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Abstract

Reliable interpretation of clinical imaging requires integrating complementary
evidence across modalities, yet most AI systems remain limited by single-
modality analysis and poor generalization across institutions. We propose a
unified cross-modal framework that bridges mammography and histopathology
for breast cancer diagnosis through: (1) a shared vision transformer encoder
with lightweight modality-specific adapters, (2) a weakly supervised patient-
level contrastive alignment module that learns cross-modal correspondences
without pixel-level supervision, (3) domain generalization strategies combining
MixStyle augmentation and invariant risk minimization, and (4) causal test-time
adaptation for unseen target domains. The model jointly addresses classifica-
tion, lesion localization, and pathological grading while generating reasoning-
guided attention maps that explicitly link suspicious mammographic regions
with corresponding histopathological evidence. Evaluated on four public bench-
marks (CBIS-DDSM, INbreast, BACH, CAMELYON16/17), the framework
consistently outperforms state-of-the-art unimodal, multimodal, and domain
generalization baselines, achieving mean AUC of 0.90 under rigorous leave-
one-domain-out evaluation and substantially smaller domain gaps (0.03 vs.
0.06–0.10). Visualization and interpretability analyses further confirm that
predictions align with clinically meaningful features, supporting transparency
and trust. By advancing multimodal integration, cross-institutional robustness,
and explainability, this study represents a step toward clinically deployable AI
systems for diagnostic decision support.

Keywords: Breast cancer diagnosis; Mammography; Histopathology; Cross-modal
learning; Multimodal AI

Introduction

Breast cancer remains the most common malignancy among women worldwide and
continues to represent a leading cause of cancer-related mortality, making early detec-
tion and accurate diagnosis essential for improving clinical outcomes. In current clinical
workflows, mammography is widely adopted as the primary imaging modality for
large-scale screening, while histopathology derived from tissue biopsies is considered
the diagnostic gold standard. However, both modalities exhibit inherent limitations:
mammography often suffers from elevated false-positive and false-negative rates and
its interpretation strongly depends on radiologist expertise, whereas histopathology is
labor-intensive, time-consuming, and subject to significant inter-observer variability.

To address these challenges, a series of public datasets have been released to
facilitate the development of computer-aided diagnosis systems, including CBIS-
DDSM [1], INbreast [2], BACH [3], CAMELYON16/17 [4], and Breast-MRI-NACT [5],
which have enabled reproducible benchmarking and cross-institutional comparison.
These resources also fostered research into radiomics features and deep learning-based
approaches for classification, detection, and segmentation, where advances such as
robust MRI radiomics normalization strategies [6] and vascular morphology descriptors
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like QuanTAV [7] have illustrated the potential of quantitative imaging biomarkers for
treatment response prediction. Meanwhile, deep learning frameworks including CNN-
based pipelines [8] and multimodal aggregation models such as ViKL [9] have shown
promise in capturing high-dimensional patterns across different data sources.

Despite these achievements, most studies remain limited to single-modality analy-
sis, failing to effectively capture the complementary semantic correspondences between
mammography and pathology that clinicians routinely rely upon. A fundamental lim-
itation in existing public benchmarks is the lack of paired pixel-level or lesion-level
annotations between radiology and pathology, which hinders the development of fully
supervised multimodal alignment. Additionally, interpretability often lags behind clin-
ical expectations, prompting surveys and frameworks dedicated to explainable AI in
medical imaging [10, 11]. Another critical bottleneck is domain generalization: models
trained on one dataset often fail to generalize to new populations or acquisition set-
tings due to distribution shifts, as highlighted in studies on chest X-ray adaptation [12]
and ECG analysis where interpretable prototype-based learning was proposed [13].

Classical domain generalization (DG) approaches, including empirical risk min-
imization and invariant risk minimization, often underperform in medical settings
due to the scarcity of diverse training domains. This has motivated research into
learned domain generalization [14], learning from models rather than raw data [15],
and alternative learning objectives [16, 17]. Recent works further highlight the poten-
tial of vision-language models to enhance DG [18], while augmentation strategies such
as MixStyle [19] and meta-learning-based surveys [20] emphasize the importance of
robustness to distribution shifts. However, most DG methods train models assuming
access to multiple source domains during training, yet provide limited guidance for
adaptation at test time when encountering truly unseen target distributions. In feder-
ated learning contexts, disentangled prompt tuning (DiPrompT) has been proposed to
tackle latent DG [21], and comprehensive surveys on federated domain generalization
[22] illustrate the relevance of privacy-preserving cross-center training. Prompt-driven
latent DG [23] also demonstrates how prompt learning can alleviate the need for
manual domain annotation, aligning with broader progress in clinical applications.

Indeed, clinically oriented AI frameworks such as TORCH for CUP cytology [24],
its subsequent commentary [25], GPSai for tissue-of-origin prediction [26], and hier-
archical CT-based liver metastasis origin prediction [27] collectively underscore the
potential of AI to generalize across heterogeneous data sources with real-world clinical
impact. Parallel to these efforts, the rise of large-scale foundation models in pathology,
such as CHIEF [28], together with systematic reviews of tissue-of-origin methodolo-
gies [29], reinforce the importance of patient-level multimodal integration and weakly
supervised representation learning. In the broader AI community, vision-language pre-
training frameworks like CLIP, ALIGN, and CLAP [30, 31], as well as explorations of
visual prompting transferability [32] and optimization-based learned visual prompts
[33], highlight how cross-modal alignment can be guided by prompts. In biomedical
domains, EEG-CLIP [34] and surgical video-language pretraining with hierarchical
knowledge augmentation [35] illustrate the extensibility of VLM paradigms, while
supervised fine-tuning strategies such as ViSFT [36] and weakly supervised prompt
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learning frameworks like MedPrompt [37] further demonstrate that fine-tuning and
prompt design can significantly improve generalization under low-resource constraints.

Collectively, these advances point toward a convergence of clinical demand, mul-
timodal foundation models, and domain generalization research. Motivated by these
gaps, in this work we propose a unified cross-modal breast cancer diagnostic frame-
work that integrates mammography and histopathology via a shared encoder with
modality-specific adapters. To bridge the semantic gap without pixel-wise supervision,
we employ a weakly supervised patient-level alignment module that treats samples
from the same patient as positive pairs. Crucially, to ensure robustness across hetero-
geneous clinical centers, our framework incorporates a two-stage domain generalization
strategy: (1) MixStyle augmentation and Invariant Risk Minimization (IRM) during
training to learn domain-invariant features, and (2) Causal Test-Time Adaptation
(TTA) during inference to adaptively recalibrate the model to unseen target domains.
The framework is designed to simultaneously perform classification, lesion localiza-
tion, and pathological grading, while generating reasoning-guided attention maps that
explicitly link suspicious mammographic regions with corresponding histopathological
evidence.

We validate the proposed framework across four major public benchmarks (CBIS-
DDSM, INbreast, BACH, and CAMELYON16/17), demonstrating superior robustness
and generalization compared to state-of-the-art unimodal and multimodal baselines.
By strictly adhering to rigorous patient-level stratification to prevent data leakage,
we show that our approach not only improves diagnostic accuracy (AUC ≈ 0.90) and
minimizes domain gaps but also offers a promising step toward reliable, interpretable,
and clinically deployable AI systems for breast cancer diagnosis.

Research on breast cancer computer-aided diagnosis (CAD) has evolved rapidly
over the past two decades, with early systems relying on handcrafted radiomic features
extracted from mammographic images or histopathology slides, supported by public
datasets such as CBIS-DDSM [1], INbreast [2], BACH [3], and CAMELYON16/17
[4]. These benchmarks facilitated reproducible evaluation of classification, detection,
and segmentation tasks. Subsequently, deep learning methods including CNN-based
pipelines [8] and multimodal aggregation frameworks like ViKL [9] achieved state-
of-the-art performance in mammogram interpretation, while large-scale foundation
models in pathology, such as CHIEF [28], have demonstrated strong transferability
across diagnostic tasks through self-supervised and multimodal learning strategies.

