
ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

https://doi.org/10.1038/s41746-026-02394-y

Received: 4 June 2025

Accepted: 19 January 2026

Cite this article as: Schwarz, F., Levien,
L., Maulhardt, M. et al. Predicting
adverse events for risk stratification
of chemotherapy based stem cell
mobilization in multiple myeloma.
npj Digit. Med. (2026). https://
doi.org/10.1038/s41746-026-02394-y

F. Schwarz, L. Levien, M. Maulhardt, G. Wulf, N. Brökers & E. Aydilek

We are providing an unedited version of this manuscript to give early access to its
findings. Before final publication, the manuscript will undergo further editing. Please
note there may be errors present which affect the content, and all legal disclaimers
apply.

If this paper is publishing under a Transparent Peer Review model then Peer
Review reports will publish with the final article.

© The Author(s) 2026. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included
in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative
Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

npj Digital Medicine
Article in Press

Predicting adverse events for risk stratification of
chemotherapy based stem cell mobilization in
multiple myeloma



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

 

 

Predicting Adverse Events for Risk Stratification of Chemotherapy 
Based Stem Cell Mobilization in Multiple Myeloma 
 
F. Schwarz1,2,3, L. Levien1, M. Maulhardt1, G. Wulf1, N. Brökers1, E. Aydilek1,4 
 
Affiliations: 
 
1 Department for Hematology and Medical Oncology, University Medical Center Göttingen, 
Germany. 
2 Göttingen Campus Institute for Dynamics of Biological Networks (CIDBN), Georg August 
University Göttingen, Göttingen, Germany. 
3 Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany. 
4 Department of Internal Medicine, Hematology, Oncology, Stem Cell Transplantation and 
Palliative Medicine, Protestant Hospital Bethel, University Hospital OWL, Campus Bielefeld-
Bethel, Bielefeld, Germany. 
 
 
ORCID-IDs: 
 
Enver Aydilek: 0000-0003-1418-2725 
Friedrich Schwarz: 0009-0001-1167-8365 
Lena Levien: 0000-0002-7914-8600 
Markus Maulhardt: 0009-0008-7585-8956 
 
 
Keywords: multiple myeloma, stem cell mobilization, machine learning, risk stratification, 
hospitalization prediction, ward bed management 
 
Number of Words: 3992 
 
Corresponding Authors:  

Friedrich Schwarz: friedrich.schwarz@uni-goettingen.de 
Enver Aydilek: enver.aydilek@med.uni-goettingen.de 

  



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

 

 

Abstract 

 

Autologous stem-cell transplantation is a fundamental therapy for multiple myeloma. Although 

inpatient chemo-based stem-cell mobilization (SCM) is standard care in Germany, outpatient 

approaches could ease healthcare constraints. We analyzed 109 myeloma patients undergoing 

SCM and collection at the University Medical Center Göttingen for safety. We then trained 

machine learning models to predict adverse events (AEs) requiring hospitalization and to 

forecast AE onset timing for optimized ward management. In our cohort, 97% achieved 

successful collection, but 69% experienced severe AEs necessitating hospitalization. Simulations 

suggest a risk-stratified outpatient protocol could cut bed usage by at least one third without 

compromising safety. Classification models accurately predicted some AE types (e.g., elevated 

creatinine, ROC-AUC 1.0), though neutropenic fever remained challenging (ROC-AUC 0.67). 

Regression models forecast AE onset with a mean error of just over one day. These results 

outline a data-driven roadmap for safely adopting outpatient SCM and optimizing resource 

allocation in clinical practice.  
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Introduction 

Multiple myeloma (MM) is a rare malignant plasma cell disorder characterized by an abnormal 

clonal antibody production within the bone marrow1. Although advances in therapy have 

transformed MM into a manageable chronic condition, it is deemed an incurable condition for 

most patients2. The global incidence of MM is rising3, a trend attributed to demographic shifts 

particularly due to an aging population4. This trend is therefore projected to add additional 

burden to our health care systems, necessitating the development of innovative treatment and 

management strategies to ensure sustainable, high-quality care for MM patients. 

Autologous stem cell transplantation (ASCT) following induction therapy remains the standard 

of care in Germany for eligible MM patients5. It is a pivotal treatment choice for eligible patients 

in first remission, as it enhances bone marrow regeneration after high-dose chemotherapy and 

reduces relapse probability6. Even in older patients (≥70 years), ASCT shows a significantly 

higher progression-free survival compared to non-transplant strategies (41 vs. 33 months, 

respectively7). Stem cell mobilization (SCM) and collection (SCC) are critical steps preceding 

ASCT. Chemotherapy-assisted mobilization, particularly by cyclophosphamide in combination 

with granulocyte colony-stimulating factor (G-CSF), generally yields higher stem cell counts 

compared to G-CSF alone8. However, there is a lack of data for novel induction regimens, 

including anti-CD38 antibodies, or intermediate/ high-dose cyclophosphamide regimens with or 

without etoposide.  

