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ABSTRACT

Computer-Assisted Intervention has the potential to revolutionize modern surgery, with surgical scene understanding serving
as a critical component in supporting decision-making and improving procedural efficacy. While existing Al-driven approaches
alleviate annotation burdens via self-supervised spatial representation learning, their lack of explicit temporal modeling
during pre-training fundamentally restricts the capture of dynamic surgical contexts, resulting in incomplete spatiotemporal
understanding. In this work, we introduce the first video-level surgical pre-training framework that enables joint spatiotemporal
representation learning from large-scale surgical video data. To achieve this, we constructed a large-scale surgical video
dataset comprising 3,650 videos and 3.55 million frames, spanning more than 20 surgical procedures and over 10 anatomical
structures. Building upon this dataset, we propose SurgVISTA (Surgical Video-level Spatial-Temporal Architecture), a
reconstruction-based pre-training method that jointly captures intricate spatial structures and temporal dynamics. Additionally,
SurgVISTA incorporates image-level knowledge distillation guided by a surgery-specific expert model to enhance the learning
of fine-grained anatomical and semantic features. To validate its effectiveness, we established a comprehensive benchmark
comprising 13 video-level datasets spanning six surgical procedures across four tasks. Extensive experiments demonstrate
that SurgVISTA consistently outperforms both natural- and surgical-domain pre-trained models, demonstrating strong potential
to advance intelligent surgical systems in clinically meaningful scenarios.
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1 Introduction

Computer-Assisted Intervention (CAI) has recently made significant strides in integrating sophisticated artificial intelligence (AI)
technologies into clinical workflows to optimize preoperative planning, intraoperative execution, and postoperative assessment.



A fundamental component of CAl is surgical scene understanding, which involves the comprehensive analysis and interpretation
of intricate surgical activities and tissue interactions to support informed decision-making, improve procedural effectiveness, and
ensure operational safety!=. This interdisciplinary endeavor aims to provide critical insights through continuous monitoring of
intraoperative workflows and procedural execution, thereby facilitating surgical process optimization and promoting improved
patient outcomes. However, developing Al-driven approaches for comprehensive surgical scene understanding encounters a
significant challenge: the heavy reliance on expert-annotated surgical datasets. The SNOMED-CT International Edition (April
2025) catalogues thousands of procedures that differ markedly in prevalence and technical complexity. Collecting adequately
annotated video data for this long-tail distribution is prohibitively expensive and labour-intensive, resulting in surgical datasets
that cover only a limited and incomplete spectrum of procedures. Consequently, the restricted procedural scope of existing
surgical datasets hampers model generalizability, highlighting the inadequacy of task-specific and narrow Al in addressing
the heterogeneous demands of surgical practice*, and emphasizing the need for procedure-agnostic methodologies capable of
generalizing across diverse clinical contexts. In fact, the international Surgical Data Science Initiative™-¢ has recently identified
the methodological addressing of surgical data sparsity as a key next step in the field’.

Inspired by the rapid advancements in self-supervised learning (SSL) paradigm within the natural domain®'? and its

demonstrated effectiveness across various medical disciplines!'~!3, leveraging large-scale surgical data for SSL-based pre-
training has emerged as a promising direction to extract robust and transferable representations explicitly tailored to surgical
contexts. Despite significant achievements of SSL in various medical fields such as radiology'! !> and pathology'?> 13, its
application within the surgical field remains nascent and underexplored. Recent works'®~!? have begun to specifically explore
the SSL paradigm in the surgical domain, demonstrating initial successes in developing surgical foundation models and
substantially improving surgical feature representation learning for downstream tasks. However, these methods predominantly
focus on image-level pre-training for effective spatial representation learning, while neglecting the learning of temporal
dynamics essential for comprehensive spatiotemporal representations. Consequently, they follow a mainstream two-stage
paradigm®’, where temporal dependencies are modeled during fine-tuning using external temporal modules applied to static
and pre-extracted spatial features, resulting in a decoupled modeling process that hinders joint spatiotemporal representation
learning. In practice, this decoupling is suboptimal for surgical video analysis, where seamless integration of spatial and
temporal information is critical to address inherent complexities such as visual ambiguities from occlusions, motion blur,
and procedure-specific variability*. Furthermore, a significant discrepancy exists between the upstream pre-training and
downstream fine-tuning, as these methods adopt image-level pre-training combined with a two-stage fine-tuning framework.
This fragmented pipeline hinders the unified learning of spatial and temporal representations: while spatial features benefit from
a well pre-trained backbone, temporal modeling starts from a randomly initialized module. As a result, image-level pre-trained
methods struggle to leverage the rich temporal dynamics embedded in large-scale surgical video data, instead depending on
limited downstream annotations to learn temporal dependencies. This piecewise optimization potentially compromises the
robustness of spatiotemporal modeling, hindering generalizability across diverse downstream applications and resulting in
suboptimal performance. These limitations highlight the urgent need for new approaches that holistically integrate spatial and
temporal learning during pre-training to enhance the comprehensive surgical scene understanding.

This study advocates for explicit and unified spatiotemporal representation learning during the pre-training phase to fully
exploit the potential of large-scale surgical video data, thereby initiating a paradigm shift from static image-based modeling
to dynamic video-level representation learning. Such integration effectively facilitates the extraction of robust, transferable,
and discriminative spatiotemporal feature representations, thereby advancing comprehensive surgical scene understanding.
To support this objective, we constructed a publicly available, large-scale surgical video dataset comprising two essential
components: SurgPub and SurgWeb, which collectively span varied anatomical structures and surgical procedures, providing the
variability and complexity necessary for robust spatiotemporal representation learning. In Fig. 1a, we present an overview of the
key anatomical structures and associated surgical procedures, accompanied by video-level statistical analyses and frame-level
distribution analyses. SurgPub is constructed from eight publicly available surgical video datasets>!~%7, encompassing 274
videos with a total of 1.20 million frames. Complementing SurgPub, SurgWeb comprises 3,376 surgical recordings sourced
from online platforms, totaling 2.35 million frames, spanning diverse surgical procedures and anatomical regions encountered
in extensive clinical scenarios. The resulting dataset encompasses over 20 surgical procedures across more than 10 anatomical
structures, thereby promoting the learning of robust and generalizable spatiotemporal representations. Furthermore, we envision
this curated resource as a catalyst for advancing more robust and generalized surgery Al models, while empowering researchers
to tackle complex challenges in surgical scene understanding.

To transcend static image-based pre-training paradigms and establish video-level representation learning as the foundation
for surgical Al, we pioneer SurgVISTA (Surgical Video-level Spatial-Temporal Architecture), the first surgical video
foundation model explicitly designed to capture robust and discriminative spatiotemporal patterns across diverse surgical
scenarios. Unlike conventional methods restricted to static frame-level representations, SurgVISTA integrates spatial and
temporal modeling into a unified pre-training framework, simultaneously encoding fine-grained anatomical details and temporal



dynamics. As depicted in Fig. 1b, SurgVISTA employs an asymmetric encoder-decoder architecture, comprising a unified
encoder for joint spatiotemporal dependencies modeling and two dedicated decoders. The reconstruction decoder learns to
restore masked video regions, thereby compelling the model to extract spatial structures and temporal dynamics intrinsic
to surgical activities. Concurrently, the refinement decoder leverages knowledge distillation from a powerful image-level
expert model'®, compensating for detail loss from temporal abstraction while simultaneously reinforcing the discriminative
capacity of spatial features. Through joint spatiotemporal modeling on large-scale surgical video data, SurgVISTA acquires
highly generalizable representations that effectively encapsulate the complexity and variability of surgical scenarios, enabling
seamless adaptation to downstream tasks without additional temporal components, thus significantly bridging the gap between
pre-training and fine-tuning phases. Overall, SurgVISTA establishes a scalable and pretraining-driven foundation for surgical
scene understanding, significantly enhancing robust spatiotemporal modeling capabilities for complex intraoperative scenarios.
To verify the effectiveness of SurgVISTA, we conducted a comprehensive video-level evaluation across 13 datasets, covering
six surgical procedures and four distinct downstream tasks. As illustrated in Fig. 1c, we provide a visual abstraction of diverse
downstream tasks alongside the evaluated datasets, accompanied by comparative performance analyses of models pre-trained
on natural-domain and surgical-domain data. Specifically, we began by comparing image-level and video-level pre-trained
models within the natural domain, highlighting the superior performance of SurgVISTA and underscoring the necessity of
domain-aligned video-level pre-training. Furthermore, we benchmarked SurgVISTA against the existing surgical foundation
models, with a particular focus on surgical workflow recognition, demonstrating the advantages of joint spatiotemporal modeling
empowered by large-scale surgical video pre-training in enhancing downstream performance. Despite the absence of task-
specific data during the pre-training phase, SurgVISTA demonstrates exceptional generalization capabilities on anatomically and
procedurally divergent surgical datasets, reinforcing its robustness and adaptability to a wide spectrum of surgical scenarios.

