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KT-LLM: an evidence-grounded and
sequence text framework for auditable
kidney transplant modeling
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We address a critical clinical gap in real-world kidney transplantation (KT), the long-standing disconnect
between structured longitudinal follow-up and text-definedclinical rules,whichoften leads to inconsistent
reporting, poor policy compliance, and non-reproducible outcomes across centers. To resolve this, we
introduce KT-LLM, a verifiable orchestration layer that bridges sequence modeling with policy and
terminology-aware reasoning, tailoring explicitly to KT clinical workflows. KT-LLM ensures clinical
decision-making is grounded in authority by constraining knowledge access to Banff kidney allograft
pathology references, OPTN, and SRTR policy documents via retrieval-augmented generation. This
design anchors answers and computable checklists to versioned sources, enabling full auditability and
reducing subjective interpretation errors. The system coordinates three clinically focused, auditable
agents: (i) Agent-A (SRTR-MambaSurv): Optimizes discrete-time survival and competing risk prediction
fromTRF-aligned trajectories via a linear-time inference backbone to personalize follow-up scheduling; (ii)
Agent-B (OPTN-BlackClust): identifiesclinicallydistinctpopulationsubtypesusingstabledeepembedded
clustering, supporting individualized treatment stratification; (iii) Agent-C (Policy-Ops): encodesOPTNand
UNOS submission timelines, SRTR reporting cadence, and Banff terminology into executable rules,
returning pass, warn and fail outcomes with versioned evidence to ensure policy compliance. On de-
identified OPTN and UNOS cohorts, KT-LLM outperformed strong baselines in evidence attribution and
predictive calibration. Critically, it retained the ability to surface clinically distinct subgroups among Black
recipients, which aligns with prior reports of outcome heterogeneity, while avoiding overgeneralization of
claims beyond the analyzed window. This supports equitable subgroup analysis while avoiding clinical
overreach. By anchoring reasoning and outputs to versioned policies and terminology, KT-LLM
transforms themodel to governKTworkflows into an auditable, clock-synchronizedprocess. This offers a
practical solution to enhance reproducibility, monitor fairness across centers and eras, and standardize
clinical practice, addressing unmet needs for scalable, reliable KT care in real-world settings.

In real-world management and research of kidney transplanta-
tion(KT), critical evidence has long evolved along two parallel tracks:
structured longitudinal follow-up and text-defined rules. On the one
hand, OPTN and SRTR collect Transplant Recipient Follow-up (TRF)
at 6 months post transplant, at 1 year, and annually thereafter, and
release standardized analytic files1,2, thereby providing a clear and

comparable time axis for time to event analyses and competing risks
evaluation3. On the other hand, the Banff classification is continuously
updated via a centralized online repository that standardizes termi-
nology, lesion scoring, and diagnostic categories4–6, while SRTR’s
Program Specific Reports (PSR) are issued on a semiannual cadence to
support program-level quality oversight and public transparency7–9.
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Together, these components establish a shared evidentiary frame of
high-value endpoints, authoritative rules, and governance cadence.

Despite concurrent advances, the three strands of follow-up data,
pathology rules, and quality monitoring have lacked a mechanism for
alignment. First, the OPTN and SRTR Standard Analysis Files (SAF) and
STAR1,2 specify that each transplant should have TRF recorded at 6months,
1 year, and annually thereafter until re-transplant, death, or loss to follow
up10,11. Recent OPTN monitoring of data submission has further specified
deadlines for TRF at 6 months, 1 year, and 2 years, forming a time axis and
deadline structure that can and should be propagated into model devel-
opment and audit. In parallel, SRTR releases PSR semiannually7,12 and
publishes center-facing technical notes and key dates8, functioning as an
external clock. These institutional arrangements determine data freshness,
definitional scope, and reconciliation cadence and constitute prerequisites
that any deployment-oriented modeling framework must explicitly align
with and audit.

Second, as the internationally adopted framework for kidney
allograft pathology, the Banff classification4,13,14 provides a current,
searchable online version through its Central Repository, explicitly
designating it as the single authoritative source supplanting prior
conference reports. This affords authoritative anchors for terminology,
scoring, and diagnostic categories within information systems and
research workflows5,6, and creates the conditions for retrieval aug-
mentation and computable implementation15,16.

Third, system-level concerns about equity and access are driving
synchronous upgrades in rules and model evaluation17,18. Studies based
on the 2015–2019 OPTN and UNOS cohort have identified clinically
distinguishable and stable clusters among Black recipients using
unsupervised methods and compared outcomes across groups19.
Concurrently, since 2023, OPTN has implemented and iteratively
refined the requirement for race-neutral Estimated Glomerular
Filtration Rate (eGFR) corrections to wait time credit20–22, specifying
concrete operational thresholds for audit, eligibility, and
documentation23. These developments reshape both the data defini-
tions and the operative timeline, imposing explainability and trace-
ability as front-loaded compliance conditions for any risk model or
quality control tool that claims deployability.

Methodologically, medical follow-up data exhibit discrete, long-hor-
izon, and sparse characteristics. Deep survival families provide reusable
baselines for time to event and competing risks tasks, while model com-
parison and reporting are expected to follow standardized metrics such as
time-dependent area under Curve (AUC) and Brier, enabling robust multi-
center and multi-era evaluation and recalibration3,24–31.

Recent progress in long sequence modeling offers a natural
pathway for TRF-like sequences. Transformer variants have performed
strongly on several tasks, but their quadratic attention cost inflates
training and inference demands for multi-year follow-up32–35. Selective
state space models achieve linear time, high throughput inference via
input-dependent state updates and have demonstrated competitive
representation quality on very long sequences, making them an apt
backbone when balancing long horizon follow-up with deployment
efficiency36,37. In KT, the central gap is not singlemetric accuracy per se,
but the lack of a system that explicitly couples such linear long sequence
representations with the governance clock of PSR submission dead-
lines and with Banff and OPTN textual rules in one auditable
framework.

In parallel, text knowledge alignment has converged on a clear
paradigm. Retrieval augmented generation (RAG) injects non-para-
metric, externally retrievable memory prior to decoding, grounding
outputs in citable sources and enabling hot updates. This is well-suited
to scenarios that constrain knowledge to authoritative primary
sources38–42. Large language models for medicine that use RAG,
including Med-PaLM 2, LLaVA-Med, and domain-tuned Pub-
MedBERT pipelines, have shown strong performance on general
question answering benchmarks, yet they do not combine versioned

policy corpora, registry-aligned survival and clustering modules,
calculator-backed checklists, and governance clocks in one auditable
workflow.

To address these needs, we propose a unified sequence text engine: a
domain-constrained, retrieval-augmented language model orchestrates
three auditable agents within a shared data and rules context38,39,41,42.
Agent-A (SRTR-MambaSurv) builds discrete-time and competing risks
models on TRF follow-up, using Mamba to encode OPTN and SRTR
longitudinal registries efficiently and calibrate outputs, with compar-
isons against strong deep survival baselines1,2,25–27,36,37. The pipeline of
KT-LLM is illustrated in the Fig. 1. Agent-B (OPTN-BlackClust)
reproduces and extends unsupervised subtype evidence for Black reci-
pients within the 2015–2019 OPTN and UNOS window19. Agent-C
(Policy-Ops) formalizes OPTN and SRTR indicator definitions, TRF
generation and submission deadlines, and the semiannual PSR cadence
into executable rules callable by the LLM with full provenance8,9. The
entire system restricts knowledge to the Banff Central Repository and
OPTN and SRTR official documents to ensure terminological con-
sistency, computable thresholds, and auditable evidence1,2. Figure 1
summarizes our end-to-end pipeline: a scoped RAG layer constrains
evidence to official sources and standardizes definitions, while the LLM
orchestrator plans and executes agent calls with parameter injection;
outputs are aligned and aggregated into a structured answer.

In summary, KT-LLM is built on three pillars that define its novelty
and scope. A versioned and time-aligned corpus with effective dates, and
PSR-aligned freezes keeps retrieval, attribution, and calculator outputs on
the same clock and on the same source scope. Coverage-aware decoding
with a pointer distribution and a confidence gate enforces multi-clause
grounding and returns evidence summaries when confidence is low. An
executable structured checklist carries out numeric thresholds and date
arithmetic with sentence-level provenance and audited tool calls. These
choices enable mandatory multi-source grounding, calculator-backed
answers, version-stamped citations, and hot index refresh without retrain-
ing, which extends beyond the abilities ofmedical LVLMs and domain LMs
used as baselines.

Our goal is verifiable integration geared for operation: within one
framework, textual rules become computable checklists; follow-up
sequences become calibratable representations; and the governance clock
becomes a set of actionable constraints. The system directly supports three
classes of tasks: (1) individual-level risk stratification with uncertainty
quantification; (2) population-level subtype analysis and equitymonitoring;
and (3) policy and operations consistency checks with traceable answers.
Accordingly, evaluation is organizedunder public, reproduciblemetrics: for
survival and competing risks tasks, we report C-index, time-dependent
AUC, and integrated Brier; for clustering, we report stability and agreement
measures; for governance tasks, we report rule trigger timeliness, con-
cordance, and citation hit rate8,28–31,43,44. By aligning data via rules and con-
strainingmodels via the governance clock, the proposed design aims to shift
KT evidence model governance from manual assembly to auditable
operation, supporting reproducibility and fairness across centers and eras.
Unlike existing medical language or vision language models that simply
attach retrieval to a large backbone, KT-LLM couples a time-aligned and
versionedpolicy andpathology corpus, coverage-constraineddecodingwith
an evidence pointer and confidence gate, and an executable checklist that
performs numeric and temporal checks with provenance and exposed
audit logs.

Results
Datasets
This study integrates three data axes under a unified, auditable framework:
(i) longitudinal registry files for numerical modeling SRTR SAF andOPTN
STAR1,2; (ii) authoritative policy and operations timelines SRTR PSR
cadence and OPTN Policies used as executable constraints12; and (iii)
controlled textual knowledge the Banff Central Repository, OPTN and
UNOS policy manuals, and SRTRmethodological notes consumed by KT-
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LLM via retrieval augmentation9. All registry data were accessed under data
use agreements (DUA), and textual sources servedas the single authoritative
knowledge base with versioning and provenance9.

SAF provides recipient and graft level longitudinal follow-up struc-
tured around the TRF schedule at 6 months post-transplant, 1 year, and
annually thereafter until re-transplant, death, or loss to follow-up10. For
Agent-A (SRTR-MambaSurv), per-recipient sequences are aligned to the
TRF grid and include dynamic laboratories, immunosuppression, adverse
events, encounter metadata, and baseline donor covariates1. Center and
calendar year identifiers are retained for stratified reporting9,12.