A possible way to reduce stress on ward bed capacities would be outpatient regimens for SCM 

and/ or SCC. Nevertheless, inpatient mobilization is the standard of care in most centers in 

Germany. The feasibility of outpatient strategies depends on healthcare infrastructure, patient 

risk stratification and the ability to manage potential complications, particularly febrile 

neutropenia (FN)9. Thereby, a key challenge remains the early identification of patients 

requiring hospitalization due to severe adverse events (SAEs). 

This study investigates the safety of SCM in MM patients with various types of mobilization 

protocols and drug doses in an inpatient setting. Based on our observations, we assess the 

feasibility of outpatient mobilization strategies by simulating and comparing different scenarios 

to develop concepts for potential future outpatient treatment. Furthermore, we evaluate 
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machine-learning models to predict SAEs leading to hospitalization by introducing a multi-stage 

framework that first classifies SAE occurrence and subsequently estimates its time of onset. This 

approach enables modelling of true non-occurrences as well as predicting event onset dates 

when a SAE is expected. Together, these models can act as proof-of-concept to provide a 

strategic roadmap for optimizing patient management without compromising safety, which is 

essential given the increasing strain on hospital resources due to demographic changes and the 

growing number of MM patients. 
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Results 
 

Patient Characteristics 

Table 1A summarizes the baseline patient characteristics. In total 109 patients were included. 

The median age was 63 years (range 41–79), with 63% being male. The Revised International 

Staging System (R-ISS) was available for 64 patients: 6 (9%) had stage I, 42 (66%) had stage II, 

and 16 (25%) had stage III MM. IgG kappa (43; 39%) was the most common myeloma subtype, 

followed by IgG lambda (27; 23%) and IgA kappa (10; 9%). The most frequent types of induction 

therapy regimens were DVTd (daratumumab, bortezomib, thalidomide, dexamethasone) in 45 

(41%) patients and VCD (bortezomib, cyclophosphamide, dexamethasone) in 41 (38%) patients. 

Serologic response status upon SCM was available for 89 patients: 44 (49%) were in VgPR, 40 

(45%) in PR, 4 (5%) were in SD and 1 (1%) in PD (see Table 1A). 

 

Therapy time schedule and outcome 

Stem cell mobilization regimens, timing and outcomes are summarized in Table 1B and Figure 

1A. Chemotherapy was initiated within one day of admission in 101 (93%) patients. 

Cyclophosphamide (4 g/m2 over two days) was administered in 48 (44%) patients, while 44 

(40%) received etoposide (100 mg/m2) plus cyclophosphamide (2500 mg/m2) over three days. 

Ten patients (9%) received etoposide alone (500 mg/m2) over four days. Leukopenia occurred in 

100 patients (92%), with a median onset on day 7 (range 6–10) and a median duration of four 

days (range 1–8). The median interval from therapy initiation to stem cell collection was 13 days 

(range 10–19). Overall, 106 patients underwent successful stem cell collection, typically over the 

course of one (73; 73%) or two days (27; 25%). 

 

Adverse events after mobilization chemotherapy 

Table 1C and Figure 1A summarize adverse events (AEs) over time. Overall, 75 patients (69%) 

experienced at least one clinically relevant AE, defined as symptomatic or intervention-requiring 

events. Among these, 65 patients (60%) developed at least one AE defined as CTCAE grade ≥3 or 

requiring hospitalization.  Nausea (n=21) and diarrhea (n=5) were clinically documented in 24 

(22%) patients after a median of 4 days (range 1–16). 59 patients (54%) developed neutropenic 



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

 

 

fever at a median of day 9 (range 1–12), necessitating antibiotic therapy in all cases. Elevated 

creatinine levels (≥1.2mg/dl) occurred in 12 patients (11%) at a median of day 10 (range 1–14) 

and did prompt supportive treatment with IV fluids. Upon admission, one patient had acute 

kidney injury (stage 310) and ten had pre-existing chronic kidney disease (G3a: 6, G3b: 2, G4: 2; 

all A110). Notably, none of the patients with impaired renal function experienced worsening of 

CKD stage by discharge, nor did they have significantly lower stem cell yields or increased 

collection failures. Anemia manifested in 28 patients (26%), with a median onset on day 11 

(range 9–14), prompting erythrocyte transfusions. Side effects occurring within the first 72 

hours were clearly separated from those arising at later times (Figure 1B). Neutropenic fever 

was the main cause for hospitalization (Figure 1C). 

