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Early and accessible detection of Alzheimer’s disease (AD) remains a major clinical challenge. We
developed a machine learning—based blood transcriptomic model, the Lactylation-Derived Score
(LDS), from lactylation-related genes across nine AD cohorts, using a standardized pipeline with
z-score normalization, random forest-based feature screening, plsRglm modeling, and 10-fold cross-
validation. LDS was externally tested in seven independent brain transcriptomic datasets and clinically
validatedin anindependent plasma cohort (n = 540); logistic regression was used to integrate LDS with
plasma phosphorylated tau 181 (p-tau181) and p-tau217. LDS achieved an AUC of 0.897 (95% CI
0.849-0.934) in the Training Cohort and 0.772 (95% CI 0.729-0.815) in the plasma validation cohort,
while the three-marker model (LDS + p-tau181 + p-tau217) yielded the highest diagnostic
performance (AUC 0.859, 95% CI 0.824-0.893). LDS alone effectively identified AT individuals (AUC
0.861,95% C10.827-0.897), and a five-gene classifier derived from LDS genes stratified amnestic mild
cognitive impairment with an AUC of 0.809 (95% CI 0.714-0.836). LDS-high individuals showed
neuroinflammatory activation and metabolic stress signatures, indicating that this scalable,
interpretable transcriptomic model complements plasma p-tau biomarkers and supports precision

digital medicine in AD.

Alzheimer’s disease (AD) is a chronic and progressive neurodegenerative
disorder and the leading cause of dementia in the elderly population™”.
Clinically, AD manifests as gradual cognitive decline, behavioral changes,
and loss of independence, profoundly affecting patients’ quality of life and
creating a major burden for caregivers and healthcare systems™. With the
rapid global population aging, its incidence and prevalence continue to rise,
posing a pressing public health challenge'”. Despite advances in elucidating
its core pathological hallmarks—including amyloid-p (Ap) deposition, tau
hyperphosphorylation, synaptic dysfunction, and neuroinflammation—
early identification of individuals at risk remains an unmet clinical need”™".
In high-risk or prodromal conditions, such as amnestic mild cognitive
impairment (aMCI), which confers an elevated risk of AD conversion but is

not synonymous with early AD, symptoms are often subtle and may escape
detection by conventional cognitive tests or neuroimaging™'’. Although
cerebrospinal fluid (CSF) biomarkers offer diagnostic value, their inva-
siveness and cost limit their use in large-scale population screening''. These
limitations underscore the need for non-invasive, biologically informative
biomarkers to support early risk stratification and clinical decision-
making in AD.

Recent research has underscored the value of blood-based biomarkers
such as plasma phosphorylated tau 181 (p-taul81), phosphorylated tau 217
(p-tau217), neurofilament light chain (NfL), and Ap42/40 in AD diagnosis
and progression monitoring. However, most of these biomarkers are cen-
tered around classical AD hallmarks and may not capture the full spectrum
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of molecular disruptions, including metabolic or epigenetic alterations'>".

Thus, exploring novel molecular mechanisms and peripheral indicators
beyond the Ap-tau axis is vital to advance early detection.

Lactate, traditionally regarded as a glycolytic byproduct, is now
recognized as a key metabolic regulator with signaling functions in immune
response, energy metabolism, and cellular adaptation'*"®. Lactylation, a
recently discovered post-translational modification, represents a direct
molecular link between glycolysis and epigenetic gene regulation'”™*’. Dys-
regulated lactylation has been implicated in cancer, infection, and several
neurological conditions, yet its role in AD remains largely unexplored.

In this study, we developed a Lactylation-Derived Score (LDS) to
translate lactylation-related molecular signatures into a non-invasive,
clinically actionable biomarker framework for AD. Using a two-stage
machine-learning pipeline on multi-cohort brain transcriptomic data, we
derived a seven-gene LDS model with high and stable diagnostic perfor-
mance, which was further validated in an independent clinical plasma
cohort. LDS scores correlated with Braak stage and Mini-Mental State
Examination (MMSE), showed a stepwise increase from normal controls
(NC) to aMCI and AD, and, when combined with plasma p-taul81 and
p-tau217 via logistic regression, improved detection of AD and amyloid-tau
positive (AT") individuals. Collectively, LDS represents a mechanistically
informed, interpretable blood-based tool with translational potential for
early detection and patient stratification in AD. An overview of the study
design is presented in Fig. 1.

Results

Transcriptomic profiling reveals chromatin- and mitochondria-
related lactylation alterations in AD

To identify lactylation-related genes with potential regulatory roles in AD,
we integrated transcriptomic data from the GSE5281 and GSE84422
datasets and constructed a unified Training Cohort after batch effect cor-
rection (Supplementary Fig. 1). Based on this combined dataset, differential
expression analysis revealed 163 lactylation-related genes that were sig-
nificantly dysregulated between AD and NC groups (P < 0.05, Supple-
mentary Fig. 2A). Functional enrichment analysis using KEGG and GO
showed that the upregulated genes were primarily involved in ATP-
dependent chromatin remodeling, spliceosome assembly, and epigenetic
transcriptional regulation (Supplementary Fig. 2B-C), suggesting a strong
association with chromatin structure remodeling in neurons. In contrast,
downregulated genes were significantly enriched in pathways related to AD
pathogenesis, mitochondrial respiratory chain activity, and protein pro-
cessing in the endoplasmic reticulum. Corresponding GO terms highlighted
“mitochondrial structure” and “synaptic function” (Supplementary Fig.
2D-E). These findings indicate that lactylation dysregulation in AD may be
subtype-specific and mechanistically linked to both epigenetic alterations
and metabolic disturbances in neurons, potentially contributing to disease
onset and progression.

Lactylation-based subtyping reveals metabolic-immune diver-
gence in AD patients
To investigate the potential heterogeneity of lactylation modification in AD
patients, consensus clustering was performed on the Training Cohort based
on lactylation scores. Evaluation of the CDF curve and delta area plot
indicated that K= 2 was the optimal clustering solution (Fig. 2A-C). The
resulting subtypes were designated Cluster 1 and Cluster 2, with Cluster 1
showing significantly higher lactylation scores than Cluster 2 (Fig. 2D).
Differential gene expression and enrichment analyses revealed that
upregulated genes in Cluster 1 were significantly enriched in pathways
related to oxidative phosphorylation, mitochondrial electron transport, and
ATP metabolism. KEGG analysis also showed strong enrichment in neu-
rodegenerative disease-related pathways, including “Alzheimer’s disease”
and “Parkinson’s disease” (Fig. 2E, Supplementary Fig. 3A). GSVA further
demonstrated that Cluster 1 exhibited enhanced activity in pathways related
to neuronal metabolism and synaptic function, indicating a more meta-
bolically active profile (Fig. 2F).

In contrast, immune profiling based on multiple algorithms (MCP-
counter, xCell, quanTIseq, and IPS) revealed that Cluster 2 displayed higher
levels of immune cell infiltration and immune activation scores, including
significant upregulation of Tregs, plasmacytoid dendritic cells (pDCs), and
neutrophils (Fig. 2G, H). Moreover, immune checkpoint genes such as
CTLA4, PDCD1, TNFRSF8, TNFRSF9, TNFRSF14, TNESF14, and PVR
were significantly overexpressed in Cluster 2 (Fig. 2I). Despite lower lacty-
lation levels, Cluster 2 exhibited stronger immune activation, suggesting that
the relationship between lactylation status and immune phenotype may be
modulated by additional signaling pathways or regulatory factors.

Further analysis revealed distinct expression patterns between the two
subtypes across various immune-related gene categories, including che-
mokines, immunostimulatory molecules, MHC genes, and immune
receptors, supporting the immunological divergence of the two lactylation-
defined AD subtypes (Supplementary Fig. 3B-E).

