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Abstract 

 

Multimodal perioperative data from patients undergoing atrial fibrillation (AF) ablation offer 

valuable insights for stratifying recurrence risk, yet remain underutilized in prediction models. 

This multicenter retrospective study included 2,508 patients who underwent AF ablation at five 

Chinese centers: The Fourth Affiliated Hospital of Zhejiang University School of Medicine (Jan 

2016–Mar 2024; Training Cohort), Taizhou Hospital of Zhejiang Province (Jan 2015–Jan 2024; 

Training Cohort), The Affiliated Hospital of Yunnan University (Jan 2016–Jan 2024; Validation 

Cohort), Jinhua People’s Hospital (Jan 2020–Jan 2024; Test Cohort), and Ningbo Beilun Hospital 

(Jan 2020–Jan 2024; Test Cohort). We developed a dual-branch deep learning model to predict AF 

recurrence, in which structured data were processed via a 1D ResNet and textual data were encoded 

using four large language models (LLaMA-7B, Phi2-2.7B, Mistral-7B, and MedGemma-27B). 

The model incorporating MedGemma for text feature extraction performed best, achieving areas 

under the curve of 0.934 (95% CI: 0.921–0.946), 0.928 (95% CI: 0.904–0.950), and 0.911 (95% 

CI: 0.878–0.941) on the training, validation, and test sets, respectively. Our model integrates 

multimodal perioperative data from AF ablation patients, effectively identifies high-risk 

individuals, and may facilitate targeted interventions to reduce relapse. 

 

Keywords: atrial fibrillation recurrence; catheter ablation; large language models; deep learning; 

multimodal medical text 
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Introduction 

Catheter ablation (CA) is a rhythm control strategy endorsed by guidelines for patients with atrial 

fibrillation (AF) [1]. Nonetheless, long-term freedom from atrial arrhythmias remains 

unsatisfactory, with 30%–50% of patients experiencing recurrence within one year and requiring 

repeat ablation [2]. The identification of populations at high risk for AF recurrence facilitates the 

development of post-ablation preventive strategies and rhythm control regimens [2]. 

Established predictors, including AF type, left atrial diameter, AF duration, machine learning 

models based on structured preoperative data, and clinical risk scores such as APPLE and CAAP-

AF, have demonstrated efficacy in forecasting recurrence [3,4,5]. However, they remain 

constrained by their reliance on pre-procedural information and fail to capture the impact of 

individualized treatment strategies and procedural specifics on outcomes. The clinical 

management of AF generates extensive multimodal textual records that encapsulate valuable 

information beyond the structured data. Echocardiography reports provide quantitative and 

qualitative assessments of the cardiac structure and function, incorporating interpreter-specific 

insights. Pre-procedural 24-hour Holter monitoring captures the dynamic arrhythmia burden and 

heart rate variability. Crucially, electrophysiologists document detailed procedural notes, including 

the ablation strategy, lesion set design, and real-time parameters, which are often lost in structured 

data systems. The semantic depth of these texts represents a critical and underutilized source of 

prognostic information. 

Large language models (LLMs) provide a transformative approach to clinical text mining 

through advanced semantic understanding [6]. This study innovatively applied four state-of-the-

art LLMs—MedGemma, Phi-2, Llama, and Mistral—to derive high-dimensional features from 

clinical texts such as echocardiography reports, Holter interpretations, and ablation notes 

[7,8,9,10]. By evaluating the proficiency of each model in medical language comprehension, we 

identified the most predictive LLM for textual representation. We further propose a deep learning 

framework that combines LLM-based text features with structured clinical data. Using peri-

procedural text extracted from hospital systems for patients with AF undergoing ablation, we 

aimed to develop a precise and individualized AF recurrence prediction model tailored to 

personalized treatment. 

Results 

Participant Baseline 

This study retrospectively analyzed data from patients who underwent AF ablation at five 

Chinese AF centers: the Fourth Affiliated Hospital of Zhejiang University School of Medicine 

(ZJU4th; January 2016–March 2024), Taizhou Hospital of Zhejiang Province (ZJTZH; January 

2015–January 2024), the Affiliated Hospital of Yunnan University (YNH; January 2016–January 

2024), Jinhua People’s Hospital (JHPH; January 2020–January 2024), and Ningbo Beilun Hospital 

(NBH; January 2020–January 2024). As shown in Table 1 (the missing structured data is shown in 

Supplementary Table 1), a total of 2,508 participants were enrolled in this study, with a median 

age of 65.00 (interquartile range [IQR] 58.00–71.00) years. Among them, 1,572 (62.68%) were 
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men. The overall median follow-up duration was 31.00 (IQR 17.00–48.00) months, and the overall 

recurrence rate was 22.57%. Significant differences (p < 0.05) were observed across centers in the 

following variables: age, systolic blood pressure (SBP), diastolic blood pressure (DBP), AF 

duration, CHA₂DS₂-VASc score, HAS-BLED score, left atrial diameter (LAD), left ventricular 

ejection fraction (LVEF), survival time, high-density lipoprotein (HDL), low-density lipoprotein 

(LDL), albumin, creatinine, estimated glomerular filtration rate (eGFR), APPLE score, CAAP-AF 

score, gender, hypertension, coronary artery disease, diabetes, AF type, and use of class I/III or 

class II antiarrhythmic drugs.  

Model Development and Validation 

Before model development, patient data from the five centers were assigned to a training set 

(ZJU4th and ZJTZH), a validation set (YNH), and a test set (JHPH and NBH). Detailed data 

distributions are provided in Supplementary Table 2, Supplementary Table 3, Supplementary 

Table 4. Within the architecture of the dual-branch deep learning network, we fine-tuned different 

LLMs (LLaMA-7B, Phi2-2.7B, Mistral-7B, and MedGemma-27B) as the base for the textual 

feature extraction branch (The clinical text data are provided in the Supplementary 3), while 

keeping the structured data branch and late fusion pathway identical across experiments. As shown 

in Figure 1A–C, the model incorporating the MedGemma-27B module for text processing, 

followed by late fusion with structured data (MedGemma-Fusion), yielded the best performance. 