Subgroup analysis of patients who received 4mg/m2 cyclophosphamide and/or had received 

prior DVTd therapy showed no significant effect (individually or interacting) on stem cell yield, 

timing of collection start or incidence or onset of SAEs (see Supplementary Tables 2-5). 

 

Outpatient Modelling 
 
Figure 2 illustrates the estimated hospital bed requirements per day (bd) under different 

outpatient treatment strategies using our modelling. In all scenarios, the number of required 

beds per day (bd) is significantly lower than that of the current inpatient regimen, including the 

delayed admission until day 5 (p = 3.1×10⁻³⁵) and worst-case scenarios (p = 9.9×10⁻³⁹). Under 

the current inpatient approach, a total of 1,754bd were occupied, of which 117 bd (6.7%) were 

needed between hospital admission and therapy initialization and 157 bd (9%) after stem cell 

collection. Patients experiencing early SAEs (within 72 hours) occupied 66 bd (3.8%), which 

corresponds to their proportion in the cohort (3.6%, 4 out of 109 patients). Despite the small 

sample size, these patients did not have a significantly longer stay than the rest of the cohort (p 

= 0.72). 

In the “cautious” scenarios, when patients without early SAE are admitted on day 5, total bed-

day demand decreases by 30 to 36%. The worst-case scenarios still achieved a reduction by 61 

to 66%. Realistic outpatient strategies reduced bed-days by 64–73%. Best-case scenarios 

decreased bed-days by 67–75%, lowering total bed-days to as few as 440 versus 1,754 under 
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the current regimen. Additional simulation further shifting towards outpatient regimens for the 

treatment of mild renal (serum creatinine >1.2 mg/dL) impairment, blood transfusion and/or 

neutropenic fever reduce needed bed-days drastically (see Supplementary Figure 1 and 

Supplementary Table 8). 

 
Predictive Modelling SAEs 
The predictive models demonstrated varying performance depending on the type of SAE. For 

elevated creatinine levels the Random Forest (RF) classifier achieved the highest accuracy 

(0.96), while XGBoost attained a perfect ROC-AUC (1.00) and a strong MCC of 0.78. In predicting 

the need for blood transfusions, Random Forest again performed well regarding an accuracy of 

0.90 and a ROC-AUC of 0.91, whereas TabPFN demonstrated the highest MCC (0.48). For 

neutropenic fever prediction Gradient Boosting yielded the highest accuracy (0.90), but Logistic 

Regression provided the best MCC (0.40) and the highest ROC-AUC (0.67). Overall, for predicting 

the occurrence of any SAE, XGBoost achieved the highest accuracy (0.79), Logistic Regression 

yielded the highest ROC-AUC (0.81) and TabPFN the highest MCC (0.48). See also Table 2. For 

the regression of the onset of first SAE, the following average errors are reported: Elastic Net: 

1.65 days (d) MAD, 2.04d RMSD; Random Forest Regressor: 1.42d MAD, 1.79 RMSD; TabPFN-

Regressor: 1.45d MAD, 1.75 RMSD, XGBoost-Regressor: 1.33d MAD, 1.66d RMSD. See 

Supplementary Table 6 and 7 for additional model descriptions. Predicting SAEs within the first 

72 hours was unfeasible given only four events. 
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Discussion 
 

Based on our inpatient setting, our analysis provides strong evidence that, at least partially, 

outpatient stem cell mobilization in multiple myeloma is both safe and feasible.  

Our simulations suggest that adapted patient admission policies could even in conservative 

scenarios reduce bed occupancy up to 75% compared to the current standard inpatient 

treatment (see Figure 2). By additionally treating selected adverse events in an outpatient 

setting, hospital bed occupation could be reduced by more than 90% of bed-days overall (see 

Supplementary Figure 1). This approach is particularly effective when combined with 

personalized ward bed management strategies based on predicted hospital admissions, for 

which we propose a two-step framework to predict (1) whether and (2) when adverse events 

might occur. 

 

Unlike previous studies that either excluded anti-CD38-based induction or evaluated only 

low/intermediate-dose mobilization regimens11–13, our study assesses current protocols – 

including CD38-containing induction therapies and high-dose mobilization with 

cyclophosphamide (4 g/m²) and etoposide9. Using these protocols, we found no increase in SAE 

rate, which is consistent with existing literature14,15. This is expected, as outpatient mobilization 

with antibiotic prophylaxis is already practiced in parts of the European Union (e.g., Italy) and 

also in the United States – with similar reported SAE rates11,12,16. Nevertheless, we anticipate 

that a small fraction of patients (approximately 3–5%, as observed) will remain ineligible for 

outpatient SCM, particularly those developing early SAEs. The observed temporal dynamics 

suggest that these events stem primarily from patient-specific factors rather than the 

mobilization chemotherapy itself, as affected individuals presented with compromised clinical 

status (e.g., pre-existing acute kidney injury) at admission. 

