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Energy-efficient memcapacitor devices for
neuromorphic computing

>
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Data-intensive computing operations, such as training neural networks, are essential for applications in artificial intelligence
but are energy intensive. One solution is to develop specialized hardware onto which neural networks can be directly mapped,
and arrays of memristive devices can, for example, be trained to enable parallel multiply-accumulate operations. Here we
show that memcapacitive devices that exploit the principle of charge shielding can offer a highly energy-efficient approach for
implementing parallel multiply-accumulate operations. We fabricate a crossbar array of 156 microscale memcapacitor devices
and use it to train a neural network that could distinguish the letters ‘M’, ‘P’ and ‘I'. Modelling these arrays suggests that
this approach could offer an energy efficiency of 29,600 tera-operations per second per watt, while ensuring high precision

(6-8 bits). Simulations also show that the devices could potentially be scaled down to a lateral size of around 45 nm.

puting—based on artificial neural networks and their hard-

ware implementations could be used to solve a broad range
of computationally intensive tasks. Neuromorphic computing can
be traced back to the 1980s (refs. %), but the field gained consid-
erable momentum after the development of memristive devices’
and the proposal of convolutional layers in deep neural networks
at the algorithmic level*’. Since then, several resistive neuromor-
phic systems and devices have been implemented using oxide
materials®*, phase-change memory’, spintronic devices'®"" and fer-
roelectric devices (tunnel junctions'>"* and ferroelectric field-effect
transistors (FeFETs)'*"®), and such systems—namely, ferroelectric
tunnel junctions” and SONOS (that is, silicon-oxide-nitride-
oxide-silicon) transistors’®—have exhibited energy efficiencies of
up to 100 tera-operations per second per watt (TOPSW'). All these
approaches rely on the analogue storage of synaptic weights, which
can be used in multiplication operations, and use Kirchhoff’s cur-
rent law for the summation of currents implemented via crossbar
arrays'’.

Memcapacitive devices'® are similar to memristive devices but
are based on a capacitive principle, and could potentially offer a
lower static power consumption than memristive devices. There
have been theoretical proposals for memcapacitor devices'*-*, but
few practical implementations*~*°. Memcapacitor devices can be
realized through the implementation of a variable plate distance
concept, as demonstrated in micro-electromechanical systems?”,
a metal-to-insulator transition material in series with a dielectric
layer”, changing the oxygen vacancy front in a classical memris-
tor”, and a simple metal-oxide-semiconductor capacitor with a
memory effect””. To obtain a high dynamic range, these devices
either have a large parasitic resistive component® at small plate
distances or limited lateral scalability due to large plate distances.
Similar problems occur with memcapacitors having varying surface
areas” or varying dielectric constants®.

In this Article, we report memecapacitor devices based on charge
shielding that can offer high dynamic range and low power opera-
tion. We fabricate devices on the scale of tens of micrometres and
use them to create a crossbar array architecture that we use to run an

B rain-inspired computing—often termed neuromorphic com-

image recognition algorithm. We also assess the potential scalability
of our devices for use in large-scale energy-efficient neuromorphic
systems using simulations.

Memcapacitive device based on charge shielding
Our memcapacitive device consists of a top gate electrode, a shield-
ing layer with contacts and a back-side readout electrode (Fig. 1a).
These layers are separated by dielectric layers. The top dielectric
layer can have a memory effect, for example, charge trapping or fer-
roelectric, which may influence the shielding layer, or the shielding
layer itself can exhibit a memory effect (in this paper, only the first
principle is investigated). A very high on/off ratio of electric field
coupling and therefore the capacitance between the gate electrode
and readout electrode can be obtained with either total shielding or
transmission. The lateral scalability is substantially better compared
with the previously mentioned concepts, since the thickness of each
layer can be readily optimized, while the dynamic ratio is mainly
dependent on the shielding efficiency of the shielding layer.
Generally, charge screening depends on the Debye screening

length Ly:
[ e0er U
LD = Ol’lze T > (1)

where U, is the thermal voltage, n is the charge carrier concentra-
tion, ¢, is the electric field constant, ¢, is the relative electric field
constant and e is the elementary charge. The electric field drops
exponentially within the shielding layer and drops to 37% within
the screening length L, under the condition ¥ < U. In practice, in
semiconductors, the relationship is highly nonlinear depending on
potential y at depth x, as follows:
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where p, and n, are the charge carrier concentrations of holes and
electrons in thermal equilibrium, respectively. Therefore, the Debye
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Fig. 1] Structure of the memcapacitor device. a, General device structure with a gate electrode, shielding layer (SL) and readout electrode (/, current;
Q, charge). The electric field coupling is indicated by the blue arrow. b, Device structure with a lateral pin junction as well as electron and hole injection.
¢, Crossbar arrangement of the device in b, where a.c. input signals are applied to the word lines (WLs) and the accumulated charge is read out at the bit

lines (BLs). During readout, the SL is mostly connected to GND.

