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Abstract

Multimodal perioperative data from patients undergoing atrial fibrillation (AF) ablation offer
valuable insights for stratifying recurrence risk, yet remain underutilized in prediction models.
This multicenter retrospective study included 2,508 patients who underwent AF ablation at five
Chinese centers: The Fourth Aftiliated Hospital of Zhejiang University School of Medicine (Jan
2016—Mar 2024; Training Cohort), Taizhou Hospital of Zhejiang Province (Jan 2015-Jan 2024;
Training Cohort), The Affiliated Hospital of Yunnan University (Jan 2016—Jan 2024; Validation
Cohort), Jinhua People’s Hospital (Jan 2020—Jan 2024; Test Cohort), and Ningbo Beilun Hospital
(Jan 2020—Jan 2024; Test Cohort). We developed a dual-branch deep learning model to predict AF
recurrence, in which structured data were processed via a 1D ResNet and textual data were encoded
using four large language models (LLaMA-7B, Phi2-2.7B, Mistral-7B, and MedGemma-27B).
The model incorporating MedGemma for text feature extraction performed best, achieving areas
under the curve of 0.934 (95% CI: 0.921 - 0.946), 0.928 (95% CI: 0.904 - 0.950), and 0.911 (95%
CI: 0.878 - 0.941) on the training, validation, and test sets, respectively. Our model integrates
multimodal perioperative data from AF ablation patients, effectively identifies high-risk
individuals, and may facilitate targeted interventions to reduce relapse.

Keywords: atrial fibrillation recurrence; catheter ablation; large language models; deep learning;
multimodal medical text



Introduction

Catheter ablation (CA) is a rhythm control strategy endorsed by guidelines for patients with atrial
fibrillation (AF) [1]. Nonetheless, long-term freedom from atrial arrhythmias remains
unsatisfactory, with 30%—-50% of patients experiencing recurrence within one year and requiring
repeat ablation [2]. The identification of populations at high risk for AF recurrence facilitates the
development of post-ablation preventive strategies and rhythm control regimens [2].

Established predictors, including AF type, left atrial diameter, AF duration, machine learning
models based on structured preoperative data, and clinical risk scores such as APPLE and CAAP-
AF, have demonstrated efficacy in forecasting recurrence [3,4,5]. However, they remain
constrained by their reliance on pre-procedural information and fail to capture the impact of
individualized treatment strategies and procedural specifics on outcomes. The clinical
management of AF generates extensive multimodal textual records that encapsulate valuable
information beyond the structured data. Echocardiography reports provide quantitative and
qualitative assessments of the cardiac structure and function, incorporating interpreter-specific
insights. Pre-procedural 24-hour Holter monitoring captures the dynamic arrhythmia burden and
heart rate variability. Crucially, electrophysiologists document detailed procedural notes, including
the ablation strategy, lesion set design, and real-time parameters, which are often lost in structured
data systems. The semantic depth of these texts represents a critical and underutilized source of
prognostic information.

Large language models (LLMs) provide a transformative approach to clinical text mining
through advanced semantic understanding [6]. This study innovatively applied four state-of-the-
art LLMs—MedGemma, Phi-2, Llama, and Mistral—to derive high-dimensional features from
clinical texts such as echocardiography reports, Holter interpretations, and ablation notes
[7,8,9,10]. By evaluating the proficiency of each model in medical language comprehension, we
identified the most predictive LLM for textual representation. We further propose a deep learning
framework that combines LLM-based text features with structured clinical data. Using peri-
procedural text extracted from hospital systems for patients with AF undergoing ablation, we
aimed to develop a precise and individualized AF recurrence prediction model tailored to
personalized treatment.

Results
Participant Baseline

This study retrospectively analyzed data from patients who underwent AF ablation at five
Chinese AF centers: the Fourth Affiliated Hospital of Zhejiang University School of Medicine
(ZJU4th; January 2016—March 2024), Taizhou Hospital of Zhejiang Province (ZJTZH; January
2015-January 2024), the Affiliated Hospital of Yunnan University (YNH; January 2016—January
2024), Jinhua People’s Hospital (JHPH; January 2020—January 2024), and Ningbo Beilun Hospital
(NBH; January 2020—January 2024). As shown in Table 1 (the missing structured data is shown in
Supplementary Table 1), a total of 2,508 participants were enrolled in this study, with a median
age of 65.00 (interquartile range [IQR] 58.00—71.00) years. Among them, 1,572 (62.68%) were



men. The overall median follow-up duration was 31.00 (IQR 17.00—48.00) months, and the overall
recurrence rate was 22.57%. Significant differences (p < 0.05) were observed across centers in the
following variables: age, systolic blood pressure (SBP), diastolic blood pressure (DBP), AF
duration, CHA2DS2-VASc score, HAS-BLED score, left atrial diameter (LAD), left ventricular
ejection fraction (LVEF), survival time, high-density lipoprotein (HDL), low-density lipoprotein
(LDL), albumin, creatinine, estimated glomerular filtration rate (¢GFR), APPLE score, CAAP-AF
score, gender, hypertension, coronary artery disease, diabetes, AF type, and use of class I/III or
class II antiarrhythmic drugs.
Model Development and Validation