It achieved an area under the curve of 0.934 (95% confidence interval [CI]: 0.921–0.946) in the 

training set, 0.928 (95% CI: 0.904–0.950) in the validation set, and 0.911 (95% CI: 0.878–0.941) 

in the test set. Additionally, we assessed the impact of sample size on the performance of the 

MedGemma-Fusion model (Supplementary Figure 1). To evaluate the generalization 

performance of the model, we used each center as the test set, with the remaining centers 

constituting the training and validation sets (Supplementary Table 5). To further validate the 

rationale for late fusion, we conducted additional ablation experiments, including predictions of 

AF recurrence based solely on structured data and predictions based on text features extracted 

using the optimal LLM (MedGemma) (Supplementary Table 6, Supplementary Figure 2). 

Moreover, we conducted a series of ablation studies to rigorously substantiate the design of 

MedGemma-Fusion network for predicting AF recurrence. We adopted a two-stage fine-tuning 

strategy for the text feature extraction branch: domain-adaptive pre-training, followed by 

supervised contrastive fine-tuning (Supplementary Table 7, Supplementary Figure 3), during 

this process, the weights of the structured data channel in MedGemma-Fusion were frozen. In the 

structured data-processing branch, given that recurrence represents a relatively minor class, we 

implemented a conditional tabular generative adversarial network (GAN) within the training fold 

to perform data augmentation and balance the class distribution. Specifically, a conditional 

Wasserstein GAN with gradient penalty (WGAN-GP) variant tailored to tabular data was 

employed, where the generator was conditioned on class labels and encoded categorical features 

to produce synthetic positive samples consistent with the real joint distribution. After freezing the 

weights of the text feature channel in the optimally trained MedGemma-Fusion model, we 

compared different data augmentation techniques (synthetic minority oversampling technique 

[SMOTE] and adaptive synthetic sampling [ADASYN]) to demonstrate the advantages of using 
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the WGAN-GP (Supplementary Table 8, Supplementary Figure 4). We further compared the 

MedGemma-Fusion model against conventional AF recurrence risk factors (including AF type and 

LAD) and established clinical risk scores (CHA₂DS₂-VASc, CAAP-AF, and APPLE). As 

summarized in Table 2 and depicted in Figure 1D–L, MedGemma-Fusion outperformed all 

reference models across all three datasets. Moreover, decision curve analysis (DCA) consistently 

demonstrated the superior clinical utility of MedGemma-Fusion across datasets, as shown in 

Figure 1G–I. We also benchmarked our novel AF recurrence risk model against models derived 

from the original variables of the APPLE and CAAP-AF scores (Supplementary Table 9, 

Supplementary Table 10, Supplementary Table 11). 

Kaplan–Meier (K-M) Survival Analysis 

Based on the optimal MedGemma-Fusion model, we generated K-M survival curves to evaluate 

its ability to discriminate recurrence risk across different datasets. As shown in Figure 2, the model 

exhibited a strong discriminative ability for recurrence risk, with a concordance index of 0.874 in 

the training set, 0.860 in the validation set, and 0.870 in the test set. 

SHapley Additive exPlanations (SHAP)-Based Interpretability Analysis of the Model 

In Figure 3, AF duration, LAD, and AF type emerged as the primary weighted variables within 

the structured data, whereas text-derived features such as “pulmonary vein,” “potential,” and 

“motion” were identified as key vectors contributing to the model’s decision-making process. 

Sensitivity Analysis 

A sensitivity analysis was performed to evaluate the stability of the model with and without early 

AF recurrence (Figure 4).  

 

Discussion 

We developed a dual-branch deep learning network that integrates unstructured medical texts and 

structured data features based on perioperative data from patients undergoing AF ablation. In the 

text feature extraction module, a comparative evaluation of the four LLMs within an invariant 

fusion framework identified MedGemma-Fusion as optimal. This demonstrated robust predictive 

performance and generalizability in external validation. 

In clinical practice, patients undergoing AF ablation generate multimodal medical data during 

the perioperative period, including unstructured medical texts and structured data. Textual 

modalities capture physicians’ clinical interpretations and reflect patients’ current AF progression. 

However, conventional machine learning models remain limited in their ability to comprehend the 

underlying logical relationships within medical services, which was corroborated by the models 

we built by employing clinical variables from the APPLE and CAAP-AF scores. In contrast, LLMs 

trained through extensive parameter iterations demonstrate superior performance in processing 

textual data. This study designed a dual-channel deep learning architecture that prevents structured 

data vectors from inducing hallucinatory interference during textual feature extraction. 

Furthermore, to fine-tune the LLMs, we employed a weakly supervised training strategy 

(recurrence risk classification) to mitigate catastrophic forgetting during text feature learning. The 

rationality of our network architecture was verified through a series of ablation studies. 