screening length (equation (1))—given the exponential spatial
dependence of the field in the material—is only a linear approxi-
mation of nonlinear differential equation (2). Especially for strong
inversion and accumulation within the shielding layer, the length
scales of screening become much smaller than the Debye length.
This nonlinearity with respect to the applied gate voltage or charge
stored in the memory dielectric leads to either strong shielding or
fairly good transmission.

A more detailed device structure is shown in Fig. 1b with lat-
eral p*nn* junctions in the shielding layer. The p*- and n*-doped
regions act as reservoirs for electrons and holes, respectively, and
can inject each carrier type for the purposes of shielding. This
enables additional device functionality; however, more importantly,
it also allows a symmetric device response for positive and nega-
tive gate voltages. This is a crucial feature for neuromorphic devices,
because the weight update is then undistorted and the training
accuracy is thus higher"”. During readout, the shielding layer is con-
nected to the ground (GND). During writing and training, the volt-
ages applied to the p* and n* contacts can differ and can also act as
a selector, as explained in Supplementary Section 1. As shown in
Fig. 1c, the single device can be arranged into a crossbar for highly
parallel multiply-accumulate (MAC) operations. In this case, the
gate electrode becomes the word line (WL), where input signals are
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applied, and the shielding layer becomes a shielding line (SL) in a
direction vertical to the WL. The readout electrode functions as the
bit line (BL), which is parallel to the SL, and the accumulated charge
out of one BL is the calculated result of accumulated multiplications
at each crossing point. The multiplication is conducted between the
input signal of the WL and the state of the shielding layer, which, in
turn, is adjusted by the memory material. The weights are encoded
in the capacitance of each crossing point. In contrast to resistive
devices, capacitive devices only react on dynamic voltage or current
signals; therefore, an alternating current (a.c.) voltage is applied to
the WL during readout. Writing of the memory material is achieved
by a voltage difference between the SL and WL.

CV curves and gradual programming of single devices
Single devices on the micrometre scale were fabricated on a
silicon-on-insulator wafer, whereas the handle wafer containing a
highly n-doped epitaxial layer acts as the readout electrode and the
buried oxide acts as the bottom dielectric layer. As a memory prin-
ciple, ferroelectric-assisted charge trapping (polarization charge
attracts carriers and thus promotes trapping) was used to combine
the advantages of both principles***’, whereas the tunnelling oxide
was 2.5 nm thick to avoid charge detrapping. Details of the fabrica-
tion can be found in Methods.
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Fig. 2 | Measurement setup and CV curves of single devices. a, Microscopy image of the measured single device and measurement setup. b, Measured
CV curves for a device without memory at different V, values; V. is applied antisymmetrically, the d.c. voltage of the gate was swept between —7 and
7V, and the small a.c. voltage had an amplitude of 100 mV with a frequency of 1kHz. ¢, CV curve shifting due to the injection of charges. The device had
a memory in this case. d-f, Analogue value writing with pulse number modulation (constant write height) (d), pulse height modulation (the voltage is
increased/decreased from +4.0 to +£6.1V) (e) and pulse length modulation (f). In d-f, the shielding layer was grounded, and readout was performed
between each pulse with an a.c. signal, as shown in ¢. g, Pulse number modulation for different write pulse heights.