Before model development, patient data from the five centers were assigned to a training set
(ZJU4th and ZJTZH), a validation set (YNH), and a test set (JHPH and NBH). Detailed data
distributions are provided in Supplementary Table 2, Supplementary Table 3, Supplementary
Table 4. Within the architecture of the dual-branch deep learning network, we fine-tuned different
LLMs (LLaMA-7B, Phi2-2.7B, Mistral-7B, and MedGemma-27B) as the base for the textual
feature extraction branch (The clinical text data are provided in the Supplementary 3), while
keeping the structured data branch and late fusion pathway identical across experiments. As shown
in Figure 1A-C, the model incorporating the MedGemma-27B module for text processing,
followed by late fusion with structured data (MedGemma-Fusion), yielded the best performance.
It achieved an area under the curve of 0.934 (95% confidence interval [CI]: 0.921-0.946) in the
training set, 0.928 (95% CI: 0.904-0.950) in the validation set, and 0.911 (95% CI: 0.878-0.941)
in the test set. Additionally, we assessed the impact of sample size on the performance of the
MedGemma-Fusion model (Supplementary Figure 1). To evaluate the generalization
performance of the model, we used each center as the test set, with the remaining centers
constituting the training and validation sets (Supplementary Table 5). To further validate the
rationale for late fusion, we conducted additional ablation experiments, including predictions of
AF recurrence based solely on structured data and predictions based on text features extracted
using the optimal LLM (MedGemma) (Supplementary Table 6, Supplementary Figure 2).
Moreover, we conducted a series of ablation studies to rigorously substantiate the design of
MedGemma-Fusion network for predicting AF recurrence. We adopted a two-stage fine-tuning
strategy for the text feature extraction branch: domain-adaptive pre-training, followed by
supervised contrastive fine-tuning (Supplementary Table 7, Supplementary Figure 3), during
this process, the weights of the structured data channel in MedGemma-Fusion were frozen. In the
structured data-processing branch, given that recurrence represents a relatively minor class, we
implemented a conditional tabular generative adversarial network (GAN) within the training fold
to perform data augmentation and balance the class distribution. Specifically, a conditional
Wasserstein GAN with gradient penalty (WGAN-GP) variant tailored to tabular data was
employed, where the generator was conditioned on class labels and encoded categorical features
to produce synthetic positive samples consistent with the real joint distribution. After freezing the
weights of the text feature channel in the optimally trained MedGemma-Fusion model, we
compared different data augmentation techniques (synthetic minority oversampling technique
[SMOTE] and adaptive synthetic sampling [ADASYN]) to demonstrate the advantages of using



the WGAN-GP (Supplementary Table 8, Supplementary Figure 4). We further compared the
MedGemma-Fusion model against conventional AF recurrence risk factors (including AF type and
LAD) and established clinical risk scores (CHA:DS:-VASc, CAAP-AF, and APPLE). As
summarized in Table 2 and depicted in Figure 1D-L, MedGemma-Fusion outperformed all
reference models across all three datasets. Moreover, decision curve analysis (DCA) consistently
demonstrated the superior clinical utility of MedGemma-Fusion across datasets, as shown in
Figure 1G-1. We also benchmarked our novel AF recurrence risk model against models derived
from the original variables of the APPLE and CAAP-AF scores (Supplementary Table 9,
Supplementary Table 10, Supplementary Table 11).

Kaplan—Meier (K-M) Survival Analysis

Based on the optimal MedGemma-Fusion model, we generated K-M survival curves to evaluate
its ability to discriminate recurrence risk across different datasets. As shown in Figure 2, the model
exhibited a strong discriminative ability for recurrence risk, with a concordance index of 0.874 in
the training set, 0.860 in the validation set, and 0.870 in the test set.

SHapley Additive exPlanations (SHAP)-Based Interpretability Analysis of the Model

In Figure 3, AF duration, LAD, and AF type emerged as the primary weighted variables within
the structured data, whereas text-derived features such as “pulmonary vein,” “potential,” and
“motion” were identified as key vectors contributing to the model’s decision-making process.
Sensitivity Analysis

A sensitivity analysis was performed to evaluate the stability of the model with and without early
AF recurrence (Figure 4).

Discussion

We developed a dual-branch deep learning network that integrates unstructured medical texts and
structured data features based on perioperative data from patients undergoing AF ablation. In the
text feature extraction module, a comparative evaluation of the four LLMs within an invariant
fusion framework identified MedGemma-Fusion as optimal. This demonstrated robust predictive
performance and generalizability in external validation.

In clinical practice, patients undergoing AF ablation generate multimodal medical data during
the perioperative period, including unstructured medical texts and structured data. Textual
modalities capture physicians’ clinical interpretations and reflect patients’ current AF progression.
However, conventional machine learning models remain limited in their ability to comprehend the
underlying logical relationships within medical services, which was corroborated by the models
we built by employing clinical variables from the APPLE and CAAP-AF scores. In contrast, LLMs
trained through extensive parameter iterations demonstrate superior performance in processing
textual data. This study designed a dual-channel deep learning architecture that prevents structured
data vectors from inducing hallucinatory interference during textual feature extraction.
Furthermore, to fine-tune the LLMs, we employed a weakly supervised training strategy
(recurrence risk classification) to mitigate catastrophic forgetting during text feature learning. The
rationality of our network architecture was verified through a series of ablation studies.