For Agent-B (OPTN-BlackClust), recipient-level OPTN STAR files
aggregate candidate, donor, transplant, and post-transplant follow-up
records to form end-to-end sequences spanning listing, transplant, and
TRF-aligned follow-up. Analyses reproduce reported subgroup structure
among Black recipients and support unsupervised subtype discovery with
survival and competing risks endpoints.

Agent-C (Policy-Ops) operationalizes governance constraints with
versioned provenance. SRTR PSRs are released semiannually with a con-
ventional data freeze approximately six months prior; these dates guide
center-level reconciliation12. OPTN Policies provide executable constraints,
including TRF form due windows of 60 or 90 days and race-neutral eGFR
rules for wait time credit. These anchors define admissible timelines, sub-
mission windows, and audit checks rather than labels.

The textual knowledge base is limited to the Banff Central Repository,
OPTNandUNOSpolicymanuals, and SRTRmethodologicalmaterials and
PSR public pages9,12. Entries are compiled into versioned vocabularies and

range tables for terminology normalization, retrieval, and rule-based vali-
dation by KT-LLM; documents are segmented and indexed with version,
effective date, and section lineage to preserve provenance.No image data are
used. Together, SAF and STAR sequences, PSR and OPTN timelines, and
Banff, OPTN, and SRTR texts provide a consistent substrate for Agent-A
survival and competing risks modeling, Agent-B unsupervised subtype
discovery in the 2015–2019 STAR cohort, and Agent-C executable rule
checks with sentence-level provenance. We analyze kidney transplants
recorded between 2015 and 2019. Eligibility requires a transplant baseline
and at least one follow-up on the TRF grid. Recipient timelines are
administratively censored at the last known contact or at the study cutoff
and are additionally truncated at the applicable program-specific report
(PSR) freeze date for the evaluationperiod.Center and calendar year tags are
retained as factors for partitioning and stability checks.

Evaluation metrics
Evaluation is performed on the TRF-aligned discrete time grid using cumulative
incidence functions (CIFs) for graft loss anddeath.Discrimination is summarized
with Harrell’s C-index using inverse probability of censoring weighting (IPCW)
for right censoring, and calibration accuracy with the Brier score and its horizon
average, the integrated Brier score (IBS). Groupwise comparisons across strata or
discovered subtypes use Gray’s test for CIFs; when a single number effect is
needed,we reportFineGray subdistributionhazard ratios.All survivalmetrics are
reported on prespecified horizons.

All metrics are computed on histories that are truncated at the eva-
luation window’s PSR freeze date so that estimation and reporting share the

Fig. 1 | End-to-endworkflowof theKT-LLM for kidney-transplant analytics. Step
1 parses the user query into a structured intent. Step 2 performs a scoped RAG over
versioned official corpora to fetch evidence with anchors and standardized defini-
tions and thresholds. Step 3 plans tool usage and injects parameters, calling three

agents: Agent-A (SRTR-MambaSurv) for long-sequence survival, Agent-B (OPTN-
BlackClust) for unsupervised cohort stratification, and Agent-C (Policy-Ops) for
policy and checklist computation. Step 4 aligns units and definitions and aggregates
results into a structured answer.
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same clock. Left truncation and right censoring are handledunder the stated
IPCW constructions with the time axis aligned to the TRF grid.

Recipient level embeddings are clustered and assessed with (i) sil-
houette for cohesion/separation; (ii) Adjusted Rand Index (ARI) and nor-
malized mutual information (NMI) for agreement with alternative
partitions; and (iii) bootstrap Jaccard for label stability across resamples. The
number of clusters K is chosen via consensus clustering by inspecting the
consensus CDF and the Delta area curve, favoring the smallest K beyond
which gains plateau. All summaries include resampling uncertainty.

Adherence to policy timelines is summarized by the center level on
time rate and median lateness; executable rules are evaluated with rule
concordance against an independently verified audit subset. For retrieval
augmented answers, we report evidence coverage and citation hit rate on
structured checklist items. Governance and RAGmetrics are aggregated by
center and period with stratified summaries where appropriate.

For retrieval augmented answers, cite at one credits an answerwhen its
top cited passage resolves to the governing clause for that item within the
effective date window, and the rule F onemetric is computed on structured
checklist entries rather than rendered text templates.

Training details
All experiments used de-identified registry extracts under DUA, and image
channelswere not used. Splits were time-stratified and aligned to SRTRPSR
freeze points; hyperparameters were chosen on a development split and
then frozen; seeds, data vintages, policy and lexicon versions, and code
hashes were logged. The knowledge base covered the Banff Central Repo-
sitory, OPTN, and UNOS policies, including Policies 18 and 3.7, and SRTR
methodological materials and PSR public pages. Documents were seg-
mented with Lc from 256 to 384 and Sc from 64 to 128 while retaining
version, effective date, and lineage. Dense retrieval used a domain-aligned
encoderwith candidate set k0 from32 to64and a cross-encoder re-ranker to
a final set k from 6 to 10. The orchestration model used a MedLLaVA
language backbone with the vision branch disabled. Stage one froze the
language backbone and trained the dense retriever and the cross encoder
with contrastive objectives and hard negatives while all other parameters
were frozen. Stage two kept the language backbone, the retriever, and the
cross encoder frozen and unfroze only the language head and the checklist
head for joint optimization. Closed-book dropout masked evidence for a
subset of steps, and each answer required at least one citation. Decoding
used beam search with length and coverage penalties. Optimization used
AdamW with cosine decay and gradient clipping with early stopping on
answer accuracy, citation hit rate, and structured field consistency.
Decoding uses beam size b = 5, length penalty 0.8, coverage penalty weights
γ = 0.60 and ω = 0.70, a sentence-level citation coverage threshold ρ = 0.70,
and a confidence gate threshold τ = 0.25. Retrieval and re-ranking use
segment length Lc = 384 and stride Sc = 96, a first stage candidate count k0 =
64, a re-ranked evidence count k = 8, and a terminology reweighting coef-
ficient λ = 0.40. Optimization for the retriever and the cross encoder uses
AdamWwith initial learning rate 2×10−4,weightdecay0.01, andbatch sizes
128 and64; the languagehead and the structured checklist useAdamWwith
initial learning rate 1 × 10−4 and batch size 8; cosine decay scheduling and
gradient clipping at 5.0 are applied, and early stopping monitors answer
accuracy, citation hit rate, and structured field consistency. Agent A's sur-
vival training uses AdamWwith an initial learning rate of 3 × 10−4, weight
decay of 0.01, batch size 256, andgradient clipping at 5.0,with early stopping
on validation negative log likelihood and IBS. All experiments run with
random seeds 17, 29, and 41, and indexing, as well as batch sampling, follow
the same seed order across runs.

For longitudinal outcomemodeling, inputs followed theTRFgrid at six
months, one year, and then annually. Visits concatenated dynamic clinical
variables with baseline donor and recipient covariates, explicit missingness
indicators, and time delta features; numerical features used median and
interquartile range scaling with Winsorization, and categorical fields were
embedded. Sequences used a stacked Mamba state space backbone with
residual connections and dropout, and center and year offsets were grouped

as bias terms. The output layer produced a per-interval softmax over no
event, graft loss, and death, and training used the discrete time negative log
likelihood with label smoothing and focal weighting; calibration and sta-
bility regularizers acted on binned empirical rates and grouped logits. The
Mamba backbone and the output layer were trained end-to-end with no
frozen layers. Optimization usedAdamWwith cosine decay and clipping at
five, with validation aligned to PSR freeze points and early stopping on
negative log likelihood and IBS. Time out of sample evaluation held out the
latest transplant year, and sensitivity analyses used center-stratified folds.
Recipient level sequences were pooled with phase-specific attention and
clustered by deep embedded clustering that pretrained a shallow auto-
encoder, initialized centers by k-means, and then fine tuned encoder and
centers jointly under a DEC objective with IDEC-style reconstruction and
an entropy balance term with a periodically refreshed target distribution.
During clustering, the Mamba backbone was frozen, and only the auto-
encoder encoder and the cluster centers were updated. The number of
clusters K was chosen by consensus clustering and the delta area criterion,
and stability was assessed using bootstrap Jaccard indices and ARI or NMI
with center and year stratified resampling.

The primary partition follows a calendar holdout: training uses
transplants from 2015 to 2017, validation uses 2018, and test uses 2019. No
recipient contributes observations across these temporal splits. For the test
period, any record with timestamps later than the corresponding PSR
freeze date is excluded from computation. Sensitivity analyses use center-
stratified folds to assess transfer across sites while keeping each center’s
records within a single fold per run. The retrieval index for KT-LLM is
limited to sources whose effective dates precede the test freeze, and tool
outputs that require dates or thresholds are computed only from data that
satisfy the same cut.

KT-LLM comparison results
Table 1 reports a head-to-head comparison between KT-LLM Full and
thirteen baselines, including BM2545, dense retrievers DPR, Contriever, and
E539,46–48, the late interaction ranker ColBERTv249, RAG pipelines FiD and
FiDO40, and domain LMs PubMedBERT, BioGPT, LLaVA-Med, andMed-
PaLM 250–52. KT-LLM attains the top exact match and macro F1 on Banff-
QA and Policy-QA, and also yields the highest evidence coverage and the
best structured checklist consistency. Gains are largest on items that require
clause-level grounding inOPTNandSRTRsources andon threshold checks
that can be verified symbolically, which aligns with the joint text and
structure objective and coverage-aware decoding. Replacing BM25 with
learned dense retrieval improves answer accuracy and grounding. Con-
triever style andE5-style encoders raisefirst-stage recall overDPRonpolicy,
and Banff clauses with heterogeneouswording, and aColBERTv2 re-ranker
further improves Hit@1 through fine-grained late interaction46,47,49. Closed-
book biomedical LMs trail retrieval augmented systems on policy questions
tied to current definitions or deadlines, andmedical LVLMs narrow the gap
on terminology yet lag on multi-clause reconciliation and numeric checks
unless paired with explicit retrieval and a calculator.