Development and validation of the LDS model for AD diagnosis

Based on the previously defined LDS model constructed from 113
candidate machine-learning pipelines, we next evaluated its diagnostic
performance across multiple cohorts. In the Training Cohort, LDS
achieved an AUC of 0.897 (95% CI: 0.849-0.934), with a sensitivity of
83.5% (95% CI: 75.8-89.0%), specificity of 80.4% (95% CI: 71.6-86.9%),
and overall accuracy of 82.1% (95% CI: 76.5-86.5%) (Fig. 3A and
Table 1). Consistently, internal validation using bootstrap resampling
(1000 iterations) in the Training Cohort yielded highly similar AUC
estimates, confirming the stability of the discriminative performance of
the LDS model. Across the seven independent external validation
datasets, LDS consistently yielded AUCs greater than 0.72, with a
maximum AUC of 0.906 (95% CI: 0.719-1.000) and an average AUC of
0.822, indicating robust cross-platform generalization (Fig. 3A, B,
Table 1). Seven key lactylation-related genes—GFAP, GTF2I, RBI,
PFKM, BCLAF1, SPR, and SMARCCIl—were selected based on
VIMP > 0 scores from the initial RF model and incorporated into the
final LDS model. In the Training Cohort, six of these genes—except
PFKM—were significantly upregulated in AD (Supplementary Fig. 4A
and Supplementary Table 1), and co-expression analysis showed strong
positive correlations between GFAP and GTF2I/SMARCCI, with a
negative correlation between GFAP and PFKM (Supplementary
Fig. 4C). Single-gene ROC analysis identified GFAP as the best indivi-
dual marker, with an AUC of 0.820 (95% CI: 0.765-0.875), whereas the
composite LDS model consistently outperformed all single genes
(Fig. 3C and Supplementary Table 1). Moreover, GFAP, SPR, and
SMARCCI1 were overexpressed and PFKM was downregulated across
the seven external datasets, and GFAP maintained strong diagnostic
performance in multiple cohorts (Supplementary Fig. 4D-]). Beyond
discrimination, DCA in the Training Cohort showed that LDS provided
higher standardized net benefit than the “treat-all” or “treat-none”
strategies over a wide range of thresholds (Fig. 3D), with similar DCA
profiles in the external GEO cohorts and the independent clinical plasma
cohort (Supplementary Fig. 4K). Calibration curves in the Training and
validation datasets further demonstrated good agreement between
predicted and observed AD probabilities (Supplementary Fig. 4B, L).
Collectively, these findings indicate that the LDS model, derived from
lactylation-related molecular features, provides high diagnostic accu-
racy with well-quantified uncertainty, good calibration, and stable per-
formance across multicenter and multi-platform datasets, supporting its
potential for clinical translation.

SHAP-based interpretation and cross-cohort stability of the
LDS model

To interpret how each gene contributed to the LDS classifier, we applied
SHAP to the final RF + plsRglm model. In the Training Cohort, SHAP
summary plots showed that higher expression of GFAP, RB1, PFKM,
BCLAF1, SMARCCI, SPR, and GTF2I generally increased the predicted
LDS risk score, with GFAP exerting the largest impact on the model output
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LDS was validated and benchmarked against published signatures and single genes
in seven independent GEO cohorts, demonstrating robust cross-platform diagnostic
performance. Panel IV: In an independent clinical plasma cohort (NC = 180,aMCI =
90, AD = 270; total n = 540), the seven LDS genes (RT-qPCR) and p-taul81/217
(Simoa) were measured to evaluate diagnostic performance for AD and aMCI,
identify AT  individuals, and explore clinical utility and potential therapeutic targets.
This figure was created with BioRender.com and is used under a permitted license.

Fig. 1 | Overall workflow for development and translation of the LDS in AD.
Panel I: Two GEO brain transcriptomic datasets (GSE5281 and GSE84422; 102 NC
and 121 AD samples) were integrated as the Training Cohort, processed by log,
transformation, quantile normalization, and ComBat batch correction, and 32 dif-
ferentially expressed lactylation-related genes (DE-LRGs) were identified. Panel II:
Using multiple feature-selection and machine-learning algorithms, 113 candidate
models were screened and an RF + plsRglm LDS model based on seven key genes
(GFAP, GTF2I, RB1, PFKM, BCLAF1, SPR, SMARCC1) was established. Panel III:
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Fig. 2 | Consensus clustering and functional characterization of lactylation-based
AD subtypes. A-C CDF curve, delta area plot, and PAC score identifying optimal
cluster number (k =2). D Comparison of lactylation scores between Clust 1 and
Clust 2. E GO and KEGG enrichment of upregulated genes in Clust 1. F GSVA
analysis showing pathway activation differences between subtypes. G, H Immune
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(Fig. 4A). Ranking genes by mean absolute SHAP values confirmed GFAP
as the most influential feature, followed by RB1, PFKM, BCLAFI,
SMARCCI, SPR, and GTF2I (Fig. 4B).

We next evaluated the stability of gene contributions across datasets.
SHAP importance profiles derived from the LDS model in the Training
Cohort, seven external GEO cohorts, and the independent clinical plasma
cohort were highly correlated, indicating consistent patterns of feature
importance (Supplementary Fig. 5A). In each cohort, GFAP remained the
top contributor, whereas BCLAF1, SMARCCI, SPR, RBI, and GTF2I
showed similar relative rankings (Supplementary Fig. 5B), supporting the
robustness and biological plausibility of the LDS gene set across platforms
and populations.

Independent plasma validation confirms clinical robustness and
superiority of the LDS model

To further evaluate the clinical applicability of LDS, we established an
independent clinical plasma cohort comprising 270 AD patients and 180

age-matched NC participants. Plasma expression of the seven LDS genes
was quantified by RT-qPCR; six genes (all except PFKM) were significantly
upregulated in AD, consistent with the Training Cohort (Fig. 5A). In single-
gene analyses, BCLAF1 showed the best performance with an AUC of 0.742
(95% CI: 0.697-0.788), followed by GFAP (0.731, 95% CI: 0.685-0.777),
whereas PFKM performed worst (0.540, 95% CI: 0.487-0.593) (Fig. 5B and
Supplementary Table 2). When these genes were integrated into the LDS
panel, the model achieved an AUC of 0.772 (95% CI: 0.729-0.815), with a
sensitivity of 48.1% (95% CI: 42.3-54.1%), specificity of 96.7% (95% CI:
92.9-98.5%), and overall accuracy of 67.6% (95% CI: 63.1-71.7%) in the
plasma cohort (Fig. 5C, Table 1), indicating strong discriminative ability and
excellent rule-out capacity for AD.

For benchmarking, we compared LDS with eight published AD-related
multi-gene signatures (oxidative stress, cuproptosis, metabolic, mitochon-
drial, T-cell receptor (TCR) signaling, m7G methylation, ICD, and
chromatin-related models) and calculated AUCs with 95% ClIs in all eight
public datasets. LDS ranked within the top or upper-middle range in six of
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Fig. 3 | Construction and validation of the LDS diagnostic model. A Heatmap
showing AUC values of the LDS model, eight published transcriptomic signatures,
and the seven individual LDS genes across the Training Cohort and seven external
GEO cohorts; colors indicate AUC magnitude. B ROC curves and confusion
matrices of the optimal “RF+plsRglm” model across the 8 validation cohorts.

C ROC curves of the seven individual LDS genes (GFAP, GTF2I, RB1, PFKM,

BCLAF1, SPR, and SMARCCI) for distinguishing AD from NC in the Training
Cohort (n =121 AD and n = 102 NC). D Decision curve analysis of the LDS model in
the Training Cohort, showing standardized net benefit across a range of risk
thresholds compared with “treat-all” and “treat-none” strategies. All AUCs were
derived from ROC analyses with 95% CI; where applicable, differences between
AUCs were assessed using two-sided DeLong tests.

eight datasets and yielded the highest AUCs in the Training Cohort,
GSE132903, and GSE29378 (Fig. 5D). Pairwise DeLong tests with
Benjamini-Hochberg FDR correction showed that LDS significantly out-
performed at least five of the eight literature models in multiple datasets
(P <0.05; Fig. 5D, Supplementary Data 1). These data further support the
stability, generalizability, and translational potential of LDS for blood-based
AD diagnosis.