The MedGemma-Fusion framework achieved the best predictive performance, indicating that



MedGemma effectively learned more discriminative feature representations from the multimodal
medical text data of patients with AF. MedGemma, developed by Google (Mountain View, CA,
USA) based on the Gemma-3 architecture, is a domain-specific LLM optimized for multimodal
medical comprehension [7]. Its medical background knowledge enhances its utility in supporting
clinical decision-making. Therefore, MedGemma performed optimally in this study, given that its
pre-training corpus was derived from medical domains. Because LLMs operate through semantic
segmentation, we conducted a keyword analysis on the best-performing model to identify
semantically salient features [11]. Terms such as “pulmonary vein” and “potential,” which are key
concepts documented during ablation procedures, emerged as critical tokens. This aligns with the
semantic compression mechanism of transformer-based models, where attention mechanisms and
subword tokenization condense core semantic information into highly informative tokens, such as
the aggregated representation of “pulmonary vein” or the verbal center of ‘“ablation,” causing
attribution to focus on these tokens. These terms correspond to essential steps in
electrophysiological procedures, including pulmonary vein isolation, which is the cornerstone of
AF ablation, and the elimination of fractionated or additional potentials to disrupt rotor formation
and terminate re-entrant circuits [ 12]. This confirms that the model successfully captured clinically
relevant feature vectors.

The token “Vein” reflects the necessity of femoral vein puncture for catheter insertion during AF
ablation, increasing its frequency in clinical narratives. Furthermore, the token “Motion” likely
originates from the model’s interpretation of preoperative echocardiography reports and carries
significant weight in feature importance. Different types of AF exhibit distinct atrial motion
patterns, potentially related to atrial fibrosis [13,14]. Although echocardiography is operator-
dependent, we mitigated this heterogeneity by incorporating multicenter datasets, thereby
enhancing the robustness of the model. By leveraging textual reports from echocardiograms, we
input functional and kinematic descriptors of cardiac chambers based on the sonographers’
expertise, circumventing the variability in imaging parameters or machine differences.
Interestingly, tokens from Holter reports contributed relatively little to the model likely because
paroxysmal AF, which was the predominant subtype in our cohort, often resulted in normal Holter
findings. While previous studies by Krasteva and Zhang highlighted the predictive value of Holter
monitoring for AF detection, its limited influence may be attributable to the loss of granular
electrographic features in textual representations [15,16].

In the structured data analysis, factors such as the duration of AF, AF type, and left atrial
diameter were identified as the most significant predictors of AF recurrence, which was consistent
with our previous findings [17]. These factors contribute to deterioration of the atrial substrate to
varying degrees, thereby perpetuating arrhythmia [14,18]. These results validate the efficacy of
our approach, which combines sample augmentation with a ResNet-based architecture within a
structured data pipeline.

In this study, the rationale behind adopting a center-based split into training/validation/test
sets was to ensure, without introducing data leakage, sufficient sample size and relatively balanced
class distribution during the training phase. This approach enables stable and reproducible training
and hyperparameter tuning for both our model and all comparator baselines, while also allowing a



genuine assessment of cross-center generalization during testing. The ZJU4th and ZJTZ cohorts
were used for training: together they provide a larger overall sample size with a more balanced
ratio of positive to negative cases. Their combination offers richer learning signals for the model
and baseline methods, thereby reducing instability and randomness caused by insufficient training
data or severe class imbalance. The YNH cohort served for external validation (hyperparameter
tuning and model selection): an independent center not involved in training was reserved for early
stopping, hyperparameter selection, and final model determination. This prevents “implicit tuning”
from repeated experimentation on the test set and ensures objectivity in the evaluation pipeline.
The JHPH and NBH cohorts were held out for external testing. The remaining centers were entirely
reserved for final performance assessment to evaluate cross-center generalization. In particular,
JHPH, a center with fewer positive samples and a skewed distribution, is more suitable as an
external test set representing a challenging “real-world” scenario. Including it in training could
introduce severe class imbalance, compromise training stability, and hinder a conservative and
credible estimation of generalization performance. To further verify the robustness of our deep
learning model, we also performed additional leave-one-center-out validation.

Our study had some inherent limitations. First, although the model was validated across
multiple centers, the sample size remained limited, and further validation with larger cohorts is
warranted. Second, while we incorporated multimodal medical text data, including
echocardiography, Holter electrocardiography (ECG), and procedural records, variability in
reporting styles and levels of detail among physicians may have introduced heterogeneity into the
text-based features. Although personalized ablation strategies (e.g., intraoperative energy settings
and ablation sites) have been tailored to patients with AF across different centers, their impact on
feature extraction using LLMs from templated procedural notes remains elusive. In the structured
data domain, we incorporated both routine pre-operative laboratory tests and basic patient
information. While exporting these structured data from the Hospital Information System reflects
real-world clinical practice, it inevitably introduces variables unrelated to AF recurrence that may
influence the model decision-making. Moreover, it is unavoidable that certain risk factors relevant
to AF recurrence are omitted due to their unavailability in current real-world settings or within the
Hospital Information System. Finally, the LLMs used in this study were based on the most recent
versions available at the time of research; however, given the rapid iteration of LLMs, the impact
of future updates on model performance remains uncertain. Additionally, the substantial
computational resources required to deploy such models may impede their implementation in
resource-limited healthcare settings.

We developed a dual-branch deep learning network that integrates feature representations
extracted from medical texts using MedGemma, a specialized LLM, with structured data features
derived from the perioperative records of AF ablation patients. This integrated approach provides
novel clinical insights into risk prognosis and enhances strategies for the post-procedural
management of AF ablation.