The fabricated devices had a gate length ranging from 10 to
60 um, and the gate width was enlarged by winding it around
several highly p*- and n*-doped finger-shaped regions, thus
forming several parallel pin junctions. The larger area leads to
a readily detectable capacitance and the minimum capacitance
of turned-off devices could also be precisely measured (capaci-
tive dynamic range). Figure 2a shows a microscopic image of the
fabricated device. Capacitance-voltage (CV) measurements were
carried out by applying an a.c. signal with a direct current (d.c.)
bias (sweep) to the gate: the resulting a.c. current of the readout
electrode was measured either by lock-in amplification or by an
oscilloscope and current pre-amplifier. Data from the resulting
fundamental CV curves for different d.c. voltages (V,y) on the
n* and p* regions are shown in Fig. 2b (note that a normal sili-
con dioxide dielectric layer was used here instead of a memory
dielectric). The CV curves get broader or are nearly extinguished
depending on whether the pin junction is used in the reverse
or forward bias direction, respectively; this behaviour is further
explained in Supplementary Section 1. Generally, a capacitive
coupling window is observed, which is high for depletion (and
therefore for transmission through the shielding layer) and low
during inversion or accumulation. The curves are derivatives of
a sigmoid curve, which play an important role in modelling neu-
rons in artificial neural networks. A direct measurement of the
sigmoid curve and further uses are explained in Supplementary
Section 1.
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Replacing the normal silicon dioxide dielectric with a memory
dielectric and with a CV sweep from —5 to 5V, one can observe
a shifting of the capacitive coupling window with a memory win-
dow of 2.7V (Fig. 2d), while the pin junction was grounded. Due
to the shifting direction, one can conclude that charge trapping
is the memory principle (for purely ferroelectric switching, the
curves would shift in the opposite direction). By contrast, capacitive
devices can only be read out by a.c. voltages or current signals. For
this reason, an alternating voltage (0.5V) is applied to the gate for
readout, together with a bias voltage (1.0 V) to adjust the readout
window, as indicated by the shaded area in Fig. 2d (note that the pin
junction is grounded during readout). In Supplementary Fig. 11a,b,
the readout current of a written and erased cell is shown, and a
capacitive dynamic range of ~1:1,478 was experimentally achieved.

To store analogue values, one can apply short pulses with the
same amplitude (Fig. 2d,g), apply pulses with increasing height
(Fig. 2e) or change the pulse length (Fig. 2f) applied to the gate. The
resulting curves exhibit some similarities to those obtained from
pure ferroelectric switching', indicating the ferroelectric assistance
in the memory storage process. The curve in Fig. 2d shows a typical
nonlinear long-term potentiation (LTP) curve with an exponential

dependence.

_Nng

Curp = Cin + AC (1 — exp ( (3)

pgr
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The same applies for the long-term depression (LTD)

Curp = Cmax — AC (1 — exp (’N“» , (4)
P
where N,

e and N, denote the number of programming or erase
pulses, respectively; ,,, and f,, are the stretching factors; and C,,
and C,,,, denote the minimum and maximum capacitance, respec-
tively. Here AC describes the maximum change in capacitance.
Changing the write pulse height of the pulse number modulation
leads to more flattened or steepened curves (Fig. 2g). Write/erase
pulse height modulation (Fig. 2e) can lead to relatively symmetric
and—in certain regions, linear—behaviour with respect to the pulse
height steps. This is highly beneficial for implementing neuromor-
phic algorithms'”. Pulse length modulation shows similar behaviour
to pulse number modulation (Fig. 2f). In Supplementary Fig. 11c,
the measured readout current is illustrated for LTP and LTD for
different pulse numbers of pulse height modulation (Fig. 2e) and
reveals the pinch-off and increase.
Other memory parameters, like device-to-device variation,
endurance and retention can be found in Supplementary Section 9.

Crossbar array and implementation of training algorithm
Crossbar devices—used to execute an image recognition algo-
rithm—were fabricated and wire bonded onto a chip carrier. A
printed circuit board (PCB) was designed and controlled by a data
acquisition system. An image of the fabricated chip with the bond-
ing pads, a zoomed-in microscopy image of the crossbar and a scan-
ning electron microscopy image are shown in Fig. 3a. Each memory
cell had a size of 50 X 50 um?.

A schematic of the device cross section is shown in Fig. 3b. The
BLs of the memory array were separated by refilled deep trenches.
Details of the fabrication process can be found in Methods.

The matrix comprised 26 WLs and 6 BLs (Fig. 3c). A differential
weight topology'” was used with the positive and negative value of
each weight separated in two memory cells. The values of these two
BLs were subtracted from each other.