 

Beyond our described use case, the two-step prediction framework (first predicting if, then 

when an adverse event occurs) can be adapted to virtually every other situation where a 

genuine non-occurrence probability exists rather than mere right-censoring. Classical survival 

models assume that an event will eventually occur if waited long enough; this does not hold for 
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short-term adverse events, where a non-zero subset of patients may never develop an adverse 

event. The two-step approach mitigates this and performed better than the survival and cure 

model approaches we tested. An additional benefit is that the first classifier can be tuned 

according to the severity of a potential misclassification, thereby reducing potential harm in 

outpatient settings. 

 

As febrile neutropenia (FN) was the primary cause of hospitalization, accounting for 59 of the 71 

initial SAEs, preventing FN seems critical to reducing inpatient stays. However, the literature 

reports mixed findings regarding FN incidence in outpatient settings24,25. Our models capture 

this uncertainty through best- and worst-case scenario simulations. Furthermore, recent studies 

indicate that selected low-risk FN cases can be managed safely in outpatient settings26–28. A 

stringent risk stratification therefore allows for further reductions in bed requirements, as 

reflected in our supplementary simulations. 

Beyond infection management, regular laboratory monitoring remains essential in outpatient 

settings to enable early intervention and prevent or promptly detect the need for subsequent 

hospitalization. Our supplementary models account for this by incorporating the outpatient 

treatment of specific adverse events (see Supplementary Figure 1). For instance, we classified 

mild renal impairment, as indicated by serum creatinine >1.2 mg/dL, as a specific trigger for 

proactive supportive care (e.g., intravenous fluids), given that early treatment is critical for 

favorable outcomes30. While our models accurately predicted renal decline, often preceded by 

gradual changes, transfusion requirements proved less predictable. Consequently, we 

recommend closer monitoring for patients with pre-existing renal dysfunction or cytopenia in 

any hematologic lineage. 

 

Although our single-center cohort may be representative for different clinics as well, 

generalizability requires confirmation in multicenter settings. To facilitate reproducibility and 

external evaluation, we provide the full covariate set and final hyperparameters in 

Supplementary Tables 6 and 7, enabling straightforward implementation and testing across 

centers. Furthermore, we limited our models to routinely available laboratory values present in 
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most centers and outpatient settings at fixed time points. This strategy ensures consistent 

model input and prevents information leakage from selectively ordered tests that reflect 

underlying pathological conditions. To account for different institutional protocols regarding the 

management of specific adverse events, e.g., whether to give transfusions in an in- or 

outpatient setting, we added additional simulations, providing initial assessments for a diverse 

range of clinical pathways. Furthermore, as no standardized guidelines exist, physicians may 

have selected less intensive regimens for frailer patients, potentially biasing the observed 

adverse event rates themselves. Exploratory subgroup analyses indicate potential differences 

between treatment regimens; however, this needs to be validated in adequately powered 

studies.  

Sensitivity analyses show substantial improvement with larger patient subsamples, suggesting 

that model performance would substantially benefit from additional patients. Nevertheless, our 

final models demonstrate good accuracy and ROC-AUC performance. To more reliably convey 

clinical utility – especially in the presence of class imbalance – we also report the more stringent 

MCC. Interestingly, TabPFN29, a new foundation model for tabular data, performed consistently 

well but did not outperform the other methods as one might have expected.  

Additional predictors, such as body temperature (unavailable due to a lack of digitalization) or 

plasmacytosis/ bone marrow staging before SCC might also prove beneficial. The latter was only 

available upon initial diagnosis and was not routinely performed right before SCM due to limited 

therapeutic consequences. Additionally, sparse data for later timepoints and inconsistent 

laboratory sampling prevented a meaningful evaluation of short-term SAE forecast quality. 

Although chemotherapy-based mobilization regimens are the standard for eligible patients, 

steady-state mobilization strategies with reduced toxicity, such as G-CSF plus plerixafor, exist17. 

However, their use remains limited due to cost, reimbursement constraints, institutional 

policies, and reduced mobilization efficiency18. As this work is designed to fit within current 

clinical pathways and can be implemented immediately, it offers resource optimization even 

before broader transitions to plerixafor-based strategies might occur.  

Due to differing toxicity profiles, these chemotherapy-based findings should not be extrapolated 

to steady-state mobilization.  
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The data shows a strict bimodal distribution of SAE occurrences (before 72h or after 5 days), 

indicating a small but robust window for a safe, minimal outpatient regimen. The admission on 

day five scenario is therefore directly implementable with minimal changes in clinical 

workflows, still having high practical relevance, as approximately one-third of required ward 

bed-days could be saved. An initial transition to that scenario also gives time to establish 

suitable outpatient infrastructures and medical networks, including primary-care support with 

accessible diagnostics and specialized staff, that are necessary for extended outpatient 

workflow. In a later stage, this fixed admission policy should be refined with personalized 

admission estimates. For maximal efficiency, prediction errors should be less than one day. 