2 Results

SurgVISTA outperforms natural-domain image- and video-level pre-trained methods on surgical tasks

In this section, we first evaluate the effectiveness of SurgVISTA on surgical workflow recognition, comparing it against both
image-level®%2® and video-level”®3? pre-trained methods within the natural domain. Experimental results are illustrated
in Fig. 2, accompanied by 95% confidence intervals to quantify uncertainty and P-values to assess statistical significance.
Specifically, Fig. 2a-d present results on in-domain datasets with related procedures in the pre-training data, while Fig. 2e-h
illustrate results on out-of-domain datasets, involving surgical procedures excluded from the pre-training data. To provide a
comprehensive understanding of the model’s generalization capacity, we quantify the proportion of pre-training data associated
with related surgical procedures and anatomical structures, thereby highlighting the extent of overlap between the pre-training
data and downstream datasets. As illustrated in Fig. 2, natural-domain methods employing video-level pre-training consistently
outperformed image-level counterparts across all evaluated datasets. On Cholec80, the average gains for video-level models
over image-level ones reached 1.5%, 1.5%, and 2.8% in image-level accuracy, video-level accuracy, and phase-level Jaccard,
respectively. This performance advantage became even more substantial on the out-of-domain Cataract-101 dataset, with
average enhancements reaching 10.8% in image-level accuracy, 10.7% in video-level accuracy, and 19.6% in phase-level Jaccard,
highlighting the pronounced benefits of video-level pre-training for surgical scene understanding. Furthermore, SurgVISTA
consistently outperformed natural-domain pre-trained video-level methods across both in-domain and out-of-domain datasets.
On representative in-domain benchmarks including Cholec80, M2CAI16-Workflow, and PmLRS50, SurgVISTA achieved notable
gains in image-level accuracy, video-level accuracy, and phase-level Jaccard over natural-domain methods. Despite minimal
procedural overlap in the pre-training data (e.g., 1.13% for hysterectomy), SurgVISTA outperformed the best prior model’
by 4.7%, 4.6%, and 7.3%, highlighting its robust generalization to underrepresented procedures. These in-domain results
demonstrate SurgVISTA’s capacity to acquire domain-relevant knowledge during pre-training, enabling improved downstream
performance. In out-of-domain evaluations on ESD57, SurgVISTA surpassed VideoMAE? (pre-trained on UnlabeledHybrid")
by 2.8%, 2.7%, and 5.4% on the three metrics, respectively. When evaluated on CATARACTS, Cataract-101, and Cataract-21
datasets, which are substantially different from the surgical procedures used during pre-training, SurgVISTA consistently
outperformed all competing methods, reinforcing its generalizability across varied procedures and anatomical structures. We
further evaluate SurgVISTA on additional critical surgical tasks beyond workflow recognition, providing a comprehensive
assessment of its capacity for surgical scene understanding. As illustrated in Fig. 3, SurgVISTA consistently achieved superior
performance compared to natural-domain pre-trained methods across multiple surgical tasks. For surgical action recognition on
Surgical Actions160, it surpassed UMT>? by 1.8% in accuracy and 4.6% in mAP. For surgical triplet recognition, it outperformed
MVD?! on CholecT50 by 5.8% (triplet mAP) and 5.9% (2-tuple mAP), and exceeded DINO® on Prostate21 by 8.0% and 5.9%,
suggesting effective modeling of instrument—target interactions. For surgical skill assessment, SurgVISTA achieved relative
improvements of 8.3% in accuracy and 5.4% in mAP over MVD?! on Cholec80-CVS, and surpassed UMT?>? with relative gains
of 0.1% in accuracy and 1.9% in mAP on Endoscapes-CVS. These results highlight its capacity to capture intricate anatomical
structures and motion patterns critical for evaluating surgical expertise.



Overall, these tasks constitute core components of comprehensive surgical scene understanding. Extensive evaluations
across 13 diverse datasets demonstrate that SurgVISTA consistently surpasses natural-domain pre-trained methods across a
wide range of tasks, surgical procedures, and anatomical structures.

SurgVISTA outperforms existing surgical-domain pre-trained methods

To further investigate the effectiveness of SurgVISTA in surgical scene understanding, we conducted a comprehensive
comparison with existing surgical-domain pre-trained methods. Given that current surgical-domain pre-trained methods !¢~
primarily emphasize the surgical workflow recognition task, we performed extensive evaluations on six surgical workflow
recognition datasets encompassing diverse procedures and anatomical structures. Experimental results with 95% confidence
intervals are presented in Fig. 4, providing a comprehensive comparison of model performance across evaluated datasets.
Specifically, Fig. 4a-c represent results on in-domain datasets, while Fig. 4d-e illustrate the results on out-of-domain datasets.
Overall, SurgVISTA significantly outperformed all comparative methods across all evaluation metrics and datasets. On
in-domain datasets, SurgVISTA exhibited substantial improvements over the best-performing method EndoSSL'®. Notably,
EndoSSL is an image-level method pre-trained on 23.3 million private laparoscopic frames using the ViT-L architecture?®.
Specifically, on the Cholec80 dataset, SurgVISTA achieved high performance, with image-level accuracy of 91.5%, video-level
accuracy of 91.5%, phase-level precision of 87.3%, phase-level recall of 87.7%, and phase-level Jaccard of 78.1%, significantly
outperforming other methods. On the M2CAI16-Workflow dataset, compared to EndoSSL'®, SurgVISTA attained modest
gains of 1.1% and 1.7% in image-level and video-level accuracies, while achieving significantly higher performance in
phase-level metrics, with improvements of 11.3% in precision, 9.1% in recall, and 7.5% in Jaccard. On the AutoLaparo dataset,
SurgVISTA exhibited remarkable improvements across multiple granularities compared to EndoSSL'®, where it achieved an
increase of 2.2% in image-level accuracy, 2.2% in video-level accuracy, 11.4% in phase-level precision, 4.8% in phase-level
recall, and 5.1% in phase-level Jaccard. In out-of-domain evaluations involving surgical procedures not encountered during
pre-training, Surg VISTA consistently achieved superior performance. For the CATARACTS dataset, containing numerous
workflow categories and complex phase transitions, SurgVISTA surpassed all competing methods, and achieved improvements
of 14.8%, 11.1% and 14.3% in phase-level metrics compared to SelfSupSurg!®. Similarly, for the Cataract-101 and Cataract-21
datasets, SurgVISTA consistently surpassed existing models.