The MedGemma-Fusion framework achieved the best predictive performance, indicating that 
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MedGemma effectively learned more discriminative feature representations from the multimodal 

medical text data of patients with AF. MedGemma, developed by Google (Mountain View, CA, 

USA) based on the Gemma-3 architecture, is a domain-specific LLM optimized for multimodal 

medical comprehension [7]. Its medical background knowledge enhances its utility in supporting 

clinical decision-making. Therefore, MedGemma performed optimally in this study, given that its 

pre-training corpus was derived from medical domains. Because LLMs operate through semantic 

segmentation, we conducted a keyword analysis on the best-performing model to identify 

semantically salient features [11]. Terms such as “pulmonary vein” and “potential,” which are key 

concepts documented during ablation procedures, emerged as critical tokens. This aligns with the 

semantic compression mechanism of transformer-based models, where attention mechanisms and 

subword tokenization condense core semantic information into highly informative tokens, such as 

the aggregated representation of “pulmonary vein” or the verbal center of “ablation,” causing 

attribution to focus on these tokens. These terms correspond to essential steps in 

electrophysiological procedures, including pulmonary vein isolation, which is the cornerstone of 

AF ablation, and the elimination of fractionated or additional potentials to disrupt rotor formation 

and terminate re-entrant circuits [12]. This confirms that the model successfully captured clinically 

relevant feature vectors. 

The token “Vein” reflects the necessity of femoral vein puncture for catheter insertion during AF 

ablation, increasing its frequency in clinical narratives. Furthermore, the token “Motion” likely 

originates from the model’s interpretation of preoperative echocardiography reports and carries 

significant weight in feature importance. Different types of AF exhibit distinct atrial motion 

patterns, potentially related to atrial fibrosis [13,14]. Although echocardiography is operator-

dependent, we mitigated this heterogeneity by incorporating multicenter datasets, thereby 

enhancing the robustness of the model. By leveraging textual reports from echocardiograms, we 

input functional and kinematic descriptors of cardiac chambers based on the sonographers’ 

expertise, circumventing the variability in imaging parameters or machine differences. 

Interestingly, tokens from Holter reports contributed relatively little to the model likely because 

paroxysmal AF, which was the predominant subtype in our cohort, often resulted in normal Holter 

findings. While previous studies by Krasteva and Zhang highlighted the predictive value of Holter 

monitoring for AF detection, its limited influence may be attributable to the loss of granular 

electrographic features in textual representations [15,16]. 

In the structured data analysis, factors such as the duration of AF, AF type, and left atrial 

diameter were identified as the most significant predictors of AF recurrence, which was consistent 

with our previous findings [17]. These factors contribute to deterioration of the atrial substrate to 

varying degrees, thereby perpetuating arrhythmia [14,18]. These results validate the efficacy of 

our approach, which combines sample augmentation with a ResNet-based architecture within a 

structured data pipeline. 

In this study, the rationale behind adopting a center-based split into training/validation/test 

sets was to ensure, without introducing data leakage, sufficient sample size and relatively balanced 

class distribution during the training phase. This approach enables stable and reproducible training 

and hyperparameter tuning for both our model and all comparator baselines, while also allowing a 



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

 

 

genuine assessment of cross-center generalization during testing. The ZJU4th and ZJTZ cohorts 

were used for training: together they provide a larger overall sample size with a more balanced 

ratio of positive to negative cases. Their combination offers richer learning signals for the model 

and baseline methods, thereby reducing instability and randomness caused by insufficient training 

data or severe class imbalance. The YNH cohort served for external validation (hyperparameter 

tuning and model selection): an independent center not involved in training was reserved for early 

stopping, hyperparameter selection, and final model determination. This prevents “implicit tuning” 

from repeated experimentation on the test set and ensures objectivity in the evaluation pipeline. 

The JHPH and NBH cohorts were held out for external testing. The remaining centers were entirely 

reserved for final performance assessment to evaluate cross-center generalization. In particular, 

JHPH, a center with fewer positive samples and a skewed distribution, is more suitable as an 

external test set representing a challenging “real-world” scenario. Including it in training could 

introduce severe class imbalance, compromise training stability, and hinder a conservative and 

credible estimation of generalization performance. To further verify the robustness of our deep 

learning model, we also performed additional leave-one-center-out validation. 

Our study had some inherent limitations. First, although the model was validated across 

multiple centers, the sample size remained limited, and further validation with larger cohorts is 

warranted. Second, while we incorporated multimodal medical text data, including 

echocardiography, Holter electrocardiography (ECG), and procedural records, variability in 

reporting styles and levels of detail among physicians may have introduced heterogeneity into the 

text-based features. Although personalized ablation strategies (e.g., intraoperative energy settings 

and ablation sites) have been tailored to patients with AF across different centers, their impact on 

feature extraction using LLMs from templated procedural notes remains elusive. In the structured 

data domain, we incorporated both routine pre-operative laboratory tests and basic patient 

information. While exporting these structured data from the Hospital Information System reflects 

real-world clinical practice, it inevitably introduces variables unrelated to AF recurrence that may 

influence the model decision-making. Moreover, it is unavoidable that certain risk factors relevant 

to AF recurrence are omitted due to their unavailability in current real-world settings or within the 

Hospital Information System. Finally, the LLMs used in this study were based on the most recent 

versions available at the time of research; however, given the rapid iteration of LLMs, the impact 

of future updates on model performance remains uncertain. Additionally, the substantial 

computational resources required to deploy such models may impede their implementation in 

resource-limited healthcare settings.  

We developed a dual-branch deep learning network that integrates feature representations 

extracted from medical texts using MedGemma, a specialized LLM, with structured data features 

derived from the perioperative records of AF ablation patients. This integrated approach provides 

novel clinical insights into risk prognosis and enhances strategies for the post-procedural 

management of AF ablation. 

Methods 

This study retrospectively analyzed data from consecutively enrolled patients who underwent AF 

ablation at five Chinese AF centers: ZJU4th (January 2016–March 2024), ZJTZH (January 2015–
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January 2024), YNH (January 2016–January 2024), JHPH (January 2020–January 2024), and 

NBH (January 2020–January 2024). All patients were followed up until March 2025, with a 

minimum follow-up of one year for each individual. The study was conducted under the 

Declaration of Helsinki and received approval from the leading Ethics Committee of the Fourth 

Affiliated Hospital of Zhejiang University School of Medicine (No. K2025068); due to the 

retrospective nature and full anonymization of imaging data, informed consent was waived.  