Unfortunately, our regression models, trained only on admission-day data, were slightly higher 

than this threshold. However, future incorporations of longitudinal models or conditional 

predictions will likely improve model performance. 

A formal cost-effectiveness analysis was not performed, though economic benefits are implied 

by the substantial reduction in bed-days. Furthermore, the economic impact will depend heavily 

on country-specific reimbursement policies. Regardless of economic considerations, 

transitioning to outpatient settings addresses an immediate patient need, as current studies 

consistently show a strong preference among cancer patients for the quality-of-life benefits 

associated with ambulatory care19–21. This preference likely extends to stem cell mobilization in 

multiple myeloma patients14,22,23, providing a compelling motivation to utilize current protocols 

immediately rather than waiting for future mobilization strategies to mature. 

 

In summary, our analysis strongly suggests that outpatient stem cell mobilization in multiple 

myeloma is both safe and feasible, with stratified admission policies and optimized bed 

management markedly reducing inpatient bed usage – potentially by at least one-third and up 

to more than 90%. Predictive modelling of SAEs remains challenging due to limited sample size, 

data availability, and class imbalance, but longitudinal approaches and conditional prediction 

with small event horizons show promise for future refinement. Finally, the general structure of 

the proposed model (Figure 3) can serve as a blueprint for other high-risk treatment pathways 
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in multiple myeloma, particularly bispecific antibodies and CAR T-cell therapy, as well as for 

other disease entities or further extensions and refinements, for example by integrating more 

performant models in settings with greater data availability. 
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Methods 

We retrospectively analyzed 109 cases of adult patients with MM who underwent first-line 

chemotherapy induction for SCM with subsequent high dose chemotherapy and ASCT in an 

inpatient setting at the Department of Hematology and Medical Oncology, University Medical 

Center Göttingen (UMG), Germany, between August 2019 and December 2022. MM diagnosis 

was confirmed by local pathologists according to international criteria31. All patients had an 

Eastern Cooperative Oncology Group (ECOG)32 performance status of 0–1 and consented to 

undergo stem cell mobilization. All response statuses and chemotherapy regimens were 

included. Mobilization chemotherapy consisted of either cyclophosphamide 4000 mg/m2 or 

cyclophosphamide 2500 mg/m2, etoposide 375 mg/m2 or etoposide 100 mg/m2 plus 

cyclophosphamide 1250 mg/m2 (see Table 1B). G-CSF (10 µg/kg/day subcutaneously) was 

administered following chemotherapy. Clinical data was extracted from medical records and 

electronic patient files supplemented by additional patient-related documents. Some baseline 

assessments were conducted off-site, and the associated data were not reliably available to our 

center in retrospect. The study was approved by the UMG Ethics Committee (Goettingen no. 

24/1/23) and conducted in accordance with the Declaration of Helsinki Good Clinical Practice 

guidelines and local regulations. 

 

Response Assessment and Adverse Event Grading 

Remission status prior to mobilization was classified according to the International Myeloma 

Working Group (IMWG) uniform response criteria as very good partial response (VgPR), partial 

response (PR), stable disease (SD) or progressive disease (PD)33. VgPR was assessed per IMWG 

criteria using serum M-protein and serum free light-chain measurements. In line with German 

clinical practice, bone marrow aspiration/biopsy was not routinely performed immediately 

before SCM. All clinically relevant adverse events during mobilization chemotherapy were 

graded according to the Common Terminology Criteria for Adverse Events (CTCAE) Version 5.034. 

Asymptomatic laboratory abnormalities that did not require clinical evaluation or intervention 

were not recorded as adverse events. Day 0 was set to therapy start. Severe adverse events 

(SAE) were defined as CTCAE grade ≥ 3, requiring in-hospital management. Mild renal 
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impairment was defined as a serum creatinine concentration >1.2 mg/dL, irrespective of 

baseline. This threshold was chosen pragmatically to capture subclinical renal dysfunction not 

meeting CTCAE grade 3 or Kidney Disease Improving Global Outcomes (KDIGO) criteria but 

triggering clinical intervention (IV fluids). Acute kidney injury (AKI) was defined according to 

KDIGO guidelines, including an increase in serum creatinine by ≥0.3 mg/dL within 48 hours, a 

≥1.5-fold increase from baseline within 7 days, or urine output <0.5 mL/kg/h for >6 hours.  

Leukopenia was defined as an absolute leukocyte count <1000/µl. Side effects included nausea 

or diarrhea, fever (>38.2°C), infection and anemia or thrombocytopenia requiring transfusion. 