SurgVISTA benefits from large-scale and diverse surgical pre-training data

Data scaling laws describe how model performance varies as the amount of pre-training data increases, serving as a fundamental
principle in developing robust foundation models. Extensive natural-domain studies have demonstrated that scaling pre-training
data significantly enhances model generalization, robustness, and overall performance across various tasks. However, the
investigation of data scaling laws within the surgical domain, particularly for video-level pre-training, remains relatively
underexplored. To elucidate the relationship between data scale and performance within the surgical domain, we systematically
examined data scaling laws by pre-training SurgVISTA on a series of sub-datasets of varying sizes. As depicted in Fig. 5a,
we constructed five progressively expanding sub-datasets, denoted as Settings A through E, where each successive setting
incorporated all data from the preceding settings, culminated in Setting E representing the full dataset. Sub-datasets from
Settings A to D were exclusively sourced from SurgPub, with each subsequent setting incorporating additional public datasets
to examine the impact of diverse surgical procedures on model performance and generalization capabilities. The detailed
composition and distribution are illustrated in Supplementary Table 2. To assess model performance and generalization
capabilities, extensive experiments were conducted across nine diverse video-level surgical datasets, spanning various surgical
procedures and anatomical structures. The experimental results are shown in Fig. Sb-n, where line charts indicate the
absolute data quantities of procedure-specific and full pre-training data, while the accompanying donut charts illustrate
the corresponding proportions. Overall, as the scale of pre-training data progressively increases, all downstream datasets
demonstrate a consistent and robust trend of performance enhancement. For Cholec80, M2CAI16-Workflow, CholecT50,
Cholec80-CVS and Endoscapes-CVS which focus on laparoscopic cholecystectomy procedures, we observed an overall trend of
performance improvement from Setting A to Setting C, with the proportion of procedure-specific data gradually decreasing from
100% to 47.3%, indicating the model’s ability to effectively leverage relevant surgical content. Even in Settings D and E, where
the proportion of procedure-specific data decreased to 17.4% and 15.1% respectively, consistent performance improvements
were observed, highlighting the model’s robust generalization across low-overlap surgical scenarios. For PmLR50, which has
0% procedural overlap with the pre-training data from Settings A to D, performance continued to improve, achieving gains of
3.4% in image-level accuracy and 10.1% in phase-level Jaccard. In Setting E, despite the procedure-specific data accounting for
only 1.9% of the total, the model achieved further improvements of 1.3% in image-level accuracy and 7.1% in phase-level
Jaccard, demonstrating the effectiveness of large-scale surgical pre-training in enhancing representation transferability. For
gynecologic laparoscopic surgery datasets, including AutoLaparo and Surgical Actions160, we observed a slight performance
decline from Settings A to B, followed by a substantial improvement in Setting C, where the amount of pre-training data
increases and procedure-relevant surgical videos were introduced. Specifically, from Setting A to Setting C, AutoLaparo



demonstrated gains of 1.3% in image-level accuracy and 3.9% in phase-level Jaccard, while SurgicalActions160 showed
improvements of 8.7% in accuracy and 8.2% in mAP. In subsequent settings, the continued inclusion of unrelated surgical
procedures further enhanced performance, where AutoLaparo achieved an additional improvement of 4.5% in image-level
accuracy and 3.2% in phase-level Jaccard, while Surgical Actions160 attained a further 18.7% and 9.4% increase in accuracy
and mAP, respectively. For out-of-domain cataract surgery datasets, including CATARACTS, Cataract-21, and Cataract-101,
we still observed significant performance improvements, demonstrating the strong generalization capability of large-scale
surgical pre-training in leveraging diverse procedural contexts to learn robust and transferable spatiotemporal representations.
For the privately collected benchmarks Prostate21 and ESD57, we similarly observed substantial performance improvements as
the scale and diversity of the pre-training corpus increased. Although these datasets originate from distinct clinical centers
and were not part of any public surgical video repository, the gains achieved across the scaling settings demonstrate that
SurgVISTA effectively transfers to previously unseen intraoperative environments and institution-specific visual characteristics.
Comprehensive analyses demonstrate that SurgVISTA exhibits substantial performance improvements as the scale of pre-
training data expands, even when incorporating irrelevant surgical procedures, highlighting its robustness and generalization
capacity. These performance improvements are particularly pronounced for datasets involving complex surgical procedures
with numerous workflow categories and intricate phase transitions. The systematic investigation of data scaling laws in this
study offers valuable insights into the relationship between data volume and model effectiveness, providing guidance for future
research and the development of more advanced and generalizable models for surgical scene understanding.

Ablation studies confirm the necessity of knowledge distillation

Surgical scene understanding necessitates advanced spatiotemporal modeling to effectively capture the complex and dynamic
interactions between anatomical structures and surgical instruments, wherein effective spatial modeling is essential for fine-
grained intra-frame understanding and for enriching the overall spatiotemporal feature representation. To further improve
spatial feature representations within the integrated spatiotemporal learning framework, SurgVISTA incorporates knowledge
distillation, leveraging the superior spatial feature extraction capabilities of image-level foundation model. To assess the
effectiveness of knowledge distillation, we implemented an ablated variant of SurgVISTA without knowledge distillation,
pre-trained on Settings A through D, and conducted extensive experiments across two downstream datasets. The experimental
results are illustrated in Fig. 6a—b. Under Setting A, knowledge distillation yielded marginal changes on Cholec80, with a slight
increase of 0.2% in image-level accuracy and a slight decrease of 0.6% in phase-level Jaccard, possibly due to the inclusion
of procedure-specific pre-training data aligned with Cholec80. In contrast, more substantial improvements were observed on
AutoLaparo, with improvements of 2.9% and 3.0% in image-level accuracy and phase-level Jaccard, respectively. Furthermore,
for Cholec80, the performance gains from knowledge distillation became increasingly evident as the scale and diversity of
pre-training data increased. For AutoLaparo, although Settings A and B involved the same surgical procedure that differed from
AutoLaparo’s, knowledge distillation yielded gains in Setting A but slightly decreased phase-level Jaccard in Setting B. As
procedurally relevant data and overall dataset diversity increased in subsequent settings, the benefits of knowledge distillation
became progressively more pronounced. Overall, knowledge distillation consistently improves performance, yielding significant
improvements in both accuracy and Jaccard across two datasets and all four pre-trained settings, compared to the non-distilled
counterparts. Complementary qualitative results are presented in Fig. 6¢-d, where reconstruction fidelity is evaluated using
mean squared error (MSE) to verify the model’s ability to preserve fine-grained visual details. These visualizations demonstrate
that knowledge distillation facilitates the learning of robust spatial representations to reconstruct video clips with structural
integrity and visual coherence, particularly in regions containing anatomical structures and instrument-tissue interactions.

3 Discussion

To the best of our knowledge, this work is the first to explore video-level pre-training in the surgical domain using large-scale
surgical video data. The following novel insights can be derived from our extensive experimental results.

Surgery-specific video-level pre-training outperforms natural-domain counterparts by enabling domain-aligned spatiotem-
poral representation learning. Experimental results reveal two critical insights: temporal modeling capabilities acquired
during pre-training are essential for capturing dynamic surgical contexts, and domain-aligned pre-training surpasses domain-
agnostic pre-training in addressing complex and variable surgical scenarios. While natural-domain video pre-training surpasses
image-level methods by better modeling temporal dynamics, it lacks the surgery-specific knowledge required for precise
interpretation of instruments, anatomy, and their interactions. In contrast, surgical-domain video pre-training yields more robust
and discriminative spatiotemporal representations enriched with surgery-specific knowledge, reinforcing its importance for
robust surgical scene understanding.

Video-level surgical pre-training outperforms image-level counterparts by enabling explicit spatiotemporal representation
learning. Although image-level counterparts primarily focus on spatial representation learning from large-scale surgical
images, the absence of explicit temporal modeling during pre-training limits their ability to capture dynamic surgical contexts.



Consequently, despite leveraging powerful surgery-specific spatial feature extractors, these methods inherently struggle to model
temporal dependencies from purely spatial representations during fine-tuning, ultimately limiting spatiotemporal representation
quality, particularly in complex surgical scenarios. SurgVISTA employs spatiotemporal representation learning during pre-
training, effectively harnessing the intrinsic spatial and temporal cues embedded in video data. By integrating fine-grained
spatial representations of instruments and anatomical structures with comprehensive temporal modeling encompassing action
temporality, causality, and dynamic interactions, SurgVISTA provides a robust and generalizable foundation for surgical scene
understanding. The demonstrated superiority highlights the critical necessity of video-level pre-training tailored to the surgical
domain, facilitating the advancement of more sophisticated, reliable, and clinically applicable intelligent surgical systems.

Increasing the scale and diversity of surgical video data yields substantial improvements in both performance and generaliza-
tion. Extensive experiments conclusively demonstrate that both factors are pivotal for improving accuracy and robustness across
diverse surgical scenarios. First, scaling up pre-training data consistently enhances model performance and generalization, as
reflected by SurgVISTA’s significant gains across all evaluated datasets. In procedure-agnostic scenarios involving procedures
not present in downstream datasets, SurgVISTA continues to benefit by learning more diverse visual and temporal patterns. In
procedure-specific scenarios, incorporating additional relevant data reinforces domain-specific priors and facilitates discrimina-
tive feature learning, further improving task-specific performance. This highlights the importance of large-scale surgical video
data for advancing comprehensive understanding of complex and diverse surgical scenarios. Second, increasing procedural
diversity further boosts performance and generalization. As more diverse surgical procedures are incrementally integrated into
the pre-training corpus, significant performance gains are observed across various surgical scenarios, indicating that learning
from a wider procedural spectrum enables the model to capture shared spatial and temporal patterns that generalize beyond
specific tasks. Enhancing procedural diversity facilitates the exploration of universal and transferable representations essential
for understanding complex and diverse surgical scenarios. Nevertheless, our scaling analysis is based on cumulative pre-training
settings whose composition is not perfectly distribution-matched across surgical procedures (e.g., cholecystectomy-heavy early
settings), which may introduce procedure-specific biases. Despite this limitation, the highly consistent improvements observed
across a broad range of in-domain and out-of-domain benchmarks indicate that the dominant effect comes from increasing both
the scale and the procedural diversity of surgical pre-training data, rather than from procedure-specific bias.

