointing to its voxel-level annotations and public availability. In this work
we use only the voxel-level lesion masks and lung masks as the supervision source for
terminology mapping.

For sample construction, for each slice or voxel block we select patterns that align
directly with Fleischner terminology based on HUG-ILD lesion labels and reticula-
tion map directly; traction bronchiectasis follows the Fleischner definition and uses
bronchial lumen morphology annotations or small-scale derived masks reviewed by
experienced readers), yielding positive pairs (t+,Y), where t+ is the canonical term
and Y is the corresponding binary lesion mask. For terms with spatial modifiers, we
compute a distance transform D(·) to the pleural surface within the lung field and
operationalize the subpleural band as a fixed outer band. In practice we set the sub-
pleural band to comprise the outermost thirty percent of the distance to the pleural
surface within the lung field, a choice fixed after sweeping candidate fractions on the
HUG-ILD development split and comparing against radiologist judgments, and we
reuse this fraction for all cohorts. Because the band is defined as a fraction of lung
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depth rather than a fixed physical width, the resulting index remains stable across the
range of voxel spacings and reconstruction kernels present in the public datasets.

If the intersection over-union (IoU) between Y and this band meets a threshold,
IoU ≥ 0.3), the sample is labeled as subpleural; otherwise, it is labeled as the base term
reticulation. This follows common Fleischner and ATS-ERS conventions for subpleural
and basal predominance, providing a reviewable quantitative standard for mapping
terminology to space.

To reduce confusion among near-synonymous terms and improve the discriminabil-
ity of phrase trigger to pixel prediction, we construct hard negative pairs (t−,Y)
alongside each positive. Hard negatives come from two sources: (1) semantic-neighbor
negatives: for a positive honeycombing sample, choose reticulation as t−; for traction
bronchiectasis, choose bronchiectasis or cystic changeas t−; (2) topological-conflict
negatives: for spatially constrained terms, use a central lung field constrained phrase
as t−. Central versus peripheral regions are defined by quantile thresholds of D(·) , D
above the 0.5 quantile as the central band). Negatives share the same image and mask
as positives, but the phrase is semantically or spatially inconsistent with the mask,
imposing strong constraints on terminology separability during training. These neigh-
bor and conflict relations follow Fleischner definitions and HRCT reading conventions,
introducing no undefined terms or ad hoc categories.

For the loss design, we jointly optimize a pixelwise segmentation loss and a ter-
minology image contrastive consistency loss. The segmentation branch supervises the
SEEM+LoRA output P ∈ [0, 1]H×W with a weighted combination of BCE and Dice
to obtain stable region supervision:

Lseg = λbce · BCE(P,Y) + λdice ·
(
1−Dice(P,Y)

)
. (19)

The consistency branch uses the term embedding et from the SEEM text encoder
and a visual embedding obtained by mask weighted pooling within the lesion region,
zI = Pool

(
P ⊙ Φ(I)

)
, where Φ denotes the image feature extractor. A cosine margin

contrastive loss enforces higher similarity between the positive term t+ and zI than
between hard negative t− and zI :

Lcon = max
(
0, m− cos

(
zI , et+

)
+ cos

(
zI , et−

))
, (20)

where m > 0 is the margin. The overall objective is

L = Lseg + λcon Lcon. (21)

This design enforces terminology discrimination at the text level and adherence to
lesion regions at the pixel level, reducing the risk of mask drift caused by phrase
ambiguity.

We adopted paired positive and negative sampling per image. Within each mini-
batch and for the same HRCT slice, we selected one positive phrase t+ and 1–2 hard
negatives t−, sharing the same mask Y and feature map Φ(I). For phrases with spatial
modifiers, we additionally computed IoU(Y, subpleural band) as a phrase-consistency
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label and down-weight inconsistent samples early in training to suppress noisy con-
trastive signals. Under this supervision, LoRA is injected solely into the key projections
of cross-modal attention, yielding a minimal-change, reviewable supervision path from
Fleischner terminology to HUG-ILD masks.

For experiments on ReXGroundingCT, report findings are first converted to lower
case, stripped of template headers, and split into clauses by punctuation, after which
each clause is matched against the terminology bank with a longest-match dictionary
over the canonical phrases. When a clause contains both a pattern term and a spatial
qualifier, we construct one or more prompts by concatenating the matched pattern
with qualifiers such as subpleural, peripheral, basal or diffuse in a fixed order. If a clause
contains ambiguous or conflicting descriptors, for instance both diffuse and subpleural,
we keep separate prompts and treat the corresponding predictions as independent
during evaluation rather than forcing a single label. Clauses that do not yield any
match in the terminology bank are passed through verbatim as fall-back prompts
and are marked as out-of-vocabulary in the evaluation log so that their influence on
aggregate scores can be audited.

Building on the initial probability map P0 ∈ [0, 1]H×W produced by SEEM,
we introduce TCDR that conditions on the terminology phrase embedding and the
raw CT slice to refine mask boundaries and morphology, and estimates pixelwise
uncertainty via the variance across multiple samples. The head follows the standard
denoising diffusion probabilistic model (DDPM) training procedure and uses few-step
DDIM sampling at inference to reduce latency.