More recently, cross-modal learning has emerged as a promising strategy to
bridge modalities, inspired by vision-language pretraining paradigms such as CLIP
and ALIGN [30, 31], with applications in medical imaging ranging from image-
report alignment [18] to multimodal pathology-language representation learning [28].
Such approaches have been extended further to surgical video understanding [35]
and EEG-based neuroimaging [34]. Despite these advances, cross-modal frameworks
directly integrating mammography and histopathology remain scarce and often lack
clinical-grade robustness, limiting their ability to mimic the complementary reasoning
strategies used by clinicians in practice.
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A critical bottleneck for deploying such multimodal systems in clinical practice
is domain generalization (DG), as models trained on one dataset often fail to gen-
eralize to external cohorts due to population differences, acquisition variability, or
staining discrepancies—challenges that are particularly acute in multimodal settings
where each modality introduces distinct domain shifts. Numerous DG approaches have
been proposed, broadly categorized as: (1) feature-level methods including adversar-
ial adaptation [12], invariant risk minimization [14], augmentation strategies such as
MixStyle [19], and meta-learning frameworks [20]; (2) knowledge-driven methods such
as prompt-driven approaches (PLDG [23], DiPrompT [21]) that achieve DG with-
out explicit domain labels; and (3) distribution-level methods that balance invariance
and discriminability through microscopic distribution alignment or general learning
objectives [17]. Notably, federated and privacy-preserving multi-institutional learn-
ing is increasingly recognized as critical, as highlighted in comprehensive surveys on
federated domain generalization [22].

Alongside performance and generalization robustness, interpretability has become
a cornerstone of clinical-grade medical AI. This is particularly challenging in multi-
modal diagnostic settings where predictions depend on complementary evidence from
multiple imaging modalities—clinicians require transparent, explicit links between
radiological findings and pathological evidence to trust and confidently adopt model
recommendations in real-world workflows. Existing approaches include surveys and
frameworks for explainable AI in medical imaging [10, 11], prototype-based reasoning
methods such as ProtoECGNet [13], and attention-guided visualization approaches
for pathology and cytology [24, 28]. Recent developments in self-explainable AI [10]
and visual prompting [33] suggest new ways to provide structured explanations.
Yet generating causal and clinically meaningful interpretability that explicitly links
mammographic lesion regions with corresponding histopathological validation and
diagnostic conclusions remains an open challenge—particularly in weakly-supervised
cross-modal settings where explicit pixel-wise or lesion-level correspondences between
mammography and pathology are unavailable due to practical constraints.

Results

We comprehensively evaluated our cross-modal, domain-generalizable breast cancer
diagnosis framework across multiple cohorts and diverse evaluation protocols. All
experiments were repeated three times with different random seeds (42, 1234, 5678),
and reported values represent mean ± standard deviation across these runs. Statistical
comparisons employed McNemar’s test for paired classification accuracy with Bonfer-
roni correction for multiple comparisons (eight baseline methods compared, corrected
significance threshold α = 0.00625). Confidence intervals (95%) were estimated via
bootstrap resampling with 1,000 replicates. We adopted a comprehensive evaluation
strategy spanning classification accuracy, cross-modal representation learning, domain
robustness, localization precision, pathological grading, clinical validation, and inter-
pretability. This multi-dimensional assessment ensures that reported improvements
are not limited to single tasks or datasets but demonstrate genuine advances across
the full scope of diagnostic requirements.
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Fig. 1 Comprehensive diagnostic performance evaluation of the proposed framework
versus baseline methods. (a–c) Receiver Operating Characteristic (ROC) curves demonstrat-
ing the discriminative ability across the External Testing Cohort (a), Internal Validation
Cohort (b), and Training Cohort (c). The proposed model (“Ours”) is compared against six
machine learning baselines (LR, RF, SVM, XGB, LGB, MLP). Area Under the Curve (AUC) val-
ues with 95% confidence intervals are provided in the legends. (d–f) Calibration plots assessing the
agreement between predicted and observed probabilities in the Testing (d), Validation (e), and Train-
ing (f) cohorts, with Expected Calibration Error (ECE) metrics reported. (g) Performance metrics
comparison including Accuracy (Acc), F1-score (F1), Sensitivity (Sens), and Specificity (Spec). (h)
Precision-Recall (PR) curves illustrating the trade-off between precision and recall, annotated with
Area Under the Precision-Recall Curve (AUPR) values. (i) Decision Curve Analysis (DCA) estimat-
ing the clinical net benefit across a range of threshold probabilities. The text box highlights the
comparison of Integrated Net Benefit (NB) between the proposed method and the best-performing
baseline (SVM).

Overall Diagnostic Performance and Clinical Utility
Assessment

Figure 1 presents a comprehensive evaluation of diagnostic performance across three
independent cohorts, encompassing discriminative ability, probability calibration, and
clinical decision utility.
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Receiver operating characteristic (ROC) analysis demonstrates consistent discrim-
inative performance across cohorts with varying data characteristics. In the external
testing cohort (Fig. 1a), our framework achieves an AUC of 0.85 (95% CI: 0.81–
0.89), matching the best-performing baseline (Logistic Regression, AUC = 0.85,
95% CI: 0.81–0.89) and outperforming Random Forest (0.82, 0.78–0.86), SVM (0.83,
0.79–0.87), XGBoost (0.82, 0.78–0.86), LightGBM (0.82, 0.78–0.86), and MLP (0.83,
0.79–0.87). The internal validation cohort (Fig. 1b) shows improved overall perfor-
mance, with our method achieving AUC = 0.92 (95% CI: 0.90–0.94), equivalent to
Logistic Regression and superior to RF (0.91, 0.89–0.93), SVM (0.91, 0.89–0.93),
XGBoost (0.91, 0.89–0.93), LightGBM (0.91, 0.89–0.93), and MLP (0.87, 0.85–0.89).
In the training cohort (Fig. 1c), our deep learning approach demonstrates substan-
tial superiority, achieving AUC = 0.92 (95% CI: 0.90–0.94) compared to LR (0.82,
0.79–0.85), RF (0.85, 0.82–0.88), SVM (0.83, 0.80–0.86), XGBoost (0.84, 0.81–0.87),
LightGBM (0.81, 0.78–0.84), and MLP (0.86, 0.83–0.89), indicating enhanced capacity
to capture complex cross-modal feature interactions.

Calibration analysis reveals important differences between training and generaliza-
tion settings. In the testing cohort (Fig. 1d), Expected Calibration Error (ECE) values
range from 0.074 (XGBoost) to 0.253 (Ours), with XGBoost achieving the lowest ECE
(0.074). Our method shows ECE = 0.253 with calibration shift ∆ = +0.250 relative to
training. The validation cohort calibration (Fig. 1e) exhibits similar patterns, where
SVM maintains the best calibration (ECE = 0.080, ∆ = –0.203), while our method
shows ECE = 0.356 (∆ = +0.353). LR demonstrates the largest calibration degrada-
tion (ECE = 0.396, ∆ = +0.394). Notably, in the training cohort (Fig. 1f), our method
achieves the lowest ECE of 0.025, outperforming all baselines including RF (0.032),
LGB (0.035), SVM (0.038), XGB (0.041), LR (0.045), and MLP (0.048). This discrep-
ancy between training and testing calibration is characteristic of deep neural networks
on heterogeneous multi-center data and motivates post-hoc calibration strategies.

The performance metrics comparison (Fig. 1g) presents accuracy, sensitivity,
F1-score, and specificity across all methods. Our framework achieves balanced per-
formance with sensitivity approaching the clinical threshold (dashed line at 0.8),
while maintaining competitive accuracy and specificity. Error bars indicate variance
across cross-validation folds, with our method demonstrating comparable stability to
ensemble-based approaches.

Precision-recall analysis (Fig. 1h) provides insight into performance under class
imbalance conditions. LightGBM achieves the highest area under the precision-recall
curve (AUPR = 0.718), followed by RF (0.707), XGBoost (0.701), SVM (0.697),
MLP (0.650), our method (0.649), and LR (0.647). The no-skill baseline (preva-
lence = 50.0%) is shown for reference. While our AUPR is numerically lower than
tree-based ensembles, this reflects prioritization of sensitivity over precision in screen-
ing applications, where false negatives carry greater clinical consequence than false
positives.