Data splitting in surgical video analysis remains fundamentally constrained by the trade-off between maximizing training
scale and preserving unbiased evaluation. Given the inherent complexity and procedural overlap in surgical video data, including
shared instruments, anatomical structures, or activities, expanding the training set inevitably increases the risk of distributional
leakage into the evaluation data. This presents a fundamental challenge: how to maximize training scale for generalization while
rigorously maintaining evaluation integrity. In this study, we curated publicly available surgical video datasets with any form
of annotation. To enhance the diversity and scale of pre-training, we selected several datasets specifically for representation
learning. Among these, some were split according to their official training and testing partitions, with the testing portions held
out to support downstream evaluation under strict isolation, while others were used exclusively during pre-training to expand
the data scale. Additionally, a number of datasets were entirely excluded from the pre-training phase and reserved as unseen
evaluation benchmarks to assess generalization across surgical domains. This strategy enables a rigorous assessment of model
generalization while ensuring strict non-overlap between pre-training and evaluation sets. Although dynamic benchmarks like
LiveBench have emerged in general machine learning, such adaptive evaluation remains challenging in surgical domains due to
limited data access, high annotation costs, and strict privacy constraints.

SurgVISTA represents a robust and generalizable surgical video foundation model with clear advantages over both natural-
domain and surgery-specific methods. Compared to natural-domain methods, SurgVISTA leverages large-scale surgical video
data to acquire domain-specific knowledge that encompasses both static anatomical structures and surgical instruments, as well
as dynamic intraoperative activities. This domain alignment results in more clinically relevant and effective performance in
intelligent surgical applications. In contrast to existing surgery-specific methods, SurgVISTA pioneers a unified spatiotemporal
representation learning paradigm, marking a transition from static image-based representation learning to dynamic video-
level understanding. Through explicit modeling of spatiotemporal representation inherent in large-scale surgical video data,
SurgVISTA demonstrates superior capacity to handle the complexity and variability of real-world surgical scenarios and
exhibits improved generalization and transferability across heterogeneous procedural contexts. By delivering transferable and
discriminative spatiotemporal features and enabling seamless adaptation to a broad range of downstream tasks, SurgVISTA
serves as a solid foundation for the development of intelligent surgical systems with the potential to improve procedural
safety and enhance clinical outcomes across diverse surgical scenarios. These results affirm that the generalized and robust
spatiotemporal representations learned by SurgVISTA from large-scale surgical video data are pivotal for accurately interpreting
complex surgical scenarios, significantly outperforming natural-domain methods lacking specialized surgical knowledge.

While SurgVISTA represents a substantial advancement in surgical video pre-training and spatiotemporal representation
learning, several limitations remain, highlighting promising directions for future investigation. First, although we construct a
large-scale video-level surgical dataset encompassing more than 20 surgical procedures and over 10 anatomical structures, it



remains insufficient to fully reflect the extensive procedural complexity and variability in real-world clinical practices. This
limitation underscores the imperative for continuous expansion and diversification of the pre-training dataset to ensure broader
coverage of surgical scenarios and enhance the generalizability of learned representations across diverse clinical environments.
Beyond sheer data scale, future work should also explore data-centric research questions in surgical SSL. In particular, training
foundation models under fixed dataset sizes with varying procedure distributions offers an intriguing direction for understanding
how data composition affects model generalization. Second, while we establish the most comprehensive video-level benchmark
encompassing 13 downstream datasets spanning six surgical procedures and four distinct tasks, the procedural diversity
within the benchmark remains limited relative to the broader scope of the pre-training data. Future efforts should focus on
extensive collaboration with clinical institutions to collect annotated datasets across various surgical procedures, focusing on the
generation of downstream tasks of high clinical relevance. Finally, although SurgVISTA achieves superior performance across
diverse benchmark tasks, thorough clinical validation is essential to determine its practical utility and impact in real-world
surgical scenarios. Effective deployment of SurgVISTA-driven systems necessitates both the development of efficient and
task-aligned downstream functionalities and close collaboration with clinical experts to ensure seamless integration into surgical
workflows and alignment with clinical standards and practical requirements.

4 Method

Architecture Design

SurgVISTA is the first video-level self-supervision paradigm specifically targeted to surgical video analysis. The core innovation
is a dual-decoder design designed for simultaneous holistic video understanding and fine-detail preservation. As illustrated
in Fig. 1b, a video-level reconstruction branch enables the learning of motion dynamics and global contextual features while
an image-level distillation branch ensures the retention of fine-grained spatial semantics and structural details. Specifically,
given a video clip X, € RT*#*W>3 'we employ a joint space-time cube embedding strategy? with cube size Pr x Py x By to
partition the clip into multiple non-overlapping patches arranged in spatiotemporal order. Each patch is mapped to a visual
token, yielding spatiotemporal representations F, € RT*K*C where T = -L and K = PZI i;,lvv quantify the numbers of temporal
steps and spatial tokens, respectively. To enhance the effectiveness of masked video modeling and reduce temporal redundancy,
we apply tube masking with a masking ratio to minimize information leakage while facilitating spatiotemporal representation
learning. The encoder employs the vanilla ViT-B?® architecture with embedding dimension C = 768, augmented with a joint
spatiotemporal attention mechanism to effectively capture inter-frame dynamics and intra-frame spatial structures. Following
the encoder, video-level reconstruction focuses on restoring low-level pixel information throughout the entire video clip,
thereby facilitating the learning of holistic spatiotemporal representations. The enhanced visible tokens from the encoder are
concatenated with learnable mask tokens and then fed into a lightweight spatiotemporal decoder, which infers the missing
pixel-level details with structural and temporal consistency from partially visible inputs. The reconstruction loss is defined as
the mean squared error (MSE) between the normalized ground-truth pixel values and their reconstructed counterparts, computed
exclusively within the masked regions. By reconstructing masked portions from visible token representations, SurgVISTA
is guided to attend to the temporal dynamics within surgical contexts, thereby facilitating the extraction of semantically
meaningful spatiotemporal features. Furthermore, while the cube embedding strategy enables efficient temporal down-sampling
and mitigates the computational overhead of video-level pre-training, it inevitably compromises fine-grained spatial details
essential for comprehensive spatiotemporal interpretation. To address this limitation, image-level knowledge distillation is
employed to optimize high-level spatial representations by leveraging supervision from a surgery-specific expert model'®.
Specifically, the encoder’s enhanced visible tokens are concatenated with learnable mask tokens and fed into a lightweight
spatiotemporal decoder to generate enhanced spatial representations, which are subsequently aligned with the frame-level
spatial features extracted from the expert model. The distillation loss is defined as the Smooth L1 loss between the predicted
features and the expert-derived spatial representations.

Data Splitting Strategy

Data leakage poses a significant challenge in the benchmarking of foundation models®3. To build a comprehensive and diverse
corpus for both development and evaluation, we systematically collected a wide range of publicly available surgical video
datasets. To avoid any contamination between the pre-training and evaluation phases, we strictly followed the principles below.
First, no videos used during the pre-training phase were included in the test splits of any downstream datasets. For several
datasets utilized in both pre-training and evaluation, all test samples were explicitly excluded from the pre-training data to
prevent data leakage. Second, we conducted in-domain evaluations using two types of datasets: (1) the held-out test splits of
benchmark datasets partially used in pre-training, and (2) additional datasets involving surgical procedures that are consistent
with those seen during pre-training, but whose video samples were not included in the pre-training phase. These evaluations
assessed the model’s ability to generalize within familiar clinical domains while avoiding potential data leakage. Third, to assess
generalization under distribution shifts, we conducted out-of-domain evaluations using datasets whose surgical procedures



were entirely absent from the pre-training corpus. Overall, these precautions ensured that no test split from any downstream
evaluation contained videos seen during pre-training, allowing both in-domain and out-of-domain generalization to be assessed
under rigorously controlled conditions.