Evidence attribution improves through a pointer distribution and a
coverage penalty that raises the fraction of sentenceswith valid citations and
reduces single-source reliance.Disabling the cross-encoder re-ranker lowers
exact match and citation precision by making similarly worded clauses
harder to disambiguate40,53. Ablations show three effects: disabling retrieval
hurts most on numeric Policy-QA and on Banff items that depend on the
latest wording, disabling the coverage penalty increases fluency while low-
ering citation rate, and re-enabling it restores multi-source coverage at a
modest decoding time cost, and LoRA only tuning preserves stability across
updates with small drops on paraphrastic items54. With dense retrieval and
ColBERTv2 re-ranking, median end-to-end latency remains within inter-
active bounds, and the ranker reduces backtracking. Residual errors are
boundary drift from closely versioned clauses, denotation ambiguity from
rare synonyms or legacy acronyms, and arithmetic slips when upstream
dates are incomplete. Under the stated protocol, KT-LLM couples higher
answer quality with stronger grounding and more consistent structured
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outputs by aligning retrieval, attribution, and calculator tooling within a
single audited stack.

Observed gains on Banff-QA and Policy-QA arise mainly from cov-
erage targets that encourage aggregation across clauses, from the confidence
gate that suppresses low confidence generations, and from the structured
checklist that verifies thresholds and deadlines. We provide a brief quali-
tative error summary with one sentence illustration per pattern drawn from
validation logs. Clause drift across close versions appears when answers cite
a prior policy clause that still matches the query but uses the older due
window of 60 days, and version stamps with coverage targets reduce this by
preferring the clause with the latest effective date. Denotation ambiguity in
threshold language appears when rare synonyms, such as induction level
and induction intensity, are treated as distinct, and terminology-aware
reweighting, together with checklist fields, aligns them to a single controlled
term. Arithmetic slips appear when an upstream date is missing, and the
calculator uses an implicit anchor. The checklist now requires an explicit
anchor and returns a limited evidence message when the anchor is absent.
We report all metrics with ninety-five percent confidence intervals, and we
includepairedpermutation tests across seeds and folds for eachcomparison.

SRTRMambaSurv comparison results
Table 2 summarizes the head-to-head comparison on OPTN and SRTR
discrete time survival with competing risks3,55–57, evaluated on held out
centers and calendar windows. As shown in Table 2, across all metrics and
both endpoints, SRTR–MambaSurv achieves the best overall performance.
Concretely, it attains a C-index of 0.82 for Death and 0.80 for Graft Loss,
surpassing the strongest deep survival baselines (Dynamic-DeepHit58: 0.79
and 0.77) by absolute margins of+0.03 on both endpoints. Discrimination
at fixed horizons shows the same trend: time-dependent AUC28 at 1 year for
Death is 0.84 (vs 0.82 forDynamicDeepHit; forGraft Loss at 3 years it is 0.82
(vs 0.81). Calibration, measured by IBS30,31 over 0–5 years and macro

averaged across endpoints, improves from 0.148 to 0.136 with
SRTR–MambaSurv, and the visualized results are shown in Fig. 2.

The confidence intervals for SRTR–MambaSurv generally do not
overlapwith those of classical semiparametric baselines, such as Fine-Gray3,
CoxBoost59 on C-index and IBS, and show non-trivial separation from tree
methods on at least one primary endpoint. Against the strongest deep
baselines, the absolute C-index gains of +0.03 occur on both Death and
Graft Loss, with tighter variability (std. ≤ 0.01) across three seeds. Together
with the horizon-specific td-AUC gains and the consistent IBS reduction,
these findings support that (i) encoding the TRF grid as a discrete time
competing risks process, and (ii) employing a selective state space
backbone36 to handle multi-year, irregular, and sparse observations, yield
measurable advantages on held out centers and time windows. Finally, we
note that absolute numbers vary across families in predictable ways: models
optimized for proportional hazards tend to underperform at later horizons
where non-proportional effects accumulate; tree models close some of the
gap in td-AUCbut remain less calibrated; and end to end deep discrete time
methods are competitive yet still trail SRTR–MambaSurv, suggesting that
long range sequence encoding and a multinomial interval hazard head
jointly contribute to robustness in this registered, center-shifted setting.

To aggregate performance across discrimination and calibration and to
make model level trade offs visually explicit, we summarize net improve-
ments over the classical RSF-CR baseline with a composite waterfall as
shown in Fig. 2. The plot shows that SRTR-MambaSurv delivers the largest
positive shift, while classical proportional hazards families remain negative
on the composite due toweaker later horizondiscriminationandhigher IBS,
and strong deep survival baselines are competitive yet still trailMambaSurv.

Beyond point estimates, we examine equity-relevant behavior across
clinically salient subgroups. A fairness profile radar, as shown in Fig. 2
summarizes absolute subgroup gaps relative to RSF-CR (baseline ring =
1.0), indicating consistently smaller gaps for SRTR-MambaSurv than for

Table 1 | Primary model: KT-LLM comparison on domain-specific QA (Banff, OPTN, and SRTR) with 95% CIs under stated
assumptions

Method Banff-QA OPTN and SRTR Policy QA (held-out, center/year disjoint)

Acc. (%) ↑ [95% CI] EM ↑ [95% CI] Evidence hit rate ↑ [95% CI]

Classical IR/retrieve—read baselines

BM25+ rule templates (regex/threshold) 68.2 [65.0, 71.3] 0.54 [0.51, 0.57] 41.6% [38.2, 45.0]

BM25+ BERT-reader (SQuAD-tuned) 72.5 [69.4, 75.4] 0.58 [0.55, 0.61] 47.3% [44.0, 50.6]

DPR (Karpukhin)+ FiD (Izacard–Grave) 78.0 [75.1, 80.7] 0.63 [0.60, 0.66] 55.9% [52.6, 59.1]

ColBERTv2+ FiD 80.2 [77.4, 82.8] 0.66 [0.63, 0.69] 59.1% [55.9, 62.2]

Contriever+ FiD 79.1 [76.2, 81.7] 0.64 [0.61, 0.67] 57.8% [54.6, 61.0]

E5-base Retriever+ FiD 79.5 [76.6, 82.1] 0.65 [0.62, 0.68] 58.4% [55.1, 61.6]

General LLMs with constrained RAG over Banff, OPTN, and SRTR

Llama 2–13B Chat+ RAG 83.1 [80.5, 85.5] 0.70 [0.67, 0.72] 66.2% [63.1, 69.1]

Llama 3–8B Instruct+RAG 85.1 [82.7, 87.3] 0.73 [0.71, 0.76] 69.8% [66.8, 72.7]

Mistral 7B Instruct+RAG 84.3 [81.8, 86.6] 0.72 [0.69, 0.74] 68.5% [65.5, 71.4]

GPT-4 (text)+ RAG (no browsing) 88.9 [86.7, 90.8] 0.78 [0.76, 0.80] 76.4% [73.8, 78.8]

Biomedical/medical LMs (text-only unless noted)

Med-PaLM 2 (text) 86.7 [84.3, 88.8] 0.75 [0.72, 0.77] 72.1% [69.2, 74.8]

PubMedBERT QA (domain-tuned) 74.0 [70.9, 76.9] 0.60 [0.57, 0.63] 50.2% [46.9, 53.5]

BioGPT QA (generative) 77.2 [74.2, 80.0] 0.62 [0.59, 0.65] 54.1% [50.8, 57.3]

LLaVA-Med (text channel only) 75.6 [72.6, 78.4] 0.61 [0.58, 0.64] 52.7% [49.4, 55.9]

Ours

KT-LLM 91.8 [89.9, 93.4] 0.82 [0.80, 0.84] 83.5% [81.1, 85.7]

Domain corpora comprise Banff Central Repository (terminology/criteria), OPTN and UNOS Policies (with Policy 18 time limits and 3.7 eGFR adjustments), and SRTRmethodology pages. Reported item
pools exclude out-of-scope questions. Evidence Hit Rate credits a prediction if at least one attached citation resolves to the governing clause for that item.
We evaluate only kidney transplant domain items using authority-filtered corpora (Banff Central Repository; OPTN and UNOS Policies; SRTR methodology/PSR pages). Columns report: (i) Banff-QA
accuracy (%) with Wilson 95% CI; (ii) OPTN and SRTR-Policy QA exact match (EM) with bootstrap 95% CI (B = 1000); (iii) Evidence Hit Rate (%)-fraction of answers whose citations point to the correct
clause/section with bootstrap 95% CI.
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deep survival and classical baselines. This aligns with our study’s goal of
coupling accuracy with monitoring of subgroup disparities under stan-
dardized, reproducible metrics.

OPTN BlackClust population clustering
We compare OPTN–BlackClust (Mamba+ IDEC+Consensus) against
classical partitioning, density, deep clustering without sequence backbones,
and sequence-aware variants onOPTNSTAR (2015–2019) Black recipients
(Table 3). Unless otherwise noted,metrics are reported asmean± std across
repeated runs and bootstraps with the number of clusters selected by the
consensus CDF criterion.

OPTNBlackClust attains thehighest agreement and separation among
all contenders, with NMI 0.58 and ARI 0.45, improving over the best
non–sequence deep baselines (IDEC: 0.49 NMI, 0.37 ARI) by +0.09 NMI
and+0.08 ARI, and over joint sequence aware Mamba+DEC (0.54 NMI,
0.41 ARI) by +0.04 and +0.04, respectively. Relative to classical tabular
clustering (Agglomerative/Ward: 0.36 NMI, 0.27 ARI), the gains are larger
(+0.22 NMI,+0.18 ARI). Silhouette follows the same trend, reaching 0.25
forOPTNBlackClust vs 0.23 (Mamba+DEC) and 0.21 (IDEC), indicating
tighter, better separated partitions in the embedding space.

Consensus-based training markedly improves robustness. OPTN
BlackClust yields the highest bootstrap Jaccard stability (0.79), exceeding
Consensus–DEC (0.73) and Consensus–PAM (0.70). The margin over non-
consensus DEC/IDEC (0.64–0.68) indicates that resampling and consensus
aggregation effectively mitigate initialization sensitivity and feature subsample
noise. Classical and density methods show substantially lower stability, con-
sistentwith their sensitivity tohyperparametersonheterogeneousregistrydata.

Between cluster outcome separation, assessed by the Gray test on graft
loss CIFswith death as a competing event, is strongest forOPTNBlackClust
(�log10p ¼ 4:6). This improves upon Mamba+DEC (3.9) and
Consensus–DEC (3.6), and roughly doubles the signal relative to graph
models. The pattern aligns with embedding quality, stronger sequence-
aware representations, and consensus refinement translate into clearer
prognostic stratification at the population level.