W =Cy —Cy (5)

The input values are separated by a sign with a 180° phase shift.
For the desired ‘four-quadrant multiplication’ (inputX weight),
a global clock signal is used together with the switched capacitor
approach (Fig. 3c). Further details are explained in Supplementary
Section 11. The integration capacitance of the amplifier is charged
up in each period of the input sine signal, and hence, the number
of periods (N,.,) encodes the value of the input signal. This effect
also leads to an averaging of the noise level and improvement in
the signal-to-noise ratio, as explained later. This theoretical concept
of four-quadrant multiplication’ was confirmed with the follow-
ing measurement (Fig. 3d): the input number of periods (N,,,) and
the number of programming pulses (N,g)> which adjust the actual
weight, were varied in positive and negative values, while the output
voltage is read. Positive and negative N,,, values were encoded by a
180° phase shift and positive/negative programming pulses (N,,,)
only changed the positive/negative weights, while the counterpart
was in an erased state. Supplementary Fig. 12a,b shows the cross
sections of the 3D plot in Fig. 3d. The curves along the input period
number behave in a highly linear manner, and this linearity was
also confirmed for the accumulation operation (Supplementary Fig.
12¢), demonstrating a highly linear MAC operation with the pro-
posed switched capacitor approach.

The first 25 WLs enable a vectorized input feature map for images
of 5% 5 pixels; thus, one single fully connected layer is carried out.
Dark pixels are represented by positive values and bright pixels, by
negative values. The bias input is mapped to the 26th WL.

ARTICLES

Regarding the implemented training algorithm, the Manhattan
update®” rule was chosen, due to its simplified training procedure.
In conventional backpropagation training, the weight update is cal-
culated as follows:

AWij = —ad; (Tl) X, (n) 5 (6)

where a describes the learning rate, §,(n) is the backpropagated
error and X(n) is the current input for the nth input image, which
is randomly chosen from the training set. The weights are updated
after each sample (stochastic training). The backpropagated error
for a one-layer perceptron can be calculated as follows:

sim =l —fw] L @)

v=vi(n)

where £ (n)is the desired output value and f(n) is the current out-
put. Function f; is related to the voltage output v,(n) of the ith sense
amplifier and the activation function of the neuron (in this case,
tanh):

fi (vi) = tanh (xv; (n)), (8)

where « is the steepness factor. With the Manhattan update rule,
the weight update from equation (6) is coarse-grained by using the
following signing.

AW@»A = sgnAWj 9)

Therefore, all the weights are updated by the same amount
based on their sign. Figure 4a illustrates the pulse scheme for
implementing the algorithm. The term §; (1) X; (n) in equation
(6) becomes positive if both error §,(n) and input X;(n) are posi-
tive or it becomes negative for the opposite sign if both §,(n) and
Xj(n) are negative . Hence, one can describe this by an XNOR
combination. To update the weights, the error signal is applied to
the SL, as shown in Fig. 4a. The corresponding input signals are
applied to the WL. The differential signal at the crossing points
follows the XNOR operation, while the specific signals (shown in
Fig. 4a) ensure that the maximum disturbance level is not higher
than 1/3 and thus effectively prevents the overwriting of cells in
the same column or row (the memory cell acts as the selector
itself; see Supplementary Sections 7 and 8). As a 5X 5image rec-
ognition task, the letters M, P and I were chosen, and one pixel
in each of the samples was flipped, which results in a total set of
78 samples. These pseudo-images were separated into a test and
training set; the test images are indicated by a blue frame (Fig. 4b).
The resulting misclassified images versus training epochs for
the training and test images are shown in Fig. 4c. Evidently, the
number rapidly decreases after one training epoch and stays
almost zero throughout the training epochs. Figure 4d shows the
obtained mean neuron activations for the three classifications
over the training epochs. The slightly higher simulated average
misclassification rate (Fig. 4c) is the consequence of single steep
climbs of the misclassification rate after an arbitrary number of
epochs with 100% accuracy in some runs. Misclassifications after
epoch 1 are caused by the very similar expected value for indi-
vidual presynaptic neurons for letters M and P. Measurements
also confirm the more stable results for the classification of letter
I, as shown in Fig. 4d. The results are in accordance with other
studies”®.