Structured perioperative data of the patients undergoing AF were extracted from each center’s 

medical record system, including basic demographic indicators (age, gender, body mass index), 

patients' preoperative vital signs (preoperative SBP and DBP), comorbidity profile of patients 

(hypertension, coronary artery disease, and diabetes), cardiac structure and function in patients 

(LAD, LVEF), clinical status of patients (AF duration, AF type, CHA₂DS₂-VASc score, HAS-

BLED score, and use of class I/III or class II antiarrhythmic drugs at admission), and preoperative 

laboratory parameters (glycosylated hemoglobin, fasting plasma glucose, total cholesterol, 

triglycerides, HDL, LDL, albumin, alanine aminotransferase (ALT), aspartate aminotransferase 

(AST), alkaline phosphatase (ALP), creatine, and eGFR). The APPLE and CAAP-AF scores were 

also calculated. Textual data included Holter ECG reports, preoperative echocardiography reports, 

and surgical records.  

The study exclusion criteria were as follows: 

1.Repeat ablation procedures; 

2.Patients with valvular AF;  

3.AF patients with New York Heart Association class IV heart failure; 

4.Missing Holter ECG or preoperative echocardiography data; 

5.Loss to follow-up after ablation. 

The patient enrollment flowchart is shown in Figure 5A. 

Definition of AF Recurrence  

According to the latest American College of Cardiology/American Heart Association guidelines, 

AF recurrence is defined as the presence of atrial arrhythmias (atrial tachycardia, atrial flutter, or 

atrial fibrillation) lasting > 30 s after the procedure. In this study, recurrences occurring within the 

first 3 months postoperatively were classified as early recurrences, whereas those occurring after 

3 months were defined as late recurrences [1]. 

Post-ablation Follow-up of AF 

Following ablation, all patients underwent outpatient follow-up and 24-hour ambulatory 

electrocardiogram monitoring at 1, 3, and 6 months after the procedure. At 12 months after the 

procedure, outpatient follow-up and 7-day long-term ambulatory electrocardiogram monitoring 

were performed. Subsequently, outpatient follow-up and 24-hour ambulatory electrocardiogram 

monitoring were performed every 6 months. 

Development of a Multimodal Deep Learning Network 

Building upon multimodal fusion and interpretable learning, this study adapted and extended 

methods for predicting AF recurrence. It specifically compared the impact of four open-source 

LLMs (LLaMA-7B, Phi2-2.7B, Mistral-7B, and MedGemma-27B) on the representation of Holter 

ECG reports, echocardiography reports, and surgical records. A convolutional neural network was 
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employed in the structured feature branch for representation learning and classification. 

Furthermore, a GAN was introduced to augment the categories and mitigate the imbalance caused 

by the scarcity of recurrence samples. The dataset comprised multimodal information from the 

perioperative period and follow-up, including 28 structured features and textual data from Holter 

ECG reports, echocardiography reports, and surgical records.  

Preprocessing started with systematic data cleaning on structured channels. For continuous 

variables, a combined outlier detection method based on clinically plausible range constraints and 

the IQR rule was used, with extreme outliers beyond the threshold truncated at quantiles while 

preserving order information. Missing values were handled using a multiple imputation strategy; 

continuous variables were predicted and imputed using regression models constructed with 

multiple imputation chained equations, with mean and variance adjustments to avoid shrinkage; 

and categorical variables were imputed using mode or conditional sampling under Bayesian 

smoothed frequency encoding to preserve category co-occurrence relationships. To standardize the 

scales, continuous features were z-score normalized while retaining scaling parameters for external 

validation, and categorical variables were subjected to target leakage-free one-hot encoding or 

ordinal encoding (for clearly monotonic ordinal features). All the encoders were fitted within the 

training fold and transformed into a validation fold and test set to prevent information leakage. For 

text channels, lightweight cleaning and normalization were performed on dynamic 

electrocardiogram reports, echocardiogram reports, and surgical records, including special symbol 

unification, unit standardization, date and identifier de-identification, and medical abbreviation 

expansion; subsequently, fragment-based sentence segmentation and keyword localization were 

used to enhance key point density.  

To implement LLM embedding + structured CNN late fusion, we construct four parallel text 

encoders, each fine-tuned from a pre-trained LLM (LLaMA, Phi-2, Mistral, MedGemma). Fine-

tuning combines continued pre-training and instruction alignment: first, domain-specific continued 

pre-training is performed on de-identified dynamic electrocardiogram reports, echocardiogram 

reports, and surgical records from our institution to improve clinical terminology coverage and 

syntactic robustness; subsequently, supervised contrastive learning with a classification auxiliary 

objective is used to moderately update the LLMs. To balance computational power and portability, 

LoRA/QLoRA is used for low-rank adaptation, freezing most of the lower-layer weights and 

opening up partial rank parameters in the mid-to-high-layer attention blocks and word embeddings. 

Text representations are uniformly taken from the penultimate layer's [CLS]-equivalent pooled 

vector and a token-attention-based weighted average, concatenated to form a 1024-dimensional 

embedding, and then linearly projected to 256 dimensions to match the representation space of the 

structured branch. For fair comparison, the four LLMs independently train their respective text 

encoders and downstream fusion classification heads, while the remaining training and evaluation 

procedures remain consistent, resulting in four comparable multimodal models. 