Let the raw slice be I, the terminology phrase t with text embedding et, and
the local image feature map Φ(I). We concatenate P0 and Φ(I) along the channel
dimension and inject et into the UNet’s cross-modal attention via a linear projec-
tion, forming the condition c = {Φ(I), P0, et}. The diffusion head learns the reverse
denoising under the forward process

q(xt |xt−1) = N
(√

αt xt−1, (1− αt)I
)
, t = 1, . . . , T, (22)

by predicting noise ϵθ(xt, t, c), with training loss

Ldiff = Ex0,ϵ,t

∥∥ϵ− ϵθ
(√

ᾱt x0 +
√
1− ᾱt ϵ, t, c

)∥∥2
2
, (23)

where x0 denotes the target probability map (a softened version of the HUG-ILD
mask) and ᾱt =

∏t
s=1 αs. To stabilize boundaries and regional coherence, we add a

pixelwise segmentation loss on the denoised reconstruction x̂0:

Lseg = λbce BCE
(
σ(x̂0), Y

)
+ λdice

(
1−Dice

(
σ(x̂0), Y

))
, (24)

where Y is the ground-truth mask paired one-to-one with t, and σ(·) is the Sigmoid.
The overall objective

LTCDR = Ldiff + λsegLseg (25)

updates only the diffusion head; the SEEM backbone and LoRA remain frozen.
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At inference, we adopt non-Markovian DDIM sampling with a small number of
steps S ≪ T , iterating

xt−1 =
√
ᾱt−1 x̂0 +

√
1− ᾱt−1 ϵ̂θ(xt, t, c), t = S, . . . , 1, (26)

where ϵ̂θ is the conditional noise estimate, yielding reconstructions x̂
(k)
0 for sample

index k. The refined probability map and binary mask are

Pref = σ(x̂0), M̂ref = 1{·}{Pref ≥ τseg}. (27)

Under the same condition c, we draw K independent DDIM samples {x̂(k)
0 }Kk=1

and compute the variance of Sigmoid probabilities per pixel:

U(i, j) = Vark
[
σ(x̂

(k)
0 (i, j))

]
, (28)

which serves as the pixelwise uncertainty map. We average U within the mask and
linearly rescale to obtain a slice-level quality score qtcdr ∈ [0, 1], used as a weight in
subsequent volumetric consistency integration.

During training, only the diffusion refinement head is added and optimized
with LTCDR until development convergence; at inference, conditioning on P0 and
{Φ(I), et}, few-step DDIM sampling returns {Pref, M̂ref, U, qtcdr}. TCDR does not
alter SEEM’s input form, requires no points or boxes, and relies only on the
terminology phrase and the raw slice for conditioning.

After obtaining slice-wise refined masks M̂ref,t and their quality scores qtcdr,t (from
TCDR), we process the same volume as an axial sequence {It}Tt=1. We propagate
and correct segmentations between adjacent slices via STM, and maintain a limited
number of candidate paths using a training-free trellis to avoid error cascading along a
single path. Concretely, for slice t, constrained by the previous slice’s final mask M⋆

t−1

and the current refined probability map Pref,t, we generate up to K candidate masks

{M̃(k)
t }Kk=1 (including a propagation candidate that reuses the previous shape aligned

to the current slice, and an evidence candidate obtained by thresholding Pref,t). For
each candidate path we maintain an accumulated score

S
(k)
t = S

(k)
t−1 + λ1 IoU

(
M̃

(k)
t ,M⋆

t−1

)
+ λ2 P

(
M̃

(k)
t

)
, (29)

where IoU measures cross-slice overlap consistency and P is the mean confidence
within the candidate mask (computed from Pref,t). This strategy uses only the two
sources of evidence established earlier and inter slice consistency and TCDR pixel
confidence Without introducing additional assumptions. At each slice we retain only
the top-K paths for the next slice. In all experiments the STM module maintained
at most K = 3 candidate paths per slice. Path scores used λ1 = 0.7 for the overlap
term and λ2 = 0.3 for the confidence term, values that were selected on the HUG-ILD
validation split by a small grid search that jointly considered Dice and HD95. Varying
K between one and five or perturbing λ1 and λ2 by 0.2 changed Dice and HD95 by less
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than the observed variation across repeated runs, so we used this single configuration
for all datasets.

After traversing the sequence, we select the full path with the highest accumulated
score, {M⋆

t }Tt=1, as the volumetric segmentation result. Based on this path, we define
a slice-level consistency score

ct = norm
(
IoU(M⋆

t ,M
⋆
t−1), P (M⋆

t )
)
∈ [0, 1], (30)

and fuse it with qtcdr,t to obtain voxel aggregation weights wt ∝ ct · qtcdr,t (normalized
such that

∑
t wt = 1), thereby down-weighting unstable slices in subsequent quantifi-

cation. These two steps are aligned with our stated objectives: use sequence continuity
to reinforce inter-slice coherence, and suppress long-range error propagation via an
out-of-training trellis, without adding new modules or extra supervision.