Thus, experimental results on micrometre-sized devices dem-
onstrate the working principle. For demonstrating scalability to
the nanometre regime and superior energy efficiency, detailed and
extensive simulations were performed, which are explained in the
upcoming sections.
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Fig. 3 | Crossbar arrangement and fundamental measurements. a, Wire-bonded chip with microscopy and scanning electron microscopy images.

b, Device cross section. ¢, Neuromorphic system for accomplishing ‘four-quadrant multiplication’: positive and negative inputs are 180° phase shifted
with each other. The a.c. conditions are the same as in Fig. 2, and the number of periods encodes the amount of input. The clock signal is high for a
rising edge in the positive signal and the switches are in the left position during a high clock signal. The SL is connected to GND during readout.

d, Measured ‘four-quadrant multiplication’ for different input period numbers N,., and programming pulse numbers (pulse number modulation) N,,.

For negative N,,, the input signal is 180° phase shifted, and for positive N
versa for negative N,).

TCAD simulations on single devices

A device with 90 nm gate length (Fig. 5a) was simulated by Synopsys.
Figure 5b (where no memory dielectric was integrated for the first
simulations) shows the CV curves of the coupling capacitances
between the gate and readout electrode with respect to the applied
gate voltage (V;), which are consistent with the observed experi-
mental behaviour (Fig. 2b).

The ratio between the maximum capacitance and lower-state
capacitance obtained by shifting the gate voltage by 3V is 1:90 in
this device, and this ratio can be further enlarged by using thin-
ner gate oxides or larger gate lengths, as shown in Fig. 5c. In gen-
eral, the capacitive ratio decreases with a smaller gate length due
to the fact that the influence of the space charge region becomes
more pronounced for smaller gate lengths (short channel effect)
and sufficient shielding is hard to achieve in this region (Fig. 5c,
inset). By using high-« dielectrics for the top and bottom oxides, a
ratio of 1:60 was obtained for a 45 nm device with the same capac-
itance as the 90 nm device, as shown in Supplementary Section 2.

752

a positive BL is programmed; a negative BL is kept in an erased state (vice

A dynamic range of 1:60-1:90 is sufficient to achieve a precision
of 6-8bits’.

Including a memory window (~3V for charge-trapping memo-
ries and ~1-2V for ferroelectric memories depending on the thick-
ness and coercive field) leads to shifted CV curves (Fig. 5d). The a.c.
readout voltage is indicated in Fig. 5d; for the positive shifted curve,
the resulting readout current and therefore the accumulated charge
will be very large. The total readout charge over one-half period
of the applied sinusoidal signal versus memory shift is shown in
Fig. 5e. Most of the negative memory window is used for turning
off the device.

Scalability to 45nm

With regard to lateral scalability, it is necessary to distinguish three
aspects: (1) the scalability of the memory technology in the top
dielectric itself with regard to how many levels can be stored; (2) the
sensitivity of the sense amplifier at the end of each BL for detecting
the accumulated charge; (3) the noise level of one single device during
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flipped pixel. The test images are framed in purple. ¢, Number of misclassified images N, for the training and test sets over ten training epochs (Nq,,;).
The measured curve is compared with the simulated curves. d, Average artificial neuron activation for three classifications (f,, f, and f;) and three images

over ten training epochs.

readout. Fairly common resolutions for input, weight and output sig-
nals for neural networks are in the range of 4-8 bits (16-256 levels)®'.
This analogue-like resolution has a significant influence on scalabil-
ity. Typically, lower precision is needed for inference tasks.

With respect to the memory material, one can generally con-
clude that charge-trapping memories (for example, SONOS) have
shown up to 31levels down to 40nm (ref. '°). The disadvantage of
this memory technology is the relatively high write energy and slow-
ness during writing (millisecond regime). However, SONOS might
be an alternative for inference-only applications. On the other hand,
hafnium oxide (a ferroelectric) has very low write energies and is
fast (nanosecond to microsecond regime). Ongoing research is still
underway on the scalability of ferroelectric memories with regard to
analogue storage. From FeFETs, it is known that they tend to show
abrupt switching events below 500 nm, which is attributed to the
limited grain size".