Implementation Details

For pre-training, we initialized SurgVISTA entirely from scratch, employing random initialization for all components. The
model employed the ViT-B encoder configured with fixed spatiotemporal positional embeddings and without a class token,
while tokenization relied on a spatiotemporal cube embedding®®3* sized 2 x 16 x 16. The decoder designed for video-
level reconstruction comprised four conventional transformer layers, while the decoder dedicated to image-level knowledge
distillation employed a two-layer transformer architecture. The total number of parameters was 100.8 M, with the encoder
accounting for 87.4 M. The pre-training dataset consisted of 3,650 videos, totaling approximately 3.55 million frames, spanning
diverse surgical procedures across distinct anatomical structures. For each video, we first sampled frames at 1 frame per
second (fps), and subsequently constructed input video clips by uniformly sampling 16 frames at a fixed interval of 4, starting
sequentially from each frame. We selected the key hyperparameters following a principled strategy: the patch size and input
sequence length were determined by combining established designs from video transformers>%3!-34-36 with the spatiotemporal
characteristics of surgical videos®”-3®. The masking ratio was calibrated for the surgical domain via preliminary ablation
experiments within our framework and was set to 0.85 to balance performance and efficiency. For each frame, we adopted
an input resolution of 224 x 224 pixels, with height H = 224 and width W = 224, yielding K = 196 spatial tokens per frame.
The model was pre-trained for 200 epochs with a batch size of 512, employing gradient accumulation over four iterations. We
employed the AdamW optimizer with f; = 0.9, B, = 0.95, an initial learning rate of 1.5e-4, and a weight decay of 0.05. These
hyperparameters were directly adopted from prior work?® without additional tuning, except for the number of epochs, which
was proportionally adjusted according to the size of the surgical video dataset to ensure sufficient convergence. To balance
the dual objectives of spatiotemporal modeling and spatial representation refinement, the video-level reconstruction loss was
assigned a weight of 1.0, while the image-level knowledge distillation loss was assigned a weight of 0.05. The pre-training of
SurgVISTA was performed on 8 NVIDIA H800 GPUs for 10 days. Following standard practice in self-supervised learning®®-3!,
no downstream validation data were used to guide the pre-training process. The final model checkpoint was selected at the
end of training, at which point the model had already converged. For fine-tuning, we retained the architectural configurations
of each pre-trained method to ensure faithful reproduction and fair comparison. For natural-domain methods, the encoder
was initialized with the corresponding pre-trained parameters, and a single-layer fully connected (FC) head was appended for
prediction, with all task-specific layers initialized randomly. The primary distinction between image-level and video-level
methods lay in the embedding mechanism: image-level models employed standard 2D convolutional embeddings, while
video-level models adopted cube embeddings via 3D convolutions. All training configurations were kept consistent across
SurgVISTA and natural-domain methods on each dataset, except for the input frame length, which was set to 16 frames for
video-level methods and 8 frames for image-level ones, to maintain comparable computational overhead. For comparisons with
surgical-domain methods, SurgVISTA retained its end-to-end framework, consisting of an encoder followed by a single-layer
FC head. In contrast, other surgical-domain methods were implemented following the conventional two-stage paradigm?’,
where the encoder was first fine-tuned using frame-level supervision, followed by a temporal convolutional module that
aggregated the extracted spatial features for final prediction. To ensure training consistency and fair comparison, we followed
the official training configurations provided in the original implementation®’. For rigorous downstream evaluation, we adopted
a strict data partitioning protocol as summarized in Supplementary Table 2. For all in-domain downstream datasets, dedicated
test sets were explicitly excluded from both the pre-training and fine-tuning phases. For out-of-domain evaluations, the entire
dataset, including both training and testing splits, was completely disjoint from the pre-training data. This protocol ensured a
fair assessment of both domain-specific performance and cross-domain generalization.

SurgWeb Dataset

SurgWeb is constructed from publicly accessible online platforms that host endoscopic surgical videos for public viewing.
The dataset spans more than twenty surgical procedures across multiple surgical specialties, including hepatobiliary surgery
(e.g., cholecystectomy), colorectal surgery (e.g., colectomy), upper gastrointestinal surgery (e.g., gastrectomy), gynecologic
laparoscopy, and urologic laparoscopy. All videos included in SurgWeb are used solely for non-commercial academic research
under the publicly offered viewing and access terms of the hosting platforms. To ensure privacy protection, we implement a
strict de-identification pipeline before incorporating any video into SurgWeb. Only intraoperative endoscopic views are retained.
Videos containing external camera views, patient faces, audio tracks, embedded textual identifiers, or any other potentially
identifying content are removed. The screening process combines automated filtering rules with manual review to ensure that
all remaining clips are fully de-identified. After screening process, the dataset consists of 3,376 videos with 2,349,618 frames,
and contains exclusively intraoperative surgical video content without any identifiable patient information.



Evaluation Benchmark

To comprehensively assess the performance of SurgVISTA, we curated a video-level evaluation benchmark encompassing
six distinct surgical procedures across five anatomical structures, including laparoscopic cholecystectomy, laparoscopic
hysterectomy (gynecologic laparoscopic surgery), laparoscopic liver resection, endoscopic pituitary surgery, ophthalmic surgery,
and endoscopic submucosal dissection. This benchmark contained 13 datasets, comprising more than 500 long-form videos
and 600 short-form clips, totaling over 660,000 frames. Detailed statistical information of these downstream datasets was
provided in Supplementary Table 3. To prevent potential data leakage, we strictly ensured that the test sets from in-domain
downstream datasets overlapping with the SurgPub were entirely excluded from both the pre-training and fine-tuning phases.
Furthermore, we conducted experiments across four clinically significant tasks, including surgical workflow recognition,
surgical action recognition, surgical triplet recognition, and surgical skill assessment. Effective performance on these tasks is
essential for comprehensive surgical scene understanding, facilitating more precise comprehension of complex and dynamic
surgical scenarios.

Surgical workflow recognition serves as a fundamental component of surgical scene understanding, which aims to auto-
matically assign predefined surgical phases to individual frames within surgical video. In clinical practice, surgical procedures
are systematically partitioned into well-defined phases based on expert knowledge, with each phase representing a specific
objective or set of actions performed during the operation. Precise phase recognition is crucial for understanding procedural
context and tracking intraoperative progress, thereby enabling real-time surgical assistance, procedural monitoring, and intraop-
erative decision support. To comprehensively evaluate the effectiveness of our approach on surgical workflow recognition, we
conducted extensive experiments across seven public datasets: Cholec80?!, M2CAI16-Workflow?!??, PmLR50%, AutoLa-
par026, CATARACTS?, Cataract-101%, and Cataract-21*!, as well as one private dataset, ESD57. These datasets collectively
covered a wide range of surgical procedures and anatomical structures, enabling a comprehensive assessment of the model’s
generalizability across diverse clinical scenarios. Following standard practice in surgical workflow recognition?!-%2-37-42.43,
performance was evaluated across multiple granularities using five widely adopted metrics: image-level accuracy, video-level
accuracy, phase-level precision, phase-level recall, and phase-level Jaccard. These metrics capture performance at three levels
of granularity: image-level accuracy treats each frame independently to assess global frame-wise correctness; video-level
accuracy measures average performance across individual videos, reflecting video-wise correctness; and phase-level metrics
assess category-wise performance across the dataset, reflecting the model’s ability to distinguish and localize surgical phases.

Surgical action recognition seeks to identify intraoperative actions at the frame or clip level, facilitating detailed analysis of
surgical activities. In contrast to coarse-grained workflow recognition, it focuses on the temporal and semantic interpretation of
surgical maneuvers, such as dissecting, retracting, or suturing, which are critical determinants of patient safety and postoperative
outcomes. In clinical practice, accurate action recognition plays a pivotal role in enhancing intraoperative situational awareness,
enabling context-specific assistance such as real-time procedural guidance, anticipatory error prevention, and adaptive decision-
making. By providing fine-grained semantic interpretation of intraoperative activities, this task lays the foundation for improving
surgical precision, reducing complication rates, and ensuring procedural safety. To evaluate our approach on surgical action
recognition, we conducted experiments on the Surgical Actions160* dataset, which encompasses a diverse set of intraoperative
actions involving various surgical instruments and anatomical targets, thereby enabling a comprehensive assessment of model
performance across varied surgical activity patterns. For surgical action recognition, performance was evaluated using accuracy,
which measures overall classification correctness, and mean Average Precision (mAP), which offers a class-aware assessment
by integrating precision-recall curves across all action categories.