The structured branch uses ResNet1D as a 1D CNN backbone to learn local interactions and 

hierarchical features from the 30-dimensional features.Specifically, the structured vectors are 

stacked in a fixed order to form a "feature sequence" of length 30, which is fed into a network 

containing three convolutional blocks: Conv1d (channels=32, kernel size=3, stride=1) + 
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BatchNorm + GELU + MaxPool, followed by a cascade of Conv1d(64, 3) and Conv1d(128, 3). 

The pooling stride of each layer is controlled to cover different receptive fields and extract cross-

feature interactions. The convolutional output is then subjected to global average pooling to obtain 

a 256-dimensional structured embedding, which is enhanced with dropout and layer normalization 

to improve generalization. Considering recurrence is a relatively small minority class, a 

conditional tabular Generative Adversarial Network (GAN) is established within the training fold 

for the structured branch to perform data augmentation and balance the class distribution. We adopt 

a conditional WGAN-GP variant adapted to tabular data, where the generator is conditioned on 

class labels and encoded categorical features to generate synthetic positive samples consistent with 

the real joint distribution. The discriminator is trained with a Lipschitz constraint and gradient 

penalty to improve stability. To prevent the augmented data from introducing distribution drift and 

unreasonable feature combinations, we apply a triple screening process after generation: first, 

density filtering based on Mahalanobis distance to remove low-density outliers; second, hard 

constraints based on clinical rules (physiological relationships between indicators and consistency 

of scoring calculations); and third, an envelope screening of the positive class manifold using a 

one-class SVM fitted only within the training fold. By performing fold-wise augmentation within 

the training set, we achieve stratified sampling alignment, while maintaining the natural 

distribution of the validation and test sets to avoid evaluation bias. 

The fusion stage follows a late fusion strategy with attention weighting. In each model 

instance, the 256-dimensional embedding from the structured branch is concatenated with the 

corresponding 256-dimensional text embedding from the LLM, forming a 512-dimensional joint 

representation. This representation is then fed into a multi-head scaled dot-product attention 

module for learnable cross-modal weighting, with the number of heads set to 4 and the key/value 

dimension set to 64. A gating mechanism is incorporated to suppress noisy text segments or weakly 

relevant structured components. The attention output is mapped to the final binary classification 

logit via a two-layer feedforward network (hidden dimension 256, activation GELU, dropout=0.2), 

and the cross-entropy loss with label-balanced weights is used as the loss function. Optimization 

is performed using AdamW (learning rate 2e-4, weight decay 0.01), with cosine annealing and 

warmup. Training employs stratified k-fold cross-validation (k=5), with patient-level splitting to 

prevent sample leakage. Within each fold, a validation set is used for early stopping and 

hyperparameter selection. Evaluation metrics include accuracy, F1-score, sensitivity, specificity, 

and area under the receiver operating characteristic curve (AUC-ROC), and 95% confidence 

intervals are reported. To ensure comparability across the four LLMs, all non-text side components, 

optimizer settings, training epochs, and early stopping criteria are kept consistent, with only the 

encoder being replaced and fine-tuned individually on the text side. During inference, 

deterministic forwarding with a temperature of 0 is used to obtain stable embeddings, and the 

maximum text length and truncation strategy are fixed to avoid bias caused by differences in 

context length between models. The network architecture of the model is depicted in Figure 5B.  

For the explainability analysis, we calculated the SHAP values in the log-odds domain of the 

fused model output to achieve global and individual explanations. For the structured branch, 

DeepSHAP was used to approximate the marginal contribution of the convolutional pathway to 
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the output, reporting the global importance and interaction effects of each original clinical feature. 

For the text branch, we combined the attention-based token importance with SHAP's text-masking 

estimation to locate the descriptive words driving the prediction. Based on the probability output 

of the optimal model, we determined the optimal threshold using Youden's J statistic to classify 

patients into high- and low-risk groups, followed by a survival analysis to compare the outcome 

differences between the two groups.  

Sample size calculation  

To evaluate the impact of sample size on model stability, we performed additional analyses 

on the optimal model. In machine learning, Faber and Fonseca demonstrated that increasing the 

sample size beyond a certain range may not significantly improve outcomes [19]. As this was a 

retrospective study, the number of patients extracted from each center's electronic hospital 

information system within a predefined time frame was fixed. Therefore, with reference to 

previous literature and considering the sample size of this study's training cohort [20], we 

independently evaluated the change in the AUC of the optimal model between the training and test 

sets across sample sizes ranging from 800 to 1500.  

Statistical Analysis 

Continuous variables with a skewed distribution were expressed as the median and interquartile 

range (IQR). Normally distributed continuous variables were expressed as the mean ± standard 

deviation (SD). Categorical variables were summarized as frequencies (n) and percentages (%). 

DCA was performed to evaluate the clinical value of the model by quantifying the net benefit at 

different threshold probabilities. K-M curves were plotted for patients in the high- and low-risk 

groups, and the log-rank test was used to determine whether there was a statistically significant 

difference in the progression-free survival curves between the two groups. All statistical tests were 

two-sided, and significance was defined as p < 0.05.  

 

Availability of data and materials 

The datasets generated and/or analyzed during the current study are not publicly available as 

they contain confidential patient information but are available from the corresponding author upon 

reasonable request. 

 

Abbreviations 

ADASYN Adaptive Synthetic Sampling 

AF Atrial Fibrillation 

ALP Alkaline Phosphatase 

ALT Alanine Aminotransferase 

AST Aspartate Aminotransferase 

CA Catheter ablation 

CNN Convolutional Neural Network 

eGFR estimated Glomerular Filtration Rate 

FPG Fasting Plasma Glucose 

GAN Generative Adversarial Network 
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HbA1C Hemoglobin A1c 

HDL High-Density Lipoprotein 

LAD Left Atrial Diameter 

LDL Low-Density Lipoprotein 

LLMs Large language models 

LVEF Left Ventricular Ejection Fraction 

WGAN-GP Wasserstein GAN with gradient penalty  

MICE multiple imputation chained equations 

SHAP SHapley Additive exPlanations 

SMOTE synthetic minority oversampling technique 

SVM Support Vector Machine 

TC Total Cholesterol 

TG Triglycerides 
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Figure 1. Comparison of Metrics Among Different Models 

 

Figure 1A. Radar chart comparing different LLM-based text extraction modules in the dual-branch 

deep learning network architecture on the training set. 

