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ABSTRACT

Computer-Assisted Intervention has the potential to revolutionize modern surgery, with surgical scene understanding serving
as a critical component in supporting decision-making and improving procedural efficacy. While existing AI-driven approaches
alleviate annotation burdens via self-supervised spatial representation learning, their lack of explicit temporal modeling
during pre-training fundamentally restricts the capture of dynamic surgical contexts, resulting in incomplete spatiotemporal
understanding. In this work, we introduce the first video-level surgical pre-training framework that enables joint spatiotemporal
representation learning from large-scale surgical video data. To achieve this, we constructed a large-scale surgical video
dataset comprising 3,650 videos and 3.55 million frames, spanning more than 20 surgical procedures and over 10 anatomical
structures. Building upon this dataset, we propose SurgVISTA (Surgical Video-level Spatial-Temporal Architecture), a
reconstruction-based pre-training method that jointly captures intricate spatial structures and temporal dynamics. Additionally,
SurgVISTA incorporates image-level knowledge distillation guided by a surgery-specific expert model to enhance the learning
of fine-grained anatomical and semantic features. To validate its effectiveness, we established a comprehensive benchmark
comprising 13 video-level datasets spanning six surgical procedures across four tasks. Extensive experiments demonstrate
that SurgVISTA consistently outperforms both natural- and surgical-domain pre-trained models, demonstrating strong potential
to advance intelligent surgical systems in clinically meaningful scenarios.
Keywords: Computer-Assisted Intervention, Surgical Scene Understanding, Video-level Surgical Foundation Model

1 Introduction1

Computer-Assisted Intervention (CAI) has recently made significant strides in integrating sophisticated artificial intelligence (AI)2

technologies into clinical workflows to optimize preoperative planning, intraoperative execution, and postoperative assessment.3
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A fundamental component of CAI is surgical scene understanding, which involves the comprehensive analysis and interpretation4

of intricate surgical activities and tissue interactions to support informed decision-making, improve procedural effectiveness, and5

ensure operational safety1–3. This interdisciplinary endeavor aims to provide critical insights through continuous monitoring of6

intraoperative workflows and procedural execution, thereby facilitating surgical process optimization and promoting improved7

patient outcomes. However, developing AI-driven approaches for comprehensive surgical scene understanding encounters a8

significant challenge: the heavy reliance on expert-annotated surgical datasets. The SNOMED-CT International Edition (April9

2025) catalogues thousands of procedures that differ markedly in prevalence and technical complexity. Collecting adequately10

annotated video data for this long-tail distribution is prohibitively expensive and labour-intensive, resulting in surgical datasets11

that cover only a limited and incomplete spectrum of procedures. Consequently, the restricted procedural scope of existing12

surgical datasets hampers model generalizability, highlighting the inadequacy of task-specific and narrow AI in addressing13

the heterogeneous demands of surgical practice4, and emphasizing the need for procedure-agnostic methodologies capable of14

generalizing across diverse clinical contexts. In fact, the international Surgical Data Science Initiative5, 6 has recently identified15

the methodological addressing of surgical data sparsity as a key next step in the field7.16

Inspired by the rapid advancements in self-supervised learning (SSL) paradigm within the natural domain8–10 and its17

demonstrated effectiveness across various medical disciplines11–15, leveraging large-scale surgical data for SSL-based pre-18

training has emerged as a promising direction to extract robust and transferable representations explicitly tailored to surgical19

contexts. Despite significant achievements of SSL in various medical fields such as radiology11, 13 and pathology12, 15, its20

application within the surgical field remains nascent and underexplored. Recent works16–19 have begun to specifically explore21

the SSL paradigm in the surgical domain, demonstrating initial successes in developing surgical foundation models and22

substantially improving surgical feature representation learning for downstream tasks. However, these methods predominantly23

focus on image-level pre-training for effective spatial representation learning, while neglecting the learning of temporal24

dynamics essential for comprehensive spatiotemporal representations. Consequently, they follow a mainstream two-stage25

paradigm20, where temporal dependencies are modeled during fine-tuning using external temporal modules applied to static26

and pre-extracted spatial features, resulting in a decoupled modeling process that hinders joint spatiotemporal representation27

learning. In practice, this decoupling is suboptimal for surgical video analysis, where seamless integration of spatial and28

temporal information is critical to address inherent complexities such as visual ambiguities from occlusions, motion blur,29

and procedure-specific variability4. Furthermore, a significant discrepancy exists between the upstream pre-training and30

downstream fine-tuning, as these methods adopt image-level pre-training combined with a two-stage fine-tuning framework.31

This fragmented pipeline hinders the unified learning of spatial and temporal representations: while spatial features benefit from32

a well pre-trained backbone, temporal modeling starts from a randomly initialized module. As a result, image-level pre-trained33

methods struggle to leverage the rich temporal dynamics embedded in large-scale surgical video data, instead depending on34

limited downstream annotations to learn temporal dependencies. This piecewise optimization potentially compromises the35

robustness of spatiotemporal modeling, hindering generalizability across diverse downstream applications and resulting in36

suboptimal performance. These limitations highlight the urgent need for new approaches that holistically integrate spatial and37

temporal learning during pre-training to enhance the comprehensive surgical scene understanding.38

This study advocates for explicit and unified spatiotemporal representation learning during the pre-training phase to fully39

exploit the potential of large-scale surgical video data, thereby initiating a paradigm shift from static image-based modeling40

to dynamic video-level representation learning. Such integration effectively facilitates the extraction of robust, transferable,41

and discriminative spatiotemporal feature representations, thereby advancing comprehensive surgical scene understanding.42

To support this objective, we constructed a publicly available, large-scale surgical video dataset comprising two essential43

components: SurgPub and SurgWeb, which collectively span varied anatomical structures and surgical procedures, providing the44

variability and complexity necessary for robust spatiotemporal representation learning. In Fig. 1a, we present an overview of the45

key anatomical structures and associated surgical procedures, accompanied by video-level statistical analyses and frame-level46

distribution analyses. SurgPub is constructed from eight publicly available surgical video datasets21–27, encompassing 27447

videos with a total of 1.20 million frames. Complementing SurgPub, SurgWeb comprises 3,376 surgical recordings sourced48

from online platforms, totaling 2.35 million frames, spanning diverse surgical procedures and anatomical regions encountered49

in extensive clinical scenarios. The resulting dataset encompasses over 20 surgical procedures across more than 10 anatomical50

structures, thereby promoting the learning of robust and generalizable spatiotemporal representations. Furthermore, we envision51

this curated resource as a catalyst for advancing more robust and generalized surgery AI models, while empowering researchers52

to tackle complex challenges in surgical scene understanding.53

To transcend static image-based pre-training paradigms and establish video-level representation learning as the foundation54

for surgical AI, we pioneer SurgVISTA (Surgical Video-level Spatial-Temporal Architecture), the first surgical video55

foundation model explicitly designed to capture robust and discriminative spatiotemporal patterns across diverse surgical56

scenarios. Unlike conventional methods restricted to static frame-level representations, SurgVISTA integrates spatial and57

temporal modeling into a unified pre-training framework, simultaneously encoding fine-grained anatomical details and temporal58
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dynamics. As depicted in Fig. 1b, SurgVISTA employs an asymmetric encoder-decoder architecture, comprising a unified59

encoder for joint spatiotemporal dependencies modeling and two dedicated decoders. The reconstruction decoder learns to60

restore masked video regions, thereby compelling the model to extract spatial structures and temporal dynamics intrinsic61

to surgical activities. Concurrently, the refinement decoder leverages knowledge distillation from a powerful image-level62

expert model18, compensating for detail loss from temporal abstraction while simultaneously reinforcing the discriminative63

capacity of spatial features. Through joint spatiotemporal modeling on large-scale surgical video data, SurgVISTA acquires64

highly generalizable representations that effectively encapsulate the complexity and variability of surgical scenarios, enabling65

seamless adaptation to downstream tasks without additional temporal components, thus significantly bridging the gap between66

pre-training and fine-tuning phases. Overall, SurgVISTA establishes a scalable and pretraining-driven foundation for surgical67

scene understanding, significantly enhancing robust spatiotemporal modeling capabilities for complex intraoperative scenarios.68