Methods
This study retrospectively analyzed data from consecutively enrolled patients who underwent AF
ablation at five Chinese AF centers: ZJU4th (January 2016—March 2024), ZJTZH (January 2015—



January 2024), YNH (January 2016-January 2024), JHPH (January 2020-January 2024), and
NBH (January 2020-January 2024). All patients were followed up until March 2025, with a
minimum follow-up of one year for each individual. The study was conducted under the
Declaration of Helsinki and received approval from the leading Ethics Committee of the Fourth
Affiliated Hospital of Zhejiang University School of Medicine (No. K2025068); due to the
retrospective nature and full anonymization of imaging data, informed consent was waived.

Structured perioperative data of the patients undergoing AF were extracted from each center’s
medical record system, including basic demographic indicators (age, gender, body mass index),
patients' preoperative vital signs (preoperative SBP and DBP), comorbidity profile of patients
(hypertension, coronary artery disease, and diabetes), cardiac structure and function in patients
(LAD, LVEF), clinical status of patients (AF duration, AF type, CHA:DS>-VASc score, HAS-
BLED score, and use of class I/III or class II antiarrhythmic drugs at admission), and preoperative
laboratory parameters (glycosylated hemoglobin, fasting plasma glucose, total cholesterol,
triglycerides, HDL, LDL, albumin, alanine aminotransferase (ALT), aspartate aminotransferase
(AST), alkaline phosphatase (ALP), creatine, and eGFR). The APPLE and CAAP-AF scores were
also calculated. Textual data included Holter ECG reports, preoperative echocardiography reports,
and surgical records.

The study exclusion criteria were as follows:
1.Repeat ablation procedures;
2.Patients with valvular AF;
3.AF patients with New York Heart Association class IV heart failure;
4 Missing Holter ECG or preoperative echocardiography data;
5.Loss to follow-up after ablation.
The patient enrollment flowchart is shown in Figure 5A.
Definition of AF Recurrence
According to the latest American College of Cardiology/American Heart Association guidelines,
AF recurrence is defined as the presence of atrial arrhythmias (atrial tachycardia, atrial flutter, or
atrial fibrillation) lasting > 30 s after the procedure. In this study, recurrences occurring within the
first 3 months postoperatively were classified as early recurrences, whereas those occurring after
3 months were defined as late recurrences [1].
Post-ablation Follow-up of AF
Following ablation, all patients underwent outpatient follow-up and 24-hour ambulatory
electrocardiogram monitoring at 1, 3, and 6 months after the procedure. At 12 months after the
procedure, outpatient follow-up and 7-day long-term ambulatory electrocardiogram monitoring
were performed. Subsequently, outpatient follow-up and 24-hour ambulatory electrocardiogram
monitoring were performed every 6 months.
Development of a Multimodal Deep Learning Network
Building upon multimodal fusion and interpretable learning, this study adapted and extended
methods for predicting AF recurrence. It specifically compared the impact of four open-source
LLMs (LLaMA-7B, Phi2-2.7B, Mistral-7B, and MedGemma-27B) on the representation of Holter
ECG reports, echocardiography reports, and surgical records. A convolutional neural network was



employed in the structured feature branch for representation learning and classification.
Furthermore, a GAN was introduced to augment the categories and mitigate the imbalance caused
by the scarcity of recurrence samples. The dataset comprised multimodal information from the
perioperative period and follow-up, including 28 structured features and textual data from Holter
ECG reports, echocardiography reports, and surgical records.

Preprocessing started with systematic data cleaning on structured channels. For continuous
variables, a combined outlier detection method based on clinically plausible range constraints and
the IQR rule was used, with extreme outliers beyond the threshold truncated at quantiles while
preserving order information. Missing values were handled using a multiple imputation strategy;
continuous variables were predicted and imputed using regression models constructed with
multiple imputation chained equations, with mean and variance adjustments to avoid shrinkage;
and categorical variables were imputed using mode or conditional sampling under Bayesian
smoothed frequency encoding to preserve category co-occurrence relationships. To standardize the
scales, continuous features were z-score normalized while retaining scaling parameters for external
validation, and categorical variables were subjected to target leakage-free one-hot encoding or
ordinal encoding (for clearly monotonic ordinal features). All the encoders were fitted within the
training fold and transformed into a validation fold and test set to prevent information leakage. For
text channels, lightweight cleaning and normalization were performed on dynamic
electrocardiogram reports, echocardiogram reports, and surgical records, including special symbol
unification, unit standardization, date and identifier de-identification, and medical abbreviation
expansion; subsequently, fragment-based sentence segmentation and keyword localization were
used to enhance key point density.

To implement LLM embedding + structured CNN late fusion, we construct four parallel text
encoders, each fine-tuned from a pre-trained LLM (LLaMA, Phi-2, Mistral, MedGemma). Fine-
tuning combines continued pre-training and instruction alignment: first, domain-specific continued
pre-training is performed on de-identified dynamic electrocardiogram reports, echocardiogram
reports, and surgical records from our institution to improve clinical terminology coverage and
syntactic robustness; subsequently, supervised contrastive learning with a classification auxiliary
objective is used to moderately update the LLMs. To balance computational power and portability,
LoRA/QLoRA is used for low-rank adaptation, freezing most of the lower-layer weights and
opening up partial rank parameters in the mid-to-high-layer attention blocks and word embeddings.
Text representations are uniformly taken from the penultimate layer's [CLS]-equivalent pooled
vector and a token-attention-based weighted average, concatenated to form a 1024-dimensional
embedding, and then linearly projected to 256 dimensions to match the representation space of the
structured branch. For fair comparison, the four LLMs independently train their respective text
encoders and downstream fusion classification heads, while the remaining training and evaluation
procedures remain consistent, resulting in four comparable multimodal models.