For anatomy normalized quantification, we obtain bilateral lung and five-lobe

masks {Llung,t,L
(ℓ)
t } from an independent model decoupled from the present task; this

model can be trained on or reused from public chest CT resources and challenges,
lung and lobar segmentation benchmarks) to ensure anatomical consistency and cross-
center reproducibility. Longstanding public challenges provide objective evaluation
contexts for lung and lobe segmentation and can serve as one reference source for our
independent anatomical segmenter. Let the per-voxel volume be vvox. We compute
three classes of volume-level metrics via voxelwise weighted aggregation:

(1) Overall fibrosis burden:

η ≜ %Fib =

∑
t wt

∑
(x,y)∈Ωlung,t

1{·}[Mt(x, y) = 1] vvox∑
t wt

∣∣Ωlung,t

∣∣ vvox × 100% . (31)

(2) Lobar and side distribution:

πℓ =

∑
t wt

∣∣M⋆
t ∩ L

(ℓ)
t

∣∣∑
t wt

∣∣M⋆
t ∩ Llung,t

∣∣ , πR/L =
∑

ℓ∈R/L

πℓ. (32)

(3) Subpleural preference and distance percentiles: within the lungs, compute a
normalized pleural distance Dt(x) ∈ [0, 1] (0 at the pleura, 1 toward the hilum), and
operationalize the subpleural region by the outer band Bt(α) = {x ∈ Llung,t | Dt(x) ≤
α} (with α fixed on the development set). Then,

ρsubpleural =

∑
t wt

∣∣M⋆
t ∩ Bt(α)

∣∣∑
t wt

∣∣M⋆
t ∩ Llung,t

∣∣ , Qp = Quantilep
(
{Dt(x) | x ∈ M⋆

t }
)
. (33)

The imaging meaning and usage conventions of spatial terms such as subpleural and
basal predominance can be cross-checked with the Fleischner glossary; translating
them into quantitative definitions via distance thresholds and percentiles facilitates
consistent review across centers and acquisition protocols.

Finally, we serialize %-fibrosis, {πℓ}, ρsubpleural, {Q25, Q50, Q75}, and the time series
{ct} into a structured quantitative output, accompanied by template descriptions
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aligned with Fleischner terminology, for VILA-M3 to perform cross-modal consistency
checks and auditable logging. The voxel-level annotations and clinical conventions
provided by HUG-ILD furnish a reviewable data basis for the closed loop spanning
terminology with mask alignment, TCDR refinement quality, and volume-level quan-
tification. We report Q25, Q50 and Q75 as the empirical quartiles of this distance
distribution within the final lesion mask for each study and keep this definition fixed
for all cohorts so that the indices are comparable across scanners.

4.6 VILA-M3 Cross-modal Consistency Auditing

As the system’s top-level controller, VILA-M3 coordinates the CXR language agent
and the CT segmentation, a quantification agent through a standardized tool-calling
framework, and enforces a structured cross-modal consistency audit to support clinical
trustworthiness and traceability. The complete workflow and key technical steps are
as follows.

VILA-M3 first triggers the CXR language agent’s classification interface to obtain
two core outputs: (i) the temperature-calibrated four-dimensional ILD finding proba-
bility vector pILD corresponding to fibrosis and (ii) the set of template phrases trig-
gered by high-confidence findings, T (pILD). High-confidence findings are selected using
decision thresholds {θk} optimized on the validation set for k ∈ {fib, ret, hon, tbe},
determined by the indicator

I{pk ≥ θk}. (34)

Only when a finding meets its threshold is the corresponding template phrase included
in T (pILD). When a calibrated probability pk falls below its threshold θk, the corre-
sponding template phrase is not included in T (pILD) and the control prefix carries only
the numerical value pk, so near threshold fluctuations change the strength of the soft
bias but do not generate a categorical positive statement. VILA-M3 then normalizes
the phrases in T (pILD) according to the Fleischner Society Glossary, translating quali-
tative CXR findings into standard terminology prompts required by CT segmentation
to ensure semantic consistency across modalities.

After processing CXR-side evidence, VILA-M3 invokes two core interfaces of the
CT segmentation. First, the slice-level segmentation interface is called, feeding the
normalized terminology prompts slice by slice to obtain, for each CT slice i (i =
1, 2, . . . , N , where N is the number of slices), a binary lesion mask Mi and a slice-level
quality score qi. Here qi is computed by averaging the pixelwise uncertainty map Ui

(from TCDR) within Mi and linearly rescaling to [0, 1], reflecting the reliability of the
slice segmentation. Second, the series-level aggregation interface uses pre-computed
whole-lung and lobar anatomical masks to spatially align and quantify {Mi} in 3D,
returning three structured metrics together with visualizations of lesion masks overlaid
on CT: the whole-lung lesion volume percentage

η =

∑N
i=1 |Mi|∑N
i=1 |Li|

× 100%, (35)
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where Li is the lung mask for slice i and | · | counts voxels; the lobar distribution bias

∆lobe =

∑N
i=1 |Mi,low| −

∑N
i=1 |Mi,up|∑N

i=1 |Mi|
, (36)

where Mi,low and Mi,up denote lower- and upper-lobe lesion masks on slice i; and the
subpleural lesion percentage

γ =

∑N
i=1 |Mi,sub|∑N

i=1 |Mi|
× 100%, (37)

where Mi,sub denotes the lesion mask within the subpleural band on slice i.
For each study we reuse these indices to define term level audit deviations. Sub-

pleural claims are mapped to the scalar index γ and lower lobe predominance claims
are mapped to ∆lobe, and in both cases we compute an absolute deviation between
the normalized textual claim and the corresponding CT index. A claim is considered
supported when this deviation is not greater than the global tolerance ϵ introduced
above. For reporting we define Consistency@term by restricting to studies that con-
tain at least one audited claim and marking a study as consistent when all of its
audited claims are supported under this rule. Consistency@term is the proportion of
such studies within the evaluation set.