To verify the effectiveness of SurgVISTA, we conducted a comprehensive video-level evaluation across 13 datasets, covering69

six surgical procedures and four distinct downstream tasks. As illustrated in Fig. 1c, we provide a visual abstraction of diverse70

downstream tasks alongside the evaluated datasets, accompanied by comparative performance analyses of models pre-trained71

on natural-domain and surgical-domain data. Specifically, we began by comparing image-level and video-level pre-trained72

models within the natural domain, highlighting the superior performance of SurgVISTA and underscoring the necessity of73

domain-aligned video-level pre-training. Furthermore, we benchmarked SurgVISTA against the existing surgical foundation74

models, with a particular focus on surgical workflow recognition, demonstrating the advantages of joint spatiotemporal modeling75

empowered by large-scale surgical video pre-training in enhancing downstream performance. Despite the absence of task-76

specific data during the pre-training phase, SurgVISTA demonstrates exceptional generalization capabilities on anatomically and77

procedurally divergent surgical datasets, reinforcing its robustness and adaptability to a wide spectrum of surgical scenarios.78

2 Results79

SurgVISTA outperforms natural-domain image- and video-level pre-trained methods on surgical tasks80

In this section, we first evaluate the effectiveness of SurgVISTA on surgical workflow recognition, comparing it against both81

image-level8, 9, 28 and video-level29–32 pre-trained methods within the natural domain. Experimental results are illustrated82

in Fig. 2, accompanied by 95% confidence intervals to quantify uncertainty and P-values to assess statistical significance.83

Specifically, Fig. 2a-d present results on in-domain datasets with related procedures in the pre-training data, while Fig. 2e-h84

illustrate results on out-of-domain datasets, involving surgical procedures excluded from the pre-training data. To provide a85

comprehensive understanding of the model’s generalization capacity, we quantify the proportion of pre-training data associated86

with related surgical procedures and anatomical structures, thereby highlighting the extent of overlap between the pre-training87

data and downstream datasets. As illustrated in Fig. 2, natural-domain methods employing video-level pre-training consistently88

outperformed image-level counterparts across all evaluated datasets. On Cholec80, the average gains for video-level models89

over image-level ones reached 1.5%, 1.5%, and 2.8% in image-level accuracy, video-level accuracy, and phase-level Jaccard,90

respectively. This performance advantage became even more substantial on the out-of-domain Cataract-101 dataset, with91

average enhancements reaching 10.8% in image-level accuracy, 10.7% in video-level accuracy, and 19.6% in phase-level Jaccard,92

highlighting the pronounced benefits of video-level pre-training for surgical scene understanding. Furthermore, SurgVISTA93

consistently outperformed natural-domain pre-trained video-level methods across both in-domain and out-of-domain datasets.94

On representative in-domain benchmarks including Cholec80, M2CAI16-Workflow, and PmLR50, SurgVISTA achieved notable95

gains in image-level accuracy, video-level accuracy, and phase-level Jaccard over natural-domain methods. Despite minimal96

procedural overlap in the pre-training data (e.g., 1.13% for hysterectomy), SurgVISTA outperformed the best prior model29
97

by 4.7%, 4.6%, and 7.3%, highlighting its robust generalization to underrepresented procedures. These in-domain results98

demonstrate SurgVISTA’s capacity to acquire domain-relevant knowledge during pre-training, enabling improved downstream99

performance. In out-of-domain evaluations on ESD57, SurgVISTA surpassed VideoMAE29 (pre-trained on UnlabeledHybrid30)100

by 2.8%, 2.7%, and 5.4% on the three metrics, respectively. When evaluated on CATARACTS, Cataract-101, and Cataract-21101

datasets, which are substantially different from the surgical procedures used during pre-training, SurgVISTA consistently102

outperformed all competing methods, reinforcing its generalizability across varied procedures and anatomical structures. We103

further evaluate SurgVISTA on additional critical surgical tasks beyond workflow recognition, providing a comprehensive104

assessment of its capacity for surgical scene understanding. As illustrated in Fig. 3, SurgVISTA consistently achieved superior105

performance compared to natural-domain pre-trained methods across multiple surgical tasks. For surgical action recognition on106

SurgicalActions160, it surpassed UMT32 by 1.8% in accuracy and 4.6% in mAP. For surgical triplet recognition, it outperformed107

MVD31 on CholecT50 by 5.8% (triplet mAP) and 5.9% (2-tuple mAP), and exceeded DINO8 on Prostate21 by 8.0% and 5.9%,108

suggesting effective modeling of instrument–target interactions. For surgical skill assessment, SurgVISTA achieved relative109

improvements of 8.3% in accuracy and 5.4% in mAP over MVD31 on Cholec80-CVS, and surpassed UMT32 with relative gains110

of 0.1% in accuracy and 1.9% in mAP on Endoscapes-CVS. These results highlight its capacity to capture intricate anatomical111

structures and motion patterns critical for evaluating surgical expertise.112
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Overall, these tasks constitute core components of comprehensive surgical scene understanding. Extensive evaluations113

across 13 diverse datasets demonstrate that SurgVISTA consistently surpasses natural-domain pre-trained methods across a114

wide range of tasks, surgical procedures, and anatomical structures.115

SurgVISTA outperforms existing surgical-domain pre-trained methods116

To further investigate the effectiveness of SurgVISTA in surgical scene understanding, we conducted a comprehensive117

comparison with existing surgical-domain pre-trained methods. Given that current surgical-domain pre-trained methods16–19
118

primarily emphasize the surgical workflow recognition task, we performed extensive evaluations on six surgical workflow119

recognition datasets encompassing diverse procedures and anatomical structures. Experimental results with 95% confidence120

intervals are presented in Fig. 4, providing a comprehensive comparison of model performance across evaluated datasets.121

Specifically, Fig. 4a-c represent results on in-domain datasets, while Fig. 4d-e illustrate the results on out-of-domain datasets.122

Overall, SurgVISTA significantly outperformed all comparative methods across all evaluation metrics and datasets. On123

in-domain datasets, SurgVISTA exhibited substantial improvements over the best-performing method EndoSSL18. Notably,124

EndoSSL is an image-level method pre-trained on 23.3 million private laparoscopic frames using the ViT-L architecture28.125

Specifically, on the Cholec80 dataset, SurgVISTA achieved high performance, with image-level accuracy of 91.5%, video-level126

accuracy of 91.5%, phase-level precision of 87.3%, phase-level recall of 87.7%, and phase-level Jaccard of 78.1%, significantly127

outperforming other methods. On the M2CAI16-Workflow dataset, compared to EndoSSL18, SurgVISTA attained modest128

gains of 1.1% and 1.7% in image-level and video-level accuracies, while achieving significantly higher performance in129

phase-level metrics, with improvements of 11.3% in precision, 9.1% in recall, and 7.5% in Jaccard. On the AutoLaparo dataset,130

SurgVISTA exhibited remarkable improvements across multiple granularities compared to EndoSSL18, where it achieved an131

increase of 2.2% in image-level accuracy, 2.2% in video-level accuracy, 11.4% in phase-level precision, 4.8% in phase-level132

recall, and 5.1% in phase-level Jaccard. In out-of-domain evaluations involving surgical procedures not encountered during133

pre-training, SurgVISTA consistently achieved superior performance. For the CATARACTS dataset, containing numerous134

workflow categories and complex phase transitions, SurgVISTA surpassed all competing methods, and achieved improvements135

of 14.8%, 11.1% and 14.3% in phase-level metrics compared to SelfSupSurg16. Similarly, for the Cataract-101 and Cataract-21136

datasets, SurgVISTA consistently surpassed existing models.137

SurgVISTA benefits from large-scale and diverse surgical pre-training data138

Data scaling laws describe how model performance varies as the amount of pre-training data increases, serving as a fundamental139

principle in developing robust foundation models. Extensive natural-domain studies have demonstrated that scaling pre-training140

data significantly enhances model generalization, robustness, and overall performance across various tasks. However, the141

investigation of data scaling laws within the surgical domain, particularly for video-level pre-training, remains relatively142

underexplored. To elucidate the relationship between data scale and performance within the surgical domain, we systematically143

examined data scaling laws by pre-training SurgVISTA on a series of sub-datasets of varying sizes. As depicted in Fig. 5a,144

we constructed five progressively expanding sub-datasets, denoted as Settings A through E, where each successive setting145

incorporated all data from the preceding settings, culminated in Setting E representing the full dataset. Sub-datasets from146