LDS improves diagnostic performance and complements p-tau
biomarkers for detecting AD and AT" individuals

To assess whether the LDS model provides additional diagnostic value
beyond established phosphorylated tau biomarkers, we compared LDS
with plasma p-taul81 and p-tau217 in the independent clinical plasma
cohort. As expected, both p-taul81 and p-tau2l7 were significantly
higher in AD than in NC (Fig. 6A). LDS scores correlated positively with
p-taul81 (r=0.320, P<0.0001) and p-tau2l7 (r=0.253, P <0.0001)
(Fig. 6B, C, Supplementary Fig. 6A). In single-marker ROC analyses,
p-taul81 and p-tau217 achieved AUCs of 0.828 (95% CI: 0.788-0.864)

and 0.843 (95% CI: 0.806-0.878), with sensitivities of 59.6% (95% CI:
53.7-65.3%) and 73.7% (95% CI: 68.1-78.6%) and specificities of 98.9%
(95% CI: 96.0-99.7%) and 85.6% (95% CI: 79.7-89.9%), respectively
(Fig. 6D-F, Table 2). Logistic regression models combining LDS with
p-taul81 and/or p-tau217 further improved discrimination; the three-
marker model (LDS + p-taul81 + p-tau217) yielded an AUC of 0.859
(95% CI: 0.824-0.893), sensitivity of 70.4% (95% CI: 65.4-76.2%),
specificity of 98.9% (95% CI: 94.4-99.1%), and overall accuracy of
81.8% (95% CI: 77.9-85.1%) (Fig. 6G, Table 2). DeLong tests with
Benjamini-Hochberg correction confirmed that LDS-based combina-
tions outperformed LDS alone (P < 0.05; Table 2), and DCA showed
higher standardized net benefit for combined models than for LDS or
either p-tau marker alone (Supplementary Fig. 6B). To assess LDS for
detecting tau pathology, we stratified participants into AT  and AT
subgroups; LDS distinguished AT" from AT  individuals with an AUC of
0.861 (95% CI: 0.827-0.892), sensitivity of 71.1% (95% CI: 65.1-76.4%),
specificity of 89.9% (95% CI: 85.1-93.3%), and accuracy of 79.8% (95%
CI: 75.8-83.2%) (Fig. 6H, Table 2). These findings indicate that LDS
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Table 1 | Diagnostic performance of the LDS model across training and validation cohorts

Cohort AUC (95% CI) Sensitivity (%, 95% CI) Specificity (%, 95% CI) Overall accuracy (%, 95% CI)
Train 0.897 (0.849-0.934) 83.5 (75.8-89.0) 80.4 (71.6-86.9) 82.1 (76.5-86.5)
GSE122063 0.866 (0.792-0.925) 71.4 (58.5-81.6) 88.6 (76.0-95.0) 79.0 (70.0-85.8)
GSE132903 0.826 (0.762-0.879) 79.4 (70.3-86.2) 67.3 (57.6-75.8) 73.3 (66.7-79.0)
GSE28146 0.812 (0.602-0.989) 72.7 (51.8-86.8) 75.0 (40.9-92.9) 73.3 (55.6-85.8)
GSE29378 0.780 (0.659-0.882) 80.6 (63.7-90.8) 56.2 (39.3-71.8) 68.3 (56.0-78.4)
GSE36980 0.763 (0.648-0.867) 75.8 (569.0-87.2) 68.1 (53.8-79.6) 71.3 (60.5-80.0)
GSE37263 0.906 (0.719-1.000) 100.0 (67.6-100.0) 75.0 (40.9-92.9) 87.5 (64.0-96.5)
GSE48350 0.729 (0.665-0.791) 78.7 (68.6-86.3) 52.6 (45.2-59.9) 60.9 (54.7-66.7)
) )

Independent clinical plasma cohort 0.772 (0.729-0.815)

48.1 (42.3-54.1)

96.7 (92.9-98.5, 67.6 (63.1-71.7,

LDS Lactylation-Derived Score, AUC area under curve, Cl confidence interval.
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Fig. 4 | SHAP-based interpretation of the LDS model in the Training Cohort.
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plsRglm model for AD vs NC in the Training Cohort (n =121 AD, n =102 NC).
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complements plasma p-taul81 and p-tau217 and can non-invasively
identify individuals with underlying tau pathology (AT").

LDS score reflects population heterogeneity and correlates with
neuropathological and functional severity

To evaluate LDS performance in different subgroups, we performed
age- and sex-stratified ROC analyses in both the Training Cohort and
the independent clinical plasma cohort. In the Training Cohort, LDS
showed higher discrimination in participants aged < 70 years than in
those > 70 years (AUC = 0.960, 95% CI: 0.850-1.000 vs 0.893, 95% CI:
0.846-0.935) and in males than in females (AUC=0.937, 95% CI:
0.900-0.966 vs 0.787, 95% CI: 0.632-0.914) (Fig. 7A, B). In the inde-
pendent clinical plasma cohort, performance was better in the > 70
years subgroup than in those < 70 years (AUC=0.794, 95% CI:
0.746-0.836 vs 0.566, 95% CI: 0.408-0.721), while the sex-related
pattern was similar (male AUC = 0.838, 95% CI: 0.783-0.890; female
AUC=0.708, 95% CI: 0.642-0.776) (Fig. 7C, D), indicating demo-
graphic influences on LDS accuracy.

We then examined correlations between LDS risk scores and
clinical measures. In the Training Cohort, LDS correlated positively
with Braak stage (r=0.49), neurofibrillary tangle density (r=0.52),
and plaque burden (r=0.43), and negatively with MMSE score (r =
—0.27) (Fig. 7E). In the independent clinical plasma cohort, LDS was
associated with age (r = 0.35), FRAIL score (r = 0.17), MMSE score (r =
—0.44), ADL (r=0.27), PSQI (r=0.26), and SDS (r=0.14) (Fig. 7F).
Together, these results show that LDS reflects demographic and

disease-related heterogeneity and is linked to neuropathological and
functional severity.

LDS high-risk group exhibits neuroinflammation and metabolic
dysfunction

To explore mechanisms underlying the LDS model, we stratified samples
into high- and low-risk groups according to LDS scores and performed
differential expression and enrichment analyses. GO analysis showed that
genes upregulated in the high-risk group were mainly involved in cellular
and tissue development, glial differentiation, and wound healing, with
molecular functions enriched in cytokine binding and extracellular matrix
organization, consistent with immune activation (Supplementary Fig.
7A-C). Hallmark pathway analysis further indicated increased TNFa sig-
naling via NF-kB, IL6-JAK-STATS3 signaling, complement activation, and
interferon responses, accompanied by reduced oxidative phosphorylation,
DNA repair, and unfolded protein response pathways (Supplementary Fig.
7D). LDS scores were positively correlated with immune and inflammatory
pathways and negatively correlated with metabolism-related protective
pathways (Supplementary Fig. 7E).

Immune profiling by ssGSEA and xCell revealed greater infiltration of
immunosuppressive and pro-inflammatory cells (Tregs, pDCs, neutrophils)
in the high-risk group, whereas low-risk individuals were enriched for
neuroprotective immune populations such as activated dendritic cells and
CD8' T cells (Supplementary Fig. 7F, left). Immune function scores were
also higher in the high-risk group for antigen-presentation inhibition,
immune checkpoints, inflammation-promoting activity, and type I/II
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(with 95% CI) for the LDS model, eight published gene signatures, and single LDS
genes across the Training Cohort and seven external GEO cohorts. Group com-
parisons were performed using the Mann-Whitney U test, and ROC-based per-
formance metrics were compared using the DeLong method. ***P < 0.001.

interferon responses (Supplementary Fig. 7F, right), and radar plots high-
lighted clearly separated immune signatures between the two risk groups
(Supplementary Fig. 7G-H). Together, these data indicate that LDS high-
risk individuals are characterized by immune activation, neuroinflamma-
tion, and metabolic dysfunction, whereas the low-risk group maintains a
more stable neuroimmune state, supporting the mechanistic interpretability
of the LDS model and suggesting potential therapeutic targets.