Figure 1B. Radar chart comparing different LLM-based text extraction modules in the dual-branch 

deep learning network architecture on the validation set. 

Figure 1C. Radar chart comparing different LLM-based text extraction modules in the dual-branch 

deep learning network architecture on the test set. 

Figure 1D. Receiver operating characteristic (ROC) curves of different prediction models on the 

training set. 

Figure 1E. Receiver operating characteristic (ROC) curves of different prediction models on the 

validation set. 

Figure 1F. Receiver operating characteristic (ROC) curves of different prediction models on the 

test set. 

Figure 1G. Decision curve analysis (DCA) of different prediction models on the training set. 

Figure 1H. Decision curve analysis (DCA) of different prediction models on the validation set. 

Figure 1I. Decision curve analysis (DCA) of different prediction models on the test set. 

Figure 1J. Bubble chart of DeLong's test for different prediction models on the training set. 

Figure 1K. Bubble chart of DeLong's test for different prediction models on the validation set. 

Figure 1L. Bubble chart of DeLong's test for different prediction models on the test set. 
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Figure 2. Kaplan-Meier Survival Curves for the Optimal Model 

 

Figure 2A. Kaplan-Meier survival curves for the training set. 

Figure 2B. Kaplan-Meier survival curves for the validation set. 

Figure 2C. Kaplan-Meier survival curves for the test set. 

 

Figure 3. Model Interpretability 

 

Figure 3A. SHAP variable importance plot for the structured data channel. 

Figure 3B. SHAP token-level importance plot from the text channel. 

Figure 3C. Word cloud visualization of key features extracted from the text channel. 

 

Figure 4. Forest Plot of Sensitivity Analysis 

 

Forest plot displaying the results of sensitivity analysis across different subgroups and conditions. 

 

 

Figure 5. Flow Chart of this Study 

 

Figure 5A. Study enrollment flowchart illustrating participant selection and exclusion criteria. 

Figure 5B. Schematic diagram of the dual-branch deep learning network architecture showing the 

integration of structured data and text processing channels. 
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Table 1. Subjects Baseline 

 

Variables 

Total (n = 

2508) 

ZJU4th 

(n=714) 

ZJTZH 

(n=1002) 

YNH 

(n=442) 

JHPH 

(n=221) 

NBH 

( n=129) 

Stati

stic P 

Age (years), M (Q₁, 

Q₃) 

65.00 

(58.00, 

71.00) 

68.00 

(61.00,72.0

0) 

64.00 

(57.00,70.0

0) 

64.00 

(56.00,71.0

0) 

66.00 

(59.00,72.0

0) 

67.00 

(58.00,74.0

0) 

χ²=56

.42# 

<.

01 

BMI (kg/m2), M (Q₁, 

Q₃) 

24.62 

(23.12, 

26.25) 

24.72 

(23.50,26.0

2) 

24.64 

(22.59,26.7

7) 

24.55 

(22.50,26.5

6) 

24.47 

(23.92,25.0

5) 

25.02 

(23.23,27.0

2) 

χ²=6.

50# 

0.

16 

Gender, n(%)       

χ²=10

.98 

0.

03 

  Male 

1572 

(62.68) 445 (62.32) 634 (63.27) 267 (60.41) 156 (70.59) 70 (54.26)   

  Female 936 (37.32) 269 (37.68) 368 (36.73) 175 (39.59) 65 (29.41) 59 (45.74)   

Hypertension, n(%)       

χ²=34

.95 

<.

01 
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  None 

1148 

(45.77) 284 (39.78) 519 (51.80) 193 (43.67) 109 (49.32) 43 (33.33)   

  Yes 

1360 

(54.23) 430 (60.22) 483 (48.20) 249 (56.33) 112 (50.68) 86 (66.67)   

Coronary Artery 

Disease, n(%)       

χ²=35

.64 

<.

01 

  None 

2037 

(81.22) 578 (80.95) 848 (84.63) 317 (71.72) 185 (83.71) 109 (84.50)   

  Yes 471 (18.78) 136 (19.05) 154 (15.37) 125 (28.28) 36 (16.29) 20 (15.50)   

Diabetes, n(%)       

χ²=25

.76 

<.

01 

  None 

2086 

(83.17) 588 (82.35) 872 (87.03) 358 (81.00) 164 (74.21) 104 (80.62)   

  Yes 422 (16.83) 126 (17.65) 130 (12.97) 84 (19.00) 57 (25.79) 25 (19.38)   

AF type, n(%)       

χ²=11

3.41 

<.

01 

  Paroxysmal 

1542 

(61.48) 455 (63.73) 535 (53.39) 267 (60.41) 202 (91.40) 83 (64.34)   

  Persistent 966 (38.52) 259 (36.27) 467 (46.61) 175 (39.59) 19 (8.60) 46 (35.66)   

Status, n(%)       

χ²=30

.55 

<.

01 

  None 

1942 

(77.43) 526 (73.67) 827 (82.53) 315 (71.27) 172 (77.83) 102 (79.07)   

  Recurrence 566 (22.57) 188 (26.33) 175 (17.47) 127 (28.73) 49 (22.17) 27 (20.93)   

Systolic Blood 

Pressure (mmHg), M 

(Q₁, Q₃) 

127.80 

(117.00, 

139.00) 

128.00 

(116.00,14

1.00) 

127.95 

(115.00,14

0.00) 

120.00 

(114.00,13

8.00) 

128.00 

(124.00,13

2.60) 

131.00 

(118.00,14

5.00) 

χ²=20

.43# 

<.