Settings A to D were exclusively sourced from SurgPub, with each subsequent setting incorporating additional public datasets147

to examine the impact of diverse surgical procedures on model performance and generalization capabilities. The detailed148

composition and distribution are illustrated in Supplementary Table 2. To assess model performance and generalization149

capabilities, extensive experiments were conducted across nine diverse video-level surgical datasets, spanning various surgical150

procedures and anatomical structures. The experimental results are shown in Fig. 5b-n, where line charts indicate the151

absolute data quantities of procedure-specific and full pre-training data, while the accompanying donut charts illustrate152

the corresponding proportions. Overall, as the scale of pre-training data progressively increases, all downstream datasets153

demonstrate a consistent and robust trend of performance enhancement. For Cholec80, M2CAI16-Workflow, CholecT50,154

Cholec80-CVS and Endoscapes-CVS which focus on laparoscopic cholecystectomy procedures, we observed an overall trend of155

performance improvement from Setting A to Setting C, with the proportion of procedure-specific data gradually decreasing from156

100% to 47.3%, indicating the model’s ability to effectively leverage relevant surgical content. Even in Settings D and E, where157

the proportion of procedure-specific data decreased to 17.4% and 15.1% respectively, consistent performance improvements158

were observed, highlighting the model’s robust generalization across low-overlap surgical scenarios. For PmLR50, which has159

0% procedural overlap with the pre-training data from Settings A to D, performance continued to improve, achieving gains of160

3.4% in image-level accuracy and 10.1% in phase-level Jaccard. In Setting E, despite the procedure-specific data accounting for161

only 1.9% of the total, the model achieved further improvements of 1.3% in image-level accuracy and 7.1% in phase-level162

Jaccard, demonstrating the effectiveness of large-scale surgical pre-training in enhancing representation transferability. For163

gynecologic laparoscopic surgery datasets, including AutoLaparo and SurgicalActions160, we observed a slight performance164

decline from Settings A to B, followed by a substantial improvement in Setting C, where the amount of pre-training data165

increases and procedure-relevant surgical videos were introduced. Specifically, from Setting A to Setting C, AutoLaparo166
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demonstrated gains of 1.3% in image-level accuracy and 3.9% in phase-level Jaccard, while SurgicalActions160 showed167

improvements of 8.7% in accuracy and 8.2% in mAP. In subsequent settings, the continued inclusion of unrelated surgical168

procedures further enhanced performance, where AutoLaparo achieved an additional improvement of 4.5% in image-level169

accuracy and 3.2% in phase-level Jaccard, while SurgicalActions160 attained a further 18.7% and 9.4% increase in accuracy170

and mAP, respectively. For out-of-domain cataract surgery datasets, including CATARACTS, Cataract-21, and Cataract-101,171

we still observed significant performance improvements, demonstrating the strong generalization capability of large-scale172

surgical pre-training in leveraging diverse procedural contexts to learn robust and transferable spatiotemporal representations.173

For the privately collected benchmarks Prostate21 and ESD57, we similarly observed substantial performance improvements as174

the scale and diversity of the pre-training corpus increased. Although these datasets originate from distinct clinical centers175

and were not part of any public surgical video repository, the gains achieved across the scaling settings demonstrate that176

SurgVISTA effectively transfers to previously unseen intraoperative environments and institution-specific visual characteristics.177

Comprehensive analyses demonstrate that SurgVISTA exhibits substantial performance improvements as the scale of pre-178

training data expands, even when incorporating irrelevant surgical procedures, highlighting its robustness and generalization179

capacity. These performance improvements are particularly pronounced for datasets involving complex surgical procedures180

with numerous workflow categories and intricate phase transitions. The systematic investigation of data scaling laws in this181

study offers valuable insights into the relationship between data volume and model effectiveness, providing guidance for future182

research and the development of more advanced and generalizable models for surgical scene understanding.183

Ablation studies confirm the necessity of knowledge distillation184

Surgical scene understanding necessitates advanced spatiotemporal modeling to effectively capture the complex and dynamic185

interactions between anatomical structures and surgical instruments, wherein effective spatial modeling is essential for fine-186

grained intra-frame understanding and for enriching the overall spatiotemporal feature representation. To further improve187

spatial feature representations within the integrated spatiotemporal learning framework, SurgVISTA incorporates knowledge188

distillation, leveraging the superior spatial feature extraction capabilities of image-level foundation model. To assess the189

effectiveness of knowledge distillation, we implemented an ablated variant of SurgVISTA without knowledge distillation,190

pre-trained on Settings A through D, and conducted extensive experiments across two downstream datasets. The experimental191

results are illustrated in Fig. 6a–b. Under Setting A, knowledge distillation yielded marginal changes on Cholec80, with a slight192

increase of 0.2% in image-level accuracy and a slight decrease of 0.6% in phase-level Jaccard, possibly due to the inclusion193

of procedure-specific pre-training data aligned with Cholec80. In contrast, more substantial improvements were observed on194

AutoLaparo, with improvements of 2.9% and 3.0% in image-level accuracy and phase-level Jaccard, respectively. Furthermore,195

for Cholec80, the performance gains from knowledge distillation became increasingly evident as the scale and diversity of196

pre-training data increased. For AutoLaparo, although Settings A and B involved the same surgical procedure that differed from197

AutoLaparo’s, knowledge distillation yielded gains in Setting A but slightly decreased phase-level Jaccard in Setting B. As198

procedurally relevant data and overall dataset diversity increased in subsequent settings, the benefits of knowledge distillation199

became progressively more pronounced. Overall, knowledge distillation consistently improves performance, yielding significant200

improvements in both accuracy and Jaccard across two datasets and all four pre-trained settings, compared to the non-distilled201

counterparts. Complementary qualitative results are presented in Fig. 6c-d, where reconstruction fidelity is evaluated using202

mean squared error (MSE) to verify the model’s ability to preserve fine-grained visual details. These visualizations demonstrate203

that knowledge distillation facilitates the learning of robust spatial representations to reconstruct video clips with structural204

integrity and visual coherence, particularly in regions containing anatomical structures and instrument-tissue interactions.205

3 Discussion206

To the best of our knowledge, this work is the first to explore video-level pre-training in the surgical domain using large-scale207

surgical video data. The following novel insights can be derived from our extensive experimental results.208

Surgery-specific video-level pre-training outperforms natural-domain counterparts by enabling domain-aligned spatiotem-209

poral representation learning. Experimental results reveal two critical insights: temporal modeling capabilities acquired210

during pre-training are essential for capturing dynamic surgical contexts, and domain-aligned pre-training surpasses domain-211

agnostic pre-training in addressing complex and variable surgical scenarios. While natural-domain video pre-training surpasses212

image-level methods by better modeling temporal dynamics, it lacks the surgery-specific knowledge required for precise213

interpretation of instruments, anatomy, and their interactions. In contrast, surgical-domain video pre-training yields more robust214

and discriminative spatiotemporal representations enriched with surgery-specific knowledge, reinforcing its importance for215

robust surgical scene understanding.216

Video-level surgical pre-training outperforms image-level counterparts by enabling explicit spatiotemporal representation217

learning. Although image-level counterparts primarily focus on spatial representation learning from large-scale surgical218

images, the absence of explicit temporal modeling during pre-training limits their ability to capture dynamic surgical contexts.219
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Consequently, despite leveraging powerful surgery-specific spatial feature extractors, these methods inherently struggle to model220

temporal dependencies from purely spatial representations during fine-tuning, ultimately limiting spatiotemporal representation221

quality, particularly in complex surgical scenarios. SurgVISTA employs spatiotemporal representation learning during pre-222

training, effectively harnessing the intrinsic spatial and temporal cues embedded in video data. By integrating fine-grained223

spatial representations of instruments and anatomical structures with comprehensive temporal modeling encompassing action224

temporality, causality, and dynamic interactions, SurgVISTA provides a robust and generalizable foundation for surgical scene225

understanding. The demonstrated superiority highlights the critical necessity of video-level pre-training tailored to the surgical226

domain, facilitating the advancement of more sophisticated, reliable, and clinically applicable intelligent surgical systems.227