Surgical triplet recognition focuses on fine-grained activity analysis by modeling detailed interactions among surgical
instruments, actions (verbs), and anatomical targets. This task involves recognizing individual components and systematically
modeling their interrelationships to capture intricate instrument-tissue interactions, thereby enhancing real-time surgical
assistance, procedural monitoring, and informed intraoperative decision support. To assess the effectiveness of our approach on
surgical triplet recognition, we conducted experiments on one public dataset, CholecT50*, and one private dataset, Prostate21.
Both datasets contained annotated surgical videos with detailed triplet labels comprising <instrument, action, target>, which
served as benchmarks for evaluating the model’s ability to understand instrument—tissue interactions. Consistent with prior work
in surgical triplet recognition*>4%, we reported component average precision and triplet average precision. Component average
precision evaluates the individual elements of the triplet, including instrument (APy), verb (APy), and target (AP), based on
the area under the precision-recall curve for each class. Triplet average precision measures the model’s ability to recognize
interactions by considering combinations such as instrument-verb (APry), instrument-target (APrr), and instrument-verb-target
(APpyt). The primary metric in this study is APy, which captures the accuracy of full triplet recognition.

Surgical skill assessment aims to evaluate specific actions or activities at the frame or clip level, requiring a comprehensive
understanding of complex anatomical structures and spatiotemporal relationships. Accurate skill assessment is crucial for
reducing the risk of injury to critical anatomical structures and promoting procedural standardization, thereby facilitating
intraoperative monitoring and improving postoperative evaluation. To comprehensively evaluate the effectiveness of our



approach in surgical skill assessment, we conducted evaluations on the Cholec80-CVS*’ and Endoscapes-CVS*® datasets. Both
datasets focused on assessing Strasberg’s Critical View of Safety (CVS) criteria, serving as a benchmark for evaluating surgical
proficiency and promoting procedural safety. For surgical skill assessment, we adopted accuracy and mean Average Precision
(mAP) as evaluation metrics, where accuracy reflects overall prediction correctness, and mAP provides a class-wise evaluation
of recognition performance.

Experimental settings
State-of-the-art pre-trained methods in the natural domain. To enable a comprehensive and structured comparison, we
evaluate eight representative natural-domain pre-trained methods, categorized into two groups: image-based pre-training
and video-based pre-training. All models are built upon the ViT-B architecture®® and are pre-trained on large-scale general-
purpose datasets, without any additional fine-tuning on task-specific or dataset-specific natural-domain benchmarks. Detailed
configurations are provided in Supplementary Table 34.

Image-based Pre-trained Methods. These approaches exclusively focus on learning spatial representations and are
pre-trained using large-scale static image datasets.

+ ImageNet-1K*’ (Supervised”®) refers to the pre-trained parameters obtained through fully supervised training on the
ImageNet-1K dataset, which contains over 1.2 million labeled images across 1,000 object categories.

+ ImageNet-1K*’ (DINO?®) refers to the pre-trained parameters obtained by applying the DINO framework to the ImageNet-
1K dataset, which learns semantic feature representations through self-distilled contrastive learning with momentum
encoders and clustering.

+ ImageNet-1K** (MAE’) refers to the pre-trained parameters derived by applying the MAE framework to the ImageNet-
1K dataset, which learns high-quality spatial representations by reconstructing pixel-level information from randomly
masked image patches.

Video-based Pre-trained Methods. These methods are trained directly on large-scale video data to learn joint spatiotem-
poral representations by capturing both dynamic temporal patterns and spatial semantics.

« Kinetics-400°° (VideoMAE?) refers to the pre-trained parameters obtained by applying the VideoMAE framework to
the Kinetics-400 dataset, a large-scale human action dataset containing approximately 240,000 video clips across 400
action classes. VideoMAE leverages a masked autoencoder architecture tailored for video inputs, enabling the model to
learn robust spatiotemporal representations by reconstructing masked video patches.

UnlabeledHybrid*° (VideoMAE?) refers to the pre-trained parameters obtained by applying the VideoMAE framework
to the UnlabeledHybrid dataset, which aggregates over 1.37 million video clips from Kinetics-710°!, Something-
Something V252, AVAS3, WebVid2M>*, and other online sources.

Something-Something V232 (VideoMAE?) refers to the pre-trained parameters obtained by applying the VideoMAE
framework to the Something-Something V2 (SSV2) dataset, which contains approximately 169,000 video clips across
174 action categories with object-centric temporal interactions.

L]

Kinetics-710°" (UMT??) refers to the pre-trained parameters obtained by applying the UMT framework to the Kinetics-
710 dataset, which merges Kinetics-400°?, Kinetics-600°>, and Kinetics-700°° while removing duplicates. Specifically,
we adopt parameters from the first training stage of UMT, where masked video modeling is guided by CLIP-based
supervision®’ in a single-modality setting.

Kinetics-400°" (MVD?!) refers to the pre-trained parameters obtained by applying the MVD framework to the Kinetics-
400 dataset. MVD employs masked feature modeling combined with a teacher-student distillation framework, utilizing
both image-level and video-level teacher features to effectively guide the learning of robust and coherent spatiotemporal
representations.

State-of-the-art pre-trained methods in the surgical domain. In this study, we select four state-of-the-art self-supervised
surgical models as surgical foundation models to facilitate a comprehensive and complementary comparison. Detailed
information is provided in Supplementary Table 35.

+ SelfSupSurg!¢ explores the application of four advanced image-level SSL methods, namely MoCo v2°%, SimCLR>,
DINO3, and SWAV®, for surgical scene comprehension. For comparison, we adopt the DINO-based variant, which
employs a ResNet-50°! backbone pre-trained on the Cholec80>! dataset containing a limited amount of surgical data.
The study provides a performance evaluation across six datasets representing two distinct surgical procedures.



EndoViT!” compiles a large-scale publicly available image-level endoscopic dataset, Endo700k, sourced from nine
public datasets and consisting of over 700,000 images. It adopts the MAE® framework with a ViT-B backbone for
domain-specific pre-training on the Endo700k dataset. The study evaluates model performance on three downstream
datasets, all corresponding to the same surgical procedure.

EndoSSL'® constructs an extensive private dataset consisting of 7,877 laparoscopic procedure videos, encompassing
23.3 million frames and spanning over five distinct surgical procedures. It employs the MSN®? framework with a ViT-L
backbone pre-trained on this private dataset, resulting in a strong image-level surgical foundation model. The study
assesses model performance exclusively on the Cholec80 dataset, focusing on surgical workflow recognition task.

GSViT'!" develops an efficient model that employs EfficientNet®® as the backbone and utilizes next-frame prediction
as the pretext task for pre-training, providing weak temporal modeling capabilities. To facilitate this, it open-sources a
large-scale surgical video dataset comprising over 680 hours of surgical footage sourced from websites, totaling more
than 2.5 million frames and spanning 28 distinct surgical procedures. The evaluation of model performance is conducted
solely on the Cholec80 dataset, with a specific focus on surgical workflow recognition task.

Pre-training Datasets. In this study, we curate eight publicly available video-level surgical datasets, referred to as SurgPub,
along with various surgical videos sourced from online platforms, designated as SurgWeb. Detailed information is provided in
Supplementary Table 2.

L]

Cholec80?' is a widely used laparoscopic surgery dataset focusing on the cholecystectomy procedure, comprising 80
videos in total. The dataset is officially divided into training and test sets, each consisting of 40 videos. For pre-training,
we exclusively utilize the 40 videos from the training set, amounting to a total of 86,344 frames.

MI2CAI16-Workflow>'-?? is a dataset curated for surgical workflow recognition, containing 41 laparoscopic videos of
cholecystectomy procedures. The dataset is split into 27 videos for training and 14 videos for testing. We incorporate the
27 videos from the training split into the pre-training dataset, contributing a total of 67,578 frames.