With CXR-side structured report fragments, including finding descriptions and
preliminary clinical conclusions) and CT-side quantitative metrics and visualizations
in hand, VILA-M3 integrates multi-source information following the logic of clini-
cal radiology reporting to produce a composite report containing narrative text, key
quantitative data, and visual materials. To ensure cross-modal consistency, VILA-M3
simultaneously performs a standardized audit by constructing quantitative criteria

∆audit =
∣∣ stext − sCT

∣∣ ≤ ϵ, (38)

where stext is a qualitative mapping of the textual statement, subpleural predominant
mapped to 0.6, lower lobe predominant mapped to 0.6), sCT is the normalized value of
the corresponding CT metric, γ or |∆lobe|), and ϵ is a tolerance. In our implementation
we set ϵ = 0.18, chosen on the HUG-ILD validation split by sweeping values between
0.10 and 0.25 and selecting the smallest value that kept at least ninety percent of cases
judged consistent by an internal radiologist review while still flagging a meaningful
fraction of mismatches. We repeated this sweep after stratifying cases by ILD subtype
and by lower-lobe versus upper-lobe predominant involvement and found that the
optimal ϵ varied by at most 0.02, so we adopted a single global tolerance rather
than subtype-specific thresholds. If ∆audit > ϵ, VILA-M3 highlights the discrepancy
in the report and includes the numeric deviation for subsequent expert review or
system-triggered secondary calibration.

Throughout the process, VILA-M3 enforces a fixed interface call order and stan-
dardized data exchange formats to ensure stable and reproducible module cooperation.
All core intermediates for a given study, including pILD, the class thresholds, the
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selected phrase list T (pILD), the control prefix and sentence level consistency scores,
the slice masks {Mi}, the diffusion based uncertainty maps {Ui} and quality scores
{qi}, the aggregate CT indices η, ∆lobe and γ, and the term level audit decisions
together with their deviations, are centrally stored by VILA-M3 as a single audit
record. Optional artefacts such as rendered overlays and prototype trajectory plots
are generated from this record and are not required to reconstruct the evidence chain.

4.7 Ethics approval and consent to participate

Not applicable. This work uses de-identified, publicly available datasets released under
their respective data-use policies; no new human data were collected.

4.8 Consent for publication

Not applicable. This work exclusively utilizes de-identtified datasets available from
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<latexit sha1_base64="bHgKRXLwvEfmKmdK4/qGLXTShGw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LFbBU0mkoseCF48VTVtoQ9lsJ+3SzSbsboRS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fCoqZNMMfRZIhLVDqlGwSX6hhuB7VQhjUOBrXB0O/NbT6g0T+SjGacYxHQgecQZNVZ68Hter1xxq+4cZJV4OalAjkav/NXtJyyLURomqNYdz01NMKHKcCZwWupmGlPKRnSAHUsljVEHk/mpU3JulT6JEmVLGjJXf09MaKz1OA5tZ0zNUC97M/E/r5OZ6CaYcJlmBiVbLIoyQUxCZn+TPlfIjBhbQpni9lbChlRRZmw6JRuCt/zyKmleVr1a9eq+Vqmf5XEU4QRO4QI8uIY63EEDfGAwgGd4hTdHOC/Ou/OxaC04+cwx/IHz+QPP4Y1n</latexit>

UT�1

<latexit sha1_base64="8EMhqp9gppw7heZIKDNP+8S/zZc=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LFbBiyWRih4LXjxWaGyhDWWznbZLN5uwuxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzwkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjRx2niqHPYhGrdkg1Ci7RN9wIbCcKaRQKbIXju5nfekKleSybZpJgENGh5APOqLFSy+9lzUtv2itX3Ko7B1klXk4qkKPRK391+zFLI5SGCap1x3MTE2RUGc4ETkvdVGNC2ZgOsWOppBHqIJufOyXnVumTQaxsSUPm6u+JjEZaT6LQdkbUjPSyNxP/8zqpGdwGGZdJalCyxaJBKoiJyex30ucKmRETSyhT3N5K2IgqyoxNqGRD8JZfXiWPV1WvVr1+qFXqZ3kcRTiBU7gAD26gDvfQAB8YjOEZXuHNSZwX5935WLQWnHzmGP7A+fwBpWGPCA==</latexit>