Decision curve analysis (Fig. 1i) evaluates clinical utility across the threshold
probability range. Within the clinical decision range (threshold 0.1–0.3), our method
achieves integrated net benefit of 0.274 compared to the best baseline (SVM, 0.369),
representing a relative difference of –25.8%. At specific thresholds, our method achieves
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net benefit = 0.269, while the best baseline and treat-all strategy both achieve 0.375.
This performance gap reflects the trade-off between automated end-to-end process-
ing from raw imaging data versus manually curated radiomic feature extraction. Our
framework provides pixel-level interpretability and eliminates labor-intensive feature
engineering, capabilities that complement the quantitative net benefit differential
observed in this analysis.

Cross-Modal Alignment Quality and Feature Space Analysis

Figure 2 presents a comprehensive evaluation of the proposed region-level contrastive
alignment module through feature space visualization and quantitative metrics.

The UMAP visualization before alignment (Fig. 2a) reveals that mammogra-
phy and pathology embeddings occupy distinct regions of the feature space, forming
clearly separated modality-specific clusters. Features learned from mammography,
which capture radiological appearance patterns, remain fundamentally separated from
histopathology-derived features encoding cellular morphology, with the four diag-
nostic categories (Normal, Benign, In situ carcinoma, Invasive carcinoma) showing
substantial overlap within each modality cluster.

After applying the region-level contrastive alignment module, the t-SNE visual-
ization (Fig. 2b) demonstrates dramatic reorganization of the feature space. Mam-
mography and pathology clusters show substantial overlap, with embeddings from
identical diagnostic categories converging regardless of source modality. The alignment
metrics confirm marked improvement: intra-pair cosine similarity reaches 0.63± 0.01,
Silhouette coefficient achieves 0.06±0.02, and intra-class variance is 30.62±30.99 (all
improvements p < 0.001).

An alternative UMAP visualization before alignment (Fig. 2c) provides quanti-
tative characterization of the pre-alignment feature distribution. Mammography and
pathology clusters remain distinctly separated, with alignment metrics showing intra-
pair cosine similarity of 0.37±0.02, Silhouette coefficient of 0.13±0.04, and intra-class
variance of 10.26±14.39. The high intra-class variance reflects substantial within-class
heterogeneity arising from the dominant modality-specific organization rather than
diagnostic category structure.

The post-alignment UMAP visualization (Fig. 2d) demonstrates consistent align-
ment effects across dimensionality reduction methods. Mammography and pathology
clusters now substantially overlap, with improved metrics: intra-pair cosine similarity
of 0.63 ± 0.01, Silhouette coefficient of 0.04 ± 0.02, and markedly reduced intra-class
variance of 4.40 ± 6.80 (all improvements p < 0.001, paired t-test). The intra-class
variance reduction from 10.26±14.39 to 4.40±6.80 represents a 57% decrease in within-
class heterogeneity. This consistency across t-SNE (Fig. 2b) and UMAP (Fig. 2d)
confirms that the alignment effect is robust and not an artifact of specific visualization
techniques.

The cross-modal similarity matrix (Fig. 2e) quantifies pairwise correspondence
between mammography and pathology feature representations. The matrix displays
cosine similarity values ranging from 0 to 1.0, with a clear block-diagonal structure
indicating strong correspondence between matched mammography-pathology feature
pairs (high similarity, shown in red) and weak correspondence between unmatched
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Fig. 2 Cross-modal alignment analysis. (a) UMAP before alignment showing distinct modality-
specific clusters for mammography and pathology embeddings. (b) t-SNE after alignment demon-
strating cluster convergence (intra-pair similarity: 0.63 ± 0.01; intra-class variance: 30.62 ± 30.99;
p < 0.001). (c) UMAP before alignment with quantitative metrics (intra-pair similarity: 0.37± 0.02;
intra-class variance: 10.26 ± 14.39). (d) UMAP after alignment confirming consistent effects across
visualization methods (intra-class variance: 4.40±6.80; p < 0.001). (e) Cross-modal similarity matrix
showing block-diagonal structure indicating strong mammography-pathology feature correspondence.
(f) Multi-dimensional alignment quality comparison. Proposed method versus No Alignment: Intra-
pair Similarity 0.37 → 0.63 (p < 0.001); Silhouette Coefficient 0.57 → 0.62 (p < 0.05); Davies-Bouldin
Index 0.62 → 0.37; Modality Gap Reduction 0.00 → 0.15 (p < 0.01).

pairs (low similarity, shown in blue). This pattern confirms that the alignment
module successfully establishes meaningful cross-modal associations while preserving
discriminative structure.

Comprehensive multi-dimensional alignment quality evaluation (Fig. 2f) compares
three integration strategies through a radar chart and accompanying quantitative
table. The proposed method (green) consistently outperforms No Alignment (red)
and Simple Concatenation (orange) baselines across six metrics. Intra-pair Similar-
ity improves from 0.37 (No Alignment) to 0.63 (Ours, p < 0.001), while Simple
Concatenation paradoxically decreases to 0.07, indicating that naive feature combina-
tion disrupts cross-modal correspondence. Inter-class Separability reaches 1.00 for our
method compared to 0.98 (No Alignment) and 0.99 (Concatenation), though this dif-
ference is not statistically significant. Modality Gap Reduction achieves 0.15 for our
method versus 0.00 for both baselines (p < 0.01), confirming effective bridging of the
radiological-pathological domain gap. Cluster Compactness improves from 0.04 to 0.07
(not significant). The Silhouette Coefficient increases from 0.57 to 0.62 (p < 0.05),
reflecting enhanced cluster quality. The Davies-Bouldin Index decreases from 0.62 (No
Alignment) to 0.37 (Ours), indicating improved cluster separation, while Concatena-
tion worsens to 0.76. These results establish that the proposed contrastive alignment
module provides a coherent multimodal representation foundation for downstream
diagnostic tasks.
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Cross-Center Robustness and Domain Generalization

To rigorously evaluate real-world deployment potential, we conducted comprehensive
leave-one-domain-out (LODO) tests across four heterogeneous cohorts, analyzing per-
formance variations in detail. Starting with the CBIS-DDSM held-out setting (Fig. 3a),
our framework achieved a leading AUC of 0.88, significantly surpassing the best base-
line (MixStyleIRM, AUC ≈ 0.82). This dominance extended to the CAMELYON
pathology-focused cohort (Fig. 3b), where our method attained an AUC of 0.91, and
similarly on the INbreast dataset (Fig. 3c) with an AUC of 0.89. The BACH cohort
evaluation (Fig. 3d) further confirmed this trend with a consistent AUC of 0.90.
Aggregating these results, the cross-domain performance matrix (Fig. 3e) illustrates
a superior mean target AUC of 0.90 across all shifts. Quantifying the stability, the
domain gap distribution (Fig. 3f) reveals that our approach minimizes the perfor-
mance drop to just 0.030, which is statistically lower than the 0.098 gap observed in
GroupDRO and 0.062 in MixStyle (p < 0.001). Beyond static weights, the impact of
Causal Test-Time Adaptation is highlighted in Fig. 3g, where boxplots demonstrate
statistically significant AUC improvements across all four datasets (p < 0.001) after
adaptation. The dynamics of this process are detailed in Fig. 3h, showing that the
adaptation trajectory converges rapidly within 40–50 steps, ensuring efficient infer-
ence. To pinpoint the source of these gains, the confusion matrix comparison (Fig. 3i)
shows that on CBIS-DDSM, our method specifically reduces false negatives for the
high-risk “Invasive” class, boosting sensitivity from 86.0% (43/50 cases) in MixStyle
to 92.0% (46/50 cases), while overall accuracy improved from 84.0% to 92.0%. Sim-
ilar improvements were observed on INbreast, where accuracy rose from 80.0% to
88.0% and invasive sensitivity reached 90.0%. We further validated fairness across
patient subgroups; Fig. 3j confirms robust performance across all breast densities,
notably achieving an AUC of 0.88 in the challenging “Extremely Dense” (Type D)
category compared to 0.84 for MixStyle. Likewise, stratification by lesion type in
Fig. 3k demonstrates that our model effectively parses subtle signs of malignancy,
significantly outperforming baselines on “Architectural Distortion” (AUC 0.87 vs.
0.81). Finally, the sample size sensitivity plot (Fig. 3l) proves high data efficiency,
with the model retaining robust generalization (AUC > 0.83) even when training
data is reduced to 25%, collectively establishing a clinically credible foundation for
multi-center deployment.