Increasing the scale and diversity of surgical video data yields substantial improvements in both performance and generaliza-228

tion. Extensive experiments conclusively demonstrate that both factors are pivotal for improving accuracy and robustness across229

diverse surgical scenarios. First, scaling up pre-training data consistently enhances model performance and generalization, as230

reflected by SurgVISTA’s significant gains across all evaluated datasets. In procedure-agnostic scenarios involving procedures231

not present in downstream datasets, SurgVISTA continues to benefit by learning more diverse visual and temporal patterns. In232

procedure-specific scenarios, incorporating additional relevant data reinforces domain-specific priors and facilitates discrimina-233

tive feature learning, further improving task-specific performance. This highlights the importance of large-scale surgical video234

data for advancing comprehensive understanding of complex and diverse surgical scenarios. Second, increasing procedural235

diversity further boosts performance and generalization. As more diverse surgical procedures are incrementally integrated into236

the pre-training corpus, significant performance gains are observed across various surgical scenarios, indicating that learning237

from a wider procedural spectrum enables the model to capture shared spatial and temporal patterns that generalize beyond238

specific tasks. Enhancing procedural diversity facilitates the exploration of universal and transferable representations essential239

for understanding complex and diverse surgical scenarios. Nevertheless, our scaling analysis is based on cumulative pre-training240

settings whose composition is not perfectly distribution-matched across surgical procedures (e.g., cholecystectomy-heavy early241

settings), which may introduce procedure-specific biases. Despite this limitation, the highly consistent improvements observed242

across a broad range of in-domain and out-of-domain benchmarks indicate that the dominant effect comes from increasing both243

the scale and the procedural diversity of surgical pre-training data, rather than from procedure-specific bias.244

Data splitting in surgical video analysis remains fundamentally constrained by the trade-off between maximizing training245

scale and preserving unbiased evaluation. Given the inherent complexity and procedural overlap in surgical video data, including246

shared instruments, anatomical structures, or activities, expanding the training set inevitably increases the risk of distributional247

leakage into the evaluation data. This presents a fundamental challenge: how to maximize training scale for generalization while248

rigorously maintaining evaluation integrity. In this study, we curated publicly available surgical video datasets with any form249

of annotation. To enhance the diversity and scale of pre-training, we selected several datasets specifically for representation250

learning. Among these, some were split according to their official training and testing partitions, with the testing portions held251

out to support downstream evaluation under strict isolation, while others were used exclusively during pre-training to expand252

the data scale. Additionally, a number of datasets were entirely excluded from the pre-training phase and reserved as unseen253

evaluation benchmarks to assess generalization across surgical domains. This strategy enables a rigorous assessment of model254

generalization while ensuring strict non-overlap between pre-training and evaluation sets. Although dynamic benchmarks like255

LiveBench have emerged in general machine learning, such adaptive evaluation remains challenging in surgical domains due to256

limited data access, high annotation costs, and strict privacy constraints.257

SurgVISTA represents a robust and generalizable surgical video foundation model with clear advantages over both natural-258

domain and surgery-specific methods. Compared to natural-domain methods, SurgVISTA leverages large-scale surgical video259

data to acquire domain-specific knowledge that encompasses both static anatomical structures and surgical instruments, as well260

as dynamic intraoperative activities. This domain alignment results in more clinically relevant and effective performance in261

intelligent surgical applications. In contrast to existing surgery-specific methods, SurgVISTA pioneers a unified spatiotemporal262

representation learning paradigm, marking a transition from static image-based representation learning to dynamic video-263

level understanding. Through explicit modeling of spatiotemporal representation inherent in large-scale surgical video data,264

SurgVISTA demonstrates superior capacity to handle the complexity and variability of real-world surgical scenarios and265

exhibits improved generalization and transferability across heterogeneous procedural contexts. By delivering transferable and266

discriminative spatiotemporal features and enabling seamless adaptation to a broad range of downstream tasks, SurgVISTA267

serves as a solid foundation for the development of intelligent surgical systems with the potential to improve procedural268

safety and enhance clinical outcomes across diverse surgical scenarios. These results affirm that the generalized and robust269

spatiotemporal representations learned by SurgVISTA from large-scale surgical video data are pivotal for accurately interpreting270

complex surgical scenarios, significantly outperforming natural-domain methods lacking specialized surgical knowledge.271

While SurgVISTA represents a substantial advancement in surgical video pre-training and spatiotemporal representation272

learning, several limitations remain, highlighting promising directions for future investigation. First, although we construct a273

large-scale video-level surgical dataset encompassing more than 20 surgical procedures and over 10 anatomical structures, it274
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remains insufficient to fully reflect the extensive procedural complexity and variability in real-world clinical practices. This275

limitation underscores the imperative for continuous expansion and diversification of the pre-training dataset to ensure broader276

coverage of surgical scenarios and enhance the generalizability of learned representations across diverse clinical environments.277

Beyond sheer data scale, future work should also explore data-centric research questions in surgical SSL. In particular, training278

foundation models under fixed dataset sizes with varying procedure distributions offers an intriguing direction for understanding279

how data composition affects model generalization. Second, while we establish the most comprehensive video-level benchmark280

encompassing 13 downstream datasets spanning six surgical procedures and four distinct tasks, the procedural diversity281

within the benchmark remains limited relative to the broader scope of the pre-training data. Future efforts should focus on282

extensive collaboration with clinical institutions to collect annotated datasets across various surgical procedures, focusing on the283

generation of downstream tasks of high clinical relevance. Finally, although SurgVISTA achieves superior performance across284

diverse benchmark tasks, thorough clinical validation is essential to determine its practical utility and impact in real-world285

surgical scenarios. Effective deployment of SurgVISTA-driven systems necessitates both the development of efficient and286

task-aligned downstream functionalities and close collaboration with clinical experts to ensure seamless integration into surgical287

workflows and alignment with clinical standards and practical requirements.288

4 Method289

Architecture Design290

SurgVISTA is the first video-level self-supervision paradigm specifically targeted to surgical video analysis. The core innovation291

is a dual-decoder design designed for simultaneous holistic video understanding and fine-detail preservation. As illustrated292

in Fig. 1b, a video-level reconstruction branch enables the learning of motion dynamics and global contextual features while293

an image-level distillation branch ensures the retention of fine-grained spatial semantics and structural details. Specifically,294

given a video clip Xv ∈ RT×H×W×3, we employ a joint space-time cube embedding strategy29 with cube size PT ×PH ×PW to295

partition the clip into multiple non-overlapping patches arranged in spatiotemporal order. Each patch is mapped to a visual296

token, yielding spatiotemporal representations Fv ∈ RT̃×K×C, where T̃ = T
PT

and K = H×W
PH×PW

quantify the numbers of temporal297

steps and spatial tokens, respectively. To enhance the effectiveness of masked video modeling and reduce temporal redundancy,298

we apply tube masking with a masking ratio to minimize information leakage while facilitating spatiotemporal representation299

learning. The encoder employs the vanilla ViT-B28 architecture with embedding dimension C = 768, augmented with a joint300

spatiotemporal attention mechanism to effectively capture inter-frame dynamics and intra-frame spatial structures. Following301

the encoder, video-level reconstruction focuses on restoring low-level pixel information throughout the entire video clip,302

thereby facilitating the learning of holistic spatiotemporal representations. The enhanced visible tokens from the encoder are303

concatenated with learnable mask tokens and then fed into a lightweight spatiotemporal decoder, which infers the missing304

pixel-level details with structural and temporal consistency from partially visible inputs. The reconstruction loss is defined as305

the mean squared error (MSE) between the normalized ground-truth pixel values and their reconstructed counterparts, computed306

exclusively within the masked regions. By reconstructing masked portions from visible token representations, SurgVISTA307

is guided to attend to the temporal dynamics within surgical contexts, thereby facilitating the extraction of semantically308

meaningful spatiotemporal features. Furthermore, while the cube embedding strategy enables efficient temporal down-sampling309

and mitigates the computational overhead of video-level pre-training, it inevitably compromises fine-grained spatial details310

essential for comprehensive spatiotemporal interpretation. To address this limitation, image-level knowledge distillation is311

employed to optimize high-level spatial representations by leveraging supervision from a surgery-specific expert model18.312