UT

<latexit sha1_base64="lmSrQdu+KyHpV8dPmkblmzdBNLQ=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LFbBU0mkoseCF48VmrbQhrLZbtulm03YnQgl9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5YSKFQdf9dgobm1vbO8Xd0t7+weFR+fikZeJUM+6zWMa6E1LDpVDcR4GSdxLNaRRK3g4n93O//cS1EbFq4jThQURHSgwFo2gl3+9nzVm/XHGr7gJknXg5qUCORr/81RvELI24QiapMV3PTTDIqEbBJJ+VeqnhCWUTOuJdSxWNuAmyxbEzcmmVARnG2pZCslB/T2Q0MmYahbYzojg2q95c/M/rpji8CzKhkhS5YstFw1QSjMn8czIQmjOUU0so08LeStiYasrQ5lOyIXirL6+T1nXVq1VvHmuV+kUeRxHO4ByuwINbqMMDNMAHBgKe4RXeHOW8OO/Ox7K14OQzp/AHzucPyW+Olg==</latexit>

STM ···
mask

M0

<latexit sha1_base64="DxbOiX9E1PvNfWmyjU4FOatyjIA=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSp4KolU9Fjw4kWoaD+gDWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz321lZXVvf2CxsFbd3dvf2SweHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWMbqZ+6wmV5rF8NOME/YgOJA85o8ZKD3c9t1cquxV3BrJMvJyUIUe9V/rq9mOWRigNE1Trjucmxs+oMpwJnBS7qcaEshEdYMdSSSPUfjY7dULOrNInYaxsSUNm6u+JjEZaj6PAdkbUDPWiNxX/8zqpCa/9jMskNSjZfFGYCmJiMv2b9LlCZsTYEsoUt7cSNqSKMmPTKdoQvMWXl0nzouJVK5f31XLtNI+jAMdwAufgwRXU4Bbq0AAGA3iGV3hzhPPivDsf89YVJ585gj9wPn8Awi2NXg==</latexit>

M1

<latexit sha1_base64="O6uA+OL6qNz31FEiSibyyN50pPg=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSp4KolU9Fjw4kWoaD+gDWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz321lZXVvf2CxsFbd3dvf2SweHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWMbqZ+6wmV5rF8NOME/YgOJA85o8ZKD3c9r1cquxV3BrJMvJyUIUe9V/rq9mOWRigNE1Trjucmxs+oMpwJnBS7qcaEshEdYMdSSSPUfjY7dULOrNInYaxsSUNm6u+JjEZaj6PAdkbUDPWiNxX/8zqpCa/9jMskNSjZfFGYCmJiMv2b9LlCZsTYEsoUt7cSNqSKMmPTKdoQvMWXl0nzouJVK5f31XLtNI+jAMdwAufgwRXU4Bbq0AAGA3iGV3hzhPPivDsf89YVJ585gj9wPn8Aw7GNXw==</latexit>

MT�1

<latexit sha1_base64="mTtWuQnVNUrG0fH+JD+0p8pITKk=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBqPgxbArET0GvHgRIuQFyRJmJ5NkyOzsMtMrhCUf4cWDIl79Hm/+jZNkD5pY0FBUddPdFcRSGHTdbye3tr6xuZXfLuzs7u0fFA+PmiZKNOMNFslItwNquBSKN1Cg5O1YcxoGkreC8d3Mbz1xbUSk6jiJuR/SoRIDwShaqfXQS+uX3rRXLLlldw6ySryMlCBDrVf86vYjloRcIZPUmI7nxuinVKNgkk8L3cTwmLIxHfKOpYqG3Pjp/NwpObdKnwwibUshmau/J1IaGjMJA9sZUhyZZW8m/ud1Ehzc+qlQcYJcscWiQSIJRmT2O+kLzRnKiSWUaWFvJWxENWVoEyrYELzll1dJ86rsVcrXj5VS9SyLIw8ncAoX4MENVOEeatAABmN4hld4c2LnxXl3PhatOSebOYY/cD5/AJkRjwA=</latexit>

MT

<latexit sha1_base64="7ZklSwrnPdP37IlqCpsqdEVfP3g=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LFbBU0mkoseCFy9ChcYW2lI220m7dLMJuxuhhP4GLx4U8eoP8ua/cdvmoK0PBh7vzTAzL0gE18Z1v53C2vrG5lZxu7Szu7d/UD48etRxqhj6LBaxagdUo+ASfcONwHaikEaBwFYwvp35rSdUmseyaSYJ9iI6lDzkjBor+ff9rDntlytu1Z2DrBIvJxXI0eiXv7qDmKURSsME1brjuYnpZVQZzgROS91UY0LZmA6xY6mkEepeNj92Ss6tMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zOqkJb3oZl0lqULLFojAVxMRk9jkZcIXMiIkllClubyVsRBVlxuZTsiF4yy+vksfLqlerXj3UKvWzPI4inMApXIAH11CHO2iADww4PMMrvDnSeXHenY9Fa8HJZ47hD5zPH70vjo4=</latexit>

Quantitative indicators Q

<latexit sha1_base64="6zPXdmyDAIB7dB7g5t6q8usRIQg=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSp4KolU9Fjw4rEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WDmSToR3QoecgZNVZqNPqlsltx5yCrxMtJGXLU+6Wv3iBmaYTSMEG17npuYvyMKsOZwGmxl2pMKBvTIXYtlTRC7WfzQ6fkwioDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDWz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m6INwVt+eZW0ripetXLdqJZr53kcBTiFM7gED26gBvdQhyYwQHiGV3hzHp0X5935WLSuOfnMCfyB8/kDpK+Mvw==</latexit>