The structured branch uses ResNet1D as a 1D CNN backbone to learn local interactions and
hierarchical features from the 30-dimensional features.Specifically, the structured vectors are
stacked in a fixed order to form a "feature sequence" of length 30, which is fed into a network
containing three convolutional blocks: Convld (channels=32, kernel size=3, stride=1) +



BatchNorm + GELU + MaxPool, followed by a cascade of Conv1d(64, 3) and Conv1d(128, 3).
The pooling stride of each layer is controlled to cover different receptive fields and extract cross-
feature interactions. The convolutional output is then subjected to global average pooling to obtain
a 256-dimensional structured embedding, which is enhanced with dropout and layer normalization
to improve generalization. Considering recurrence is a relatively small minority class, a
conditional tabular Generative Adversarial Network (GAN) is established within the training fold
for the structured branch to perform data augmentation and balance the class distribution. We adopt
a conditional WGAN-GP variant adapted to tabular data, where the generator is conditioned on
class labels and encoded categorical features to generate synthetic positive samples consistent with
the real joint distribution. The discriminator is trained with a Lipschitz constraint and gradient
penalty to improve stability. To prevent the augmented data from introducing distribution drift and
unreasonable feature combinations, we apply a triple screening process after generation: first,
density filtering based on Mahalanobis distance to remove low-density outliers; second, hard
constraints based on clinical rules (physiological relationships between indicators and consistency
of scoring calculations); and third, an envelope screening of the positive class manifold using a
one-class SVM fitted only within the training fold. By performing fold-wise augmentation within
the training set, we achieve stratified sampling alignment, while maintaining the natural
distribution of the validation and test sets to avoid evaluation bias.

The fusion stage follows a late fusion strategy with attention weighting. In each model
instance, the 256-dimensional embedding from the structured branch is concatenated with the
corresponding 256-dimensional text embedding from the LLM, forming a 512-dimensional joint
representation. This representation is then fed into a multi-head scaled dot-product attention
module for learnable cross-modal weighting, with the number of heads set to 4 and the key/value
dimension set to 64. A gating mechanism is incorporated to suppress noisy text segments or weakly
relevant structured components. The attention output is mapped to the final binary classification
logit via a two-layer feedforward network (hidden dimension 256, activation GELU, dropout=0.2),
and the cross-entropy loss with label-balanced weights is used as the loss function. Optimization
is performed using AdamW (learning rate 2e-4, weight decay 0.01), with cosine annealing and
warmup. Training employs stratified k-fold cross-validation (k=5), with patient-level splitting to
prevent sample leakage. Within each fold, a validation set is used for early stopping and
hyperparameter selection. Evaluation metrics include accuracy, F1-score, sensitivity, specificity,
and area under the receiver operating characteristic curve (AUC-ROC), and 95% confidence
intervals are reported. To ensure comparability across the four LLMs, all non-text side components,
optimizer settings, training epochs, and early stopping criteria are kept consistent, with only the
encoder being replaced and fine-tuned individually on the text side. During inference,
deterministic forwarding with a temperature of 0 is used to obtain stable embeddings, and the
maximum text length and truncation strategy are fixed to avoid bias caused by differences in
context length between models. The network architecture of the model is depicted in Figure 5B.

For the explainability analysis, we calculated the SHAP values in the log-odds domain of the
fused model output to achieve global and individual explanations. For the structured branch,
DeepSHAP was used to approximate the marginal contribution of the convolutional pathway to



the output, reporting the global importance and interaction effects of each original clinical feature.
For the text branch, we combined the attention-based token importance with SHAP's text-masking
estimation to locate the descriptive words driving the prediction. Based on the probability output
of the optimal model, we determined the optimal threshold using Youden's J statistic to classify
patients into high- and low-risk groups, followed by a survival analysis to compare the outcome
differences between the two groups.
Sample size calculation

To evaluate the impact of sample size on model stability, we performed additional analyses
on the optimal model. In machine learning, Faber and Fonseca demonstrated that increasing the
sample size beyond a certain range may not significantly improve outcomes [19]. As this was a
retrospective study, the number of patients extracted from each center's electronic hospital
information system within a predefined time frame was fixed. Therefore, with reference to
previous literature and considering the sample size of this study's training cohort [20], we
independently evaluated the change in the AUC of the optimal model between the training and test
sets across sample sizes ranging from 800 to 1500.
Statistical Analysis
Continuous variables with a skewed distribution were expressed as the median and interquartile
range (IQR). Normally distributed continuous variables were expressed as the mean + standard
deviation (SD). Categorical variables were summarized as frequencies (n) and percentages (%).
DCA was performed to evaluate the clinical value of the model by quantifying the net benefit at
different threshold probabilities. K-M curves were plotted for patients in the high- and low-risk
groups, and the log-rank test was used to determine whether there was a statistically significant
difference in the progression-free survival curves between the two groups. All statistical tests were
two-sided, and significance was defined as p < 0.05.

Availability of data and materials

The datasets generated and/or analyzed during the current study are not publicly available as
they contain confidential patient information but are available from the corresponding author upon
reasonable request.