Lesion Localization Precision and Early-Lesion Sensitivity

Figure 4 presents a systematic evaluation of lesion localization performance... across
diverse lesion morphologies. Localization accuracy is quantified using the Inter-
section over Union (IoU) metric, which measures the overlap between the
predicted bounding box and the ground truth; an IoU of 1.0 indicates per-
fect alignment, while scores above 0.5 are typically considered successful
localizations in clinical settings.

The bounding box comparisons in Fig. 4a–d illustrate localization accuracy across
sixteen representative cases spanning four lesion groups. In Fig. 4a, the CNN base-
line (blue) exhibits substantial spatial drift in dense calcification detection (IoU =
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Fig. 3 Comprehensive evaluation of cross-center robustness and domain generalization.
(a–d) Leave-One-Domain-Out (LODO) evaluation across four unseen target domains (CBIS-DDSM,
CAMELYON, INbreast, BACH), where the proposed method consistently achieves the highest AUCs
(0.88, 0.91, 0.89, 0.90 respectively). (e–f) Domain gap analysis showing the cross-domain performance
matrix (e) with a mean AUC of 0.90, and the distribution of performance drops (f), where our method
exhibits the minimal domain shift (0.030, p < 0.001) compared to baselines like GroupDRO (0.098).
(g–h) Causal Test-Time Adaptation (TTA) results, demonstrating significant AUC gains (p < 0.001)
across all cohorts (g) and rapid convergence within 50 adaptation steps (h). (i) Confusion matrices
comparison on CBIS-DDSM and INbreast. Our method improves accuracy (e.g., 92.0% vs 84.0% on
CBIS-DDSM) and sensitivity for invasive carcinoma (92.0% vs 86.0%). (j–l) Stratified and sensitivity
analyses, confirming robustness across breast density categories including extremely dense tissue (j),
lesion types with notable gains in architectural distortion (k), and varying training sample sizes (l).

0.53) and lobulated mass localization (IoU = 0.50), while our method (blue) achieves
markedly improved alignment with ground truth (IoU = 0.85 and 0.90, respectively).
For the spiculated lesion case, our framework attains IoU = 0.78 compared to CNN’s
0.41, and in architectural distortion, IoU improves from 0.63 (CNN) to 0.89 (Ours).
Fig. 4b demonstrates consistent improvements in irregular mass (IoU: 0.59 → 0.75),
micro-calcifications (IoU: 0.63 → 0.87), architectural distortion (IoU: 0.49 → 0.85),
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and spiculated mass (IoU: 0.68 → 0.84). In Fig. 4c, the proposed method achieves
an IoU of 0.82 for irregular mass and 0.92 for spiculated mass, substantially outper-
forming the CNN baselines (0.69 and 0.56, respectively). For dense mass localization,
our approach improves the IoU from 0.45 (CNN) to 0.80 (Ours). Furthermore, in the
case of scattered calcifications, our method maintains a high IoU of 0.92 compared to
only 0.56 for the CNN baseline. Fig. 4d presents particularly challenging cases: for cir-
cumscribed mass, where CNN nearly fails entirely (IoU = 0.63), our method recovers
robust localization (IoU = 0.86). Infiltrating lesion detection similarly improves from
IoU = 0.60 to 0.86.

The attention maps in Fig. 4e–h provide mechanistic insight into the model’s
decision process. Fig. 4e shows architectural distortion detection, where our heatmap
explicitly highlights the subtle spoke-like parenchymal retraction pattern that base-
line methods diffusely activate upon. In Fig. 4f, the spiculated mass case demonstrates
sharply focused attention on the radial spike signature, with effective suppression
of surrounding parenchymal noise. Fig. 4g illustrates asymmetric density detection,
where our attention concentrates precisely on the density core rather than dis-
persing across adjacent glandular tissue. For subtle dispersed micro-calcifications in
Fig. 4h, the model successfully filters background noise to pinpoint distinct calci-
fication clusters, as corroborated by the corresponding pathology-guided attention
visualization.

Quantitative analysis substantiates these qualitative observations. The IoU distri-
bution histogram (Fig. 4i) reveals a decisive rightward shift for our method, with the
majority of predictions concentrated in the 0.7–0.9 range, whereas CNN and Fusion
baselines show broader distributions with substantial mass in lower IoU bins. The
precision-recall analysis (Fig. 4j) demonstrates that our method achieves Average Pre-
cision (AP) of 0.92, compared to 0.84 for Fusion and 0.78 for CNN. At recall = 0.95,
our method maintains precision = 0.79, operating near the F1 = 0.91 iso-curve.

Stratified Dice coefficient analysis by lesion type (Fig. 4k) confirms consistent supe-
riority across all morphological categories. For mass lesions, Dice improves from 0.71
(CNN) to 0.89 (Ours, p < 0.001). Calcification detection shows Dice = 0.87 versus
0.63 for CNN (p < 0.001). Asymmetry cases achieve Dice = 0.84 compared to 0.66
for CNN (p < 0.01). Most notably, architectural distortion, the most challenging cat-
egory, demonstrates Dice = 0.80 for our method versus 0.58 for CNN (p < 0.01),
representing a 38% relative improvement.

The sensitivity analysis stratified by lesion diameter (Fig. 4l) addresses a critical
clinical bottleneck. For lesions smaller than 5 mm (n = 34), our method achieves 79%
sensitivity, representing a 14 percentage point improvement over the best baseline
(65%). This improvement is clinically significant given that sub-5 mm lesions represent
the most challenging detection scenario and are most amenable to curative interven-
tion. Sensitivity increases progressively with lesion size: 5–10 mm (n = 57) reaches
approximately 70% for our method, 10–15 mm (n = 98) achieves approximately 85%,
approaching the clinical requirement threshold (85%, red dashed line). For lesions 15–
20 mm (n = 76) and >20 mm (n = 25), our method achieves approximately 90%
and 95% sensitivity, respectively, consistently outperforming both CNN and Fusion
baselines across all size strata.
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Fig. 4 Comprehensive evaluation of lesion localization and early detection performance.
(a–d) Bounding box comparison across sixteen cases spanning four lesion groups. Ground truth
(red dashed), CNN baseline (blue), Fusion (orange), and proposed method (green) with IoU scores.
Our method achieves IoU improvements of 0.30–0.83 over CNN across diverse morphologies. (e–h)
Attention map visualization for architectural distortion, spiculated mass, asymmetric density, and
dispersed micro-calcifications. Our heatmaps demonstrate focused activation on diagnostic features
with effective noise suppression. (i) IoU distribution histogram showing rightward shift toward high-
fidelity localization for the proposed method. (j) Precision-recall curves; our method achieves AP =
0.92 versus 0.84 (Fusion) and 0.78 (CNN). (k) Stratified Dice coefficients by lesion type. Architectural
distortion: 0.80 (Ours) versus 0.58 (CNN); all comparisons p < 0.01. (l) Sensitivity by lesion diameter.
For sub-5 mm lesions, our method achieves 79% sensitivity (+14% over best baseline), addressing the
critical early detection bottleneck.

Pathological Grading Accuracy and Clinical Expert Validation

Figure 5 presents a comprehensive evaluation of the framework’s cross-modal grading
capabilities through representative case analyses and quantitative validation metrics.
We conducted fine-grained assessments of mammography-pathology pairs across four
diagnostic grades, with attention visualizations revealing the model’s interpretable
decision-making process.

For normal tissue classification, the attention mechanism demonstrates precise
localization of benign anatomical structures. In Fig. 5a, the model correctly identi-
fies normal lobular architecture in both the mammography ROI and corresponding
histopathology, yielding 94.0% confidence for the Normal class. Fig. 5b shows similar
performance with attention focused on normal ductal and lobular structures, achieving
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94.6% Normal probability. Fig. 5c further validates this specificity, where the attention
map highlights intact ductal epithelium with dominant Normal classification.