CXR Branch

CTprojection

Consistency score

V

<latexit sha1_base64="DwXBkFS+wFcQF8YkW/wJuWmHB9U=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0ikoseCF48t2A9oQ9lsp+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8MBFcG8/7dgobm1vbO8Xd0t7+weFR+fikpeNUMWyyWMSqE1KNgktsGm4EdhKFNAoFtsPJ3dxvP6HSPJYPZppgENGR5EPOqLFSo9UvVzzXW4CsEz8nFchR75e/eoOYpRFKwwTVuut7iQkyqgxnAmelXqoxoWxCR9i1VNIIdZAtDp2RC6sMyDBWtqQhC/X3REYjradRaDsjasZ61ZuL/3nd1Axvg4zLJDUo2XLRMBXExGT+NRlwhcyIqSWUKW5vJWxMFWXGZlOyIfirL6+T1pXrV93rRrVSc/M4inAG53AJPtxADe6hDk1ggPAMr/DmPDovzrvzsWwtOPnMKfyB8/kDr0WMzg==</latexit>

Visual condition: 
Context: 

V

<latexit sha1_base64="DwXBkFS+wFcQF8YkW/wJuWmHB9U=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0ikoseCF48t2A9oQ9lsp+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8MBFcG8/7dgobm1vbO8Xd0t7+weFR+fikpeNUMWyyWMSqE1KNgktsGm4EdhKFNAoFtsPJ3dxvP6HSPJYPZppgENGR5EPOqLFSo9UvVzzXW4CsEz8nFchR75e/eoOYpRFKwwTVuut7iQkyqgxnAmelXqoxoWxCR9i1VNIIdZAtDp2RC6sMyDBWtqQhC/X3REYjradRaDsjasZ61ZuL/3nd1Axvg4zLJDUo2XLRMBXExGT+NRlwhcyIqSWUKW5vJWxMFWXGZlOyIfirL6+T1pXrV93rRrVSc/M4inAG53AJPtxADe6hDk1ggPAMr/DmPDovzrvzsWwtOPnMKfyB8/kDr0WMzg==</latexit>

(PEVH, Q)

<latexit sha1_base64="CikgO4IDLnpMhKmXga+BNMlRBMI=">AAAB/HicbVDLSsNAFJ34rPUV7dLNYBEqSEmkosuCCF22YB/QhjCZTtqhkwczN2IJ8VfcuFDErR/izr9x2mahrQcuHM65l3vv8WLBFVjWt7G2vrG5tV3YKe7u7R8cmkfHHRUlkrI2jUQkex5RTPCQtYGDYL1YMhJ4gnW9ye3M7z4wqXgU3sM0Zk5ARiH3OSWgJdcsVZpuOgD2COldp5FlF7h17pplq2rNgVeJnZMyytF0za/BMKJJwEKggijVt60YnJRI4FSwrDhIFIsJnZAR62sakoApJ50fn+EzrQyxH0ldIeC5+nsiJYFS08DTnQGBsVr2ZuJ/Xj8B/8ZJeRgnwEK6WOQnAkOEZ0ngIZeMgphqQqjk+lZMx0QSCjqvog7BXn55lXQuq3atetWqlevVPI4COkGnqIJsdI3qqIGaqI0omqJn9IrejCfjxXg3Phata0Y+U0J/YHz+AHF7k+4=</latexit>

• Orchestration 
• Fusion 
• Auditing 
• Provenance 
• Fallback

S

<latexit sha1_base64="kXbM9KybhCP59sHmIeLfY9xNQRU=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0ikoseCF48t2lpoQ9lsJ+3azSbsboRS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8MBVcG8/7dgpr6xubW8Xt0s7u3v5B+fCopZNMMWyyRCSqHVKNgktsGm4EtlOFNA4FPoSjm5n/8IRK80Tem3GKQUwHkkecUWOlxl2vXPFcbw6ySvycVCBHvVf+6vYTlsUoDRNU647vpSaYUGU4EzgtdTONKWUjOsCOpZLGqIPJ/NApObNKn0SJsiUNmau/JyY01noch7Yzpmaol72Z+J/XyUx0HUy4TDODki0WRZkgJiGzr0mfK2RGjC2hTHF7K2FDqigzNpuSDcFffnmVtC5cv+peNqqVmpvHUYQTOIVz8OEKanALdWgCA4RneIU359F5cd6dj0VrwclnjuEPnM8fqrmMyw==</latexit>
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pa and lateral chest radiographs were provided . the 
cardiomediastinal silhouetteis is unremarkable . there is a 
subtle opacityin the right lower lobe that is concerningfor early 
pneumonia . there is linearscarring in the left upper lobe from 
area of prior pneumonia that has resolved . thelungs are 
hyperinflated and the diaphragmsare flattened consistent with 
copd . there is no pleural effusion or pneumothorax there are 
no acute osseous lesions

Original image
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BioViL-T based baseline (Fine-tuned): (Lateral chest radiograph: Ribs, thoracic vertebrae 
(darker inferiorly normally); cardiac silhouette (aerated lung 
behind);diaphragms/costophrenic angles (sharp normally, blunting = small effusion); major 
lung fields (no obvious consolidation/effusion); 

GPT5-Thinking: Key Findings
• Ribs and thoracic vertebrae forming the posterior chest wall;
• Major lung fields without an obvious focal consolidation or large pleural effusion on 

this small image...