Abbreviations

ADASYN Adaptive Synthetic Sampling
AF Atrial Fibrillation

ALP Alkaline Phosphatase

ALT Alanine Aminotransferase

AST Aspartate Aminotransferase

CA Catheter ablation

CNN Convolutional Neural Network
eGFR estimated Glomerular Filtration Rate
FPG Fasting Plasma Glucose

GAN Generative Adversarial Network



HbA1C Hemoglobin Alc

HDL High-Density Lipoprotein

LAD Left Atrial Diameter

LDL Low-Density Lipoprotein

LLMs Large language models

LVEF Left Ventricular Ejection Fraction
WGAN-GP Wasserstein GAN with gradient penalty
MICE multiple imputation chained equations
SHAP SHapley Additive exPlanations

SMOTE synthetic minority oversampling technique
SVM Support Vector Machine

TC Total Cholesterol

TG Triglycerides
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Figure 1. Comparison of Metrics Among Different Models

Figure 1A. Radar chart comparing different LLM-based text extraction modules in the dual-branch
deep learning network architecture on the training set.

Figure 1B. Radar chart comparing different LLM-based text extraction modules in the dual-branch
deep learning network architecture on the validation set.

Figure 1C. Radar chart comparing different LLM-based text extraction modules in the dual-branch
deep learning network architecture on the test set.

Figure 1D. Receiver operating characteristic (ROC) curves of different prediction models on the
training set.

Figure 1E. Receiver operating characteristic (ROC) curves of different prediction models on the
validation set.

Figure 1F. Receiver operating characteristic (ROC) curves of different prediction models on the
test set.

Figure 1G. Decision curve analysis (DCA) of different prediction models on the training set.
Figure 1H. Decision curve analysis (DCA) of different prediction models on the validation set.
Figure 11. Decision curve analysis (DCA) of different prediction models on the test set.

Figure 1J. Bubble chart of DeLong's test for different prediction models on the training set.
Figure 1K. Bubble chart of DeLong's test for different prediction models on the validation set.
Figure 1L. Bubble chart of DeLong's test for different prediction models on the test set.



Figure 2. Kaplan-Meier Survival Curves for the Optimal Model

Figure 2A. Kaplan-Meier survival curves for the training set.
Figure 2B. Kaplan-Meier survival curves for the validation set.
Figure 2C. Kaplan-Meier survival curves for the test set.

Figure 3. Model Interpretability

Figure 3A. SHAP variable importance plot for the structured data channel.
Figure 3B. SHAP token-level importance plot from the text channel.
Figure 3C. Word cloud visualization of key features extracted from the text channel.

Figure 4. Forest Plot of Sensitivity Analysis

Forest plot displaying the results of sensitivity analysis across different subgroups and conditions.

Figure 5. Flow Chart of this Study

Figure 5A. Study enrollment flowchart illustrating participant selection and exclusion criteria.
Figure 5B. Schematic diagram of the dual-branch deep learning network architecture showing the
integration of structured data and text processing channels.
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Table 1. Subjects Baseline

Total (n= ZJU4th ZJTZH YNH JHPH NBH Stati
Variables 2508) (n=714) (n=1002) (n=442) (n=221) (n=129) stic P
65.00 68.00 64.00 64.00 66.00 67.00
Age (years), M (Qi, (58.00, (61.00,72.0  (57.00,70.0 (56.00,71.0 (59.00,72.0 (58.00,74.0 ¥*=56 <.
Q3) 71.00) 0) 0) 0) 0) 0) 424 01
24.62 24.72 24.64 24.55 24.47 25.02
BMI (kg/m2), M (Q:,  (23.12, (23.50,26.0  (22.59,26.7 (22.50,26.5 (23.92,25.0 (23.23,27.0 y*=6. O.
Q3) 26.25) 2) 7) 6) 5) 2) 504 16
=10 0.
Gender, n(%) .98 03
1572
Male (62.68) 445 (62.32) 634 (63.27) 267 (60.41) 156 (70.59) 70 (54.26)
Female 936 (37.32) 269 (37.68) 368(36.73) 175(39.59) 65(29.41) 59 (45.74)
=34 <.

Hypertension, n(%) .95 01



None
Yes
Coronary Artery

Disease, n(%)

None
Yes

Diabetes, n(%)

None
Yes

AF type, n(%)

Paroxysmal
Persistent

Status, n(%)

None

Recurrence

Systolic Blood

Pressure (mmHg), M

(Q1,Qs)
Diastolic Blood

Pressure (mmHg), M

(Q1, Q)

AF Duration (months),

M (Q1, Q3)

CHA2DS2-VASc,

Mean + SD

HAS-BLED, Mean +

SD

LAD (mm), M (Q;,

Q)

1148
(45.77)
1360

(54.23)

2037
(81.22)
471 (18.78)

2086
(83.17)
422 (16.83)

1542
(61.48)
966 (38.52)

1942
(77.43)
566 (22.57)
127.80
(117.00,
139.00)
79.40
(71.00,
86.00)

12.00 (2.00,
48.00)
232+
1.51

0.77 +
0.81
39.00
(35.00,
43.00)

284 (39.78)

430 (60.22)

578 (80.95)
136 (19.05)

588 (82.35)
126 (17.65)

455 (63.73)
259 (36.27)

526 (73.67)
188 (26.33)
128.00
(116.00,14
1.00)
78.00
(70.00,85.0
0)
3.00
(0.50,24.00
)