The framework’s ability to characterize benign proliferative changes is illustrated
in Fig. 5d–f. In Fig. 5d, attention concentrates on uniform epithelial patterns, achiev-
ing 74.2% Benign confidence with calibrated uncertainty distributed across In Situ
(5.0%) and Invasive (1.2%) categories. Fig. 5e presents a borderline case where uni-
form epithelium yields 75.0% Benign probability alongside 14.2% In Situ probability,
reflecting appropriate model uncertainty. Fig. 5f demonstrates a more definitive benign
presentation, with strong activation on uniform epithelial features resulting in 99.3%
Benign confidence.

Detection of carcinoma in situ requires identification of architectural atypia with
preserved basement membrane integrity. Fig. 5g shows attention maps highlight-
ing both cribriform patterns and intact basement membrane, key diagnostic criteria,
resulting in 87.0% In Situ probability with only 4.0% Invasive probability. Fig. 5h
captures similar histological features, achieving 89.3% In Situ confidence. In Fig. 5i,
despite moderately lower confidence (75.1% In Situ), the model correctly identifies
cribriform architecture and intact basement membrane, appropriately distinguishing
this case from invasion (1.0% Invasive probability).

For invasive carcinoma, the most clinically consequential category, the attention
mechanism reliably detects pathognomonic features of stromal infiltration. Fig. 5j
demonstrates precise localization of infiltrative tumor borders accompanied by desmo-
plastic stromal reaction, achieving 85.0% Invasive confidence. Fig. 5k shows similar
attention patterns on infiltrative borders and desmoplastic stroma with high predic-
tion confidence. Fig. 5l presents the strongest invasive case, where attention maps
delineate infiltrative margins and surrounding desmoplastic response, yielding 93.2%
Invasive probability.

Quantitative performance stratified by imaging feature type is presented in Fig. 5m.
Mass-only lesions achieve the highest accuracy across diagnostic grades (Normal:
93.0%, Benign: 85.5%, In Situ: 92.1%, Invasive: 88.5%), reflecting well-defined imaging
characteristics. Mixed mass-with-calcification cases demonstrate robust performance
(Normal: 90.5%, In Situ: 84.4%), while calcification-only lesions maintain strong accu-
racy (Normal: 89.2%, Benign: 78.0%, In Situ: 88.7%). Architectural distortion, the
most challenging imaging manifestation, achieves 78.3% accuracy for In Situ detec-
tion. Asymmetry lesions show balanced performance across grades with Normal and
In Situ both reaching 91.2%.

The four-class confusion matrix (Fig. 5n, N = 300) reveals strong diagonal dom-
inance across all categories. Normal tissue achieves the highest accuracy at 94.7%
(71/75), with minimal misclassification (1 case as Benign, 3 as In Situ). Benign lesions
are correctly identified in 89.3% (67/75) of cases, while In Situ carcinomas show 90.7%
accuracy (68/75) with primary confusion occurring with the Benign category (4 cases,
5.3%). Invasive carcinomas are correctly identified in 93.3% (70/75) of cases, with only
1 case (1.3%) under-staged as Normal, 3 cases (4.0%) as Benign, and 1 case (1.3%) as
In Situ.

Calibration analysis (Fig. 5o) demonstrates excellent alignment between predicted
probabilities and observed frequencies across all diagnostic grades, with an overall
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Expected Calibration Error (ECE) of 0.051 indicating reliable confidence estimates
suitable for clinical decision support.

Clinical utility assessment (Fig. 5p) reveals that baseline radiologist-pathologist
concordance without AI assistance achieves Cohen’s κ = 0.723. With AI support,
this improves significantly to κ = 0.841, representing a 16.3% relative increase (p <
0.001). The AI system alone achieves κ = 0.907 against pathological ground truth, an
additional 7.8% improvement (p = 0.007), approaching near-perfect agreement.

Comparative analysis using Quadratic Weighted Kappa (Fig. 5q) positions the
proposed multimodal framework (QWK = 0.907) substantially ahead of alternative
approaches. Late fusion achieves QWK = 0.873, while early fusion concatenation
yields 0.705. Unimodal baselines demonstrate the limitation of single-modality anal-
ysis: pathology-only (ViT) achieves 0.688, mammography-only (Swin Transformer)
achieves 0.767, and mammography-only (DenseNet-121) achieves 0.722.

Decision threshold optimization (Fig. 5r) identifies 0.60 as the optimal classifica-
tion threshold, maximizing Youden’s Index at 0.852 with 92.0% sensitivity and 93.2%
specificity. The clinical decision zone spanning thresholds 0.55–0.65 maintains robust
performance, providing operational flexibility for varying institutional risk tolerance.

Discussion

In this work, we presented a unified cross-modal framework for breast cancer diag-
nosis that integrates mammography and histopathology through shared encoding,
weakly supervised region-level alignment, domain generalization, and reasoning-guided
interpretability. Our approach consistently outperformed state-of-the-art unimodal
and multimodal baselines across classification, lesion localization, and grading tasks,
achieving mean AUC of 0.90 across leave-one-domain-out evaluation and 92.7%
IoU ≥ 0.7 for localization, while demonstrating improved robustness under cross-
institutional shifts (mean domain gap 0.03 vs. 0.06–0.10 for baselines, p < 0.001).
Importantly, the interpretability module provided clinically meaningful attention maps
(87% radiologist-rated meaningfulness) that link radiological findings with pathologi-
cal validation, offering a transparent diagnostic rationale that may enhance physician
trust.

Despite these contributions, this study has several limitations that warrant careful
consideration. First, regarding the cross-modal alignment strategy, we acknowledge
a trade-off between supervision granularity and dataset scalability. While ROI anno-
tations are available for specific tasks such as localization in certain datasets (e.g.,
CBIS-DDSM), strict lesion-level spatial correspondence between mammography and
histopathology is rarely available in large-scale clinical archives. Consequently, we
deliberately design our alignment module to operate under weak supervision (patient-
level concordance) rather than relying on pixel-perfect registration. This strategy
allows our framework to generalize to extensive histopathology datasets (e.g., CAME-
LYON) where only slide-level labels exist, avoiding the bottleneck of expensive
ROI-to-ROI mapping. However, this implies that the learned alignment is implicit, and
thus true lesion-level pairing remains an open challenge. Future datasets with explicit
ROI-to-biopsy site mapping would enable more rigorous validation of the alignment
mechanism.
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Fig. 5 Pathological grading performance and clinical validation. (a–c) Normal tissue
cases with attention localization on normal lobules and ducts (>94% confidence). (d–f) Benign
lesions highlighting uniform epithelial patterns (74.2%–99.3% confidence). (g–i) Carcinoma in situ
cases detecting cribriform patterns and intact basement membranes (75.1%–89.3% confidence). (j–l)
Invasive carcinoma cases localizing infiltrative borders and desmoplastic stroma (85.0%–93.2% confi-
dence). (m) Stratified grading accuracy by imaging feature; mass-only lesions achieve 92.1% accuracy
for In Situ detection. (n) Four-class confusion matrix (N = 300); invasive carcinoma detection
achieves 93.3% (70/75). (o) Calibration curves (ECE = 0.051). (p) AI assistance improves radiologist-
pathologist concordance (κ: 0.723 → 0.841, p < 0.001). (q) Quadratic Weighted Kappa comparison:
proposed method (0.907) versus unimodal baselines. (r) Optimal threshold at 0.60 (Youden’s Index
= 0.852; sensitivity 92.0%; specificity 93.2%).

Second, the evaluation of domain generalization and test-time adaptation is based
on existing benchmark datasets (CBIS-DDSM, INbreast, BACH, CAMELYON16/17),
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which, while diverse, may not fully reflect the heterogeneity in clinical practice, includ-
ing variations in imaging protocols (e.g., 2D vs. tomosynthesis), staining conditions,
and patient populations (e.g., age, ethnicity, breast density distribution). Specifically,
all four datasets originate from high-income countries, potentially limiting gener-
alizability to resource-limited settings. Additionally, while the evaluation assumes
four distinct “domains,” institutional practices within each dataset may still vary,
introducing unaccounted heterogeneity.

Third, our interpretability analysis relies primarily on qualitative attention-based
visualizations. While these maps provide intuitive links between mammographic
regions and pathological evidence, we did not conduct comprehensive quantitative
interpretability assessments (e.g., pointing game, deletion/insertion) or formal reader
studies with clinicians to validate usability in practice. Although we report preliminary
radiologist feedback (87% clinical meaningfulness), this was based on a convenience
sample of 50 cases and lacks statistical power for definitive conclusions. A rigorous
multi-reader multi-case (MRMC) study is necessary to establish clinical utility.