Patients with fever were also classified as having an infection with and without germ detection 

and antibiotic therapy was documented. Transfusion applications were recorded.  

 

Statistical Analysis and Modelling of Potential Outpatient Regimen Scenarios 

Descriptive statistics, including a chronological summary of adverse events, were performed to 

characterize cohorts. Subgroup analysis of high-dose cyclophosphamide therapy and DVTd pre-

therapy was performed using two-way ANOVA (see Supplementary Tables 2-5). 

All patients were admitted before chemotherapy and remained hospitalized until stem-

cell collection was completed sufficiently. Based on our inpatient cohort, we estimated 

empirical distributions of SAE occurrence. To assess alternative admission strategies, we 

modified these distributions according to each scenario. For each scenario, 95% confidence 

intervals were calculated using 2,000 bootstrap samples. Patients were assigned to three 

subgroups: (1) those with severe adverse events (CTCAE grade ≥ 3) within 72 hours of initiation 

of chemotherapy, (2) those with SAEs before stem cell collection (“later acquired”) and (3) those 

without SAEs (see Figure 3). The proportion of early SAE patients (CTCAE grade ≥ 3 within 72h) 

as well as the quota of patients with acute kidney injury (AKI) and transfusions was kept 

constant in all main simulations. In most scenarios the onset (not the relative rate) of 

neutropenic fever as the main cause for hospitalization, was varied according to the model’s 

assumption. The empirical scenarios (SE1/2/3) were based on the observed (inpatient) SAE 

distributions without any changes. In the worst-case scenarios (SW1/2) fever occurred one day 

earlier for febrile patients, whereas in the best-case scenarios (SB1/2/3) it occurred one day 
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later. For all patients not developing SAEs within the first 72 hours a fixed admission day on the 

fifth day after start of therapy was implemented (“Day 5”) scenarios (S51/2). In all other 

scenarios, patients were immediately hospitalized whenever a SAE occurred. 

For further refinement additional sub-scenarios were developed based on whether patients 

were hospitalized during therapy application and SCC. In sub-models SX1, therapy was 

administered in an inpatient setting, whereas in sub-models SX2, therapy was administered in 

an outpatient setting. In both sub-models (SX1/2) the SCC was performed in an inpatient 

setting, regardless of whether a SAE occurred. In sub-models SX3, both - therapy administration 

and stem cell collection (if no SAE occurred) - were performed in an outpatient setting. See 

Supplementary Table 1 for a detailed description. The number of ward beds per day needed in 

each scenario was normalized against the full inpatient (observed) bed-days. 

To support optimal ward bed management, a two-step machine learning prediction strategy is 

proposed (see Figure 3): first, predicting whether a patient will develop a relevant adverse 

event, and secondly, when. To predict the occurrence of SAEs which occurred after 72h of 

admission, we compared two data input strategies: For one only information available at 

hospital admission was used. For the second longitudinal data, including blood laboratory 

results collected on day three and five after therapy start were integrated. Missing covariates 

(<0.5%) were imputed via running average for repeated measurements or by the population 

mean otherwise. No outcome data was missing. For the general SAE prediction, the composite 

endpoint "any SAE" was used, along with three specific SAEs endpoints: mild renal impairment, 

neutropenic fever (NF) and blood transfusion requirement. Class imbalances range from 

moderate to severe (compare Table 1C). Whenever possible, weighted training was used to 

encounter these imbalances. Input variable selection was based on clinical knowledge and high 

mutual information with the target.  

The models were trained using three progressively expansive covariate sets. First, we employed 

a clinically informed panel encompassing patient age, estimated glomerular filtration rate (CKD-

EPI 2021), lactate dehydrogenase, hemoglobin, platelet count, prior cyclophosphamide-

etoposide therapy, and the total number of previous treatment lines. Next, we selected features 

by their mutual information with the outcome, extending the first set to include patient sex, C-
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reactive protein, corrected calcium, serum creatinine, chemotherapy dose indicator (full dose = 

1), and binary flags for cyclophosphamide, CE-therapy, etoposide, and G-CSF dosing. Finally, we 

augmented this mutual-information set with longitudinal measurements, adding all blood 

values recorded on days three and five after treatment initiation. 

We evaluated four machine-learning classifiers, including Logistic Regression, Random Forest 

(RF), XGBoost5, and TabPFN6. The primary classification task was to predict whether a patient 

would develop a specific SAE. For patients who did develop a SAE, regression models were used 

to estimate the timing of the first SAE occurrence. We used four regression models: a linear 

regressor (Elastic Net)35, an XGBoost regressor36, a TabPFN regressor29, and a RF regressor35. For 

the regression task, we used only features collected on the day of admission. Given the limited 

sample size, we performed 5-fold cross-validation (CV) for classification and 3-fold CV for 

regression to ensure reliable performance evaluation. For the classification tasks, results are 

reported as average across all five validation folds for accuracy, ROC-AUC, and the Matthews 

Correlation Coefficient7 (MCC), and the root mean squared deviation (RMSD) and the mean 

absolute deviation (MAD) for all regression tasks. We report the mean over all CV-folds. 