Specifically, the encoder’s enhanced visible tokens are concatenated with learnable mask tokens and fed into a lightweight313

spatiotemporal decoder to generate enhanced spatial representations, which are subsequently aligned with the frame-level314

spatial features extracted from the expert model. The distillation loss is defined as the Smooth L1 loss between the predicted315

features and the expert-derived spatial representations.316

Data Splitting Strategy317

Data leakage poses a significant challenge in the benchmarking of foundation models33. To build a comprehensive and diverse318

corpus for both development and evaluation, we systematically collected a wide range of publicly available surgical video319

datasets. To avoid any contamination between the pre-training and evaluation phases, we strictly followed the principles below.320

First, no videos used during the pre-training phase were included in the test splits of any downstream datasets. For several321

datasets utilized in both pre-training and evaluation, all test samples were explicitly excluded from the pre-training data to322

prevent data leakage. Second, we conducted in-domain evaluations using two types of datasets: (1) the held-out test splits of323

benchmark datasets partially used in pre-training, and (2) additional datasets involving surgical procedures that are consistent324

with those seen during pre-training, but whose video samples were not included in the pre-training phase. These evaluations325

assessed the model’s ability to generalize within familiar clinical domains while avoiding potential data leakage. Third, to assess326

generalization under distribution shifts, we conducted out-of-domain evaluations using datasets whose surgical procedures327
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were entirely absent from the pre-training corpus. Overall, these precautions ensured that no test split from any downstream328

evaluation contained videos seen during pre-training, allowing both in-domain and out-of-domain generalization to be assessed329

under rigorously controlled conditions.330

Implementation Details331

For pre-training, we initialized SurgVISTA entirely from scratch, employing random initialization for all components. The332

model employed the ViT-B encoder configured with fixed spatiotemporal positional embeddings and without a class token,333

while tokenization relied on a spatiotemporal cube embedding29, 34 sized 2× 16× 16. The decoder designed for video-334

level reconstruction comprised four conventional transformer layers, while the decoder dedicated to image-level knowledge335

distillation employed a two-layer transformer architecture. The total number of parameters was 100.8 M, with the encoder336

accounting for 87.4 M. The pre-training dataset consisted of 3,650 videos, totaling approximately 3.55 million frames, spanning337

diverse surgical procedures across distinct anatomical structures. For each video, we first sampled frames at 1 frame per338

second (fps), and subsequently constructed input video clips by uniformly sampling 16 frames at a fixed interval of 4, starting339

sequentially from each frame. We selected the key hyperparameters following a principled strategy: the patch size and input340

sequence length were determined by combining established designs from video transformers29, 31, 34–36 with the spatiotemporal341

characteristics of surgical videos37, 38. The masking ratio was calibrated for the surgical domain via preliminary ablation342

experiments within our framework and was set to 0.85 to balance performance and efficiency. For each frame, we adopted343

an input resolution of 224×224 pixels, with height H = 224 and width W = 224, yielding K = 196 spatial tokens per frame.344

The model was pre-trained for 200 epochs with a batch size of 512, employing gradient accumulation over four iterations. We345

employed the AdamW optimizer with β1 = 0.9, β2 = 0.95, an initial learning rate of 1.5e-4, and a weight decay of 0.05. These346

hyperparameters were directly adopted from prior work29 without additional tuning, except for the number of epochs, which347

was proportionally adjusted according to the size of the surgical video dataset to ensure sufficient convergence. To balance348

the dual objectives of spatiotemporal modeling and spatial representation refinement, the video-level reconstruction loss was349

assigned a weight of 1.0, while the image-level knowledge distillation loss was assigned a weight of 0.05. The pre-training of350

SurgVISTA was performed on 8 NVIDIA H800 GPUs for 10 days. Following standard practice in self-supervised learning29, 31,351

no downstream validation data were used to guide the pre-training process. The final model checkpoint was selected at the352

end of training, at which point the model had already converged. For fine-tuning, we retained the architectural configurations353

of each pre-trained method to ensure faithful reproduction and fair comparison. For natural-domain methods, the encoder354

was initialized with the corresponding pre-trained parameters, and a single-layer fully connected (FC) head was appended for355

prediction, with all task-specific layers initialized randomly. The primary distinction between image-level and video-level356

methods lay in the embedding mechanism: image-level models employed standard 2D convolutional embeddings, while357

video-level models adopted cube embeddings via 3D convolutions. All training configurations were kept consistent across358

SurgVISTA and natural-domain methods on each dataset, except for the input frame length, which was set to 16 frames for359

video-level methods and 8 frames for image-level ones, to maintain comparable computational overhead. For comparisons with360

surgical-domain methods, SurgVISTA retained its end-to-end framework, consisting of an encoder followed by a single-layer361

FC head. In contrast, other surgical-domain methods were implemented following the conventional two-stage paradigm20,362

where the encoder was first fine-tuned using frame-level supervision, followed by a temporal convolutional module that363

aggregated the extracted spatial features for final prediction. To ensure training consistency and fair comparison, we followed364

the official training configurations provided in the original implementation20. For rigorous downstream evaluation, we adopted365

a strict data partitioning protocol as summarized in Supplementary Table 2. For all in-domain downstream datasets, dedicated366

test sets were explicitly excluded from both the pre-training and fine-tuning phases. For out-of-domain evaluations, the entire367

dataset, including both training and testing splits, was completely disjoint from the pre-training data. This protocol ensured a368

fair assessment of both domain-specific performance and cross-domain generalization.369

SurgWeb Dataset370

SurgWeb is constructed from publicly accessible online platforms that host endoscopic surgical videos for public viewing.371

The dataset spans more than twenty surgical procedures across multiple surgical specialties, including hepatobiliary surgery372

(e.g., cholecystectomy), colorectal surgery (e.g., colectomy), upper gastrointestinal surgery (e.g., gastrectomy), gynecologic373

laparoscopy, and urologic laparoscopy. All videos included in SurgWeb are used solely for non-commercial academic research374

under the publicly offered viewing and access terms of the hosting platforms. To ensure privacy protection, we implement a375

strict de-identification pipeline before incorporating any video into SurgWeb. Only intraoperative endoscopic views are retained.376

Videos containing external camera views, patient faces, audio tracks, embedded textual identifiers, or any other potentially377

identifying content are removed. The screening process combines automated filtering rules with manual review to ensure that378

all remaining clips are fully de-identified. After screening process, the dataset consists of 3,376 videos with 2,349,618 frames,379

and contains exclusively intraoperative surgical video content without any identifiable patient information.380
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Evaluation Benchmark381

To comprehensively assess the performance of SurgVISTA, we curated a video-level evaluation benchmark encompassing382

six distinct surgical procedures across five anatomical structures, including laparoscopic cholecystectomy, laparoscopic383

hysterectomy (gynecologic laparoscopic surgery), laparoscopic liver resection, endoscopic pituitary surgery, ophthalmic surgery,384

and endoscopic submucosal dissection. This benchmark contained 13 datasets, comprising more than 500 long-form videos385

and 600 short-form clips, totaling over 660,000 frames. Detailed statistical information of these downstream datasets was386

provided in Supplementary Table 3. To prevent potential data leakage, we strictly ensured that the test sets from in-domain387

downstream datasets overlapping with the SurgPub were entirely excluded from both the pre-training and fine-tuning phases.388

Furthermore, we conducted experiments across four clinically significant tasks, including surgical workflow recognition,389

surgical action recognition, surgical triplet recognition, and surgical skill assessment. Effective performance on these tasks is390

essential for comprehensive surgical scene understanding, facilitating more precise comprehension of complex and dynamic391

surgical scenarios.392

Surgical workflow recognition serves as a fundamental component of surgical scene understanding, which aims to auto-393

matically assign predefined surgical phases to individual frames within surgical video. In clinical practice, surgical procedures394

are systematically partitioned into well-defined phases based on expert knowledge, with each phase representing a specific395

objective or set of actions performed during the operation. Precise phase recognition is crucial for understanding procedural396

context and tracking intraoperative progress, thereby enabling real-time surgical assistance, procedural monitoring, and intraop-397

erative decision support. To comprehensively evaluate the effectiveness of our approach on surgical workflow recognition, we398

conducted extensive experiments across seven public datasets: Cholec8021, M2CAI16-Workflow21, 22, PmLR5038, AutoLa-399

paro26, CATARACTS39, Cataract-10140, and Cataract-2141, as well as one private dataset, ESD57. These datasets collectively400

covered a wide range of surgical procedures and anatomical structures, enabling a comprehensive assessment of the model’s401

generalizability across diverse clinical scenarios. Following standard practice in surgical workflow recognition21, 22, 37, 42, 43,402

performance was evaluated across multiple granularities using five widely adopted metrics: image-level accuracy, video-level403

accuracy, phase-level precision, phase-level recall, and phase-level Jaccard. These metrics capture performance at three levels404

of granularity: image-level accuracy treats each frame independently to assess global frame-wise correctness; video-level405

accuracy measures average performance across individual videos, reflecting video-wise correctness; and phase-level metrics406

assess category-wise performance across the dataset, reflecting the model’s ability to distinguish and localize surgical phases.407