Risk stratification of aMCI individuals using lactylation-related
signatures and plasma tau biomarkers

aMCl is widely considered a transitional state with high risk of conversion to
AD. To assess whether lactylation-related alterations emerge at this pro-
dromal stage, we analyzed plasma samples from 90 aMCI patients and 180
NC participants. The LDS risk score and plasma p-taul81 and p-tau217
levels were all significantly higher in aMCI than in NC (Fig. 8A). Correlation

analysis showed moderate positive associations among LDS, p-taul8l, p-
tau217, and the five LDS genes (Supplementary Fig. 8A). For aMCI iden-
tification, ROC analysis revealed that p-tau217 achieved the highest AUC of
0.838 (95% CI: 0.786-0.886), followed by LDS with an AUC of 0.750 (95%
CI: 0.678-0.813) and p-taul81 with an AUC of 0.694 (95% CI: 0.617-0.768)
(Supplementary Fig. 8B, Table 3). Logistic regression models combining
LDS with p-tau biomarkers further improved discrimination; LDS +
p-taul8l and LDS + p-tau217 yielded AUCs 0f 0.802 (95% CI: 0.742-0.861)
and 0.896 (95% CI: 0.856-0.935), respectively, and the three-marker model
(LDS + p-taul8l + p-tau2l7) reached an AUC of 0.912 (95% CL
0.872-0.947) (Fig. 8B, Table 3).

To enhance prediction using LDS-related genes, we examined
expression of the seven LDS genes and identified five (GFAP, GTF2I,
BCLAF1, SPR, SMARCC1) that were significantly upregulated in aMCI
(Fig. 8C). These genes were used to build aMCI classifiers with four
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Fig. 6 | The LDS model improves diagnostic accuracy and complements p-tau
biomarkers in detecting AD and AT™ individuals. A Plasma expression levels of
p-taul81 and p-tau217 in AD ys NC groups (1 = 180 NC, n =270 AD). Correlation
between LDS scores and p-taul81 (B) or p-tau217 (C) in the Independent clinical
plasma cohort. D ROC curves of LDS, p-taul81, and p-tau217 for discriminating
against AD from NC. Confusion matrices showing classification performance of

p-taul81 (E) and p-tau217 (F). G ROC curves of combined models integrating LDS
with p-tau biomarkers for AD vs NC. H ROC curve of LDS for stratifying AT" vs AT
individuals, indicating its potential for detecting tau pathology. Statistical analyses
included Mann-Whitney U testing for expression, Spearman correlation for asso-
ciation analysis, and DeLong testing for ROC comparison. ***P < 0.001.

machine-learning algorithms. The RF model showed the best performance,
with an AUC of 0.809 (95% CI: 0.714-0.836), sensitivity of 90.9%, specificity
of 57.2%, and overall accuracy of 79.3% (Fig. 8D, Supplementary Table 3).
Variable importance analysis highlighted GFAP and BCLAF1 as the major
contributors (Supplementary Fig. 8C). Integrating the RF-derived gene
score with p-taul81 and p-tau217 further increased accuracy, yielding an
AUC 0f0.915 (95% CI: 0.887-0.927), with sensitivity of 90.3%, specificity of
75.9%, and accuracy of 85.2% (Fig. 8E, Supplementary Table 3). When
participants were stratified into AT" and AT groups, this RF-based model
almost perfectly distinguished AT" individuals, achieving an AUC of 0.999
(95% CI: 0.984-1.000), sensitivity of 99.4%, specificity of 100%, and

accuracy of 99.6% (Fig. 8F, Supplementary Table 3), underscoring its
potential for early identification of individuals with underlying tau
pathology.

Drug enrichment analysis reveals potential therapeutic targets
for lactylation-related genes in AD

To explore potential therapeutic strategies targeting key lactylation-related
genes, we performed drug enrichment analysis using the DSigDB module
on the Enrichr platform. Based on a significance threshold of P <0.05,
several small-molecule compounds were identified as candidates that may
modulate aberrant signaling pathways associated with LDS genes. These
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Table 2 | Diagnostic performance of LDS, plasma p-tau biomarkers, and their combinations in distinguishing AD from NC and

identifying AT individuals

Model AUC (95% CI) Best Sensitivity (%, 95% Cl)  Specificity (%, 95% CI)  Overall accuracy (%, 95% Cl) P (FDR-BH,
cut-off vs LDS)

LDS 0.772 (0.729-0.815) 0.573 65.9 (60.1-71.3) 86.7 (80.9-90.9) 74.2 (70.0-78.0) -

p-tau181 0.828 (0.788-0.864) 0.777 59.6 (53.7-65.3) 98.9 (96.0-99.7) 75.3 (71.1-79.1) 0.014

p-tau217 0.843 (0.806-0.878) 0.098 73.7 (68.1-78.6) 85.6 (79.7-89.9) 78.4 (74.4-82.0) 0.001

LDS+p-tau181 0.836 (0.797-0.873) 0.544 70.4 (64.7-75.5) 90.6 (85.4-94.0) 78.4 (74.4-82.0) <0.001

LDS+p-tau217 0.842 (0.803-0.878) 0.626 69.3 (65.1-75.8) 94.4 (87.4-95.3) 79.3 (75.4-82.8) <0.001

LDS+p-tau181-+p- 0.859 (0.824-0.893) 0.638 70.4 (65.4-76.2) 98.9 (94.4-99.1) 81.8 (77.9-85.1) <0.001

tau217

LDS for AT* 0.861 (0.827-0.892) 0.432 71.1(65.1-76.4) 89.9 (85.1-93.3) 79.8 (75.8-83.2) -

AUC comparisons were tested using two-sided DelLong tests with Benjamini-Hochberg false discovery rate (FDR) correction for multiple comparisons.
LDS Lactylation-Derived Score, p-tau181 phosphorylated tau 181, p-tau217 phosphorylated tau 217, AD Alzheimer’s disease, AT~ amyloid-tau positive, AUC area under curve, Cl confidence interval, FDR

false discovery rate.
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Associations were assessed using Spearman correlation, and subgroup ROC com-
parisons were analyzed using the DeLong test. *P < 0.05, **P < 0.01, ***P < 0.001.

included nocodazole, neostigmine bromide, scriptaid, trichostatin A,
eugenol, aspirin, valproic acid, and ethosuximide (Table 4). Notably, many
of the top candidates were HDAC inhibitors, supporting the hypothesis that
lactylation dysregulation in AD may be driven by epigenetic mechanisms.
Previous studies have shown that HDAC inhibitors can improve synaptic
plasticity and cognitive function in AD animal models, highlighting their
potential neuroprotective effects’. In addition, compounds associated with
energy metabolism and microtubule stability were also identified, suggesting
multiple possible intervention pathways targeting lactylation-related genes
in AD. These findings provide preliminary insight into druggable

mechanisms underlying lactylation dysregulation and broaden the trans-
lational potential of the LDS model in guiding personalized therapeutic
development.