Hyperparameters were tuned manually in a nested CV framework. All statistical analyses and 

visualizations were conducted using Python 3.10.128, employing open-source libraries29,35–38 

and custom scripts. See Supplementary Tables 6 and 7 for additional descriptions and 

Supplementary Table 9 for a complete TRIPOD+AI39 summary of the used models. 
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Figure 1: A) Overview of the temporal relationships and distributions of stem cell collection 

milestones and adverse events. Each dot marks the first occurrence or administration of a 

variable, with small vertical lines indicating the first and last event observations. Color intensity 

reflects the proportion of patients experiencing the event, with darker colors representing 

higher fractions. Density is estimated via kernel density estimation (KDE). B) Distribution 

estimates of the first occurrence of severe adverse events (SAEs), which would normally result 

in hospitalization. A stacked histogram and KDE, highlighting the bimodal distribution between 

patients who develop an SAE within 72 hours and those who do so later. Mild renal impairment: 

>1.2mg/dL creatinine; G-CSF: Granulocyte Colony Stimulating Factor; AB: Antibiotic Therapy. 
 

Figure 2: Estimated number of needed hospital beds per day for simulated outpatient regimes. 

The relative fraction on needed bed-days is given. Error bars are bootstrapped 95%-CI. For 

scenarios ending on a 2, the therapy administering was also ambulant. For scenarios ending on 

3, the SCC was also in an outpatient regime, if no prior SAEs occurred. Current: Current full 

inpatient treatment; set as normalizing constant for relative fractions. Additionally, the fractions 

of needed bed-days between admission and therapy start as well as the occupied bed-days after 

SCC end are given. 5 Day Admission: All patients not developing SAEs within the first 72h were 

admitted to hospital 5 days after therapy start. Worst Case: All patients developing NF did this 

one day earlier. Empirical Distribution: Following the observed SAE distributions. Best Case: All 

patients developing NF did this one day later. 

SAE: Severe Adverse Events; NF: Neutropenic Fever; SCC: Stem Cell Collection. 

 

Figure 3: Overview of the proposed model structure for risk-stratified treatment regimens for 

patients with multiple myeloma undergoing stem-cell mobilization and collection (SCC). Early 

severe adverse events (SAEs) occurring within the first 72 hours of hospital admission are 

usually clinically identifiable. The remaining patients are screened for the probability of 

developing an SAE requiring hospitalization. After an initial classification, subsequent regression 

algorithms predict the day of SAE onset for relevant patients, supporting efficient ward-bed 

management. SX1, SX2, and SX3 denote different sub-model assumptions: SX1: therapy 

administration and SCC performed in an inpatient setting; SX2: therapy administration on an 

outpatient basis, SCC in an inpatient setting; SX3: therapy administration and SCC on an 

outpatient basis if the patient has not required hospitalization before SCC. 
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Table 1: Overview of cohort (N=109) characteristics. Abbreviations: M (male), F (female), R-ISS 

(revised international staging system), sFLC (serum free light chains), Ig (immunoglobulin A, G, 

M), VCD (bortezomib, cyclophosphamide, dexamethasone), DVTd (daratumumab, bortezomib, 

thalidomide, dexamethasone), VTd (bortezomib, thalidomide, dexamethasone), EKRd 

(elotuzumab, carfilzomib, lenalidomide, dexamethasone), (bortezomib, dexamethasone), VRd 

(bortezomib, lenalidomide, dexamethasone), other (other combination of lenalidomide, 

dexamethasone, carfilzomib, bortezomib, daratumumab, cyclophosphamide, bendamustin, 

rituximab, elotuzumab), VgPR (very good partial response), PR (partial response), SD (stable 

disease), PD (progressive disease), pats (patients). Crude rates or median times and ranges or 

percentiles were only calculated on the subset of patients developing the respective adverse 

event. Severe adverse events are defined as adverse events requiring hospitalization, including 

due to fever, mild renal impairment: ≥1.2mg/dl plasma creatinine, administration of antibiotics, 

transfusion of platelets or erythrocytes; fever: ≥38.2°C body temperature; AKI (acute kidney 

injury). Other adverse events included nausea and diarrhea.  

CTCAE: Common Terminology Criteria for Adverse Events. 