Surgical action recognition seeks to identify intraoperative actions at the frame or clip level, facilitating detailed analysis of408

surgical activities. In contrast to coarse-grained workflow recognition, it focuses on the temporal and semantic interpretation of409

surgical maneuvers, such as dissecting, retracting, or suturing, which are critical determinants of patient safety and postoperative410

outcomes. In clinical practice, accurate action recognition plays a pivotal role in enhancing intraoperative situational awareness,411

enabling context-specific assistance such as real-time procedural guidance, anticipatory error prevention, and adaptive decision-412

making. By providing fine-grained semantic interpretation of intraoperative activities, this task lays the foundation for improving413

surgical precision, reducing complication rates, and ensuring procedural safety. To evaluate our approach on surgical action414

recognition, we conducted experiments on the SurgicalActions16044 dataset, which encompasses a diverse set of intraoperative415

actions involving various surgical instruments and anatomical targets, thereby enabling a comprehensive assessment of model416

performance across varied surgical activity patterns. For surgical action recognition, performance was evaluated using accuracy,417

which measures overall classification correctness, and mean Average Precision (mAP), which offers a class-aware assessment418

by integrating precision-recall curves across all action categories.419

Surgical triplet recognition focuses on fine-grained activity analysis by modeling detailed interactions among surgical420

instruments, actions (verbs), and anatomical targets. This task involves recognizing individual components and systematically421

modeling their interrelationships to capture intricate instrument-tissue interactions, thereby enhancing real-time surgical422

assistance, procedural monitoring, and informed intraoperative decision support. To assess the effectiveness of our approach on423

surgical triplet recognition, we conducted experiments on one public dataset, CholecT5045, and one private dataset, Prostate21.424

Both datasets contained annotated surgical videos with detailed triplet labels comprising <instrument, action, target>, which425

served as benchmarks for evaluating the model’s ability to understand instrument–tissue interactions. Consistent with prior work426

in surgical triplet recognition45, 46, we reported component average precision and triplet average precision. Component average427

precision evaluates the individual elements of the triplet, including instrument (API), verb (APV), and target (APT), based on428

the area under the precision-recall curve for each class. Triplet average precision measures the model’s ability to recognize429

interactions by considering combinations such as instrument-verb (APIV), instrument-target (APIT), and instrument-verb-target430

(APIVT). The primary metric in this study is APIVT, which captures the accuracy of full triplet recognition.431

Surgical skill assessment aims to evaluate specific actions or activities at the frame or clip level, requiring a comprehensive432

understanding of complex anatomical structures and spatiotemporal relationships. Accurate skill assessment is crucial for433

reducing the risk of injury to critical anatomical structures and promoting procedural standardization, thereby facilitating434

intraoperative monitoring and improving postoperative evaluation. To comprehensively evaluate the effectiveness of our435
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approach in surgical skill assessment, we conducted evaluations on the Cholec80-CVS47 and Endoscapes-CVS48 datasets. Both436

datasets focused on assessing Strasberg’s Critical View of Safety (CVS) criteria, serving as a benchmark for evaluating surgical437

proficiency and promoting procedural safety. For surgical skill assessment, we adopted accuracy and mean Average Precision438

(mAP) as evaluation metrics, where accuracy reflects overall prediction correctness, and mAP provides a class-wise evaluation439

of recognition performance.440

Experimental settings441

State-of-the-art pre-trained methods in the natural domain. To enable a comprehensive and structured comparison, we442

evaluate eight representative natural-domain pre-trained methods, categorized into two groups: image-based pre-training443

and video-based pre-training. All models are built upon the ViT-B architecture28 and are pre-trained on large-scale general-444

purpose datasets, without any additional fine-tuning on task-specific or dataset-specific natural-domain benchmarks. Detailed445

configurations are provided in Supplementary Table 34.446

Image-based Pre-trained Methods. These approaches exclusively focus on learning spatial representations and are447

pre-trained using large-scale static image datasets.448

• ImageNet-1K49 (Supervised28) refers to the pre-trained parameters obtained through fully supervised training on the449

ImageNet-1K dataset, which contains over 1.2 million labeled images across 1,000 object categories.450

• ImageNet-1K49 (DINO8) refers to the pre-trained parameters obtained by applying the DINO framework to the ImageNet-451

1K dataset, which learns semantic feature representations through self-distilled contrastive learning with momentum452

encoders and clustering.453

• ImageNet-1K49 (MAE9) refers to the pre-trained parameters derived by applying the MAE framework to the ImageNet-454

1K dataset, which learns high-quality spatial representations by reconstructing pixel-level information from randomly455

masked image patches.456

Video-based Pre-trained Methods. These methods are trained directly on large-scale video data to learn joint spatiotem-457

poral representations by capturing both dynamic temporal patterns and spatial semantics.458

• Kinetics-40050 (VideoMAE29) refers to the pre-trained parameters obtained by applying the VideoMAE framework to459

the Kinetics-400 dataset, a large-scale human action dataset containing approximately 240,000 video clips across 400460

action classes. VideoMAE leverages a masked autoencoder architecture tailored for video inputs, enabling the model to461

learn robust spatiotemporal representations by reconstructing masked video patches.462

• UnlabeledHybrid30 (VideoMAE29) refers to the pre-trained parameters obtained by applying the VideoMAE framework463

to the UnlabeledHybrid dataset, which aggregates over 1.37 million video clips from Kinetics-71051, Something-464

Something V252, AVA53, WebVid2M54, and other online sources.465

• Something-Something V252 (VideoMAE29) refers to the pre-trained parameters obtained by applying the VideoMAE466

framework to the Something-Something V2 (SSV2) dataset, which contains approximately 169,000 video clips across467

174 action categories with object-centric temporal interactions.468

• Kinetics-71051 (UMT32) refers to the pre-trained parameters obtained by applying the UMT framework to the Kinetics-469

710 dataset, which merges Kinetics-40050, Kinetics-60055, and Kinetics-70056 while removing duplicates. Specifically,470

we adopt parameters from the first training stage of UMT, where masked video modeling is guided by CLIP-based471

supervision57 in a single-modality setting.472

• Kinetics-40050 (MVD31) refers to the pre-trained parameters obtained by applying the MVD framework to the Kinetics-473

400 dataset. MVD employs masked feature modeling combined with a teacher-student distillation framework, utilizing474

both image-level and video-level teacher features to effectively guide the learning of robust and coherent spatiotemporal475

representations.476

State-of-the-art pre-trained methods in the surgical domain. In this study, we select four state-of-the-art self-supervised477

surgical models as surgical foundation models to facilitate a comprehensive and complementary comparison. Detailed478

information is provided in Supplementary Table 35.479

• SelfSupSurg16 explores the application of four advanced image-level SSL methods, namely MoCo v258, SimCLR59,480

DINO8, and SwAV60, for surgical scene comprehension. For comparison, we adopt the DINO-based variant, which481

employs a ResNet-5061 backbone pre-trained on the Cholec8021 dataset containing a limited amount of surgical data.482

The study provides a performance evaluation across six datasets representing two distinct surgical procedures.483
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• EndoViT17 compiles a large-scale publicly available image-level endoscopic dataset, Endo700k, sourced from nine484

public datasets and consisting of over 700,000 images. It adopts the MAE9 framework with a ViT-B backbone for485

domain-specific pre-training on the Endo700k dataset. The study evaluates model performance on three downstream486

datasets, all corresponding to the same surgical procedure.487

• EndoSSL18 constructs an extensive private dataset consisting of 7,877 laparoscopic procedure videos, encompassing488