Using the sameMamba encoder but replacing the clustering stagewith
K-means reduces performance (NMI 0.42, ARI 0.31, Jaccard 0.62), under-
scoring the benefit of a joint deep clustering objective. Introducing the IDEC
reconstruction term and consensus selection recovers both cluster com-
pactness and stability, indicating that preserving local manifold structure
and attenuating sampling variance are complementary to the long horizon
sequence embedding.

As shown in Table 3, across agreement, separation, stability, and
prognostic discrimination, OPTN BlackClust consistently ranks first.
Gains are most pronounced when contrasted with classical tabular clus-
tering and remain significant over strong deep baselines, including joint
sequence-aware variants. These results support the design choice of
combining a linear timeMamba backbone for longitudinal representation
with an IDEC objective and consensus selection to deliver reproducible,
clinically meaningful subtypes within the OPTN STAR Black recipient
cohort.

Ablation results
Table 4 summarizes the incremental contribution of each component of the
proposed system. Starting from the ablated baseline, KT-LLM attains a QA

Table 2 | Agent-A (SRTR-MambaSurv) comparison on OPTN and SRTR discrete time survival with competing risks (held out
centers and time windows; 95% CIs under stated assumptions)

Models C-index ↑ C-index ↑ td-AUC@1y ↑ td-AUC@3y ↑ IBS (0–5y) ↓

Classical semiparametric/nonparametric

Kaplan–Meier+ Aalen–Johansen† 0.60 ± 0.03 0.58 ± 0.03 0.62 ± 0.04 0.60 ± 0.01 0.212 ± 0.02

Fine-gray (linear) 0.66 ± 0.05 0.64 ± 0.02 0.68 ± 0.02 0.66 ± 0.04 0.194 ± 0.03

Cause-specific Cox (PH) 0.69 ± 0.04 0.67 ± 0.05 0.71 ± 0.02 0.69 ± 0.06 0.186 ± 0.04

Cox (Lasso) 0.70 ± 0.02 0.68 ± 0.01 0.72 ± 0.03 0.70 ± 0.03 0.182 ± 0.02

Cox (Elastic Net) 0.71 ± 0.03 0.69 ± 0.01 0.73 ± 0.02 0.71 ± 0.04 0.179 ± 0.02

CoxBoost 0.72 ± 0.01 0.70 ± 0.01 0.74 ± 0.03 0.72 ± 0.03 0.176 ± 0.04

Tree/boosting survival

Random survival forest (RSF) 0.73 ± 0.02 0.72 ± 0.04 0.75 ± 0.02 0.74 ± 0.02 0.171 ± 0.01

RSF for competing risks (RSF-CR) 0.74 ± 0.03 0.73 ± 0.03 0.76 ± 0.03 0.75 ± 0.03 0.168 ± 0.02

Gradient-boosted Cox (GBSA) 0.73 ± 0.01 0.71 ± 0.01 0.76 ± 0.02 0.74 ± 0.01 0.172 ± 0.03

XGBoost–Cox 0.74 ± 0.02 0.73 ± 0.03 0.77 ± 0.04 0.75 ± 0.02 0.167 ± 0.01

LightGBM–AFT 0.75 ± 0.02 0.74 ± 0.02 0.78 ± 0.02 0.76 ± 0.04 0.164 ± 0.04

Deep survival (continuous and discrete time)

Nnet-survival (discrete-time) 0.74 ± 0.01 0.73 ± 0.01 0.77 ± 0.05 0.75 ± 0.03 0.166 ± 0.03

DeepSurv (Cox) 0.76 ± 0.04 0.74 ± 0.04 0.79 ± 0.07 0.77 ± 0.05 0.160 ± 0.01

CoxTime 0.76 ± 0.03 0.75 ± 0.03 0.79 ± 0.05 0.78 ± 0.06 0.158 ± 0.02

Deep survival machines (DSM, CR) 0.77 ± 0.02 0.76 ± 0.02 0.80 ± 0.02 0.79 ± 0.02 0.154 ± 0.01

DeepHit (CR) 0.78 ± 0.05 0.76 ± 0.04 0.81 ± 0.01 0.80 ± 0.03 0.151 ± 0.02

Dynamic-DeepHit (CR) 0.79 ± 0.02 0.77 ± 0.03 0.82 ± 0.04 0.81 ± 0.01 0.148 ± 0.01

Ours

SRTR–MambaSurv (ours) 0.82 ± 0.02 0.80 ± 0.02 0.84 ± 0.02 0.82 ± 0.02 0.136 ± 0.01

Two endpoints are evaluated: death and graft Loss (death treated as a competing event for graft loss). We report Harrell’sC-index (per endpoint), time-dependent AUC at 1 and 3 years (endpoint specific),
and IBS on 0–5 years (macro averaged across endpoints).Mean ± std over three runswith stratified seeds; 95%CIs via stratified bootstrap (B = 1000). Numbersmarked † are re-scored baselines under our
discrete time grid; others are from our re-implementations on the same split.
Protocol: split by centers and calendar years to emulate deployment; features aligned to the TRF grid (6months, 1 year, annually). Time to event is discretized; death and graft loss are trained and evaluated
in a competing risks setting. Censoring handled by IPCW for td-AUC and Brier/IBS. Means and CIs computed over three seeds with different parameter initializations and minibatch orders. All methods
share identical preprocessing, feature sets, and evaluation windows.
RSF random survival forest, CR competing risks, GBSA gradient boosted survival analysis, AFT accelerated failure time, IBS integrated Brier score.
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accuracy of 0.76, Cite@1 of 0.41, a rule-validation F1 of 0.68, and a survival
C-index of 0.77. Enabling RAG yields a marked improvement in answer-
ability and grounding, reflecting the benefit of evidence access for policy-
heavy queries. Adding terminology-aware reweighting further lifts QA Acc
to 0.83 and Cite@1 to 0.70, indicating that controlled vocabularies sharpen
retrieval and re-ranking around domain terms.

Introducing the evidence pointer head with coverage constraint (CIT)
primarily strengthens grounding: Cite@1 increases from 0.70 to 0.81 with a
modest QAAcc gain to 0.84. As shown in Table 4, coupling the rule engine
translates evidence into executable checks, substantially improving Rule F1
from 0.73 to 0.88 while maintaining strong QA Acc and Cite@1 (0.85 and
0.83, respectively). Finally, adding the discrete time competing risk head
aligned to the TRF grid (CRH) improves survival discrimination from 0.77
to 0.81 without compromising QA or rule performance.

Overall, the full configuration achieves QA Acc 0.85, Cite@1 0.83,
Rule F1 0.89, and C-index 0.81. The largest relative gains arise from
adding RAG and Evidence pointer head with CIT, while OPS delivers
the dominant improvement on rule-level consistency. Reported
improvements are consistent across three seeds and typically exceed the
corresponding standard deviations, supporting the robustness of each
design choice.

Discussion
This work addresses the long-standing gap between structured follow-up
sequences and text-defined rules in real-world KT by proposing and
implementing an auditable, integrated solution. Dialog examples see Fig. 3,
KT-LLM serves as the orchestration layer, connecting the Banff Central
Repository, OPTN, and UNOS policies, and SRTR methodological mate-
rials through domain-constrained RAGwithin a unified knowledge source.
On the sequence side, selective state-space models from the Mamba family
encode multi-year, sparse, and non-equidistant TRF longitudinal data. On
the operations side, Policy-Ops compiles into executable rules the form
deadlines andunlock procedures inPolicy 18, theKidneyAllocation System
wait time provisions, and the recent race-neutral eGFR corrections, as well
as the semiannual cadence of SRTR PSR and its data freeze points. In this
way, question answering, risk prediction, clustering evidence, and com-
pliance checks are quantified, recorded, and traced within a single system.
As constraints from governance and authoritative sources, PSR public
releases typically occur in January and July each year, with data cutoffs
approximately six months prior; since 2023, Policy 18 has provided
operational guidance for 60 and 90-day submission deadlines and post hoc
unlock procedures; and the Banff Central Repository is designated as the
current and complete online source superseding prior conference reports.

Fig. 2 | Overview performance of KT-LLM. Lines connect each model’s C-index
across endpoints; line length encodes imbalance. a Per-model endpoint gap. b Joint
threshold compliance on the calibration discrimination plane.Clinical isolines. IBS
(0–5 years) = 0.16 and C-index (Death) = 0.78; shaded upper-left region meets both
criteria. c Relative improvement waterfall (baseline = RSF-CR). Each bar shows the
incremental change in a composite score mean of normalized C-index (Death), C-
index (Graft), and inverted IBS (0–5 years) relative to RSF-CR. Red bars indicate

models worse than baseline; blue bars indicate improvements; the thin gray line
traces the running total, and the rightmost “Net” bar reports the aggregate change.
d Fairness profile relative to RSF-CR. Radar axes denote subgroup gap categories.
Radius encodes the ratio (r = gRSFCR/gmodel) of absolute gaps; the dashed ring at
marks parity with RSF-CR. Values indicate smaller gaps than RSF-CR; values
indicate larger gaps.
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Our system is designed around these verifiable boundary conditions and,
methodologically, imposes an evidence-first, computable checklist genera-
tion discipline to mitigate hallucinations and definitional drift.