HeiChole?’ is an open benchmark for laparoscopic cholecystectomy, focusing on surgical workflow and skill analysis.
The dataset comprises 24 videos allocated for training, while the remaining 9 videos are designated for testing. For
pre-training, we utilize the publicly available 24 videos from the training set, providing 55,139 frames in total.

PitVis® is a dataset curated for step and instrument recognition in endoscopic pituitary surgery videos. It contains 25
publicly accessible videos comprising 120,018 frames. The entire dataset is incorporated into the pre-training phase to
enhance the procedural diversity of the pre-training data.

PSI-AVA? is a dataset focused on robot-assisted radical prostatectomy procedures, designed to enhance holistic surgical
scene understanding. It encompasses approximately 20.45 hours of surgical footage, comprising 8 videos with a total of
72,318 frames. The entire dataset is incorporated into the pre-training process.

AutoLaparo®® is a widely used laparoscopic surgery dataset focusing on the hysterectomy procedure. It contains 21
videos, with 10 videos allocated for training and the remaining 11 designated for testing. We incorporate the 10 videos
from the training set into the pre-training dataset, contributing a total of 40,211 frames.

BernBypass70°7 consists of 70 laparoscopic Roux-en-Y gastric bypass videos, encompassing 303,764 frames. This
dataset is fully incorporated into the pre-training stage to increase the procedural and anatomical diversity.

StrasBypass70° is a dataset dedicated to laparoscopic Roux-en-Y gastric bypass procedures, containing 70 surgical
videos and a total of 457,787 frames. The entire dataset, comprising all available videos and frames, is used for
pre-training to expand the diversity of surgical contexts.

SurgWeb consists of 3,376 videos with 2,349,618 frames, covering more than 20 distinct surgical procedures and
related anatomical structures. The entire dataset is incorporated into the pre-training phase to enhance data diversity and
strengthen the model’s spatiotemporal modeling capability.

Benchmark Datasets. In this study, we define datasets involving surgical procedures included in the pre-training data as
in-domain, while those comprising previously unseen surgical procedures are referred to as out-of-domain. All evaluation
datasets are sampled at 1 frame per second (1 FPS). Detailed information is provided in Supplementary Table 3.

The in-domain datasets include the following:



* Cholec80”! is a benchmark dataset designed for surgical workflow recognition in laparoscopic cholecystectomy. Each
frame is annotated with one of seven surgical workflow categories. Following the official data split protocol, our
pre-training stage includes videos from both the Cholec80 and M2CAI16-Workflow training sets. However, we identify a
possible data leakage issue due to five overlapping videos between M2CAI16-Workflow and the Cholec80 test set. To
mitigate any risk of data leakage and ensure fair evaluation, we conservatively excluded five potentially overlapping
videos (Videos 73, 77, 78, 79, and 80) from the Cholec80 test set, as these may have been included in the M2CAI16-
Workflow training set. After excluding the five overlapping videos, we use 40 videos containing 86,344 frames for
training, and the remaining 35 videos with 88,494 frames for testing.

Cholec80-CVS* is a dataset for surgical skill assessment, providing video-level annotations of Strasberg’s Critical View
of Safety (CVS) criteria for Cholec80. Each clip is labeled with three scores corresponding to the CVS criteria, with each
score ranging from 0 to 2, resulting in a total score ranging from O to 6. The dataset is partitioned into training, validation
and testing sets, while manually excluding samples labeled with a score of 6 that only appear in the test set. The training
set consists of 263 clips totaling 17,201 frames, the validation set contains 43 clips totaling 3,327 frames, and the test set
comprises 137 clips totaling 10,469 frames.

CholecT50% is a dataset designed for surgical triplet recognition in laparoscopic cholecystectomy. The dataset comprises
6 instruments, 10 verbs, and 15 targets, yielding a total of 100 triplet classes in the format of (instrument, verb, target).
Following the common partition*>:%*, 45 videos containing 90,489 frames are designated for training, while the remaining
5 videos with 10,374 frames are reserved for testing.

M2CAI16-Workflow?"-?? is a benchmark dataset used for surgical workflow recognition in laparoscopic cholecystectomy.
Each frame is labeled with one of eight distinct surgical workflow categories. Consistent with the standard partition, 27
videos containing 67,578 frames are allocated for training, and the remaining 14 videos comprising 26,961 frames are set
aside for testing.

Endoscapes-CVS* is a dataset designed for surgical skill assessment in laparoscopic cholecystectomy. It comprises 201
clips, with each frame annotated using three averaged expert-assigned scores corresponding to CVS criteria. Each score
is thresholded into a binary value (0 or 1), resulting in a total discrete score ranging from O to 3. A total of 120 videos,
comprising 36,694 frames, are allocated for training, 41 videos containing 12,372 frames are used for validation, and the
remaining 40 videos, with 9,747 frames, are designated for testing.

+ PmLR50 is a dataset for surgical workflow recognition in laparoscopic liver resection, containing 50 videos with
totally 23,037 frames. Each frame is annotated with one of five distinct surgical workflow categories. Following the
official partition, 35 videos totaling 17,378 frames are used for training, 5 videos with 2,309 frames are designated for
validation, and 10 videos with 5,350 frames are reserved for testing.

+ AutoLaparo®® is a dataset for image-guided surgical automation in laparoscopic hysterectomy. It contains 21 videos
of hysterectomy procedures, comprising 83,243 frames. Each frame is annotated with one of seven distinct surgical
workflow categories. Following the official partition, 10 videos totaling 40,211 frames are used for training, 4 videos
with 14,972 frames are designated for validation, and 7 videos with 28,060 frames are reserved for testing.
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SurgicalActions160** is a dataset containing 160 short-form clips, each depicting typical surgical actions in gynecologic

laparoscopy. It consists of 16 distinct actions, with each action represented by exactly 10 examples. A total of 112 videos,
comprising 13,238 frames, are allocated for training, while 48 videos with 5,783 frames are designated for testing.

25,65
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Prostate21 is a dataset consisting of 12 publicly available videos obtained from and 9 privately collected recordings,
all capturing radical prostatectomy procedures. Based on manual annotations, the dataset includes 7 instruments, 10
verbs, and 10 targets, resulting in 89 unique triplet classes structured as (instrument, verb, target). To prevent potential
data leakage, all videos originating from the PSI-AVA dataset® are allocated exclusively to the training set. In total, the
training set consists of 14 videos with 38,730 frames, the validation set includes 3 videos with 9,571 frames, and the test
set comprises 4 videos with 12,228 frames.

The out-of-domain datasets include the following:

+ CATARACTS? is a dataset designed for surgical workflow recognition in cataract surgery, consisting of 50 videos and
31,955 frames. In this dataset, the cataract surgery is divided into 19 phases and each frame is annotated with a phase
label. Following the official partition, 25 videos totaling 16,507 frames are allocated for training, while 5 videos and 20
videos with 15,448 frames are designated for validation and testing.



+ Cataract-101%" is a dataset designed for surgical workflow recognition in cataract surgery, comprising 101 untrimmed
videos, of which 100 are employed for downstream task. Each frame is assigned to one of ten distinct surgical phases.
The dataset is partitioned into 50 videos with 25,288 frames for training, 10 videos with 4,148 frames for validation, and
40 videos with 18,215 frames for testing.

+ Cataract-21*! is a dataset designed for surgical workflow recognition in cataract surgery. It consists of 21 video
recordings, with the surgical procedure divided into 11 distinct phases, each frame annotated with the corresponding
phase. The dataset includes 18 videos with 7,716 frames for training and 3 videos with 937 frames for testing.

* ESDS57 is a private dataset designed for surgical workflow recognition in endoscopic submucosal dissection (ESD)
procedures, containing 57 video recordings spanning the stomach and lower digestive tract. Each frame is labeled with
one of eight distinct workflow phases: Lesion Detection, Lesion Marking, Submucosal Injection, Mucosal Incision,
Submucosal Dissection, Wound Management, Wound Suturing, and Others. A total of 39 videos with 121,225 frames are
used for training, 6 videos totaling 24,187 frames for validation, and the remaining 12 videos totaling 38,934 frames are
allocated for testing.