 
Table 2: Mean Scores for the best performing classifier in a 5-fold cross validation of our 

dataset. MRI: prediction of supportive IV Fluid due to mild renal impairment; Fever: 

Neutropenic Fever; Transfusion needs; Any AE: Composite Endpoint of occurrence of any of the 

above adverse events. 
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Table 1A - Patient characteristics at diagnosis                                                                            N=109 (%) 

Median age, years [min, max] 63 [41, 79] 

Sex (M/F) 69 (63) / 40 (37) 

Stage R-ISS (available for 64 pats.):  

• I 

• II 

• III 

6 (9) 
42 (66) 
16 (25) 

Median plasma cell infiltration of bone marrow at diagnosis  
(available for 87 pats.): 

• 10-29% 

• 30-59% 

• 60-100% 

 
 

16 (19) 
29 (33) 
42 (48) 

Heavy chain type and sFLC: 

• IgA  

• IgG 

• IgM 

• Bence Jones 

• None 

(kappa / lambda / none) 
10/ 5/ 2 (9, 5, 2) 

43/27/1 (39, 25,1) 
0/ 1/ 0 (0, 1, 0) 
2/ 2/ 0 (2, 2, 0) 
8/ 6/ 2 (7, 5, 2) 

Pretreatment (multiple possible):  

• DVTd 

• VCD 

• VD 

• EKRd 

• VTd 

• VRd 

 
45 (41) 
41 (38) 

8 (7) 
5 (4.6) 
5 (4.6) 
5 (4.6) 

Response status before collection (available for 89 pats.): 

• VgPR 

• PR 

• SD 

• PD 

 
44 (49) 
40 (45) 

4 (5) 
1 (1) 

Table 1B - Therapy, time schedule, and outcome 

Successful stem cell collection: 
 
Duration between admission and therapy start (days): 

• 0-1 

• 2-4 
 
Chemotherapy Regime n (%): 

• Etoposide 375mg/m2  

• Etoposide and cyclophosphamide  
100mg/m2/1250mg/m2  

• Cyclophosphamide 2500mg/m2  

106 (97) 
 

           
           101 (93) 

8 (7) 
 
 

10 (9) 
  44 (40) 

 
  55 (51) 
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Leukopenia start after start of therapy (days): 

• 6-8 

• ≥9 

• None 
Median: 7 (.25 and .75 percentile: 7 and 8) days 
 
Duration of Leukopenia (available for 100 patients) (days): 

• 1-3 

• 4-5 

• 6-8 
Median: 4 [.25 and .75 percentile: 3 and 5] days 
 
 
Time between the start of therapy and stem cell collection (days): 

• 10-12 

• 13-15 

• 16-19 

• Not successful 
Median: 13 [.25 and .75 percentile: 12 and 14] days 
 
Days of stem cell collection (available for 106 patients) (days):  

• 1 

• 2 

• 3 
 

 
91 (84) 

9 (8) 
9 (8) 

 
 
 

33 (33) 
52 (52) 
15 (15) 

 
 
 
 

36 (34) 
57 (51) 
13 (12) 

3 (3) 
 
 
 

77 (73) 
27 (25) 

2 (2) 

Table 1C - Adverse Events 

Adverse event (clinically documented) 
Severe adverse event  
Adverse event (CTCAE ≥ 3) 
 

• Nausea 

• Diarrhea 
Median start of symptoms [range 1-16] days 
 

• Neutropenic Fever     

• Germ detection  
Median start of neutropenic fever [range 1-12] days 
 

• Erythrocyte Transfusion 
Median administration of red cell concentrates [range 9-14] days 

 

• Mild renal impairment 
Median Start of mild renal impairment [range 1-14] days 
 

• Acute kidney injury (AKI) 
AKI-I 
AKI-II 

81 (74) 
75 (69) 
65 (60) 

 
21 (19) 
5 (4.5) 

4 [days] 
 

59 (54) 
26 (44) 
9 [days] 

 
             28 (26) 

11 [days] 

 

12 (11) 

11 [days] 
 
 

8 (7) 
0 (0) 
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AKI-III 0 (0) 
 
 

Target Metric Classifier Mean Score 

MRI    

 Accuracy Random Forest Classifier 0.96 

 ROC-AUC XGBoost Classifier 1.0 

 MCC XGBoost Classifier 0.78 

Fever    

 Accuracy Gradient Boost Classifier 0.9 

 ROC-AUC Logistic Regression 0.67 

 MCC Logistic Regression 0.4 

Transfusion    

 Accuracy Random Forest Classifier 0.9 

 ROC-AUC Random Forest Classifier 0.91 

 MCC TabPFN Classifier 0.48 

Any AE    

 Accuracy XGBoost Classifier 0.79 

 ROC-AUC Logistic Regression 0.81 

 MCC XGBoost Classifier 0.52 
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