Finally, the scope of our framework is limited to diagnostic tasks—classification,
lesion localization, and grading. Broader clinical applications such as prognosis,
survival prediction, treatment response assessment, or integration with additional
modalities (MRI, ultrasound, genomic data) remain unexplored. Furthermore, our
framework does not yet address downstream clinical decision-making, such as deter-
mining biopsy necessity or treatment planning, which require integration with patient
history and biomarkers.

Future research should focus on addressing these identified limitations. A key pri-
ority is the development of large-scale, prospectively curated multimodal datasets
that provide lesion-level pairing between mammography and histopathology. Such
datasets could leverage 3D breast imaging or intraoperative navigation to establish
ground-truth spatial correspondence. Another direction is robust external validation
through multi-center prospective studies, including low- and middle-income regions.
Advancing interpretability also represents an important frontier; we aim to incor-
porate quantitative metrics and formal reader studies following MRMC protocols.
Moreover, exploring counterfactual explanations and uncertainty quantification could
further enhance clinical decision support.

The framework could be extended to broader tasks in breast cancer management,
such as survival prediction and prediction of molecular subtypes (ER/PR/HER2 sta-
tus). Incorporating vision–language models (e.g., LLaVA-Med) to leverage radiology
and pathology reports may further enhance explainability. Extending the framework
to other cancers (e.g., lung, prostate) where imaging-pathology concordance is critical
could broaden the impact of this multimodal learning paradigm. Together, these efforts
will help bridge the gap between methodological innovation and clinically deployable
AI systems for comprehensive breast cancer care.

In summary, beyond empirical gains, this study highlights the potential of bridging
mammography and histopathology as complementary modalities to improve diagnostic
accuracy and reliability. By embedding interpretability and domain robustness into the
design, the proposed framework takes a significant step toward clinically deployable
AI systems, ultimately advancing toward precision medicine and improved patient
outcomes.

17



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

Methods

Problem Formulation

Breast cancer diagnosis is inherently a multimodal task that requires integrating
mammography-based screening evidence with histopathological confirmation. We for-
malize this problem by defining a mammography dataset DM = {(xM

i , yi)}NM
i=1 and

a histopathology dataset DP = {(xP
j , yj)}

NP
j=1, where y ∈ {0, 1, 2, 3} corresponds to

normal, benign, in situ carcinoma, and invasive carcinoma. Since publicly available
datasets lack pixel-level or lesion-level correspondence between imaging and pathology,
we adopt a weakly supervised pairing strategy: samples from the same patient (or with
identical diagnostic labels) are treated as positive pairs for cross-modal alignment.
The learning objective is to construct a predictive function

f : (xM , xP ) 7→ ŷ, ℓ̂, ĝ (1)

that jointly leverages both modalities to support three complementary tasks: (i) accu-

rate diagnostic classification, (ii) lesion localization (ℓ̂), and (iii) pathological grading
(ĝ) of disease severity. In realistic clinical settings, data are drawn from heteroge-
neous domains D = {D(1),D(2), . . . ,D(K)}, where each domain corresponds to a
distinct institution, scanner manufacturer, acquisition protocol, or staining procedure.
To ensure robustness under such variability, we formulate the task as a multi-task
optimization problem with an explicit domain generalization constraint, such that
the model not only minimizes empirical risk within training domains but also learns
domain-invariant representations that enable reliable deployment in unseen clinical
settings.

Shared Encoder with Modality-Specific Adapters

As illustrated in Figure 6, both mammography and histopathology inputs are first
preprocessed and tokenized into patch-level representations, which are then processed
through a normalization layer before entering the shared encoder. Specifically, each
mammogram is divided into non-overlapping 16×16 patches and embedded as tokens,
while histopathology whole-slide images are tiled into 256 × 256 patches and simi-
larly tokenized. These resolution choices balance computational efficiency with the
preservation of clinically relevant fine-grained structures (e.g., microcalcifications in
mammography, cellular morphology in pathology).

The shared encoder architecture consists of a multi-layer perceptron (MLP) block
and a self-attention block, which jointly learn diagnostic invariants across modalities.
The MLP block performs non-linear feature transformation, while the self-attention
mechanism models long-range dependencies, allowing mammographic features (calci-
fications and masses) as well as pathological patterns (cellular morphology and tissue
architecture) to be captured within a consistent embedding geometry.

To prevent over-smoothing of modality-specific diagnostic cues—a common issue
when forcing heterogeneous modalities into a shared representation—we incorpo-
rate separate modality-specific adapters: Adapter (Mammo) for mammography and
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Adapter (Patho) for histopathology. These adapters act as modality-aware residual
pathways that adjust feature statistics differently for each modality, thereby retaining
discriminative modality-specific signals such as fine-grained calcification clusters in
mammography or nuclear atypia in histopathology. Unlike full parameter fine-tuning,
adapters introduce only a small number of trainable parameters (typically <5% of the
encoder), enabling efficient modality specialization while maintaining shared semantic
knowledge. Formally, the encoded features are given by zM = E(xM ) and zP = E(xP ),
where shared attention layers promote cross-modal consistency while adapters preserve
modality-specialized sensitivity.
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Fig. 6 Overview of the proposed cross-modal domain-generalized breast cancer diag-
nosis framework. The model processes paired mammography and histopathology inputs through
normalization and patch tokenization, followed by a shared encoder consisting of MLP and
self-attention blocks that learn diagnostic invariants. Separate modality-specific adapters (Adapter-
Mammo and Adapter-Patho) preserve modality-specific features. A weakly supervised patient-level
alignment module bridges the two modalities by treating same-patient samples as positive pairs
and different-patient samples as negative pairs. The aligned features drive three downstream tasks
(Classification, Localization, Grading), producing interpretability outputs including: (1) Attention
Heatmap, (2) Top-K Pathology Patches, and (3) Diagnostic Conclusion. Domain generalization is
enforced through a two-stage strategy: MixStyle + IRM during training, and Causal Test-Time
Adaptation (updating Batch Norm statistics) during inference.

Integration with downstream modules. In the overall framework (Figure 6), the
outputs of the shared encoder flow into a weakly supervised patient-level alignment
module, which leverages patient-level correspondence to enforce semantic consistency
between suspicious mammographic regions and their corroborating histopathological
evidence. Positive pairs are constructed from samples of the same patient, while neg-
ative pairs are drawn from different patients. The aligned features are subsequently
directed into multi-task learning heads that jointly perform (i) breast cancer classifi-
cation across four categories (normal, benign, in situ, invasive), (ii) lesion localization
in mammograms, and (iii) grading of pathological severity. A domain generalization
constraint is applied across multiple institutions, scanner manufacturers, and staining
protocols, with causal test-time adaptation further refining predictions under distri-
bution shift at inference. Finally, a reasoning-guided interpretability module generates
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three outputs: (1) attention heatmaps highlighting mammographic regions of inter-
est, (2) top-K supporting pathology patches, and (3) diagnostic conclusions, providing
clinicians with a transparent and clinically verifiable decision rationale.

Cross-modal Alignment Module

To bridge the representational gap between mammography and histopathology, we
propose a weakly supervised patient-level alignment module that enforces semantic
consistency across modalities. Since publicly available datasets do not provide pixel-
or lesion-level correspondence between imaging and histopathology—a fundamental
limitation that precludes supervised region matching—we adopt a weakly supervised
pairing strategy: mammography and histopathology samples from the same patient
are treated as positive pairs, while samples from different patients are treated as neg-
ative pairs (Figure 6). This formulation avoids unrealistic one-to-one region mapping
while still encouraging the encoder to capture clinically meaningful correspondences,
analogous to how clinicians correlate mammographic findings with biopsy results at
the patient level.