Discussion

Digital medicine aims to bridge Al-based computational models with
clinically actionable, scalable diagnostics, a need that is particularly pressing
in AD, where early and widely deployable tools remain limited. AD diag-
nosis in its early stages remains a formidable clinical challenge because
traditional cognitive assessments, CSF biomarkers, and positron emission
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Fig. 8 | Performance of lactylation-related signatures and plasma tau biomarkers
in identifying aMCI and AT" individuals. A Plasma LDS score, p-taul81, and
p-tau217 levels in NC and aMCI groups in the independent clinical cohort (# = 180
NC, n =90 aMCI). B ROC curves of LDS and its combinations with p-taul81/217 for
distinguishing aMCI from NC in the same cohort. C Plasma expression of the five
selected LDS genes (GFAP, GTF2I, BCLAF1, SPR, SMARCCI1) in NC and aMCI

groups. D ROC curves of four machine-learning models (logistic regression, RF, SVM,
LASSO) based on the five genes for aMCI vs NC. E ROC curve of the combined model
integrating RF classifier with p-taul81 and p-tau217 for aMCI vs NC. F ROC curve of
the RF model for identifying AT  vs AT individuals in the plasma cohort. Group
comparisons were performed using the Mann-Whitney U test and ROC metrics were
compared using the DeLong statistical method. *P < 0.05, ***P < 0.001.

tomography (PET) imaging are often invasive, costly, or insufficiently
sensitive during prodromal phases'****’. Blood-based biomarkers represent
a promising alternative, but most existing assays primarily target hallmark
AD pathologies such as amyloid-p and tau proteins, potentially overlooking
broader molecular dysregulation'>***. In this context, we developed LDS, a

blood-based, machine learning-derived multi-gene model based on
lactylation-related gene signatures identified from brain transcriptomic
data. LDS showed high diagnostic performance in the Training Cohort
(AUC 0.897, 95% CI: 0.849-0.934) and maintained robust accuracy across
seven external brain datasets. In the independent plasma cohort, RT-qPCR-
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Table 3 | Diagnostic performance of LDS, plasma p-tau biomarkers, and their combinations for identifying aMCl and AT

individuals

Model AUC (95% CI) Best Sensitivity (%, 95% Cl)  Specificity (%, 95% Cl)  Overall accuracy (%, 95% CI) P (FDR-BH,
cut-off vs LDS)

LDS 0.750 (0.678-0.813) 0.292 71.1(61.0-79.5) 75.0 (68.2-80.8) 73.7 (68.1-78.6) -

p-tau181 0.694 (0.617-0.768) 0.508 53.3 (43.1-63.3) 87.8(82.2-91.8) 76.7 (70.9-81.0) 0.266

p-tau217 0.838 (0.786-0.886) 0.089 75.6 (65.8-83.3) 80.0 (73.6-85.2) 78.5 (73.2-83.0) 0.083

LDS+p-tau181 0.802 (0.742-0.861) 0.268 78.9 (69.4-86.0) 73.3 (66.4-79.3) 75.2 (69.7-80.0) 0.085

LDS+p-tau217 0.896 (0.856-0.935) 0.193 91.1 (83.4-95.4) 75.6 (68.8-81.3) 80.7 (75.6-85.0) <0.0001

LDS+p-tau181-+p- 0.912 (0.872-0.947) 0.352 82.2 (73.1-88.8) 87.8 (82.2-91.8) 85.9 (81.3-89.6) <0.0001

tau217

AUC comparisons were tested using two-sided Delong tests with Benjamini-Hochberg false discovery rate (FDR) correction for multiple comparisons.
LDS Lactylation-Derived Score, p-tau181 phosphorylated tau 181, p-tau217 phosphorylated tau 217, AD Alzheimer’s disease, aMCl amnestic mild cognitive impairment, AT" amyloid-tau positive, AUC

area under curve, Cl confidence interval, FDR false discovery rate.

Table 4 | Potential gene-targeted drugs for AD

Term Adjusted P-value Odds Ratio Combined Score Genes

nocodazole MCF7 DOWN 0.0183 162.81 1453.35 BCLAF1; GTF2I
neostigmine bromide PC3 DOWN 0.0451 22.43 153.09 BCLAF1; SMARCC1; GTF2|
scriptaid PC3 DOWN 0.0451 21.01 139.63 BCLAF1; SMARCC1; SPR
trichostatin A ssMCF7 DOWN 0.0451 49.90 330.94 BCLAF1; GTF2I

eugenol CTD 00005949 0.0451 49.90 330.94 RB1; BCLAF1
GLYCOGEN BOSS 0.0451 48.07 315.32 PFKM; GFAP

aspirin CTD 00005447 0.0451 26.12 189.53 RB1; GFAP; GTF2I
trichostatin A MCF7 DOWN 0.0451 24.88 177.12 BCLAF1; SPR; GTF2I
Adenosine triphosphate BOSS 0.0451 60.18 421.07 PFKM; GFAP

lactic acid BOSS 0.0498 43.06 273.32 PFKM; GFAP
ethosuximide HL60 DOWN 0.0498 41.25 258.40 RB1; BCLAF1

valproic acid HL60 DOWN 0.0498 41.04 256.63 BCLAF1; GTF2I

P values represent adjusted enrichment significance after false discovery rate (FDR) correction.
AD Alzheimer’s disease.

based LDS achieved an AUC of 0.772 (95% CI: 0.728-0.815) with very high
specificity, and DCA further supported its clinical utility and generalizability
as a digital-medicine-oriented, blood-based diagnostic tool.

Our study also provides an objective comparison between LDS and
established plasma p-tau biomarkers. Consistent with prior literature®,
p-tau217 outperformed p-taul81 in diagnostic accuracy (AUC 0.843, 95%
CI: 0.802-0.882 vs. 0.828, 95% CI: 0.787-0.870), reflecting its stronger
association with core tau pathology. However, single-analyte assays do not
capture the immune-metabolic dysregulation represented by LDS. Inte-
grating LDS with one or both p-tau markers using multivariable logistic
regression significantly enhanced diagnostic performance; the three-marker
model (LDS + p-taul81 + p-tau217) reached an AUC of 0.859 (95% CI:
0.822-0.893) while preserving high specificity. Notably, LDS alone already
showed strong performance for identifying AT individuals (AUC 0.861),
with further gains when combined with p-tau markers, highlighting the
complementary value of protein-based and transcriptomic biomarkers for
capturing AD’s complex pathophysiology.

LDS also showed tight links to disease severity and prodromal risk. LDS
scores correlated significantly with MMSE and Braak stage, connecting the
molecular signature to both cognitive impairment and neuropathological
burden. In the plasma cohort, LDS scores were higher in aMCI than in NC
and further elevated in AD, suggesting a stepwise progression. A five-gene
aMCI classifier derived from LDS genes achieved good discrimination, and
its combination with p-taul81 and p-tau217 yielded an AUC around 0.915
with high sensitivity for AT individuals, indicating that lactylation-related
molecular alterations emerge early in the neurodegenerative process and

may support early risk stratification, enrichment of high-risk aMCI, and
disease monitoring.

The feasibility of using peripheral blood transcriptomic signatures to
reflect central nervous system (CNS) pathology is supported by growing
evidence of brain-blood molecular coupling. Although the blood-brain
barrier (BBB) restricts free molecular exchange, its integrity is often com-
promised in neurodegenerative conditions, allowing CNS-derived proteins
and RNA to appear in circulation®**’. Plasma p-taul81 and p-tau217 levels
correlate with CSF concentrations and tau PET positivity, while AB42/Ap40
ratios and NfL partially reflect amyloid deposition and axonal injury”*".
Our LDS findings extend this concept by demonstrating that peripheral
transcriptomic patterns related to lactylation and immune-metabolic stress
can serve as surrogates of central molecular alterations. These results sup-
port the biological plausibility of blood-based multi-gene diagnostics in AD.