Unlike prior efforts centered on single-point model accuracy, we
emphasize operational compliance and auditability. To balance repre-
sentational powerwith deployability overmulti-year follow-up, we adopt a
linear time selective state space backbone for survival and competing risks
tasks rather than a quadratic cost attention backbone; this choice is directly
motivated by the time span andmulti-center scale of TRF and by the input

dependent state updates in Mamba. Further, at the output layer, we use a
discrete time multinomial interval hazard parameterization so that the
probabilities for no event, graft loss, and death are conserved within each
interval, aggregating to an individual time axis via standard constructions
of theCIFs and survival function. Evaluation follows the established toolkit
of time-dependent AUC and IPCW-Brier to avoid biases that arise from
metrics not designed for censored data. These design decisions are
grounded inmature theory and practice: linear time sequencemodeling in
Mamba; discrete time and competing risks learning exemplified by

Table 3 | OPTN-BlackClust comparison on OPTN STAR (2015–2019) Black recipients

Methods NMI ↑ ARI ↑ Silhouette ↑ Jaccard ↑ �log10pGray "
Classical partition-based (tabular, standardized covariates unless noted)

K-means (static covariates) 0.31 ± 0.02 0.22 ± 0.05 0.14 ± 0.01 0.56 ± 0.03 1.2 ± 0.04

K-prototypes (num+cat) 0.35 ± 0.03 0.25 ± 0.03 0.15 ± 0.04 0.58 ± 0.01 1.5 ± 0.02

MiniBatch K-means 0.33 ± 0.04 0.24 ± 0.04 0.14 ± 0.02 0.57 ± 0.04 1.3 ± 0.03

Agglomerative (Ward) 0.36 ± 0.02 0.27 ± 0.05 0.16 ± 0.03 0.60 ± 0.04 1.7 ± 0.05

Graph/mixture/density

Spectral (RBF affinity) 0.39 ± 0.02 0.29 ± 0.01 0.17 ± 0.03 0.61 ± 0.04 2.0 ± 0.5

GMM (full covariance) 0.34 ± 0.01 0.26 ± 0.02 0.15 ± 0.01 0.59 ± 0.04 1.6 ± 0.1

DP-GMM (variational) 0.37 ± 0.02 0.28 ± 0.03 0.16 ± 0.02 0.60 ± 0.04 1.9 ± 0.4

DBSCAN (eps tuned) 0.28 ± 0.05 0.18 ± 0.02 0.11 ± 0.01 0.50 ± 0.05 0.8 ± 0.3

HDBSCAN 0.32 ± 0.07 0.22 ± 0.03 0.13 ± 0.01 0.57 ± 0.05 1.1 ± 0.3

Deep clustering (MLP encoder on tabular; no sequence backbone)

DEC 0.45 ± 0.01 0.34 ± 0.01 0.19 ± 0.04 0.64 ± 0.02 2.8 ± 0.2

IDEC 0.49 ± 0.02 0.37 ± 0.02 0.21 ± 0.03 0.68 ± 0.01 3.4 ± 0.1

VaDE 0.47 ± 0.06 0.35 ± 0.03 0.20 ± 0.01 0.66 ± 0.03 3.1 ± 0.3

DeepCluster-v2 0.44 ± 0.02 0.32 ± 0.01 0.18 ± 0.02 0.63 ± 0.04 2.6 ± 0.4

DDC (discriminative) 0.46 ± 0.04 0.33 ± 0.03 0.19 ± 0.03 0.64 ± 0.03 2.7 ± 0.4

Sequence-aware embeddings and consensus

K-means on Mamba embeddings 0.42 ± 0.04 0.31 ± 0.07 0.18 ± 0.01 0.62 ± 0.03 2.3 ± 0.3

Consensus-PAM (resampling) 0.48 ± 0.03 0.36 ± 0.02 0.20 ± 0.03 0.70 ± 0.03 3.0 ± 0.1

Mamba + DEC (joint) 0.54 ± 0.02 0.41 ± 0.01 0.23 ± 0.02 0.75 ± 0.05 3.9 ± 0.4

Consensus-DEC (resampled) 0.52 ± 0.06 0.39 ± 0.03 0.22 ± 0.05 0.73 ± 0.07 3.6 ± 0.3

Ours

OPTN-BlackClust 0.58 ± 0.02 0.45 ± 0.02 0.25 ± 0.01 0.79 ± 0.02 4.6 ± 0.4

Report NMI, ARI, Silhouette, bootstrap stability (Jaccard), and survival separation by competing-riskGray test (�log10p for graft-loss). Mean ± std over repeated runs/bootstraps; consensusK selected by
CDF area.
Protocol: OPTN STAR (2015–2019) Black recipients; features harmonized and standardized; missingness indicators retained. For sequence-aware rows, embeddings are produced by the frozen Mamba
encoder used system-wide. Consensus selection uses resampling over recipients and variables with CDF area for K, followed by 200 bootstrap replicates to estimate stability and variability. Survival
separation is assessed on held-out folds by Fine-Gray CIFs comparison (event: graft loss; death as competing risk); higher �log10p indicates stronger between-cluster separation.

Table 4 | Ablation study of KT-LLM and agents across tasks and datasets

RAG LEX CIT OPS CRH QA Acc ↑ Cite@1 ↑ Rule F1 ↑ C-index ↑

× × × × × 0.76 ± 0.02 0.41 ± 0.03 0.68 ± 0.05 0.77 ± 0.02

✓ × × × × 0.81 ± 0.04 0.63 ± 0.02 0.69 ± 0.01 0.77 ± 0.02

✓ ✓ × × × 0.83 ± 0.01 0.70 ± 0.03 0.71 ± 0.02 0.77 ± 0.06

✓ ✓ ✓ × × 0.84 ± 0.01 0.81 ± 0.01 0.73 ± 0.01 0.77 ± 0.07

✓ ✓ ✓ ✓ × 0.85 ± 0.01 0.83 ± 0.02 0.88 ± 0.05 0.77 ± 0.01

✓ ✓ ✓ ✓ ✓ 0.85 ± 0.02 0.83 ± 0.03 0.89 ± 0.01 0.81 ± 0.04

Higher is better for QA Acc, Cite@1, Rule F1, and C-index. Mean ± std over three runs.
RAG: retrieval-augmented generation with dense retriever and cross-encoder re-ranking for KT-LLM QA.
LEX: terminology-aware reweighting using controlled vocabularies (Banff, OPTN, and SRTR) to boost domain terms in retrieval and scoring.
CIT: evidence pointer head with sentence-level supervision and coverage constraint to anchor answers to citable spans.
OPS: policy–Ops coupling that executes Banff, OPTN, and SRTR rules and injects structured checks into responses.
CRH: discrete-time competing-risk softmax head with TRF grid conditioning for Agent-A survival modeling.
Metrics: QA Acc on evidence-constrained QA; Cite@1 = top-1 evidence hit rate; Rule F1 on rule validation; C-index for 1–multi-year survival prediction.
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Dynamic DeepHit; Heagerty’s ROC(t) framework; and IBS consistency
analyses.

To study equity and population heterogeneity, we apply an end-to-end
path of sequence embeddings, deep embedded clustering, and resampling-
based agreement to unsupervised profiling of Black recipients within the
OPTNSTAR2015–2019window, and compare clusters under a competing
risks framework using CIFs and survival contrasts. This aligns with prior
findings of stable, clinically distinguishable phenotypes and outcome dif-
ferences among Black recipients, while our implementation constrains the
pipeline with a unified sequence backbone and a rule-governed audit chain
so that subtype evidence, indicators, and timelines are presented coherently.
To avoid subjective choices of the number of clusters, we select K by con-
sensus clustering using CDF area criteria, and quantify stability with NMI
and ARI; we also reference the SRTR PSR cadence to monitor cluster
proportions across time windows, reducing the risk that freeze window and
submission deadline effects are misread as structural drift. The underlying
methods provide reproducible optimization steps and selection rules,
ensuring statistical validity and engineering repeatability.

Empirically, within this study’s data and configuration, domain-
constrained RAG in KT-LLM yields high evidence hit and coverage for
answers, with strong agreement on time-sensitive items between source
anchors and retrieved passages. Agent-A exhibits discriminative metrics
and calibration with only modest out-of-time fluctuation, consistent with
expectations for multi-year, multi-center deployment. Agent-B’s optimal K
is supported by resampling consistency and silhouette style criteria and
yields distinguishable CIFs contrasts under competing risks testing. Policy-
Ops produces executable audit logs for wait time corrections, TRF sub-
mission timeliness, and Banff terminology conformance. These are study-
specific observations subject to external validation; we therefore report
training splits, metric definitions, implementation details, and versioned
audit logs to facilitate independent checks. To avoid overstating estimates or
in-sample effects, we describe findings explicitly as observations within this
study rather than as general domain claims; factual background is restricted
to official primary sources.

Several practical constraints merit discussion. First, although Mamba
reduces inference and training cost relative to attention backbones of
comparable capacity, pretraining, long-horizon tuning, and calibration
remain computationally intensive at the recipient's year scale. Second, while
RAG updates are parameter-free, their quality depends on source structure
and fine-grained retriever re-ranker weighting. Third, the Policy-Ops

rulebase must track OPTN policy updates, SRTR timelines, and the Banff
repository; otherwise, stale rules risk text system mismatches. We mitigate
these risks via versioned metadata and alignment to freeze points: the
January to July PSR cadence with 6month data freezes provides an external
clock for training, evaluation and reconciliation; Policy 18’s 60 to 90 day
limits and unlock procedures are directly parameterized as operators; and
the Banff repository, as the authoritative source, is mapped unambiguously
to value domains and controlled terminology. Continued advances in
Mamba-style temporalmodeling should further improve the computational
accuracy trade-off under the joint challenges of very long follow-up, sparse
observations, and cross-center heterogeneity.

This study has limitations. Data access and definitions are jointly
constrained by DUA terms, submission cadence, and policy change; cross-
source integration inevitably introduces selective missingness and center
effects. Clinical interpretation of unsupervised subtypes requires additional
external evidence across centers, particularly where historical granularity
differs for Banff terms or immunologic markers. Competing risks testing
and time-dependent AUC must honor censoring and left truncation
assumptions; otherwise, differences may be overstated or errors under-
stated. In our experiments, degradation is most visible for recipients with
extremely sparse follow-up, centers with inconsistent Banff documentation,
andpolicy clauses that rely onfieldswith chronicmissingness, andKT-LLM
often responds with cautious summaries or checklist items instead of con-
fident scalar predictions in these settings. Finally, while Policy-Ops quan-
tifies wait time, TRF timeliness, and terminology conformance, definitive
clinical diagnoses or center-level interventions remain within the remit of
clinical and quality teams, avoiding overreach in automation. Future work
includes: rolling recalibration and out-of-time evaluation aligned to PSR
freezes; coupling IDEC objectives with fairness constraints to bound errors
for key subpopulations while preserving local structure; and enhancing
RAG through evidence diversification and finer re-ranking, combined with
structured operators and normalized terminology, to improve robustness
across policy versions and page layout changes. Methodologically, inte-
grating CIFs consistency calibration and uncertainty quantification into the
training objective may shift the evidence prediction governance loop from
ex post correction to endogenous constraints. The necessary technical and
institutional ingredients are documented in SRTR andOPTNmaterials and
the Banff repository, providing objective milestones for implementation.
Furthermore, we explicitly scope claims about population subtypes to the
STAR cohort of Black recipients under the current DUA, and extending the

Fig. 3 | LLM dialog overview of our pipeline. a Individual prognosis with discrete-
time competing risks aligned to TRF. b Policy-Ops checks for PSR freeze and TRF
deadlines with evidence anchored what-ifs. c Banff controlled terminology

validation prior to diagnosis. d population subtyping with stability, outcome dif-
ferences, and fairness profiles.
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profiling pipeline to additional racial and ethnic groups and centers will be
treated as follow-up work once comparable registries become accessible.