LLAVA-Med: cardiomediastinal silhouette unremarkable. Subtle opacity in the left lower lobe 
suggesting early pneumonia. Lungs hyperinflated with flattened diaphragms consistent with COPD. 
Trace pleural effusion, no pneumothorax, osseous lesions.

Med-PaLM M: Subtle right-lower-lobe opacity concerning for early pneumonia. Linear scarring 
in the right upper lobe from prior infection. Lungs hyperinflated with flattened diaphragms 
(consistent with COPD). No pleural effusion, no pneumothorax,.

cardiomediastinal silhouette unremarkable. Subtle right-lower-lobe opacity concerning for 
early pneumonia, and no evidence of pneumothorax. Heart size is mildly enlarged. Linear 
scarring in the left lobe from prior pneumonia (resolved). Lungs hyperinflated with flattened 
diaphragms consistent with COPD. No pleural effusion, no acute osseous abnormalities is 
present.



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

a. b.



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

Self-attention Self-attention

Cross-attentionCross-attention
LayerNorm

Multi-head 
Cross-Attention

LayerNorm

Multi-head 
Cross-Attention

Visual Encoder Text Encoder

× M

Frozen
Embed PositionTunable
Sum

Mask Head

Lora

MLP

LoRA A

LoRA B
MLP

LayerNorm LayerNorm

Q

<latexit sha1_base64="mZVlhqwuwXvPbIXawmipclUsQ0o=">AAAB6HicdVDLSgMxFM3UV62vqks3wSK4GtJ26owbKbhx2YJ9QDuUTJppYzOZIckIZegXuHGhiFs/yZ1/Y/oQVPTAhcM593LvPUHCmdIIfVi5tfWNza38dmFnd2//oHh41FZxKgltkZjHshtgRTkTtKWZ5rSbSIqjgNNOMLme+517KhWLxa2eJtSP8EiwkBGsjdRsDoolZFcd5DoIIrviua7nGVK7vHArVVi20QIlsEJjUHzvD2OSRlRowrFSvTJKtJ9hqRnhdFbop4ommEzwiPYMFTiiys8Wh87gmVGGMIylKaHhQv0+keFIqWkUmM4I67H67c3Fv7xeqkPPz5hIUk0FWS4KUw51DOdfwyGTlGg+NQQTycytkIyxxESbbAomhK9P4f+kXbHLjl1rOqX61SqOPDgBp+AclIEL6uAGNEALEEDBA3gCz9ad9Wi9WK/L1py1mjkGP2C9fQIuV40z</latexit>

V

<latexit sha1_base64="oQRgKEyiTf6QV90Seq2ojIm5yqc=">AAAB6HicdVDLSsNAFJ3UV62vqks3g0VwFSY1NXFXcOOyBfuANpTJdNKOnUzCzEQooV/gxoUibv0kd/6N04egogcuHM65l3vvCVPOlEbowyqsrW9sbhW3Szu7e/sH5cOjtkoySWiLJDyR3RArypmgLc00p91UUhyHnHbCyfXc79xTqVgibvU0pUGMR4JFjGBtpGZ7UK4g+8JFnosgsqu+5/m+IbWrS696AR0bLVABKzQG5ff+MCFZTIUmHCvVc1CqgxxLzQins1I/UzTFZIJHtGeowDFVQb44dAbPjDKEUSJNCQ0X6veJHMdKTePQdMZYj9Vvby7+5fUyHflBzkSaaSrIclGUcagTOP8aDpmkRPOpIZhIZm6FZIwlJtpkUzIhfH0K/yftqu24dq3pVupoFUcRnIBTcA4c4IE6uAEN0AIEUPAAnsCzdWc9Wi/W67K1YK1mjsEPWG+fMbWNKg==</latexit>

K

<latexit sha1_base64="1r6Qz1q5hZxZQVxTiSLfS2AUvsA=">AAAB6HicdVDLSgMxFM3UV62vqks3wSK4GtJ26oy7ghvBTQv2Ae1QMmmmjc1khiQjlKFf4MaFIm79JHf+jelDUNEDFw7n3Mu99wQJZ0oj9GHl1tY3Nrfy24Wd3b39g+LhUVvFqSS0RWIey26AFeVM0JZmmtNuIimOAk47weRq7nfuqVQsFrd6mlA/wiPBQkawNlLzZlAsIbvqINdBENkVz3U9z5Da5YVbqcKyjRYogRUag+J7fxiTNKJCE46V6pVRov0MS80Ip7NCP1U0wWSCR7RnqMARVX62OHQGz4wyhGEsTQkNF+r3iQxHSk2jwHRGWI/Vb28u/uX1Uh16fsZEkmoqyHJRmHKoYzj/Gg6ZpETzqSGYSGZuhWSMJSbaZFMwIXx9Cv8n7Ypdduxa0ynV0SqOPDgBp+AclIEL6uAaNEALEEDBA3gCz9ad9Wi9WK/L1py1mjkGP2C9fQIhCY0f</latexit>