01 

Diastolic Blood 

Pressure (mmHg), M 

(Q₁, Q₃) 

79.40 

(71.00, 

86.00) 

78.00 

(70.00,85.0

0) 

79.00 

(72.00,88.0

0) 

80.00 

(70.00,84.0

0) 

78.60 

(76.70,81.2

0) 

82.00 

(73.00,89.0

0) 

χ²=18

.71# 

<.

01 

AF Duration (months), 

M (Q₁, Q₃) 

12.00 (2.00, 

48.00) 

3.00 

(0.50,24.00

) 

12.00 

(3.00,48.00

) 

24.02 

(5.79,72.00

) 

32.15 

(20.16,48.1

5) 

5.00 

(1.00,24.00

) 

χ²=24

6.68# 

<.

01 

CHA2DS2-VASc, 

Mean ± SD 

2.32 ± 

1.51 

2.27 ± 

1.42 

2.38 ± 

1.60 

2.19 ± 

1.60 

2.04 ± 

0.66 

3.02 ± 

1.67 

F=1

0.34 

<.

01 

HAS-BLED, Mean ± 

SD 

0.77 ± 

0.81 

1.18 ± 

0.94 

0.61 ± 

0.72 

0.55 ± 

0.62 

0.59 ± 

0.59 

0.77 ± 

0.82 

F=7

4.01 

<.

01 

LAD (mm), M (Q₁, 

Q₃) 

39.00 

(35.00, 

43.00) 

37.00 

(33.00,41.3

0) 

41.00 

(36.00,45.0

0) 

39.00 

(35.00,43.0

0) 

38.00 

(33.00,40.0

0) 

41.00 

(37.00,44.0

0) 

χ²=15

4.98# 

<.

01 
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LVEF(%), M (Q₁, Q₃) 

62.28 

(58.00, 

67.00) 

64.00 

(60.00,68.3

0) 

60.00 

(54.00,65.0

0) 

64.00 

(59.00,68.0

0) 

62.25 

(60.16,63.2

5) 

65.00 

(62.00,68.0

0) 

χ²=18

3.84# 

<.

01 

Survival Time 

(months), M (Q₁, Q₃) 

31.00 

(17.00, 

48.00) 

25.00 

(14.00,41.0

0) 

32.00 

(19.00,53.0

0) 

43.00 

(17.00,69.0

0) 

34.40 

(25.30,39.9

0) 

25.00 

(17.00,33.0

0) 

χ²=12

5.29# 

<.

01 

HbA1C, M (Q₁, Q₃) 
6.10 (5.80, 

6.44) 

6.06 

(5.70,6.46

) 

6.10 

(5.80,6.40

) 

6.20 

(5.78,6.60

) 

6.11 

(6.02,6.28

) 

6.10 

(5.80,6.40

) 

χ²=1

2.40

# 

0

.

0

1

5 

FPG (mmol/L), M 

(Q₁, Q₃) 

5.14 (4.58, 

5.87) 

4.91 

(4.44,5.48

) 

5.55 

(5.03,6.53

) 

4.33 

(2.49,5.21

) 

5.36 

(5.04,5.72

) 

4.69 

(4.26,5.15

) 

χ²=4

96.2

8# 

<

.

0

0

1 

TC (mmol/L), M (Q₁, 

Q₃) 

4.08 (3.49, 

4.77) 

3.87 

(3.25,4.54

) 

4.36 

(3.65,5.06

) 

4.11 

(3.41,4.84

) 

3.99 

(3.73,4.15

) 

4.04 

(3.25,4.61

) 

χ²=9

5.25

# 

<

.

0

0

1 

TG (mmol/L), M (Q₁, 

Q₃) 

1.36 (0.99, 

1.90) 

1.24 

(0.93,1.73

) 

1.32 

(0.94,1.87

) 

1.64 

(1.08,4.46

) 

1.43 

(1.29,1.57

) 

1.30 

(0.97,1.92

) 

χ²=9

3.16

# 

<

.

0

0

1 

HDL (mmol/L), M 

(Q₁, Q₃) 

1.16 (0.99, 

1.35) 

1.08 

(0.91,1.27) 

1.22 

(1.07,1.45) 

1.11 

(0.93,1.27) 

1.26 

(1.10,1.55) 

1.11 

(0.94,1.25) 

χ²=18

7.09# 

<.

01 

LDL (mmol/L), M 

(Q₁, Q₃) 

2.24 (1.77, 

2.76) 

2.12 

(1.60,2.65) 

2.34 

(1.82,2.86) 

2.40 

(1.80,3.06) 

2.16 

(1.96,2.31) 

2.32 

(1.66,2.81) 

χ²=59

.53# 

<.

01 

Albumin(g/L), M (Q₁, 

Q₃) 

39.90 

(37.50, 

43.18) 

38.60 

(36.60,40.8

0) 

42.10 

(38.10,45.0

0) 

40.90 

(37.70,43.8

0) 

39.22 

(38.41,39.7

6) 

39.70 

(37.50,41.5

0) 

χ²=23

7.81# 

<.

01 

ALT (U/L), M (Q₁, Q₃) 

22.00 

(15.00, 

30.07) 

19.00 

(14.00,28.

00) 

23.00 

(16.00,35.

00) 

23.00 

(16.00,32.

00) 

23.10 

(21.50,28.

10) 

17.00 

(14.00,25.

00) 

χ²=8

7.62

# 

<

.