In sum, the unified framework of KT-LLM and the three agents
demonstrates a feasible pathway to mechanistically couple follow-up
sequences, textual rules, and governance cadence under registry data and
authoritative texts. By front-loading evidence in generation, using a linear
time backbone for sequences, and compiling policies and terminology into
executable rules, we produce traceable question answering, calibratable
survival prediction, and reproducible population clusteringwithoutmoving
beyond factual boundaries. Anchored to SRTR’s semiannual cadence and
operational specifications in OPTN Policies, this “rules align data, govern-
ance clocks constrain models” paradigm offers a practical basis for multi-
center, multi-era reproducibility assessments and equity monitoring with
potential future applications including personalized follow up scheduling
tailored to individual risk trajectories, real timecross center policy alignment
to reduce practice variability, and proactive identification of subgroup
specific care gaps to guide targeted interventions. It also underscores the
need for sustained investment in external validation, rolling recalibration,
and rulebase governance so that outputs remain consistent with evolving
authoritative sources. Factual statements herein are limited to official SRTR
and OPTN materials and the Banff repository; methodological references
are to primary research, and directional effects or system behavior are
reported strictly as observations under this study’s setting rather than
general assertions.

Methods
System architecture overview
The system adopts a modular design with one primary model and three
task-specific agents, each aligned to a distinct objective. The primarymodel
is KT-LLM, built on the MedLLaVA medical language and vision frame-
work. KT-LLM retrieves policy evidence through retrieval-augmented
generation, abbreviated RAG, and returns evidence-anchored answers
together with computable checklists. KT-LLM includes a terminology-
aware reweighting module, abbreviated Terminology, to sharpen retrieval
around controlled vocabularies, and an evidence pointer with a coverage
constraint, abbreviated CIT, to strengthen grounding.

As shown inFig. 4, the three agents operate inparallel.Agent-A,named
SRTR-MambaSurv, performs long-term survival and graft outcome pre-
diction for kidney transplant recipients and uses a discrete-time competing
risk head aligned to the transplant recipient follow-up grid; this head is
abbreviated CRH, and TRF denotes the follow-up grid. Agent-B, named

OPTN-BlackClust, discovers unsupervised population subtypes among
Black recipients in the OPTN STAR dataset. Agent-C, named Policy-Ops,
conducts rule-based validation against OPTN policy requirements and
Banff terminology; the rule engine is abbreviated OPS. These modules
interoperate through structured interfaces. KT-LLM invokes the appro-
priate agent for computation or rules verification when needed, and the
system synthesizes all outputs into a consolidated decision support and
quality control report.

To align reasoning with governance cadence, the document index
includes only Banff, OPTN, UNOS, and SRTR materials whose version
stamps and effective dates are not later than the evaluation freeze for the
period under study. During decoding, if an evidence candidate falls outside
this window, it is discarded, and the system returns an evidence summary
instead of a definitive conclusion.

Primary model: KT-LLM
KT-LLM serves as the orchestration and question answering core of the
system. It adopts the language backbone of MedLLaVA with the text
channel only. The knowledge sources are restricted to three authoritative
corpora: the Banff online repository, OPTN and UNOS policy documents,
and SRTRmethodologicalmaterials. Using a RAG framework, answers and
the associated computable checklists are explicitly bound to cited evidence
segments, producing auditable outputs.

Knowledge access is restricted to Banff, OPTN, and SRTR materials.
Retrieval uses a dense encoder followed by a cross-encoder re-ranker.
Terminology-aware reweighting lifts passages that contain controlled terms
from curated vocabularies so that domain wording is prioritized during re-
ranking. Each sentence in the answer carries an explicit citation tag that
points to a governing passage. A confidence gate returns an evidence
summarywhen thebest re-ranking score is belowa set threshold.Acoverage
target encourages theuseofmultiple sources and reduces relianceona single
passage. For queries that involve thresholds or computable criteria, the
system emits a structured checklist with item name, definition, formula,
threshold, and source identifier. Training aligns retrieval and generation
with a contrastive objective for retrieval, likelihood for text, and a light
attribution regularizer that matches sentence-level citations to re-ranking
scores.

For queries that involve thresholds or definitional criteria, KT-LLM
produces a structured checklist with J items. Each item records five fields:
name, definition, formula, threshold, and source_id. The field source_id
points to an evidence passage mr. The field formula is executable. An

Fig. 4 | Three agent subsystems are used by our pipeline. a Agent-A (SRTR-
MambaSurv) encodes the recipient timeline with a linear time Mamba and predicts
outcomes via two interchangeable heads: a discrete time cause-specific hazard head
for competing risks and a DeepHit-style joint head. b Agent-B (OPTN-BlackClust)
reproduces evidence on Black recipients: OPTN cohort selection, unsupervised

clustering, and cluster profiling with covariate distributions and SHAP-like proto-
types. c Agent-C (Policy-Ops) resolves Banff, OPTN, and SRTR terminology and
executes a rule engine to produce a structured checklist that enforces definitions and
reporting cadence across the system.
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operator h evaluates a formula on inputs v and returns a real value h(v).
Textual and structured outputs are trained jointly as specified below.

The training objective is the sum of three components,

L ¼ λretLret þ λgenLgen þ λattLatt : ð1Þ

The retrieval contrastive loss (InfoNCE) is

Lret ¼ �
1
B

XB
i¼1

log
expðsimðqi; zþi Þ=τT Þ

expðsimðqi; zþi Þ=τT Þ þ
X
n2N i

expðsimðqi; znÞ=τT Þ
;

ð2Þ

where sim is inner product or cosine similarity, τT is a temperature, andN i
denotes hard negatives. The generation term combines text likelihood and
structured penalties:

Ltext ¼ �
XT
t¼1

log pψðytjy < t ; x; EÞ: ð3Þ

The loss for the structured checklist, denotedbyLstruct , aggregates three
penalties over J items. For each item j, the model predicts a name and a
threshold; both are supervised with cross-entropy against the gold labels.
The executable field formula is compared by first evaluating the predicted
and the reference expressions through the operator h on inputs v, then
taking the ℓ1 distance between the two real values andweighting it by μ. The
final objective is the sum of these three terms over all items.

Lgen ¼ Ltext þ βLstruct : ð4Þ

Thenormalized re-ranking distribution is denoted by α, and themodel
sentence-level attention over passages by bα. The attribution consistency
regularizer matches them by

Latt ¼ KLðα k bαÞ: ð5Þ

To strengthen reliance on retrieval and suppress hallucinations, a “closed-
book dropout” schedule withholds evidence on a subset of training steps
while enforcing at least one citation per answer template. At inference, a
confidence gate and a coverage constraint are used: if sentence-level citation
coverage falls below ρ or maxmerm < τ, the system returns an evidence
summary and a checklist rather than a definitive conclusion.

For Banff terminology adjudication and OPTN metric computation,
KT-LLMinvokes domain tools via function calls. Indiscrete-time survival, if
survival at time t and the interval hazard are required. For diagnostic queries
that request a single-endpoint interval hazard, the tool computes a survival
value by multiplying one minus the per-interval hazard over the grid and
obtains the hazard from a linear score through a sigmoid. This head is used
for tool-side evaluations and does not change the training objective of
Agent-A, defined below.

Instruction tuning covers definitions, diagnostic criteria, policy speci-
fications, andworked examples.Decodinguses beamsearchwith length and
coverage penalties; the latter is

Ccov ¼ γ
X
m2E

maxð0; ω� covðmÞÞ; ð6Þ

where cov(m) is the fraction of output sentences citing passage m, ω is a
minimumcoverage threshold, and γ is a penaltyweight. This encourages the
use of multiple evidence sources rather than over-reliance on a single
passage.

Implementation details are as follows: segment length Lc ∈ [256, 384]
subword tokens; stride Sc ∈ [64, 128]; initial recall k0 ∈ [32, 64]; re-ranked
evidence k∈ [6, 10]. The retriever and cross-encoder share a vocabulary and

are aligned with domain instructions. Training proceeds in two stages: first,
freeze the language backbone to tune retrieval and re-ranking; second,
unfreeze the language head for joint training of generation and structured
outputs. AdamWwith cosine-decay scheduling is used, and early stopping
monitors answer accuracy, citation hit rate, and consistency of structured
fields. The knowledge base supports hot updates: adding or revising docu-
ments requires only incremental encoding and index refresh, without
retraining the primary model.

KT-LLM returns (i) a natural-language answer with sentence-level
citation identifiers and versionmetadata, and (ii) a structured checklist ystruct

containing itemnames, definitions, formulas, thresholds, and their evidence
sources. Retrieval scores, re-ranking scores, citation distributions, and tool
call logs are retained to form an auditable record suitable for quality control
and independent replication.

Agent-A: SRTR-MambaSurv (survival prediction)
To align with the registry follow-up cadence and enable computable
evaluation, we model two mutually exclusive endpoints, graft loss and
patient death, in a discrete time and competing risks framework. For
recipient i, let the observation grid be T i ¼ fti1; . . . ; tiJig with ti1 = 0 at
transplantation and subsequent nodes covering 6 months, 1 year, and
yearly follow-ups thereafter. Time varying features at node j are denoted
xij 2 Rp, and baseline features bi 2 Rq. To encode irregular sampling,
we include the interval length Δtij = tij − ti,j−1 and a set of Fourier time
features ϕ(Δtij).

Let the event type set beK ¼ f1; 2g, where k=1 indicates graft loss and
k=2 indicates death; no event is treated as class 0.On each interval [tij, ti,j+1)
we predict a multinomial risk vector

πij ¼ ðπij;0; πij;1; πij;2Þ;
X2
c¼0

πij;c ¼ 1; πij;c 2 ð0; 1Þ; ð7Þ

where πij,k is the discrete hazard of event type k within interval j, and πij,0 is
the no-event probability. The survival and CIFs follow:

SiðjÞ ¼
Yj
s¼1

πis;0; Fi;kðjÞ ¼
Xj

s¼1
Siðs� 1Þ πis;k; k 2 K; ð8Þ

with Si(0) = 1. This multinomial head construction guaranteesP
k2Kπij;k < 1, and probability conservation in discrete time, avoiding

overflow that can arise from independent sigmoids.
To accommodate long horizon, sparse,multi-center data, we construct

at each node a composite input

exij ¼ ½Exxij ; Ebbi ; ϕðΔtijÞ ; mij� 2 Rdin ; ð9Þ

where Ex, Eb are linear embeddings and mij is a missingness indicator
aligned to xij. After linear projection, indicators are concatenated with
numerical features to exposemissing data patterns andmitigate imputation
as certainty bias.Numerical variables are robustly scaledwithWinsorization
for heavy tails; categorical variables are one-hot or embedded and
concatenated channel-wise.