227+

1.42

1.18 +

0.94
37.00
(33.00,41.3
0)

519 (51.80)

483 (48.20)

848 (84.63)
154 (15.37)

872 (87.03)
130 (12.97)

535 (53.39)
467 (46.61)

827 (82.53)
175 (17.47)
127.95
(115.00,14
0.00)
79.00
(72.00,88.0
0)
12.00
(3.00,48.00
)

238+

1.60

0.61 +

0.72
41.00
(36.00,45.0
0)

193 (43.67)

249 (56.33)

317 (71.72)
125 (28.28)

358 (81.00)
84 (19.00)

267 (60.41)
175 (39.59)

315 (71.27)
127 (28.73)
120.00
(114.00,13
8.00)
80.00
(70.00,84.0
0)
24.02
(5.79,72.00
)

2.19+

1.60

0.55 +

0.62
39.00
(35.00,43.0
0)

109 (49.32)

112 (50.68)

185 (83.71)
36 (16.29)

164 (74.21)
57 (25.79)

202 (91.40)
19 (8.60)

172 (77.83)
49 (22.17)
128.00
(124.00,13
2.60)
78.60
(76.70,81.2
0)
32.15
(20.16,48.1
5)

2.04 £

0.66

0.59 +

0.59
38.00
(33.00,40.0
0)

43 (33.33)

86 (66.67)

109 (84.50)
20 (15.50)

104 (80.62)
25 (19.38)

83 (64.34)
46 (35.66)

102 (79.07)
27 (20.93)
131.00
(118.00,14
5.00)
82.00
(73.00,89.0
0)
5.00
(1.00,24.00
)

3.02+

1.67

0.77 +

0.82
41.00
(37.00,44.0
0)

=35
64

=25
76

=11
3.41

=30
55

x*=20
A3

=18
T1#

£=24

6.684#
F=1
0.34
F=7
4.01

=15
4.98#

01

01

01

01

01

01

01

01

01

01



LVEF(%), M (Q1, Q3)

Survival Time
(months), M (Q1, Q3)

HbAIC, M (Q1, Q3)

FPG (mmol/L), M
(Q1,Qs)

TC (mmol/L), M (Qu,
Qs)

TG (mmol/L), M (Q,
Q)

HDL (mmol/L), M

(le Q3)
LDL (mmol/L), M

(le Q3)

Albumin(g/L), M (Q,

Qs)

ALT (U/L), M (Q1, Q3)

AST (U/L), M (Qi,
Q3)

62.28
(58.00,
67.00)
31.00

(17.00,
48.00)

6.10 (5.80,
6.44)

5.14 (4.58,
5.87)

4.08 (3.49,
4.77)

1.36 (0.99,
1.90)

1.16 (0.99,
1.35)

2.24 (1.77,
2.76)
39.90
(37.50,
43.18)

22.00
(15.00,
30.07)

23.00
(19.00,

64.00
(60.00,68.3
0)

25.00
(14.00,41.0
0)

6.06
(5.70,6.46

)

491
(4.44,5.48

)

3.87
(3.25,4.54
)

1.24
(0.93,1.73
)

1.08
(0.91,1.27)
2.12
(1.60,2.65)
38.60
(36.60,40.8
0)

19.00
(14.00,28.
00)

23.00
(19.00,28.

60.00
(54.00,65.0
0)

32.00
(19.00,53.0
0)

6.10
(5.80,6.40

)

5.55
(5.03,6.53

)

4.36
(3.65,5.06
)

1.32
(0.94,1.87

)

1.22
(1.07,1.45)
2.34
(1.82,2.86)
42.10
(38.10,45.0
0)

23.00
(16.00,35.
00)

24.00
(20.00,31.

64.00
(59.00,68.0
0)

43.00
(17.00,69.0
0)

6.20
(5.78,6.60
)

433
(249,521

)

4.11
(3.41,4.84
)

1.64
(1.08,4.46

)

1.11
(0.93,1.27)
2.40
(1.80,3.06)
40.90
(37.70,43.8
0)

23.00
(16.00,32.
00)

22.00
(18.00,28.

62.25
(60.16,63.2
5)

34.40
(25.30,39.9
0)

6.11
(6.02,6.28

)

5.36
(5.04,5.72

)

3.99
(3.73,4.15

)

1.43
(1.29,1.57

)

1.26
(1.10,1.55)
2.16
(1.96,2.31)
39.22
(38.41,39.7
6)

23.10
(21.50,28.
10)

24.70
(22.70,26.

65.00
(62.00,68.0
0)

25.00
(17.00,33.0
0)

6.10
(5.80,6.40

)

4.69
(4.26,5.15

)

4.04
(3.25,4.61

)

1.30
(0.97,1.92

)

111
(0.94,1.25)
2.32
(1.66,2.81)
39.70
(37.50,41.5
0)

17.00
(14.00,25.
00)

19.00
(16.00,23.