From a mechanistic perspective, lactylation represents a novel epige-
netic modification that links glycolytic metabolism to gene regulation™.
Reactive astrocytes, which are central to neuroinflammatory cascades in
AD, exhibit enhanced glycolysis and lactate accumulation, providing sub-
strates for protein lactylation. GFAP, a core astrocytic marker and one of the
LDS components, exemplifies this metabolic-epigenetic link™*~**. Lactyla-
tion may influence GFAP expression, filament assembly, and interactions
with other cytoskeletal or signaling proteins, potentially amplifying astro-
cytic reactivity. This modification could alter downstream inflammatory
pathways including JAK-STAT3 and NF-«B, promote microglial activation,
and contribute to T-cell exhaustion, thereby accelerating neurodegenera-
tion. In our study, high LDS scores were associated with immune checkpoint
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upregulation and activation of TNFa-NF-kB, JAK-STAT3, and comple-
ment pathways, whereas low LDS profiles exhibited more homeostatic
neuroimmune and metabolic features. Together, these data suggest that
astrocytic lactylation may serve as a mechanistic bridge between metabolic
stress and neuroimmune dysregulation in AD.

Drug enrichment analysis further identified potential compounds
targeting LDS-related pathways, including histone deacetylase inhibitors
(valproic acid, scriptaid) and metabolic or cytoskeletal modulators such as
nocodazole. These agents have demonstrated preclinical efficacy in restor-
ing epigenetic balance, reducing AP deposition, and improving
cognition™**”, highlighting the potential translational relevance of LDS for
guiding therapeutic development.

Despite the promising results, this study has several limitations that
should be acknowledged. First, most transcriptomic analyses were con-
ducted on retrospectively collected GEO datasets, which may be affected by
unmeasured confounders and platform-specific biases, even though we
applied harmonized preprocessing and ComBat batch correction and
validated LDS across multiple independent cohorts. Second, LDS was
derived from bulk tissue and blood expression profiles and therefore does
not capture cell type-specific or isoform-level lactylation changes; future
single-cell and spatial studies will be needed to refine the underlying biology.
Third, the independent clinical plasma cohort was recruited from a single
center, and the generalizability of LDS to more diverse, community-based
and multi-ethnic populations remains to be established. Fourth, our ana-
lyses are primarily diagnostic and observational; functional experiments
were beyond the scope of this work, and causal mechanisms linking
lactylation-related genes to AD onset and progression remain to be eluci-
dated. Finally, we focused on a panel of seven lactylation-related genes;
additional lactylation targets and complementary omics layers (e.g., pro-
teomics, metabolomics) were not systematically integrated and may further
improve model performance. These limitations should be addressed in
future longitudinal, multi-omics and mechanistic studies to fully realize the
translational potential of LDS.

Collectively, our findings demonstrate that lactylation-related gene
signatures captured by the LDS model provide a robust, biologically inter-
pretable blood-based biomarker for AD diagnosis and early risk stratifica-
tion, including aMCI and AT" individuals. By complementing established
plasma p-tau markers, LDS enriches the molecular understanding of AD
and could be integrated into electronic health records or digital health
platforms as a machine learning-based risk score, enabling scalable, real-
world screening and longitudinal monitoring.

Methods
Data acquisition, preprocessing, and identification of differen-
tially expressed lactylation-related genes
A total of nine publicly available AD-related transcriptomic datasets were
included in this study: GSE5281%, GSE84422”, GSE122063", GSE132903",
GSE28146", GSE48350%, GSE36980*, GSE37263*, and GSE29378%. All
datasets were obtained from the Gene Expression Omnibus (GEO) data-
base. Based on the dataset comparison summarized in Table 5, GSE5281
and GSE84422 were selected as the Training Cohort due to their relatively
large sample sizes, rigorous diagnostic annotation, and consistent micro-
array platforms, enabling reliable harmonization and model construction.
The remaining seven datasets were used as independent external validation
cohorts to assess the robustness and generalizability of the LDS model across
different brain regions (e.g., hippocampus, frontal cortex, neocortex),
platforms (e.g., GPL570, GPL6947, GPL6244), populations (USA, Japan,
Singapore), and diagnostic criteria (clinical diagnosis, Braak stage, MMSE,
Consortium to Establish a Registry for Alzheimer’s Disease (CERAD), or
autopsy). Detailed information regarding sample sources, profiling plat-
form, demographic characteristics, brain regions, and diagnostic standards
for each dataset is provided in Table 5.

To ensure analytical consistency, raw expression matrices and platform
annotation files were downloaded using the “GEOquery” package in R*.
Gene names were standardized based on probe annotation files. All datasets

underwent log, transformation and quantile normalization to minimize
technical varjation across different microarray platforms. Quality control
was then performed using the “limma” package, and low-expression genes
and outlier samples were removed.

To construct a unified Training Cohort, we selected GSE5281 and
GSE84422 due to their large sample sizes and comparable tissue types. To
address potential batch effects between the two datasets, we applied the
ComBat algorithm from the “sva” package®. Principal component analysis
(PCA) was used to visualize data distribution before and after batch cor-
rection, confirming the consistency of the merged cohort. After these pre-
processing steps, we obtained a high-quality and standardized expression
matrix for downstream analysis, including differential gene expression,
functional annotation, immune landscape evaluation, and machine learning
model construction.

Based on the merged Training Cohort, we performed differential
expression analysis using the “limma” package. A linear modeling approach
followed by empirical Bayes moderation was used to compare global gene
expression between the AD and NC groups. Raw P values were adjusted for
multiple testing using the Benjamini-Hochberg false discovery rate (FDR)
procedure, and both nominal and FDR-adjusted P values are reported in the
corresponding Supplementary Data 2. Differentially expressed genes
(DEGs) were defined as those with FDR < 0.05 and |log, fold change | >
0.585, which corresponds to an absolute fold change of > 1.5 and is com-
monly used to balance biological relevance and sensitivity in transcriptomic
studies. To focus on lactylation-related biology, we obtained a curated list of
327 lactylation-related genes (LRGs) from published literature”. The
intersection of DEGs and LRGs vyielded 32 differentially expressed
lactylation-related genes (DE-LRGs), which served as candidate diagnostic
features for downstream analysis.

Consensus clustering and subtype classification

To identify potential molecular subtypes based on lactylation-related sig-
natures, consensus clustering was performed using the “Consensu-
sClusterPlus” R package. The input matrix was composed of 32 DE-LRGs
identified between AD and NC samples. The data were centered and scaled
prior to clustering. We applied the partitioning around medoids (PAM)
algorithm with Spearman correlation as the distance metric. Clustering was
repeated over 500 bootstraps, with 80% of samples resampled in each
iteration. The optimal number of clusters (K) was determined by jointly
evaluating the consensus matrix heatmaps, cumulative distribution function
(CDF) plots, delta area plot, and item-consensus distributions. K =2 was
selected as the optimal solution based on maximal cluster stability,
separation, and interpretability. Detailed plots and rationale are provided in
Supplementary Fig. 9.

Functional enrichment and immune landscape analysis

To investigate the biological mechanisms underlying lactylation-based
subtypes, we performed pathway enrichment analyses using DEGs between
the two subtypes (filter criteria: adjusted P < 0.05). Functional annotation
was conducted using the “clusterProfiler” package in R. Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment
analyses were carried out, with gene annotation supported by the “org.H-
s.eg.db” database. Significantly enriched terms were defined by a g-value <
0.05. Results were visualized using bubble and bar plots, highlighting dif-
ferences in biological processes (BP), cellular components (CC), molecular
functions (MF), and metabolic pathways across subtypes.

To further assess the activation status of hallmark pathways across
samples, we applied Gene Set Variation Analysis (GSVA). Two reference
gene sets— “c2.cp.kegg.v7.5.1.symbols.gmt” and “h.allv7.5.1.sym-
bols.gmt”—were used as background to evaluate enrichment score varia-
tions between lactylation-high and lactylation-low subtypes and between
high-risk and low-risk LDS groups.