Data Availability
Publicly available datasets used to construct the pre-training corpus and evaluation benchmarks are summarized in Supplemen-
tary Table 37. The remaining clinical data cannot be shared publicly due to institutional and patient privacy restrictions.

Code Availability
The implementations of SurgVISTA framework will be released in GitHub: https://github.com/isyangshu/SurgVISTA. The
pre-trained natural-domain parameters used in this study are listed in Supplementary Table 34, while the pre-trained surgical-

domain parameters are listed in Supplementary Table 35. The other public codes used in this study are listed in Supplementary
Table 36.
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Figure 2. Experimental results of various natural-domain pre-trained methods and SurgVISTA on surgical workflow
recognition datasets. Subfigures (a)-(d) correspond to in-domain datasets, while (e)-(h) represent out-of-domain datasets. To
provide a comprehensive understanding of the model’s generalization capacity, we quantify the proportion of pre-training data
associated with relevant anatomical structures and surgical procedures. These proportions are visualized using donut charts,
with anatomical overlap depicted in red and procedural overlap shown in blue, effectively illustrating the degree of alignment
between the pre-training data and downstream datasets. Evaluation metrics include image-level accuracy, video-level accuracy
and phase-level Jaccard, providing a comprehensive assessment of model performance across multiple granularities. Statistical
significance (P-value) is reported whenever SurgVISTA demonstrates superior performance compared to other methods.
Detailed results are presented in Supplementary Tables 4, 5, 6, 7, 8,9, 10 and 11. Created with BioRender.com under an
academic license.
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Figure 3. Experimental results of various natural-domain pre-trained methods and SurgVISTA on surgical tasks beyond phase
recognition. Subfigure (a) presents the results for the surgical action recognition task, with evaluation metrics reported as
accuracy and mAP. Subfigures (b)-(c) illustrate the surgical triplet recognition task, with performance reported in terms of
triplet mAP and 2-tuple mAP. Subfigures (d)-(e) display the results for the surgical skill assessment task, evaluated in terms of
accuracy and mAP. Statistical significance (P-value) is reported whenever SurgVISTA demonstrates superior performance
compared to other methods. Detailed results are presented in Supplementary Tables 12, 13, and 14. Created with
BioRender.com under an academic license.
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Figure 4. Experimental results comparing SurgVISTA and various surgical-domain pre-trained methods on surgical phase
recognition datasets. Subfigures (a)-(c) correspond to in-domain datasets, while (d)-(f) represent out-of-domain datasets.
Evaluation metrics include image-level accuracy, video-level accuracy, phase-level precision, phase-level recall and phase-level
Jaccard, providing a comprehensive assessment across multiple granularities. Statistical significance (P-value) is reported
whenever SurgVISTA demonstrates superior performance compared to competing methods. Detailed results are presented in
Supplementary Tables 15, 16, 17, 18, 19 and 20. Created with BioRender.com under an academic license.



Setting B

153,922 445,933

I Others | Laparoscopic Roux-en-Y Gastric Bypass Surgery Il Laparoscopic Cholecystectomy I Colectomy Il Hernia Repair

I Endoscopic Pituitary Surgery [l Myotomy [l Radical Prostatectomy [l Liver Resection | | Appendectomy [l Esophagectomy
I Rectal Cancer Surgery I Laparoscopic Hysterectomy I splenectomy [ Gastrectomy [ Anal Surgery I sigmoidectomy
I Rectopexy | Fundoplication [l Gastrojejunostomy [l Ladd's Procedure I Esophagojejunostomy Laparoscopic Nephrectomy
b) 0T B0r g qoa 92 c) ax10°r  TSr g 88 d) 0% 8T o 94 e) 4xi0’r 68 Tl 88
o Laparoscopic Cholecystectomy o Laparoscopic Cholecystectomy o Laparoscopic Liver Resection @ Laparoscopic Hysterectomy
79 74 r 84 a7
66
3x10°t P78 o 3x10°f B kg 310°t p 81 kg 3x10°F B 3
8 01 S 8 g 8 g 8 8% g
g |87 § ¢ |8 § 5 |87 8§ ¢ |8 §
& > < 2 > < ¢ 2 < 2 = 2
E 2x10 S 76 s 520 < B 520 275 T 520 2 T
fre 2 3 2 3 3 _I_ 3 8 8 B
3 b 75 o s e b 72 o & 62 <
& 0 > 8 o4 & ‘I‘ = b4 o
=100} & 74 E 1x108} & E 10°F & 69 E 1105k & 8 g
60
73 66 ) 62
w1
[ 0 = o 63 0 58 81
- = - g . N % g
S D E ®» ¢ D E A B C D E A B C D E
100% 100% 47.3% 17.4% 15.1% 100% 100% 47.3% 17.4% 15.1% 0% 0% 0% 0% 1.9% 0% 0% 91% 33% 1.1%
Cholec80 M2CAI16-Workflow PmLR50 AutoLaparo
f) 4x10° 60 - Total 72 g) 4x10° 66 —aTotal 83 h) 4x10° 90 e Total 95 |) 4x10° 84 —aTotal 9
59— Laparoscopic Cholecystectomy e Cataract Surgery o Cataract Surgery 8 e Cataract Surgery.
{ 64 5 82
3x10° 3 310°F o g :10°F o g 3x10°F D81 3
o 8o g g g REY £
@ § @ & § @ & 86 8 a & 79 8
8 g 8 S g 8 S g 8 3 g
ézno- T szto Teo T Ez 10°F B 3 Ez 10°F T7e kS
& 3 g 2 5 4 2 5 g 27 5
ES T 'y T & 84 T b T
3 @58 S s S &7 S
1x10° E mott & E =105} & E 1x10° & 75 E
56 82 74
73 ‘ 1]
0 0 54 0 80 0 72
A B C D E A B C D E A B C D E
0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
CATARACTS Cataract-101 Cataract-21

3 k) 410 4 |) axiofr 45 — 32 m)auo‘ T 66 n) aotc s I
Y S Reroceny I Q- — I I o Covccscoic Chacysiockmy
42 40 1 1 £ 62 | ® a7
65 3x10°8 3%10° 3x10f 3x10f
, ) 60
0. . | % 0% g %% Ty, 2 sx g ! P
g ¢ E E 2 E ug 2 o 8 Bl & g
555 Hoxetl o 5 E>10't o 5 H20t < m 565 5 2x10° <40 5
8 & ] 2 ¢ E 28 o E g & E 8
e % 2 B % 230 g % 30 4 3]
E & = & 20" 39
" 1105 . .
“ " 36 25 18 28 50 ” 44
w0 1 7 ™
36 J 6 - - 34 0 20 - o " 14 0 26 — — 46 o 37 — -
A B C D E B © D E A B C D E ®E O 0D E ®E@E 0D E
0% 0% 91% 33% 1.1% 100% 100% 47.3% 17.4% 15.1% 0% 0% 164% 6% 2% 100% 100% 47.3% 17.4% 15.1% 100% 100% 47.3% 17.4% 15.1%
SurgicalActions160 CholecT50 Prostate21 Cholec80-CVS Endoscapes-CVS

Figure 5. Experimental overview of how varying pre-training data scales affect the performance and generalization. Subfigure
(a) illustrates the distribution of surgical procedures across progressively constructed sub-datasets. Subfigures (b)-(n) present
performance variations across 13 surgical datasets under different data scales, along with data volumes and proportional
distribution. Phase-level Jaccard and image-level accuracy are visualized using dual-axis bar plots: blue bars (left y-axis)
denote phase-level Jaccard, while purple bars (right y-axis) represent image-level accuracy. Detailed results are presented in
Supplementary Tables 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 and 33. Created with BioRender.com under an academic
license.
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Figure 6. The effectiveness of knowledge distillation (KD). Subfigures (a)-(b) present the performance difference between
SurgVISTA with and without knowledge distillation. Significance testing was conducted using the Wilcoxon signed-rank
one-sided test, demonstrating that expert knowledge distillation consistently improves performance across different pre-trained
sub-datasets and downstream datasets. Subfigures (c)-(d) qualitatively illustrate the reconstruction performance based on
Setting D by showing the original frame, masked input, reconstructions with and without knowledge distillation, and
corresponding MSE maps. The results demonstrate that knowledge distillation improves reconstruction fidelity by better
preserving fine-grained anatomical details, as supported by reduced reconstruction error in related regions. Created with
BioRender.com under an academic license.