Regarding capacitive measurement resolutions, some work was
done in the context of DNA sensing and chip interconnect measure-
ments with resolutions down to <10aF (charge-based capacitive
measurements, capacitance-to-frequency conversion and lock-in
detection)*~*°. These are similar to a conventional sense ampli-
fier’””* and contain an integration capacitor that is charged either
by an operational amplifier circuit or a current mirror. Details on
the sensitivity calculation can be found in Supplementary Section 3;
generally, however, one has to consider that in neuromorphic
devices, the accumulated charge from many memory cells (several
hundreds to thousands) is read out at once and used for further
information processing, which gives rise to much larger charges
compared with only one cell. Furthermore, several pulse/period
numbers are used for encoding the input value and leads to step-
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wise charge integration over many periods. For the device shown
in Fig. 5, N,,,= 142 periods is necessary, which fits well into a range
of 7-8bits of the input signal (Supplementary Section 3). Note that
128 periods are sufficient for an 8-bit signed integer due to the use
of the 180° phase shift for negative values of the switched capacitor
approach.

Regarding the noise level of capacitive devices, one has to con-

sider kTC noise.
RNy,
"V C

where k; defines the Boltzmann constant, T the temperature and C
the capacitance. For a 6.65aF device (Fig. 5d), one obtains a noise
voltage of 25.00mV (at room temperature), which is 14 times lower
than the effective readout value of 0.35 V. However, one has to con-
sider that the noise level decreases with the number of repetitive
measurements, namely, 1/y/Nper, which results in a noise level of
2.20mV (at room temperature) or 169 times lower than the effective
readout value; this defines a precision of ~7 bits. Based on this mini-
mum amplitude necessary to distinguish between different levels, it
also becomes possible to assess the theoretical energy efficiency of
resistive and capacitive devices in general (Supplementary Section
4): capacitive devices are at least eight times more energy efficient
than resistive devices.

(10)

Simulation of ultrahigh energy efficiency

Much of the energy sourced to ‘memcapacitors’ can be recov-
ered since it is stored in the capacitor; this is an important differ-
ence from resistors in which the readout operation is inherently
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Fig. 5 | TCAD simulation results. a, Simulated structure with gate length L,=90nm. b, Obtained CV curves with respect to the gate voltage for different
voltages V, along the p'n'n* diode (quasi-static simulation). The voltage V,« was applied antisymmetrically, as that in Fig. 2. ¢, Capacitive dynamic ratio
(maximum capacitance/minimum capacitance of the CV curves with p*n'n* connected to GND) for different gate lengths and gate oxide thicknesses. The
inset shows the electron density, and the short channel effect becomes obvious. EOT, equivalent oxide thickness. d, Shifting of the CV curves for V=0V
for different memory charges in the gate oxide. Note the applied readout a.c. signal with bias. e, Accumulated charge (Q,..) for different voltage shifts (V.
caused by memory charges) over one-half period of the a.c. signal in d. f, Comparison of the simulated and experimental capacitive coupling curves for the

micrometre-scaled device shown in Fig. 2.

dissipative due to Joule heating. The energy fed in during charg-
ing can be, in principle, recovered during discharging. This concept
of energy recovery is also present in adiabatic circuit designs™*,
which are at the core of the reversible computing paradigm**2. The
limiting factor of energy recovery in adiabatic circuits are resistive
losses in the circuit, as well as in the inductances used for the power
clock generators. The inductances have limited quality factors (g
factor) in the order of dozens to hundreds. In common adiabatic
realizations, energy recovery of the supply clock generators is of the
order of 95% for harmonic signals*~*, which means the supplied
active power is g= 20 times lower than the reactive power.

To estimate the time delay, areal efficiency and energy efficiency
(Table 1) of a realistic crossbar arrangement (including parasitic ele-
ments), a SPICE model (Supplementary Fig. 4a) for the 90 nm device
was developed (Supplementary Section 5). One can conclude that
extremely fast readout transitions can suppress shielding in the SL,
since charge cannot be supplied any longer (silicide lines are a criti-
cal resistive path). In the table, the energetically worst-case scenario
was assumed: all the WLs are activated at once and all the weights
are zero with a resulting shielding effect, which, in turn, would lead
to charging in the top gate oxide. Table 1 summarizes the minimum
period of time for different matrix sizes, which is proportional to
the RC delay, with R being the resistance and C the capacitance. The
areal efficiency A, in TOPSmm™ can be derived from the memory
footprint (2x8F?), assuming differential weights and the earlier
mentioned time delay. The active (W) and reactive (W,) energy per
cell for 142 periods is also summarized in Table 1. With this esti-
mate in mind, we can conclude a minimum energy efficiency 7,
of 3,452.6 TOPSW™ in the worst-case scenario for 0% input signal
sparsity and 100% weight sparsity and an energy recovery of 95%
(Supplementary Section 5). Without any charge recovery, the energy
efficiency # would amount to 198.5TOPSW™. In a realistic neu-
ral network scenario, for example, a one-layer perceptron trained
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on the Modified National Institute of Standards and Technology
(MNIST) database, the energy efficiency is 29,600 TOPS W' includ-
ing charge recovery (Supplementary Section 6). Without recovery,
the efficiency amounts to 1,702 TOPS W' for MNIST.