For immune microenvironment profiling, we integrated several
computational algorithms, including Microenvironment Cell Populations-
counter (MCP-counter)”, xCell, quantification of the Tumor Immune
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stage + MMSE

Testing Cohort

Clinical diagnosis + Braak

stage + MMSE

Hippocampal specimens

brain

GPL570 30 (22/8) 86.38/86.27 27.27%/75%

USA

GSE28146

Testing Cohort

Clinical diagnosis + Braak

stage + MMSE

Postcentral gyrus/Superior frontal Gyrus/Hippocampus/Entorhinal

41.25%/52.60%  brain
cortex

89.22/80.71

253 (80/173)

GPL570

USA

GSE48350

Testing Cohort

Clinical diagnosis +

Braak stage

Frontal cortex/Temporal cortex/Hippocampus

93.06/78.30 43.75%/43.48%  brain

80 (33/47)

GPL6244

Japan

GSE36980

Testing Cohort

Clinical diagnosis +

autopsy

Singapore GPL5175 16 (8/8) 72.63/80.15 62.5%/62.5% brain Neocortex

GSE37263

Testing Cohort

Clinical diagnosis +

Braak stage

Hippocampus

brain

52.94%/68.75%

77.3/81.7

63 (31/32)

GPL6947

USA

GSE29378

GEO Gene Expression Omnibus, AD Alzheimer’s disease, NC normal controls, MMSE Mini-Mental State Examination, CERAD Consortium to Establish a Registry for Alzheimer’s Disease.

contexture (quanTIseq)’’, Immunophenoscore (IPS)', and Estimation of
STromal and Immune cells in MAlignant Tumor tissues using Expression
data (ESTIMATE)* to quantify the abundance of various immune and
stromal cell populations. Specific attention was given to T cells, macro-
phages, dendritic cells, and regulatory T cells (Tregs) to capture key dif-
ferences in immune cell infiltration across subgroups.

In addition, to explore immune regulation characteristics, we curated
literature-based immune-related gene sets, including immune checkpoints,
Major Histocompatibility Complex (MHC) molecules, immunostimulatory
genes, and chemokines. Their expression profiles were compared across
lactylation subtypes using heatmaps and boxplots. Immune functional
scores were computed via the single-sample gene set enrichment analysis
(ssGSEA) algorithm®, and radar plots were generated to visualize the
immune activity landscape of different LDS risk groups.

Construction and multi-cohort validation of the LDS

diagnostic model

To construct a lactylation-associated diagnostic model for AD, the DE-
LRGs identified in the previous step were used as initial candidate variables.
Model development followed a two-stage machine learning framework:

(1) Embedded feature selection: Five feature selection algorithms were
applied, including Least Absolute Shrinkage and Selection Operator
(LASSO) regression, generalized linear model boosting (glmBoost), random
forest (RF), bidirectional stepwise generalized linear modeling (StepGLM
[both]), and backward stepwise generalized linear modeling (StepGLM
[backward]). These methods were used to identify stable and predictive
variables from the DE-LRG set.

(2) Classification modeling: The selected features were then used to
train twelve classification algorithms, including LASSO, Ridge regression,
Elastic Net (ENet), support vector machine (SVM), RF, extreme gradient
boosting (XGBoost), partial least-squares generalized linear modeling
(plsRglm), glmBoost, Naive Bayes, linear discriminant analysis (LDA),
generalized boosted regression modeling (GBM), and StepGLM. In total,
113 models were generated—98 models using feature selection followed by
classifier training and 15 models using the full DE-LRG set without prior
feature filtering.

All models were trained within a unified machine learning fra-
mework implemented in R using the RunML platform. The pipeline
included standardized preprocessing (z-score normalization of gene-
expression features, i.e., centering to zero mean and scaling to unit
variance based on the Training Cohort, with the same parameters
applied to the external GEO and plasma cohorts), hyperparameter
optimization through grid search or internal cross-validation, and
performance evaluation using 10-fold cross-validation. Model-specific
hyperparameter settings and search ranges are summarized in Sup-
plementary Table 4. Model performance was quantified using area
under the receiver operating characteristic curve (AUC), concordance
index (C-index), accuracy, sensitivity, and specificity.

Model generalizability was assessed by first evaluating performance in
the primary Training Cohort, followed by validation across seven inde-
pendent external cohorts. To compare discriminative power among high-
performing models, pairwise DeLong tests were conducted, with full results
provided in Supplementary Data 3.

The final diagnostic framework, termed the LDS, was established
using a two-step modeling strategy in which RF was first applied for
feature stability screening, followed by model construction using
plsRglm. This approach demonstrated the most consistent cross-cohort
performance among all candidate pipelines. The resulting LDS consists
of seven lactylation-associated genes—GFAP, GTF2I, RB1, PFKM,
BCLAF]I, SPR, and SMARCC1—selected based on their positive variable
importance (VIMP >0) in the RF feature selection stage, indicating
reproducible predictive contribution. To characterize their individual
diagnostic relevance, each gene was further evaluated using receiver
operating characteristic (ROC) analysis, expression profiling, and cor-
relation assessment.
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Table 6 | Baseline demographic and clinical features of the independent clinical plasma cohort used for biomarker validation

Variable NC (n =180) AD (n =270) aMCl(n = 90) P
Gender: Female 82 (45.6%) 145 (53.7%) 46 (51.1%) 0.237
Gender: Male 98 (54.4%) 125 (46.3%) 44 (48.9%) 0.237
Age (mean + SD) 76.77 +7.48 79.93+7.33 79.60 +4.90 <0.001
MMSE (mean + SD) 29.32+0.89 15.89+7.20 26.38£0.72 <0.001
PSQI (mean + SD) 4.55+4.83 7.07+£4.12 6.20 £5.38 <0.001
NRS2002 (mean + SD) 0.57+1.10 1.02 +1.49 1.00+1.60 0.0739
SDS (mean + SD) 22.47 £13.47 24.30+9.65 26.68 +13.13 0.135
SAS (mean + SD) 22.23+13.48 26.97 +15.53 26.04 +13.07 0.0739
FRAIL (mean + SD) 1.18+1.39 2.84+1.42 1.62+1.53 <0.001
ADL (mean + SD) 6.71+2.10 62.60 +26.14 33.60 + 19.85 <0.001

Data are presented as mean + standard deviation (SD) or n (%). P values were calculated using the chi-square test for categorical variables and one-way analysis of variance (ANOVA).
NC normal controls, AD Alzheimer’s disease, aMCl amnestic mild cognitive impairment, MMSE Mini-Mental State Examination, PSQ! Pittsburgh Sleep Quality Index, NRS2002 Nutritional Risk Screening
2002, SDS Self-Rating Depression Scale, SAS Self-Rating Anxiety Scale, FRAIL Fatigue-Resistance-Ambulation-lliness-Loss scale, ADL Activities of Daily Living.

Finally, to benchmark the LDS against existing transcriptomic diag-
nostic signatures, eight previously published AD molecular models (Oxi-
dative Stress-based model”, Cuproptosis-related model™, Metabolic
model™, Mitochondrial Dysfunction model™, T cell receptor-based model”,
7-methylguanosine [m7G] model®, Immunogenic Cell Death [ICD]
model”, and Chromatin Remodeling model®) were re-evaluated across all
included cohorts. Pairwise DeLong tests demonstrated consistently superior
or comparable diagnostic performance of LDS, with detailed comparisons
summarized in Supplementary Data 3.

Model interpretation using Shapley additive explanations (SHAP)
To interpret the contribution of each gene to the LDS model, we applied
SHAP. For the final RF + plsRglm classifier, SHAP values were com-
puted for each sample to quantify the marginal contribution of each of
the seven LDS genes to the model output (AD vs NC prediction). We
summarized feature importance using the mean absolute SHAP value
for each gene in the Training Cohort and visualized both the distribution
and ranking of SHAP values. In addition, we repeated SHAP-based
interpretation in each external GEO cohort and in the independent
clinical plasma cohort to assess the stability of gene importance patterns
across datasets.