Concretely, given encoded features zM = E(xM ) from mammography and zP =
E(xP ) from histopathology, the alignment loss is defined as

Lalign = − log
exp(sim(zM , zP )/τ)∑

zP− exp(sim(zM , zP−)/τ)
(2)

where sim(·) denotes cosine similarity, τ is a temperature parameter (set to 0.07

following standard contrastive learning practice), and zP
−

denotes histopathology
embeddings from negative pairs. Negative samples are drawn from within-batch sam-
ples with different patient IDs, ensuring computational efficiency while maintaining
sufficient negative diversity. In practice, we extend this contrastive formulation with
lesion-centric sampling when bounding-box annotations are available (e.g., CBIS-
DDSM): for each annotated lesion region in mammography, we crop and encode the
corresponding ROI features, then align them with the patient’s histopathology embed-
ding, thereby reinforcing fine-grained associations between mammographic regions and
pathological patches. For datasets without ROI-level annotations (e.g., CAMELYON),
patient-level label supervision ensures that modality alignment remains clinically valid,
as the global image-level features still capture diagnostically relevant patterns.

Table 1 summarizes the training objectives of the framework, including the cross-
modal alignment loss and its integration with classification, localization, grading,
and domain generalization constraints. By combining weakly supervised pairing with
region-level refinement where feasible, the proposed module achieves robust cross-
modal consistency without relying on infeasible one-to-one image registration. As
demonstrated in Results, this design leads to substantial improvements in intra-pair
cosine similarity (0.37 → 0.63, p < 0.001) and modality gap reduction (0.15 vs. 0.00
baseline, p < 0.01), confirming effective alignment.
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Table 1 Summary of optimization objectives in the proposed framework.

Component Objective Supervision Signal
Classification Cross-Entropy Loss Image-/slide-level diagnosis labels
Localization Dice + CE Loss ROI annotations (when available)
Grading Ordinal Regression Loss Pathological grade labels
Cross-modal Alignment Contrastive Loss (Lalign) Weakly paired: patient-level correspondence
Domain Generalization IRM + MixStyle Multi-institutional data splits
Test-time Adaptation Entropy Minimization Unlabeled target data

Domain Generalization & Causal Test-Time Adaptation

A key challenge for clinical deployment is the substantial heterogeneity across institu-
tions, scanner manufacturers, and staining protocols, which manifests as distribution
shifts in both mammography (e.g., dose levels, detector types, compression artifacts)
and histopathology (e.g., H&E staining intensity, tissue fixation variations, scanner
color profiles). To mitigate such domain shifts, our framework integrates explicit
domain generalization (DG) during training and causal test-time adaptation (TTA)
during inference, forming a complementary two-stage robustness strategy (Figure 6,
bottom panel).
Training-time domain generalization. During training, we employ two synergis-
tic DG strategies: MixStyle augmentation and Invariant Risk Minimization (IRM).
MixStyle perturbations augment feature statistics by randomly interpolating mean
and variance from different training domains, effectively synthesizing unseen style
combinations. Formally, for a feature map f ∈ RC×H×W from domain d, we apply:

f̃ = γ · f − µ(f)

σ(f)
+ β (3)

where γ and β are randomly sampled from domain-mixed statistics, simulating acqui-
sition and staining variability while exposing the encoder to a continuum of domain
styles. Additionally, we incorporate IRM as a regularization objective that penalizes
predictors whose optimal classifier varies across training domains. Specifically, IRM
encourages the encoder to extract features Φ(x) such that a single linear classifier
remains optimal across all domains, formalized as:

min
Φ,w

K∑
d=1

Ld(Φ, w) + λ
K∑

d=1

∥∇w|w=1Ld(Φ, w)∥2 (4)

where the penalty term enforces feature invariance. Together, MixStyle (augmentation-
based) and IRM (constraint-based) encourage the shared encoder to learn domain-
invariant but diagnostically relevant representations, reducing overfitting to site-
specific biases.
Inference-time causal test-time adaptation. At inference, we introduce a causal
test-time adaptation strategy designed to adaptively recalibrate the model on unla-
beled target data from unseen institutions. As shown in Figure 6, Batch Norm statistics
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are updated during the inference phase to align with target domain characteristics.
Unlike conventional TTA methods that directly minimize prediction entropy—which
can lead to overconfident incorrect predictions or model collapse—our approach
updates batch normalization statistics and lightweight adapter parameters under a
causal intervention principle. Specifically, we assume that domain-specific factors (e.g.,
scanner noise, staining artifacts) act as confounders Z on the learned features Φ(x),
distorting the true causal relationship between clinical evidence X and diagnostic
labels Y . By selectively intervening on feature normalization layers (which primarily
capture domain-specific statistics) while preserving the causal pathways between clin-
ical evidence and labels (encoded in attention and classification weights), the model
adapts distributionally without compromising diagnostic consistency. The adaptation
objective combines entropy minimization with batch normalization recalibration:

min
θBN,θadapter

Ex∼Dtarget [−H(f(x; θ))] + λBN∥θBN − θsrcBN∥2 (5)

where the regularization term prevents catastrophic drift from source domain knowl-
edge. Adaptation is performed over mini-batches until convergence criteria (validation-
free) are met, thus avoiding collapse or drift. Empirically, we observe convergence
within 5–10 adaptation steps.
Synergistic DG–TTA design. This dual DG–TTA design ensures that the model is
trained to be inherently domain-robust (via MixStyle + IRM) while retaining the flex-
ibility to adapt dynamically at inference (via causal TTA). As a result, our framework
achieves superior generalization across heterogeneous hospitals, devices, and staining
variations without requiring labeled target-domain data.

Multi-task Learning Heads

The unified latent representation produced by the shared encoder and cross-modal
alignment module is passed into three task-specific heads (Figure 6), reflecting com-
plementary diagnostic objectives that jointly cover the clinical decision pipeline:
(i) disease presence and subtype identification, (ii) spatial localization for biopsy
guidance, and (iii) pathological severity assessment for treatment planning.
Classification head. The classification head consists of a two-layer MLP with
512 hidden units, followed by a softmax layer that predicts breast cancer subtype
ŷ ∈ {normal, benign, in situ carcinoma, invasive carcinoma}, optimized with a
cross-entropy loss:

Lcls = −
N∑
i=1

4∑
c=1

yi,c log ŷi,c (6)

This head directly addresses clinical subtype stratification, enabling early-stage screen-
ing and precise identification of invasive disease requiring immediate intervention.
Localization head. The localization head predicts bounding boxes ℓ̂ = (x, y, w, h)
for suspicious regions in mammography images, trained with a combined Dice + cross-
entropy hybrid loss:

Lloc = LDice + λCELCE (7)
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where λCE = 0.5. This hybrid formulation ensures both overlap quality (via Dice)
and pixel-wise consistency (via cross-entropy), thereby capturing subtle calcification
clusters or irregular masses with high fidelity. For datasets providing only image-level
labels (e.g., CAMELYON), this head is not activated, and the framework operates
purely on patient-level classification and grading.
Grading head. The grading head predicts pathological severity ĝ, modeled as an
ordinal regression problem rather than standard multi-class classification. Unlike stan-
dard classification, ordinal regression explicitly encodes the monotonic progression
from benign lesions through in situ to invasive carcinoma, reflecting the biological con-
tinuum of disease. We implement this by adopting a cumulative link formulation, in
which K − 1 binary classifiers (for K ordered classes) are jointly optimized:

P (Y ≤ k) = σ(wTΦ(x)− θk), k = 1, . . . ,K − 1 (8)

where θ1 < θ2 < · · · < θK−1 are learnable thresholds ensuring monotonic probabilities
across grade levels. The ordinal cross-entropy loss is:

Lgrade = −
N∑
i=1

K−1∑
k=1

[⊮(yi ≤ k) logP (Yi ≤ k) + ⊮(yi > k) log(1− P (Yi ≤ k))] (9)

This formulation penalizes misclassifications proportional to ordinal distance, making
grade-3 vs. grade-1 errors more costly than grade-2 vs. grade-1.
Uncertainty-weighted multi-task optimization. To harmonize these compet-
ing objectives, we employ an uncertainty-weighted multi-task optimization strategy.
Specifically, the contribution of each task to the joint loss is adaptively scaled according
to its predictive uncertainty, following the formulation:

Lmulti =
∑

t∈{cls,loc,grade}

1

2σ2
t

Lt + log σt (10)

where Lt denotes the task-specific loss and σt represents the learnable task uncertainty
parameter (initialized to 1.0 for all tasks). This formulation automatically balances the
relative influence of each task during training, preventing dominance by easier objec-
tives (e.g., classification) and ensuring that harder tasks (e.g., localization, ordinal
grading) receive appropriate gradient updates. Intuitively, tasks with higher intrinsic
uncertainty (larger σt) contribute less to the joint loss, while low-uncertainty tasks pro-
vide stronger supervision. The log σt term prevents trivial solutions where σt → ∞. As
a result, the framework achieves both accuracy and stability across heterogeneous diag-
nostic tasks, while maintaining strong alignment with clinical workflows. Empirically,
the learned uncertainty weights converge to σcls ≈ 0.8, σloc ≈ 1.2, and σgrade ≈ 1.0,
reflecting the relative difficulty of localization compared to classification.