K

<latexit sha1_base64="xvtFGFJCs4dgLj1M71tTJrIfHRU=">AAAB6HicdVDLSgMxFM3UV62vqks3wSK4GjLt6LS7ghvBTQv2Ae1QMmmmjc1khiQjlKFf4MaFIm79JHf+jelDUNEDFw7n3Mu99wQJZ0oj9GHl1tY3Nrfy24Wd3b39g+LhUVvFqSS0RWIey26AFeVM0JZmmtNuIimOAk47weRq7nfuqVQsFrd6mlA/wiPBQkawNlLzZlAsIbvmeQ5yILK96mWtVjGkXHFdtwwdGy1QAis0BsX3/jAmaUSFJhwr1XNQov0MS80Ip7NCP1U0wWSCR7RnqMARVX62OHQGz4wyhGEsTQkNF+r3iQxHSk2jwHRGWI/Vb28u/uX1Uh1W/YyJJNVUkOWiMOVQx3D+NRwySYnmU0MwkczcCskYS0y0yaZgQvj6FP5P2mXbce2Lpluqo1UceXACTsE5cIAH6uAaNEALEEDBA3gCz9ad9Wi9WK/L1py1mjkGP2C9fQIcFo0b</latexit>

V

<latexit sha1_base64="R5BXPHNJed0J2+JRvsBzDRKEw5c=">AAAB6HicdVDLSsNAFJ3UV62vqks3g0VwFZIaTbsruHHZgn1AG8pketuOnUzCzEQooV/gxoUibv0kd/6N04egogcuHM65l3vvCRPOlHacDyu3tr6xuZXfLuzs7u0fFA+PWipOJYUmjXksOyFRwJmApmaaQyeRQKKQQzucXM/99j1IxWJxq6cJBBEZCTZklGgjNVr9Ysmxq77vOi52bL9yVa1eGFK+8DyvjF3bWaCEVqj3i++9QUzTCISmnCjVdZ1EBxmRmlEOs0IvVZAQOiEj6BoqSAQqyBaHzvCZUQZ4GEtTQuOF+n0iI5FS0yg0nRHRY/Xbm4t/ed1UDytBxkSSahB0uWiYcqxjPP8aD5gEqvnUEEIlM7diOiaSUG2yKZgQvj7F/5NW2XY9+7LhlWrOKo48OkGn6By5yEc1dIPqqIkoAvSAntCzdWc9Wi/W67I1Z61mjtEPWG+fLMKNJg==</latexit>

Q

<latexit sha1_base64="InIySJjQOp/GZOqRYsNjJb8Giss=">AAAB6HicdVDJSgNBEO2JW4xb1KOXxiB4GnpCJjG3gBePCZgFkiH0dGqSNj0L3T1CGPIFXjwo4tVP8ubf2FkEFX1Q8Hiviqp6fiK40oR8WLmNza3tnfxuYW//4PCoeHzSUXEqGbRZLGLZ86kCwSNoa64F9BIJNPQFdP3p9cLv3oNUPI5u9SwBL6TjiAecUW2kVmtYLBG7Wi8Tt4qJ7bp1Ui0b4tTqbqWMHZssUUJrNIfF98EoZmkIkWaCKtV3SKK9jErNmYB5YZAqSCib0jH0DY1oCMrLlofO8YVRRjiIpalI46X6fSKjoVKz0DedIdUT9dtbiH95/VQHV17GoyTVELHVoiAVWMd48TUecQlMi5khlElubsVsQiVl2mRTMCF8fYr/J52y7VRst1UpNcg6jjw6Q+foEjmohhroBjVRGzEE6AE9oWfrznq0XqzXVWvOWs+coh+w3j4BII+NHg==</latexit>

K

<latexit sha1_base64="XvG7ypC8+VLB2pcNplkbZIp4MEM=">AAAB6HicdVDJSgNBEO2JW4xb1KOXxiB4Gnpi1lvAi+AlAZMIyRB6OjVJm56F7h4hDPkCLx4U8eonefNv7CyCij4oeLxXRVU9LxZcaUI+rMza+sbmVnY7t7O7t3+QPzzqqCiRDNosEpG89agCwUNoa64F3MYSaOAJ6HqTy7nfvQepeBTe6GkMbkBHIfc5o9pIretBvkDsSp049QomdrlCqrWSIU6NXNSL2LHJAgW0QnOQf+8PI5YEEGomqFI9h8TaTanUnAmY5fqJgpiyCR1Bz9CQBqDcdHHoDJ8ZZYj9SJoKNV6o3ydSGig1DTzTGVA9Vr+9ufiX10u0X3NTHsaJhpAtF/mJwDrC86/xkEtgWkwNoUxycytmYyop0yabnAnh61P8P+kUbadkl1ulQoOs4siiE3SKzpGDqqiBrlATtRFDgB7QE3q27qxH68V6XbZmrNXMMfoB6+0TGRKNGQ==</latexit>
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