Independent clinical plasma cohort: sample collection, LDS
model validation, and aMCl risk stratification

The independent plasma cohort was prospectively enrolled at Zhongda
Hospital, Southeast University, between January 2023 and December 2024.
The study received approval from the institutional ethics committee
(Approval No. 2024ZDSYLL172-PO1) and written informed consent was
obtained from all participants in accordance with the Declaration of
Helsinki.

A total of 540 participants were included, consisting of 270 patients
with AD, 90 individuals with aMCI, and 180 NC participants. AD diagnosis
followed the National Institute of Neurological and Communicative Dis-
orders and Stroke-Alzheimer’s Disease and Related Disorders Association
(NINCDS-ADRDA) criteria and was confirmed by board-certified neu-
rologists using standardized neuropsychological assessments’'. aMCI was
defined according to the Petersen criteria, requiring subjective memory
decline, objective memory impairment, preserved general cognition, and
intact daily functioning”. NC participants exhibited normal cognitive
performance with MMSE 2 28 and no history of neurological, psychiatric,
or major systemic disorders.

Fasting blood samples were collected, processed within 1h by cen-
trifugation at 4 °C, and stored at —80 °C. Plasma levels of mRNA expression
of the seven LDS genes (GFAP, GTF2I, RB1, PFKM, BCLAF1, SPR, and
SMARCCI) were quantified by Reverse Transcription Quantitative Real-
time PCR (RT-qPCR), and p-taul81 and p-tau217 were measured using

Single Molecule Array (Simoa) assays. All analyses were conducted in a
blinded manner with respect to clinical diagnosis.

To evaluate the diagnostic generalizability of the LDS, the previously
established seven-gene model was applied directly to the independent
plasma cohort to discriminate AD from NC participants. Model perfor-
mance was assessed using ROC analysis, reporting AUC, sensitivity, spe-
cificity, and accuracy with 95% confidence interval (CI). In addition to
evaluating LDS, p-taul81, and p-tau217 separately, we constructed multi-
variable logistic regression models that incorporated LDS together with
p-taul81 and/or p-tau217 as predictors for AD vs NC. Participants were
further stratified into AT  and AT" groups based on predefined biomarker
thresholds, and analogous logistic regression models were fitted to assess the
ability of LDS and its combinations with p-taul81/217 to identify AT’
individuals.

To assess the potential of LDS-associated transcriptional altera-
tions for early-stage detection, a separate aMCI classifier was inde-
pendently developed, rather than derived from the AD-NC model. This
classifier was built using the five LDS genes most consistently upregu-
lated in aMCI (GFAP, GTF2I, BCLAFI, SPR, and SMARCCI1). Four
machine-learning algorithms—RF, SVM, logistic regression, and
LASSO—were trained under 10-fold cross-validation, and feature
importance in RF was quantified using the Gini index. For downstream
clinical application, we further used logistic regression to build inte-
grated models that combined the RF-derived gene-expression risk score
with p-taul81 and/or p-tau217 to evaluate their additive value in
detecting aMCI, including AT" cases. Clinical and functional assess-
ments included age, sex, MMSE score, Pittsburgh Sleep Quality Index
(PSQI), Nutritional Risk Screening 2002 (NRS2002), Self-Rating
Depression Scale (SDS), Self-Rating Anxiety Scale (SAS), Fatigue,
Resistance, Ambulation, Illnesses, and Loss of weight (FRAIL) scale,
Activities of Daily Living (ADL) score. (Table 6).

Detection of lactylation-related gene expression

Total RNA was extracted from plasma using the TRIzol LS reagent (Invi-
trogen, Karlsruhe, Germany), and RNA concentration and purity were
assessed by NanoDrop spectrophotometry. cDNA synthesis was performed
using the HiScript III RT SuperMix kit (Vazyme Biotech, China). RT-qPCR
was conducted using Taq Pro Universal SYBR qPCR Master Mix (Vazyme
Biotech, China) on the 7500 Fast Real-Time PCR System (Applied Bio-
systems, USA). The thermal cycling protocol included an initial denatura-
tion at 95 °C for 10 seconds and annealing at 60 °C for 30 s, repeated for 40
cycles, with a total reaction volume of 20 pL. Glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) was used as the internal control, and all reactions
were performed in technical triplicates. Primer sequences for the key
lactylation-related genes are listed in Supplementary Table 5. Relative gene
expression levels were calculated using the 27*“" method.
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Plasma p-tau181 and p-tau217 Quantification

Plasma levels of p-taul81 and p-tau217 were measured using Simoa
technology (CJC-Di6000A, China) according to the manufacturer’s
instructions. The assay utilizes capture antibodies specific for the
phosphorylated tau epitopes immobilized on paramagnetic beads,
combined with biotinylated detection antibodies and streptavidin-
B-galactosidase enzyme conjugates, enabling ultrasensitive digital
quantification of target proteins. Calibration curves were constructed
using recombinant p-tau standards, and concentrations were calculated
using a four-parameter logistic regression model. Quality control
samples were included to monitor assay performance. All analyses were
performed blinded to clinical diagnosis.

Identification of candidate therapeutic agents

To explore potential therapeutic compounds targeting the key genes iden-
tified in the LDS model, we performed drug enrichment analysis using the
Drug Signature Database (DSigDB) module on the Enrichr platform
(https://maayanlab.cloud/Enrichr/), which integrates drug-gene interac-
tion data. The seven key lactylation-related genes from the LDS model were
input into the Enrichr system, and enrichment analysis was conducted to
identify small molecules significantly associated with these targets. Com-
pounds were ranked based on enrichment scores, and those with a P < 0.05
were considered statistically significant. The top-ranked candidate agents
were extracted, many of which were associated with epigenetic regulation or
energy metabolism, such as histone deacetylase (HDAC) inhibitors and
microtubule modulators.

Statistical analysis

All statistical analyses were performed using R software (version 4.3.1).
For continuous variables, normality was assessed using the
Shapiro-Wilk test. Normally distributed variables were compared
using Student’s t-test (two groups) or one-way analysis of variance
(ANOVA) (=3 groups), and non-normally distributed variables were
compared using the Wilcoxon rank-sum test or Kruskal-Wallis test.
Categorical variables were compared using the chi-square (x?) test or
Fisher’s exact test. Associations between continuous variables (e.g.,
LDS, p-taul8l, p-tau2l7, clinical and neuropathological scores) were
evaluated using Spearman’s rank correlation and reported as correla-
tion coefficients (r) with corresponding P values.

Diagnostic performance of LDS, p-taul81, p-tau217, and their com-
binations, as well as aMCI classifiers, was evaluated using ROC analysis.
AUGs, sensitivity, specificity, and accuracy were reported with 95% CIL
Differences between AUCs were assessed using two-sided DeLong tests;
when multiple models were compared, P values from DeLong tests were
adjusted using the Benjamini-Hochberg FDR method. Calibration curves
for the LDS and combined models were generated using bootstrap resam-
pling to compare predicted versus observed event probabilities, and decision
curve analysis (DCA) was used to quantify standardized net benefit across a
range of threshold probabilities.

For analyses involving multiple comparisons (e.g., differential
expression, pathway enrichment, subtype comparisons, and correlation
heatmaps), P values were corrected using the Benjamini-Hochberg FDR
procedure, and FDR < 0.05 was considered significant. Unless otherwise
specified, all other P values are two-sided and unadjusted, with P <0.05
considered statistically significant.

Data availability

The public transcriptomic datasets used in this study were obtained from the
Gene Expression Omnibus (GEO) database under accession numbers
GSES5281, GSE84422, GSE122063, GSE132903, GSE28146, GSE48350,
GSE36980, GSE37263, and GSE29378. These datasets are freely available at
“https://www.ncbi.nlm.nih.gov/geo/. The independent plasma cohort data
generated and analyzed during this study are not publicly available due to
ethical and privacy restrictions but are available from the corresponding
author upon reasonable request and with appropriate institutional approval.

Code availability
The analytical codes involved in this study can be obtained by contacting the
corresponding author upon reasonable request.
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