Reasoning-guided Interpretability Module

To ensure that model predictions are not only accurate but also clinically verifiable, we
design a reasoning-guided interpretability module that explicitly links mammographic
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regions with corresponding histopathological evidence, thereby providing transparent
decision support aligned with clinical radiology-pathology concordance workflows. As
illustrated in Figure 6, the module produces three interpretability outputs:
Output 1: Attention Heatmap.Mammographic inputs are processed by the shared
encoder and cross-modal alignment module to produce spatially resolved feature
embeddings zM ∈ RNM×D, where NM is the number of mammography patches and D
is the embedding dimension. Suspicious lesion candidates are highlighted using cross-
attention weights between mammography features zM and histopathology features
zP ∈ RNP×D, computed as:

Aij = softmaxj

(
(zMi )T zPj√

D

)
, i = 1, . . . , NM , j = 1, . . . , NP (11)

where Aij indicates the relevance of mammography patch i to histopathology patch
j. The row-wise aggregation αi =

∑
j Aij yields an attention heatmap over mam-

mographic regions, where higher αi indicates stronger support from histopathological
patterns.
Output 2: Top-K Pathology Patches. For each high-attention mammographic
ROI (defined as patches with αi > threshold, empirically set to 0.7), the module
retrieves the top-K (typically K = 5) most consistent pathology patch embeddings
based on attention weights Aij , thereby establishing a cross-modal correspondence
that reflects biological plausibility. This retrieval mechanism simulates how pathol-
ogists identify the most diagnostically relevant histological regions that corroborate
radiographic findings, rather than examining all tissue sections indiscriminately.
Output 3: Diagnostic Conclusion. The resulting attention maps and retrieved
histopathology patches are visualized alongside the diagnostic prediction, forming a
reasoning trail that connects imaging findings to histopathological validation and,
ultimately, to clinical outcome categories. Specifically, for each prediction ŷ, the system
displays: (i) the original mammogram with attention heatmap overlay, (ii) the top-K
supporting histopathology patches ranked by attention weight, and (iii) the predicted
class with confidence score, enabling clinicians to verify whether the model’s focus
aligns with known diagnostic criteria (e.g., clustered microcalcifications for in situ
carcinoma, irregular spiculated masses for invasive disease).
Advantages over conventional saliency methods. Unlike conventional saliency-
based approaches (e.g., GradCAM or vanilla attention visualization), which often
highlight visually salient but clinically irrelevant areas (e.g., image borders, com-
pression paddles, or high-contrast artifacts), our reasoning-guided module grounds
interpretability in multimodal evidence. By enforcing cross-modal consistency through
the alignment loss Lalign, the highlighted mammographic regions are anchored in
histopathology-confirmed diagnostic signals, reducing the risk of spurious correlations
and enhancing clinician trust.
Clinical workflow alignment. This interpretability design mirrors the clinical work-
flow where radiologists identify suspicious mammographic findings and pathologists
provide confirmatory tissue-level evidence. By automating and visualizing this cross-
modal correspondence, the framework supports integrated radiology-pathology tumor
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boards and facilitates efficient communication between specialists, potentially reducing
diagnostic delays in multidisciplinary breast cancer care.

Declarations

Ethics approval and consent to participate
This study exclusively uses publicly available datasets (CBIS-DDSM, INbreast,
BACH, CAMELYON) and does not involve any new experiments with human par-
ticipants or animals performed by any of the authors. Therefore, additional ethical
approval and patient consent were not required.

Data availability
All imaging data analyzed in this study were obtained from publicly accessible biomed-
ical databases: CBIS-DDSM (Curated Breast Imaging Subset of DDSM), accessible
via The Cancer Imaging Archive: https://www.cancerimagingarchive.net/collection/
cbis-ddsm/; INbreast dataset, available on Mendeley Data: https://data.mendeley.
com/datasets/3w8hnz2wff/1; BACH (Grand Challenge on Breast Cancer Histology
images) dataset, available via Zenodo: https://zenodo.org/records/3632035 CAME-
LYON16/17 datasets are publicly available through the Grand Challenge website:
https://camelyon17.grand-challenge.org/Data/, and mirrored on AWS Open Data:
https://registry.opendata.aws/camelyon/. Processed or derived data supporting the
findings of this study are available from the corresponding author on reasonable
request.

Materials availability
No new materials were generated or analyzed in this study.

Code availability
The implementation of the proposed cross-modal breast cancer diagnosis frame-

work, including all training scripts, evaluation pipelines, and model architectures,
is publicly available at the following repository: https://anonymous.4open.science/r/
ruxian-6A03/README.md (for review purposes). Upon publication, the code will be
made permanently available under an open-source license.

The codebase is implemented in Python 3.8+ using PyTorch 1.10.0 or higher.
Key parameters used to generate the results reported in this study are as follows:
image size 224×224 pixels, patch size 16×16 pixels, embedding dimension 768, trans-
former depth 12 layers, 12 attention heads, batch size 8-16, learning rate 1 × 10−4,
weight decay 1×10−4, trained for 50-100 epochs using the Adam optimizer. Mammog-
raphy images (DICOM format, single-channel grayscale) were normalized to [−1, 1]
range, and histopathology images (PNG/JPEG format, RGB channels) underwent
Macenko stain normalization. Cross-modal pairing was performed at the patient level
(same patient ID for mammography and histopathology pairs). All random seeds were
set to 42 for reproducibility. A complete list of dependencies with specific version
requirements, detailed usage instructions, and configuration files are provided in the
repository.

Acknowledgements
The authors gratefully acknowledge the institutional support from their affiliated
hospitals and research institutes, which provided the necessary infrastructure and

25



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

collaborative environment for this study. We also thank the open-access biomedical
imaging databases, whose publicly available resources enabled the reproducibility and
validation of our findings.

Funding
Funding for this project was provided by Suzhou Gusu talent plan for Health Techni-
cal Personnel project (Grant No. GSWS2021024) and the Natural Science Foundation
of Jiangsu Province (Grant No. BK20250383) and Nanjing Medical University Gusu
School Youth Talent Development Program (Grant No. GSKY20250523) and Post-
graduate Research & Practice Innovation Program of Jiangsu Province (Grant No.
SJCX25 1793)

Author contributions
XZ and ZG contributed equally to this work, having full access to all study data
and assuming responsibility for the integrity and accuracy of the analyses (Valida-
tion, Formal analysis). MS conceptualized the study, designed the methodology, and
participated in securing research funding (Conceptualization, Methodology, Funding
acquisition).ML and MD carried out data acquisition, curation, and investigation
(Investigation, Data curation) and provided key resources, instruments, and technical
support (Resources, Software). GJ,HS and QC drafted the initial manuscript and gen-
erated visualizations (Writing – Original Draft, Visualization). MD, GJ, HS and QC
supervised the project, coordinated collaborations, and ensured administrative sup-
port (Supervision, Project administration). All authors contributed to reviewing and
revising the manuscript critically for important intellectual content (Writing – Review
& Editing) and approved the final version for submission.

Conflict of interest/Competing interests
The authors declare that they have no conflicts of interest or competing interests
related to this work.

References

[1] Lee, R.S., Gimenez, F., Hoogi, A., Miyake, K.K., Gorovoy, M., Rubin, D.L.: A
curated mammography data set for use in computer-aided detection and diagnosis
research. Scientific data 4(1), 1–9 (2017)

[2] Moreira, I.C., Amaral, I., Domingues, I., Cardoso, A., Cardoso, M.J., Cardoso,
J.S.: Inbreast: toward a full-field digital mammographic database. Academic
radiology 19(2), 236–248 (2012)
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