23.3 million frames and spanning over five distinct surgical procedures. It employs the MSN62 framework with a ViT-L489

backbone pre-trained on this private dataset, resulting in a strong image-level surgical foundation model. The study490

assesses model performance exclusively on the Cholec80 dataset, focusing on surgical workflow recognition task.491

• GSViT19 develops an efficient model that employs EfficientNet63 as the backbone and utilizes next-frame prediction492

as the pretext task for pre-training, providing weak temporal modeling capabilities. To facilitate this, it open-sources a493

large-scale surgical video dataset comprising over 680 hours of surgical footage sourced from websites, totaling more494

than 2.5 million frames and spanning 28 distinct surgical procedures. The evaluation of model performance is conducted495

solely on the Cholec80 dataset, with a specific focus on surgical workflow recognition task.496

Pre-training Datasets. In this study, we curate eight publicly available video-level surgical datasets, referred to as SurgPub,497

along with various surgical videos sourced from online platforms, designated as SurgWeb. Detailed information is provided in498

Supplementary Table 2.499

• Cholec8021 is a widely used laparoscopic surgery dataset focusing on the cholecystectomy procedure, comprising 80500

videos in total. The dataset is officially divided into training and test sets, each consisting of 40 videos. For pre-training,501

we exclusively utilize the 40 videos from the training set, amounting to a total of 86,344 frames.502

• MI2CAI16-Workflow21, 22 is a dataset curated for surgical workflow recognition, containing 41 laparoscopic videos of503

cholecystectomy procedures. The dataset is split into 27 videos for training and 14 videos for testing. We incorporate the504

27 videos from the training split into the pre-training dataset, contributing a total of 67,578 frames.505

• HeiChole23 is an open benchmark for laparoscopic cholecystectomy, focusing on surgical workflow and skill analysis.506

The dataset comprises 24 videos allocated for training, while the remaining 9 videos are designated for testing. For507

pre-training, we utilize the publicly available 24 videos from the training set, providing 55,139 frames in total.508

• PitVis24 is a dataset curated for step and instrument recognition in endoscopic pituitary surgery videos. It contains 25509

publicly accessible videos comprising 120,018 frames. The entire dataset is incorporated into the pre-training phase to510

enhance the procedural diversity of the pre-training data.511

• PSI-AVA25 is a dataset focused on robot-assisted radical prostatectomy procedures, designed to enhance holistic surgical512

scene understanding. It encompasses approximately 20.45 hours of surgical footage, comprising 8 videos with a total of513

72,318 frames. The entire dataset is incorporated into the pre-training process.514

• AutoLaparo26 is a widely used laparoscopic surgery dataset focusing on the hysterectomy procedure. It contains 21515

videos, with 10 videos allocated for training and the remaining 11 designated for testing. We incorporate the 10 videos516

from the training set into the pre-training dataset, contributing a total of 40,211 frames.517

• BernBypass7027 consists of 70 laparoscopic Roux-en-Y gastric bypass videos, encompassing 303,764 frames. This518

dataset is fully incorporated into the pre-training stage to increase the procedural and anatomical diversity.519

• StrasBypass7027 is a dataset dedicated to laparoscopic Roux-en-Y gastric bypass procedures, containing 70 surgical520

videos and a total of 457,787 frames. The entire dataset, comprising all available videos and frames, is used for521

pre-training to expand the diversity of surgical contexts.522

• SurgWeb consists of 3,376 videos with 2,349,618 frames, covering more than 20 distinct surgical procedures and523

related anatomical structures. The entire dataset is incorporated into the pre-training phase to enhance data diversity and524

strengthen the model’s spatiotemporal modeling capability.525

Benchmark Datasets. In this study, we define datasets involving surgical procedures included in the pre-training data as526

in-domain, while those comprising previously unseen surgical procedures are referred to as out-of-domain. All evaluation527

datasets are sampled at 1 frame per second (1 FPS). Detailed information is provided in Supplementary Table 3.528

The in-domain datasets include the following:529
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• Cholec8021 is a benchmark dataset designed for surgical workflow recognition in laparoscopic cholecystectomy. Each530

frame is annotated with one of seven surgical workflow categories. Following the official data split protocol, our531

pre-training stage includes videos from both the Cholec80 and M2CAI16-Workflow training sets. However, we identify a532

possible data leakage issue due to five overlapping videos between M2CAI16-Workflow and the Cholec80 test set. To533

mitigate any risk of data leakage and ensure fair evaluation, we conservatively excluded five potentially overlapping534

videos (Videos 73, 77, 78, 79, and 80) from the Cholec80 test set, as these may have been included in the M2CAI16-535

Workflow training set. After excluding the five overlapping videos, we use 40 videos containing 86,344 frames for536

training, and the remaining 35 videos with 88,494 frames for testing.537

• Cholec80-CVS47 is a dataset for surgical skill assessment, providing video-level annotations of Strasberg’s Critical View538

of Safety (CVS) criteria for Cholec80. Each clip is labeled with three scores corresponding to the CVS criteria, with each539

score ranging from 0 to 2, resulting in a total score ranging from 0 to 6. The dataset is partitioned into training, validation540

and testing sets, while manually excluding samples labeled with a score of 6 that only appear in the test set. The training541

set consists of 263 clips totaling 17,201 frames, the validation set contains 43 clips totaling 3,327 frames, and the test set542

comprises 137 clips totaling 10,469 frames.543

• CholecT5045 is a dataset designed for surgical triplet recognition in laparoscopic cholecystectomy. The dataset comprises544

6 instruments, 10 verbs, and 15 targets, yielding a total of 100 triplet classes in the format of ⟨instrument,verb, target⟩.545

Following the common partition45, 64, 45 videos containing 90,489 frames are designated for training, while the remaining546

5 videos with 10,374 frames are reserved for testing.547

• M2CAI16-Workflow21, 22 is a benchmark dataset used for surgical workflow recognition in laparoscopic cholecystectomy.548

Each frame is labeled with one of eight distinct surgical workflow categories. Consistent with the standard partition, 27549

videos containing 67,578 frames are allocated for training, and the remaining 14 videos comprising 26,961 frames are set550

aside for testing.551

• Endoscapes-CVS48 is a dataset designed for surgical skill assessment in laparoscopic cholecystectomy. It comprises 201552

clips, with each frame annotated using three averaged expert-assigned scores corresponding to CVS criteria. Each score553

is thresholded into a binary value (0 or 1), resulting in a total discrete score ranging from 0 to 3. A total of 120 videos,554

comprising 36,694 frames, are allocated for training, 41 videos containing 12,372 frames are used for validation, and the555

remaining 40 videos, with 9,747 frames, are designated for testing.556

• PmLR5038 is a dataset for surgical workflow recognition in laparoscopic liver resection, containing 50 videos with557

totally 23,037 frames. Each frame is annotated with one of five distinct surgical workflow categories. Following the558

official partition, 35 videos totaling 17,378 frames are used for training, 5 videos with 2,309 frames are designated for559

validation, and 10 videos with 5,350 frames are reserved for testing.560

• AutoLaparo26 is a dataset for image-guided surgical automation in laparoscopic hysterectomy. It contains 21 videos561

of hysterectomy procedures, comprising 83,243 frames. Each frame is annotated with one of seven distinct surgical562

workflow categories. Following the official partition, 10 videos totaling 40,211 frames are used for training, 4 videos563

with 14,972 frames are designated for validation, and 7 videos with 28,060 frames are reserved for testing.564

• SurgicalActions16044 is a dataset containing 160 short-form clips, each depicting typical surgical actions in gynecologic565

laparoscopy. It consists of 16 distinct actions, with each action represented by exactly 10 examples. A total of 112 videos,566

comprising 13,238 frames, are allocated for training, while 48 videos with 5,783 frames are designated for testing.567

• Prostate21 is a dataset consisting of 12 publicly available videos obtained from25, 65 and 9 privately collected recordings,568

all capturing radical prostatectomy procedures. Based on manual annotations, the dataset includes 7 instruments, 10569

verbs, and 10 targets, resulting in 89 unique triplet classes structured as ⟨instrument,verb, target⟩. To prevent potential570

data leakage, all videos originating from the PSI-AVA dataset25 are allocated exclusively to the training set. In total, the571

training set consists of 14 videos with 38,730 frames, the validation set includes 3 videos with 9,571 frames, and the test572

set comprises 4 videos with 12,228 frames.573

The out-of-domain datasets include the following:574

• CATARACTS39 is a dataset designed for surgical workflow recognition in cataract surgery, consisting of 50 videos and575