=18
3.84#

=12
5.29#

=1
2.40

y2=
96.2
8#

5.25

3.16

=18
7.09#
=59
53#

=23
7.81#

r=8

7.62

=1
243

01

01

01

01

01



28.25) 00) 00) 00) 70) 00) 540
0
1
<
76.00 73.45 78.00 74.00 76.40 68.00 =3
ALP (U/L), M (Qi,
(64.00, (61.00,87. (65.00,92. (61.00,90. (69.80,80. (57.00,83. 5.24 0
Q) 88.00) 00) 00) 00) 50) 00) # 0
1
74.89 73.00 76.00 75.00 75.50 67.00
Creatine (umol/L), M (65.00, (62.00,86.0 (66.00,87.0 (65.25,88.0 (73.40,79.3 (56.00,78.0 =46 <.
(Q1, Q3) 85.00) 0) 0) 0) 0) 0) A6# 01
eGFR 87.00 90.00 84.00 86.25 88.70 86.87
(ml/min/1.73m?), M (75.00, (78.00,103.  (71.00,94.0 (72.90,97.1 = (84.10,93.1 (70.03,956 =88 <.
(Q1, Q3) 96.00) 00) 0) 0) 0) 7) 09%# 01
1.89 + 175+ 213+ 1.74 + 1.59 + 188+  F=19 <
APPLE, Mean + SD
1.16 1.14 1.18 1.19 0.69 1.25 16 o1
CAAP-AF, Mean + 3.98 + 3.90 + 423 + 3.94 + 2.99 + 429+ 13 <
SD 2.04 1.93 2.09 221 1.39 2.02 36 01
I/111 Anti-arrythmia r=65 <.
Drug Use, n(%) .07 01
None 505 (20.14) 130 (18.21) ~ 276 (27.54) 54 (12.22) 26 (11.76) 19 (14.73)
2003
Yes (79.86) 584 (81.79) 726 (72.46) 388 (87.78) 195 (88.24) 110 (85.27)
I Anti-arrythmia r=22 <.
Drug Use, n(%) .66 01
2001
None (79.78) 538 (75.35) 793 (79.14) 371(83.94) 194 (87.78) 105 (81.40)
Yes 507 (20.22) 176 (24.65) 209 (20.86) 71(16.06) 27 (12.22) 24 (18.60)
#: Kruskal-waills test, y*: Chi-square test, F: ANOVA
M: Median, Q:: 1st Quartile, Qs: 3st Quartile , SD: standard deviation
Table 2. Model Performance Comparison
Model Dataset ACC AUC Sensitivity Specificity NPV PPV F1

AF type



Model Dataset ACC AUC Sensitivity Specificity NPV PPV F1
Train 0.614 0.604 0.587 0.621 0.848 0.293 0.391
Val 0.656 0.637 0.591 0.683 0.805 0.429 0.497
Test 0.683 0.507 0.197 0.818 0.786 0.231 0.213
APPLE
Train 0.473 0.607 0.758 0.397 0.859 0.252 0.378
Val 0.624 0.739 0.795 0.556 0.871 0.419 0.549
Test 0.700 0.473 0.184 0.843 0.788 0.246 0.211
CAAP-AF
Train 0.609 0.618 0.581 0.616 0.846 0.289 0.386
Val 0.733 0.798 0.669 0.759 0.851 0.528 0.590
Test 0.723 0.516 0.171 0.876 0.792 0.277 0.211
CHA2DS2-VASCc
Train 0.415 0.519 0.697 0.339 0.807 0.221 0.335
Val 0.713 0.772 0.701 0.717 0.856 0.500 0.584
Test 0.329 0.504 0.908 0.168 0.868 0.232 0.370
LAD
Train 0.650 0.616 0.529 0.683 0.844 0.309 0.390
Val 0.724 0.729 0.575 0.784 0.821 0.518 0.545
Test 0.611 0.613 0.684 0.591 0.871 0.317 0.433

LLaMA-Fusion



Model Dataset ACC AUC Sensitivity Specificity NPV PPV F1
Train 0.737 0.837 0.713 0.744 0.906 0.427 0.535
Val 0.715 0.810 0.732 0.708 0.868 0.503 0.596
Test 0.723 0.828 0.763 0.712 0.915 0.423 0.545
Mistral-Fusion
Train 0.724 0.819 0.691 0.732 0.898 0.409 0.514
Val 0.699 0.800 0.732 0.686 0.864 0.484 0.583
Test 0.674 0.777 0.711 0.664 0.892 0.370 0.486
Phi-2 Fustion
Train 0.737 0.837 0.713 0.744 0.906 0.427 0.535
Val 0.715 0.810 0.732 0.708 0.868 0.503 0.596
Test 0.697 0.795 0.737 0.686 0.904 0.394 0.514
MedGemma Fusion
Train 0.834 0.935 0.840 0.833 0.951 0.574 0.682
Val 0.833 0.928 0.811 0.841 0.917 0.673 0.736
Test 0.809 0.912 0.816 0.807 0.940 0.539 0.649
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C-index: 0.874, p value: 0.000

1.00 1
0.751
0.50 1
0.251{ —— High Risk
—— Low Risk
0.00 ; i . ; ' ;
0 20 40 60 80 100
High Risk timeline
Atrisk 531 253 110 43 5 1]
Censored 0 50 137 186 223 227
Events 0 228 284 302 ans 304
Low Risk
Atrisk 1185 BB3 455 179 25 0
Censored 0 258 677 947 1101 1126
Events 0 44 53 58 59 59

C-index: 0.860, p value: 0.000

1.0
0.8
0.6
044 —— High Risk
—— Low Risk
0 20 40 60 80 100
High Risk timeline
At risk 185 72 46 23 g 1
Censored 0 4 17 39 52 60
Events 0 89 102 103 104 104
Low Risk
Atrisk 277 235 190 121 63 13
Censored 0 19 64 133 191 241
Events 0 23 23 23 23 23

C-index: 0.870, p value: 0.000
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