Given themany years spent with long, sparse, and irregular sequences,
we adopt a selective state space backbone to encode long dependencies in
linear time. Let eXi ¼ ½exi1; . . . ;exiJ i �. After L stacked selective SSMblocks, we
obtain time-point representations

Hi ¼ MambaLðeXiÞ ¼ ½hi1; . . . ; hiJi �; hij 2 Rdh : ð10Þ

To further inject temporal information, we add a gate-controlled additive
bias g(Δtij) at each layer, and apply residual normalization and dropout for
stability. Compared with self-attention, Mamba’s input-dependent state
updates avoid quadratic complexity and make training feasible at the
“recipients × years” scale.
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On top of the encoder, a shared base with type-specific linear projec-
tions yields unnormalized scores and probabilities:

oij ¼Whij þ b 2 R3; πij ¼ softmaxðoijÞ: ð11Þ

To absorb systematic drift, we include group biases for center and calendar
year, Δij = δcenter(i) + δyear(ij), and update

oij  oij þ Δij: ð12Þ

Here, πij,0 is the no-event probability for interval j, ensuring that survival is
the product of no-event probabilities across intervals. For tail interval
discrimination, we use label smoothing and focal type reweighting

W ij;c ¼ ð1� πij;cÞγ � wc; ð13Þ

where wc reflects event rarity and γ ∈ [1, 2] downweights easy cases.
Let ðeTi; eΔiÞ denote the discretized terminal observation with eTi 2

f1; . . . ; Jig and eΔi 2 f0; 1; 2g (0 for censoring). The individual likelihood
under the discrete-time multinomial model is

Li ¼

QTi

�
�1

s¼1
πis;0

2
4

3
5 � π

ieTi;eΔi

; Δ
�
i 2 f1; 2g;

QTi

�

s¼1
πis;0; Δ

�
i ¼ 0:

8>>>>><
>>>>>:

ð14Þ

Maximizing the log likelihood is equivalent to minimizing

LNLL ¼ �
X

i

XeTi�1
s¼1 log πis;0 þ 1feΔi≠0g � log πieTi;eΔi

� �
: ð15Þ

To improve probability calibration and internal consistency under
competing risks, we regularizeLNLL with two terms. First, for each time
j, we align the model’s average output πj;c with the empirical rate bpj;c
from equal frequency bins. Interval calibration aligns the batch-average
predicted rate with the empirical rate on each interval and event by
adding the squared difference and summing over all intervals and event
types. Its overall influence is controlled by the global weight in the final
objective.

Second, center year stability: group lasso style penalty on center year
logits to attenuate overfit shifts:

Rgroup ¼
X
g

jjΔg jj2: ð16Þ

The overall objective is

J ¼ LNLL þ ηRcal þ λRgroup þ ζ k Θk22; ð17Þ

where Θ collects all trainable parameters. We optimize with AdamW,
gradient clipping at 5.0, cosine learning-rate decay, and early stopping on
validation NLL and integrated Brier (defined below).

Censoring is handled explicitly by LNLL during training. For evalua-
tion, the following quantities are computed from πij. Individual CIFs and
survival follow the discrete-time constructions already defined above and
are computed on the same TRF-aligned grid. Then, IBS for target event k at
time j:

BrkðjÞ ¼ E ωjðYkðjÞ � FkðjÞÞ2
h i

; ð18Þ

where Yk(j) = 1{event k occurredbyj} and ωj are IPCWweights constructed
from an independent censoring estimator bGðjÞ via

ωj ¼
1fT ≥ jgbGðjÞ : ð19Þ

The IBS is

IBSk ¼
1
J

XJ

j¼1
BrkðjÞ: ð20Þ

At last, C-index and time-dependent AUC are computed under Heagerty’s
discrete-time framework using IPCW-adjusted comparable pairs; dynamic
and cumulative definitions are reported accordingly.

Agent-B: OPTN-BlackClust (population clustering)
To identify stable recipient subtypes among Black kidney transplant reci-
pients and to quantify phenotypic heterogeneity, we perform unsupervised
profiling on OPTN STAR (2015–2019) recipient-level records. STAR is a
restricted-access, quarterly updated dataset containing candidate, donor,
and recipient follow-up information obtainable via a DUA. This access
pathway permits methodological implementation and independent repli-
cation. To unify the heterogeneous longitudinal process “waitlist→ trans-
plant → post-transplant follow-up,” we construct for each recipient the
event sequence

Si ¼ fðtij; xijÞgJ ij¼1; ti1 ¼ 0 ðregistration baselineÞ; tiJi is the last record:
ð21Þ

Here, xij aggregates clinical, immunologic, and process variables at time tij.
To handle irregular sampling and cross-center heterogeneity,we include the
interval length Δtij = tij − ti,j−1 and source metadata as explicit covariates.

For robustness on long, sparse, non-equidistant registries, we adopt a
selective state space model (Mamba) as the encoder backbone. After linear
embeddings for numeric, categorical, missingness, and time features, each
node yields a vector exij 2 Rdin . Stacking L selective SSM blocks produces
time point representations

Hi ¼ MambaLð½exi1; . . . ;exiJi �Þ ¼ ½hi1; . . . ; hiJ i �; hij 2 Rdh : ð22Þ

Toexposeheterogeneousdynamicsbetween thewaitlist andpost-transplant
phases, the sequence is partitioned by a scheduling variable into a waitlist
segment W i and a post-transplant segment Pi. We apply phase wise
attention pooling:

aðWÞij ¼
expðw>WhijÞP

s2W i
expðw>WhisÞ

; rðWÞi ¼
X
j2W i

aðWÞij hij; ð23Þ

aðPÞij ¼
expðw>PhijÞP
s2Pi

expðw>PhisÞ
; rðPÞi ¼

X
j2Pi

aðPÞij hij: ð24Þ

The recipient level embedding concatenates both phases:

ri ¼ ½rðWÞi ; rðPÞi � 2 Rdr : ð25Þ

Mamba’s input-dependent state updates provide linear time inference and
preserve representation quality over long horizons, enabling training and
deployment at STAR scale.

To obtain stable partitions in the embedding space, we adopt Deep
EmbeddedClustering (DEC) as the primary loss and include an IDEC-style
reconstruction constraint to preserve local structure. Let fμkgKk¼1 be
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learnable cluster centers. The soft assignment for the recipient i uses a
Student-t kernel:

qik ¼
ð1þ k ri � μkk2=αÞ

�ðαþ1Þ=2P
k0 ð1þ k ri � μk0 k2=αÞ

�ðαþ1Þ=2 ; α > 0: ð26Þ

Let fk =∑i qik denote cluster frequencies. The sharpened target distribution
is

pik ¼
q2ik=f kP
k0q

2
ik0=f k0

: ð27Þ

The DEC clustering loss is

LDEC ¼ KLðP k QÞ ¼
X
i

X
k

pik log
pik
qik

: ð28Þ

To discourage representation drift, we add a shallow autoencoder with
encoder Encϕ( ⋅ ) and decoder Decψ( ⋅ ) sharing the bottleneck with
clustering. We reconstruct a unified patient feature vector with an
encoder and a decoder parameterized by ϕ and ψ. The input vector ui
combines robust numerical summaries, categorical embeddings, and
temporal descriptors. The reconstruction is denoted by bui. This auto-
encoder is used to preserve local structure and to provide a stable
representation for downstream modules. and minimize the recon-
struction error

Lrec ¼
1
N

X
i

k ui � buik22: ð29Þ

The joint objective is

J ¼ LDEC þ λrecLrec þ λcent
X
k

k μkk22; ð30Þ

where λrec controls local-structure preservation, and λcent regularizes center
norms. Training proceeds in three stages: (i) freezeMamba and pretrain the
autoencoder; (ii) initialize {μk} with K-means on {ri}; (iii) jointly fine-tune
DEC and IDEC, periodically recomputing P from Q every T steps and
updating centers and encoder parameters. To prevent cluster collapse, we
introduce a balance regularizer on cluster usage:

Rbal ¼ βHðqÞ; q ¼ 1
N

X
i

½qi1; . . . ; qiK �; ð31Þ

and optimize J þRbal .
Given recipient embeddings frigNi¼1 and centers fμkgKk¼1, soft assign-

ments use qik and the sharpened target pikwith refresh periodTref. The joint
objective is

J ¼ LDEC þ λrecLrec þ λcent
X
k

k μkk22 þ βHðqÞ; q ¼ 1
N

X
i

½qi1; . . . ; qiK �;

ð32Þ
where HðqÞ is the entropy of the average assignment to encourage non-
collapsed usage. Freeze the sequence encoder. Pretrain the shallow
autoencoder. Initialize {μk} by k-means over {ri}. For t = 1, … update the
encoder and centers by AdamW on J with mini-batches. Every Tref step
recomputeP={pik} fromthe currentQ={qik}.Computeqperbatchandadd
βHðqÞ to the loss. This term is zero when usage is uniform and penalizes
collapse. Stop when the relative change of J averaged over the lastM steps
falls below ϵJ orwhen the Jaccard index between consecutive hard partitions
exceeds τJac forM checks.Tref = 200 update steps, λrec = 0.1, λcent = 10−4, β =
0.1,M = 5, ϵJ = 10−3, τJac = 0.99.

Run the inner loop on S resamples of recipients and variables for each
candidateK in a grid. For each run s obtain a partition z(s). Build a consensus
matrix C with entries

Cab ¼
1
S

XS
s¼1

1½zðsÞa ¼ zðsÞb �; a≠ b;

collect its off-diagonal values, and compute the CDF. Let A(K) be the AUC
of this CDF. Choose the smallestK⋆ such thatΔA(K) =A(K)−A(K− 1) is
below a preset margin δ. We set S = 50 and δ = 0.01 by default. Stability is
reported with bootstrap Jaccard together with NMI and ARI under center-
and year-stratified resampling.

Compared with Improved DEC with reconstruction, OPTN-
BlackClust adds a sequence backbone for long, irregular timelines, an
explicit entropy balance on average usage, and an external consensus
selection with resampling and CDF-area control. HiCL families rely on
contrastive separation in latent space with instance-pair design and often
exploit hierarchical relations. Ourmethod does not introduce negative pairs
or hierarchical contrast and instead couples IDEC with consensus-based
model selection. The loss is KL on P∥Q plus reconstruction and entropy
balance,optimizedwith aperiodic target refresh.Convergence is declaredby
objective stabilization and partition stability rather than a contrastive
temperature schedule.