0

0

1 

AST (U/L), M (Q₁, 

Q₃) 

23.00 

(19.00, 

23.00 

(19.00,28.

24.00 

(20.00,31.

22.00 

(18.00,28.

24.70 

(22.70,26.

19.00 

(16.00,23.

χ²=1

24.3

<

.
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28.25) 00) 00) 00) 70) 00) 5# 0

0

1 

ALP (U/L), M (Q₁, 

Q₃) 

76.00 

(64.00, 

88.00) 

73.45 

(61.00,87.

00) 

78.00 

(65.00,92.

00) 

74.00 

(61.00,90.

00) 

76.40 

(69.80,80.

50) 

68.00 

(57.00,83.

00) 

χ²=3

5.24

# 

<

.

0

0

1 

Creatine (umol/L), M 

(Q₁, Q₃) 

74.89 

(65.00, 

85.00) 

73.00 

(62.00,86.0

0) 

76.00 

(66.00,87.0

0) 

75.00 

(65.25,88.0

0) 

75.50 

(73.40,79.3

0) 

67.00 

(56.00,78.0

0) 

χ²=46

.46# 

<.

01 

eGFR 

(ml/min/1.73m²), M 

(Q₁, Q₃) 

87.00 

(75.00, 

96.00) 

90.00 

(78.00,103.

00) 

84.00 

(71.00,94.0

0) 

86.25 

(72.90,97.1

0) 

88.70 

(84.10,93.1

0) 

86.87 

(70.03,95.6

7) 

χ²=88

.09# 

<.

01 

APPLE, Mean ± SD 
1.89 ± 

1.16 

1.75 ± 

1.14 

2.13 ± 

1.18 

1.74 ± 

1.19 

1.59 ± 

0.69 

1.88 ± 

1.25 

F=19

.16 

<.

01 

CAAP-AF, Mean ± 

SD 

3.98 ± 

2.04 

3.90 ± 

1.93 

4.23 ± 

2.09 

3.94 ± 

2.21 

2.99 ± 

1.39 

4.29 ± 

2.02 

F=18

.36 

<.

01 

I/III Anti-arrythmia 

Drug Use, n(%)       

χ²=65

.07 

<.

01 

  None 505 (20.14) 130 (18.21) 276 (27.54) 54 (12.22) 26 (11.76) 19 (14.73)   

  Yes 

2003 

(79.86) 584 (81.79) 726 (72.46) 388 (87.78) 195 (88.24) 110 (85.27)   

II Anti-arrythmia 

Drug Use, n(%)       

χ²=22

.66 

<.

01 

  None 

2001 

(79.78) 538 (75.35) 793 (79.14) 371 (83.94) 194 (87.78) 105 (81.40)   

  Yes 507 (20.22) 176 (24.65) 209 (20.86) 71 (16.06) 27 (12.22) 24 (18.60)   

 

 #: Kruskal-waills test, χ²: Chi-square test, F: ANOVA 

 M: Median, Q₁: 1st Quartile, Q₃: 3st Quartile , SD: standard deviation 

 

 

Table 2. Model Performance Comparison 

Model Dataset ACC AUC Sensitivity Specificity NPV PPV F1 

AF type         
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Model Dataset ACC AUC Sensitivity Specificity NPV PPV F1 

 Train 0.614 0.604 0.587 0.621 0.848 0.293 0.391 

 Val 0.656 0.637 0.591 0.683 0.805 0.429 0.497 

 Test 0.683 0.507 0.197 0.818 0.786 0.231 0.213 

APPLE         

 Train 0.473 0.607 0.758 0.397 0.859 0.252 0.378 

 Val 0.624 0.739 0.795 0.556 0.871 0.419 0.549 

 Test 0.700 0.473 0.184 0.843 0.788 0.246 0.211 

CAAP-AF         

 Train 0.609 0.618 0.581 0.616 0.846 0.289 0.386 

 Val 0.733 0.798 0.669 0.759 0.851 0.528 0.590 

 Test 0.723 0.516 0.171 0.876 0.792 0.277 0.211 

CHA2DS2-VASc         

 Train 0.415 0.519 0.697 0.339 0.807 0.221 0.335 

 Val 0.713 0.772 0.701 0.717 0.856 0.500 0.584 

 Test 0.329 0.504 0.908 0.168 0.868 0.232 0.370 

LAD         

 Train 0.650 0.616 0.529 0.683 0.844 0.309 0.390 

 Val 0.724 0.729 0.575 0.784 0.821 0.518 0.545 

 Test 0.611 0.613 0.684 0.591 0.871 0.317 0.433 

LLaMA-Fusion         
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Model Dataset ACC AUC Sensitivity Specificity NPV PPV F1 

 Train 0.737 0.837 0.713 0.744 0.906 0.427 0.535 

 Val 0.715 0.810 0.732 0.708 0.868 0.503 0.596 

 Test 0.723 0.828 0.763 0.712 0.915 0.423 0.545 

Mistral-Fusion         

 Train 0.724 0.819 0.691 0.732 0.898 0.409 0.514 

 Val 0.699 0.800 0.732 0.686 0.864 0.484 0.583 

 Test 0.674 0.777 0.711 0.664 0.892 0.370 0.486 

Phi-2 Fustion         

 Train 0.737 0.837 0.713 0.744 0.906 0.427 0.535 

 Val 0.715 0.810 0.732 0.708 0.868 0.503 0.596 

 Test 0.697 0.795 0.737 0.686 0.904 0.394 0.514 

MedGemma Fusion          

 Train 0.834 0.935 0.840 0.833 0.951 0.574 0.682 

 Val 0.833 0.928 0.811 0.841 0.917 0.673 0.736 

 Test 0.809 0.912 0.816 0.807 0.940 0.539 0.649 
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