31,955 frames. In this dataset, the cataract surgery is divided into 19 phases and each frame is annotated with a phase576

label. Following the official partition, 25 videos totaling 16,507 frames are allocated for training, while 5 videos and 20577

videos with 15,448 frames are designated for validation and testing.578
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• Cataract-10140 is a dataset designed for surgical workflow recognition in cataract surgery, comprising 101 untrimmed579

videos, of which 100 are employed for downstream task. Each frame is assigned to one of ten distinct surgical phases.580

The dataset is partitioned into 50 videos with 25,288 frames for training, 10 videos with 4,148 frames for validation, and581

40 videos with 18,215 frames for testing.582

• Cataract-2141 is a dataset designed for surgical workflow recognition in cataract surgery. It consists of 21 video583

recordings, with the surgical procedure divided into 11 distinct phases, each frame annotated with the corresponding584

phase. The dataset includes 18 videos with 7,716 frames for training and 3 videos with 937 frames for testing.585

• ESD57 is a private dataset designed for surgical workflow recognition in endoscopic submucosal dissection (ESD)586

procedures, containing 57 video recordings spanning the stomach and lower digestive tract. Each frame is labeled with587

one of eight distinct workflow phases: Lesion Detection, Lesion Marking, Submucosal Injection, Mucosal Incision,588

Submucosal Dissection, Wound Management, Wound Suturing, and Others. A total of 39 videos with 121,225 frames are589

used for training, 6 videos totaling 24,187 frames for validation, and the remaining 12 videos totaling 38,934 frames are590

allocated for testing.591

Data Availability592

Publicly available datasets used to construct the pre-training corpus and evaluation benchmarks are summarized in Supplemen-593

tary Table 37. The remaining clinical data cannot be shared publicly due to institutional and patient privacy restrictions.594

Code Availability595

The implementations of SurgVISTA framework will be released in GitHub: https://github.com/isyangshu/SurgVISTA. The596

pre-trained natural-domain parameters used in this study are listed in Supplementary Table 34, while the pre-trained surgical-597

domain parameters are listed in Supplementary Table 35. The other public codes used in this study are listed in Supplementary598

Table 36.599
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Figure 1. Overview of the study. (a) Pre-training Dataset: Illustration of the primary anatomical structures and their
associated surgical procedures, complemented by video-level statistics and detailed frame-level distribution analysis. (b)
SurgVISTA Framework: An asymmetric encoder-decoder architecture featuring a unified encoder for comprehensive
spatiotemporal modeling, and two decoders: one dedicated to video-level reconstruction for capturing temporal dynamics and
structural consistency, and another for image-level knowledge distillation guided by an expert model to enhance spatial
representations. (c) Downstream Evaluation: Comprehensive visualization of the four downstream tasks along with 13
evaluated datasets, accompanied by comparative performance analyses of models pre-trained on natural-domain and
surgical-domain data. Created with BioRender.com under an academic license.
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g) Cataract-101:  10 Phases

d) AutoLaparo: 7 Phases

h) Cataract-21:  11 Phases

ImageNet1k-DINO ImageNet1k-SupervisedImageNet1k-MAE K400-VideoMAE Hybrid1M-VideoMAE SSv2-VideoMAE K710-UMT K400-MVD SurgVISTA

f) CATARACTS:  19 Phases

e) ESD57: 8 Phases

a) Cholec80: 7 Phases

b) M2CAI16-Workflow: 8 Phases

c) PmLR50: 5 Phases

Figure 2. Experimental results of various natural-domain pre-trained methods and SurgVISTA on surgical workflow
recognition datasets. Subfigures (a)-(d) correspond to in-domain datasets, while (e)-(h) represent out-of-domain datasets. To
provide a comprehensive understanding of the model’s generalization capacity, we quantify the proportion of pre-training data
associated with relevant anatomical structures and surgical procedures. These proportions are visualized using donut charts,
with anatomical overlap depicted in red and procedural overlap shown in blue, effectively illustrating the degree of alignment
between the pre-training data and downstream datasets. Evaluation metrics include image-level accuracy, video-level accuracy
and phase-level Jaccard, providing a comprehensive assessment of model performance across multiple granularities. Statistical
significance (P-value) is reported whenever SurgVISTA demonstrates superior performance compared to other methods.
Detailed results are presented in Supplementary Tables 4, 5, 6, 7, 8, 9, 10 and 11. Created with BioRender.com under an
academic license.
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Figure 3. Experimental results of various natural-domain pre-trained methods and SurgVISTA on surgical tasks beyond phase
recognition. Subfigure (a) presents the results for the surgical action recognition task, with evaluation metrics reported as
accuracy and mAP. Subfigures (b)-(c) illustrate the surgical triplet recognition task, with performance reported in terms of
triplet mAP and 2-tuple mAP. Subfigures (d)-(e) display the results for the surgical skill assessment task, evaluated in terms of
accuracy and mAP. Statistical significance (P-value) is reported whenever SurgVISTA demonstrates superior performance
compared to other methods. Detailed results are presented in Supplementary Tables 12, 13, and 14. Created with
BioRender.com under an academic license.
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Figure 4. Experimental results comparing SurgVISTA and various surgical-domain pre-trained methods on surgical phase
recognition datasets. Subfigures (a)-(c) correspond to in-domain datasets, while (d)-(f) represent out-of-domain datasets.
Evaluation metrics include image-level accuracy, video-level accuracy, phase-level precision, phase-level recall and phase-level
Jaccard, providing a comprehensive assessment across multiple granularities. Statistical significance (P-value) is reported
whenever SurgVISTA demonstrates superior performance compared to competing methods. Detailed results are presented in
Supplementary Tables 15, 16, 17, 18, 19 and 20. Created with BioRender.com under an academic license.
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Figure 5. Experimental overview of how varying pre-training data scales affect the performance and generalization. Subfigure
(a) illustrates the distribution of surgical procedures across progressively constructed sub-datasets. Subfigures (b)-(n) present
performance variations across 13 surgical datasets under different data scales, along with data volumes and proportional
distribution. Phase-level Jaccard and image-level accuracy are visualized using dual-axis bar plots: blue bars (left y-axis)
denote phase-level Jaccard, while purple bars (right y-axis) represent image-level accuracy. Detailed results are presented in
Supplementary Tables 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 and 33. Created with BioRender.com under an academic
license.

21/22



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

a) b)

Cholec80AutoLaparo

Setting A Setting B Setting C Setting D

w
ith

 K
D

w
/o

 K
D

w
ith

 K
D

w
/o

 K
D

Setting A Setting B Setting C Setting D

w
ith

 K
D

w
/o

 K
D

w
ith

 K
D

w
/o

 K
D

Laparoscopic Hysterectomy

O
rig

in
al

Fr
am

e
M

as
ke

d
Fr

am
e

R
ec

on
st

ru
ct

ed
w

/o
 K

D
R

ec
on

st
ru

ct
ed

w
ith

 K
D

M
S

E
 L

os
s

w
/o

 K
D

M
S

E
 L

os
s

w
ith

 K
D

Laparoscopic Cholecystectomy

O
rig

in
al

Fr
am

e
M

as
ke

d
Fr

am
e

R
ec

on
st

ru
ct

ed
w

/o
 K

D
R

ec
on

st
ru

ct
ed

w
ith

 K
D

M
S

E
 L

os
s

w
/o

 K
D

M
S

E
 L

os
s

w
ith

 K
D

c) d)
...

...

...

...

...

...

...

...

...

...

...

...

Figure 6. The effectiveness of knowledge distillation (KD). Subfigures (a)-(b) present the performance difference between
SurgVISTA with and without knowledge distillation. Significance testing was conducted using the Wilcoxon signed-rank
one-sided test, demonstrating that expert knowledge distillation consistently improves performance across different pre-trained
sub-datasets and downstream datasets. Subfigures (c)-(d) qualitatively illustrate the reconstruction performance based on
Setting D by showing the original frame, masked input, reconstructions with and without knowledge distillation, and
corresponding MSE maps. The results demonstrate that knowledge distillation improves reconstruction fidelity by better
preserving fine-grained anatomical details, as supported by reduced reconstruction error in related regions. Created with
BioRender.com under an academic license.
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