To select the number of clusters and assess stability, we employ a
consensus framework. For each candidate K 2 Kgrid , we subsample reci-
pients and features, train DEC and IDEC, and obtain partitions. The con-
sensus matrix C and its CDF curve are computed across runs; K⋆ is chosen
by the CDF gain and Δ-area criterion. Under bootstrap resampling, we
report the cluster-level Jaccard index

JðA;BÞ ¼ jA \ BjjA∪Bj ; ð33Þ

together with NMI and ARI means and confidence intervals, providing
quantitative evidence of reproducibility.

With K⋆
fixed, we compute robust within-cluster summaries for each

feature and identify a prototype recipient (closest to μk by ℓ2 distance) per
cluster Ck. To mitigate year confounding during profiling, we use stratified
weights

bθk ¼X
i2Ck

wi � θðxiÞ; wi / ðcenter sizeðcenterðiÞÞ � year sizeðyearðiÞÞÞ�1:

ð34Þ
For patient survival and graft survival, we draw Kaplan–Meier curves by
cluster and conduct log-rank tests. For competing risk endpoints, we
compute cluster-level CIFs and apply Gray’s test for multi-cluster
comparisons; where appropriate, Fine-Gray subdistribution hazard ratios
are reported as effect sizes. All comparisons are repeated under stratified
resampling over centers and years to assess robustness.

Agent-C: policy-Ops (rule checking)
Agent-C converts the policy terminology timeline axis from static text into
executable constraints. It encodes (i) OPTN and UNOS data submission
andwait time rules, (ii) the semiannual cadence of SRTRPSR, and (iii) Banff
terminology and lesion-score dictionaries as a set of computable rules.
Inputs come from registry data andpathology records; outputs are auditable
per-rule results, numeric indicators, and evidence anchors. Policy clauses
and submission timelines follow the current OPTN Policies, including
Policy 18 forTRFdeadlines; thePSR cadence follows SRTRofficial timelines
and technical notes; Banff terminology follows theCentral Repository as the
authoritative source.

Each rule is represented by a trigger that activates it, a collection of
decidable predicates, and an action that defines the disposition. Execution
logs include thepolicy identifier, version tag, effectivedate, anda source link.
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Wedefine common time operators to reduce ambiguity. Absolute time
t is aligned to a unified day boundary; time difference is

Δðta; tbÞ ¼ tb � ta: ð35Þ

The follow-upgriduses sixmonths, one year, and thenyearly intervals. For a
transplant at time t0, expected TRF generation times add grid offsets to t0.
Each formhas a due date definedby adding afixedwindowof sixty orninety
days to the corresponding generation time. Next, a submission is on time
when the recorded submission date does not exceed the due date for that
follow-up. Late cases record the delay magnitude as the difference between
the due date and the submission date.

To detect deviations from the intended cadence, define the grid offset
for follow-up j

ϵij ¼ ΔðtTRFj ; tobsij Þ; ð36Þ

and the successive interval deviation

ηij ¼ Δðtobsij ; tobsi;j�1Þ � ΔðtTRFj ; tTRFj�1 Þ: ð37Þ

Alerts are raised when

jϵijj > τϵ or jηijj > τη; ð38Þ

with default thresholds τϵ = 30 days and τη = 60 days. All computations
cross-checked against the current Policies and Policy 18 tables are versioned
in the audit log.

A candidate’s credited wait time Wi is anchored to the earliest quali-
fying date t?i :

t?i ¼ minð t
dialysis

i
; tlisti s:t:GFR=CrCl ≤ 20Þ: ð39Þ

Dialysis-based time accrues from dialysis start; eGFR/CrCl ≤ 20 does not
retro credit before listing and accrues from the date the threshold ismet, and
registration is complete. The credited time at t is

WiðtÞ ¼ maxð0; Δðt?
i
; tÞÞ: ð40Þ

From 2024 onward, programs must evaluate whether historical race-
inclusive eGFR delayed eligibility. The eligibility predicate is

egfr mod eligibleðiÞ () 9 t : deGFRrace�inclðtÞ > 20 ^ deGFRrace�neutralðtÞ≤ 20:
ð41Þ

If satisfied, a modification request can be filed using race-neutral eGFR as
evidence and including required attestations. When the predicate is
detected, Agent-C emits a task with the clause identifier and timestamp.

PSRarepublicly released semiannually (January and July) and typically
reflects data frozen approximately six months prior. Given a publication
date tPSR, define

tfreeze ¼ tPSR � 6months: ð42Þ

Let [topen, tdeadline] denote the correction window. Readiness is asserted if and
only if a case is marked ready for PSR, with all forms requiring correction
submitted by their respective deadlines. For each such form f, the submis-
sion time satisfies tsub(f) ≤ tdeadline. If ¬ psr_ready, Agent-C reports potentially
impactful missing updates by form and lateness, aligning training/
evaluation cutoffs with SRTR reporting scope.

Banff lesion items are compiled into a machine-readable vocabulary
and range tables. LetL denote items such as {i, t, v, g,ptc, cg, ci, ct, cv,mm, ah,
…}. For each ‘ 2 L, define an admissible domainΩℓ and a format mapΠℓ.

The validation predicate is

valid lesionð‘; xÞ () x 2 Ω‘ ^ formatðxÞ 2 Π‘: ð43Þ

Free text terminology is normalized via

norm : free text ! controlled term: ð44Þ

Key adjuncts are standardized as

C4d status 2 fpos; neg; equivocalg; DSA 2 fpresent; absent; unknowng:
ð45Þ

A diagnostic summary is produced only when every required lesion entry
passes thevalidity check, and theC4dstatus isknown.Concretely, each ℓ in the
required set must satisfy valid_lesion(ℓ, xℓ), and C4d status must not be
unknown. Since Banff diagnostic categories integrate multiple clinical and
immunologic elements, Agent-C does not provide afinal diagnosis. Instead, it
ensures compliance with value and format requirements, anchors terms and
scores to the versioned repository, and preserves consistency and traceability.

Each execution returns a structured record that contains an identifier,
the target entity, the rule name, the status, numeric values and margins to
thresholds, and the audit metadata with evidence anchors.

With KT-LLM, rules are invoked via policy_ops.compute(query,
payload), where payload includes candidate IDs, form timestamps,
pathology vectors, and context.

WithAgent-A:when a user requests individual survival orCIFs at time
t, KT-LLM aggregates Agent-A’s discrete hazards {πj,⋅} and jointly displays
results with TRF grid compliance.

With Agent-B: when reporting cluster prototypes, Policy-Ops verifies
that prototype records comply with terminology and timeline constraints,
avoiding contaminated exemplars.

The rulebase is versioned by source.WhenOPTNupdates Policy 18 or
allocation policies, SRTR revises PSR timelines, or Banff updates repository
entries, only the corresponding rules and metadata are incrementally
updated. KT-LLM’s RAG index hot updates immediately; retraining of the
primary model is not required.

Ethics approval and consent to participate
Not applicable. All data used are de-identified and publicly released by their
providers under the respective data-use policies; no new human subjects
data were collected.

Data availability
Registry files for numerical modeling: (1) SRTR Standard Analysis Files
(SAFs): https://www.srtr.org/requesting-srtr-data/about-srtr-standard-
analysis-files/; SAF Data Dictionary: https://www.srtr.org/requesting-srtr-
data/saf-data-dictionary/; Data request/DUA:https://www.srtr.org/
requesting-srtr-data/data-requests/. (2) OPTN STAR files: overview/
request page https://optn.transplant.hrsa.gov/data/view-data-reports/
request-data/; STAR File Data Dictionary (xlsx):https://optn.transplant.
hrsa.gov/media/1swp2gge/star-file-data-dictionary.xlsx. Authoritative pol-
icy and operations timelines (executable constraints): (1) SRTRPSRs public
page: https://www.srtr.org/reports/program-specific-reports/. (2) PSR
reporting timeline (cadence): https://www.srtr.org/reports/psr-reporting-
timeline/. Controlled textual knowledge for retrieval augmentation: (1)
Banff Central Repository (renal allograft pathology): https://
banfffoundation.org/central-repository-for-banff-classification-resources-
3/. (2) OPTN Policies main page: https://optn.transplant.hrsa.gov/policies-
bylaws/policies/; Current OPTN Policies (PDF): https://optn.transplant.
hrsa.gov/media/eavh5bf3/optnpolicies.pdf. (3) Race-neutral eGFR (policy
background & FAQs): https://optn.transplant.hrsa.gov/policies-bylaws/a-
closer-look/waiting-time-modifications-for-candidates-affected-by-race-
inclusive-egfr-calculations/for-professionals-faqs-about-egfr-waiting-time-
modifications/. (4) SRTR methodological notes (PSR technical methods):
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https://www.srtr.org/about-the-data/technical-methods-for-the-program-
specific-reports/. This study's experiments were conducted in a Python 3.10
environment using the PyTorch framework (v2.2, CUDA12.0, cuDNN8.9)
running on 4 NVIDIA A100 GPUs (80 GB) within a Linux system. The
Mambabackbone for verticalmodeling relies onmamba-ssm(v1.1.1),while
retrieval and reordering modules are based on Sentence-Transformers
(v2.7.0). Clustering-related workflows are built using scikit-learn (v1.3.2)
and custom PyTorch modules. Evaluation metrics employ custom imple-
mentations compliantwith transplant registry standards.Gradient clipping,
cosine decay scheduling, andAdamWoptimization utilize PyTorch's native
tools. The complete training and inference scripts for KT-LLM have been
open-sourced on GitHub https://anonymous.4open.science/r/KT-LLM_
v1-7F53/README.md.

Code availability
This study’s experimentswere conducted in a Python 3.10 environment using
the PyTorch framework (v2.2, CUDA 12.0, cuDNN 8.9) running on 4
NVIDIA A100 GPUs (80 GB) within a Linux system. TheMamba backbone
for vertical modeling relies on mamba-ssm (v1.1.1), while retrieval and
reorderingmodules are based on Sentence-Transformers (v2.7.0). Clustering-
related workflows are built using scikit-learn (v1.3.2) and custom PyTorch
modules; Evaluationmetrics employcustom implementations compliantwith
transplant registry standards. Gradient clipping, cosine decay scheduling, and
AdamW optimization utilize PyTorch’s native tools. The complete training
and inference scripts forKT-LLMhavebeenopen-sourcedonGitHubhttps://
anonymous.4open.science/r/KT-LLM_v1-7F53/README.md.
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