Comparison of simulation and experimental results

To verify the functionality of the simulator, we performed simula-
tions of the device with 60 um gate length (Fig. 2). As shown in Fig. 5f,
experimental data from Fig. 2d match well with the simulated data.

As shown in Supplementary Fig. 14, we measured the gate charg-
ing current together with the applied readout a.c. voltage for the
single device (Fig. 2), and a perfect 90° phase shift is visible. From
the curves, we can calculate the reactive (W}) power consumption
per period (using equations 31-33, Supplementary Section 5) and
obtain W,=3.22n] per period. Furthermore, for 142 periods, as in
the simulation, we obtain the total reactive energy for one MAC
operation, namely, W, ,=457n] per cell. If we scale this value
by seven orders of magnitude, we obtain W, ,.,=45.71] per cell
(capacitance shown in Fig. 2d is seven orders of magnitude lower
compared with the capacitance of the simulated 90nm device
shown in Fig. 5b).

This value is approximately ten times higher than the value
shown in Table 1 (5f] per cell). One has to consider that the
thickness of the buried oxide of the experimental devices is much
thicker (190 nm) than in the case of the 90 nm device simulation
(15nm), leading to a 12.7times lower readout capacitance/area
at approximately the same gate oxide capacitance/area. Also con-
sidering the different device silicon thicknesses, one can obtain
a corrected reactive energy of W, eqconr=>5.841] cell, which is
very close to the value shown in Table 1. Other influencing phe-
nomena during scaling, like short channel effects (Fig. 5¢), quan-
tum confinement and band-to-band tunnelling, are explained in
Supplementary Section 10.
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Table 1| Results on areal and energy efficiency obtained from SPICE simulation

Array size Period T, (total time delay A, (TOPSmm™) (142 W, () per cell* (W, (f)) 7, (TOPSW™)* (5 (TOPS WT))*
(142 periods)) periods + 16 F?) per cell)*
100 %100 1.00ns (142.00ns) 108.70 TOPS mm= 5.0001) per cell 3,782.20 TOPS W~
(0.015fJ per cell) (199.51TOPS W)
500x500 15.00ns (2.13ps) 7.25TOPS mm-2 5.0001) per cell 3,676.80 TOPS W
(0.022f) per cell) (199.19 TOPS W)
1,000x1,000 30.00ns (4.25ps) 3.62TOPSmm™ 5.000f) per cell 3,452.60 TOPS W
(0.040f) per cell) (198.54 TOPS W)
2,500x2,500 200.00ns (28.40ps) 0.54TOPSmm™ 5.0001) per cell 3,461.70 TOPS W

(0.0391) per cell) (198.59 TOPS W)

*All cells are erased (worst-case scenario), 95% energy efficiency of power clock source Necessary time period T, and resulting areal efficiency A, for different matrix sizes. The reactive energy during the
readout of arrays, W, and active energy, W,, are obtained from simulations (Supplementary Section 5). The energy is presented per cell and for 142 periods. From this number and assuming a 95% energy
recovery of the power source, energy efficiency #,.. (in TOPS W) can be calculated for the energetically worst-case scenario (erased state). The same applies for energy efficiency n without recovery.

Conclusions

We have reported a memcapacitive device with the potential to
deliver high tera-operations per second per watt when scaled. By
using a shielding layer between two electrodes, we can achieve high
dynamic ratios of ~1,480 for microscale devices and ~90 for simulated
90-nm-sized devices. Furthermore, a 5X 5image recognition task was
implemented using an experimental crossbar array with 156 mem-
ory cells. Circuit-level simulations and noise-level calculations show
that our memcapacitive devices can potentially offer superior energy
efficiency compared with conventional resistive devices. Using adia-
batic charging, most of the charging energy of the capacitors can be
recovered. This allows a combination of reversible computing and
neuromorphic computing. The energy efficiency of the human brain
is estimated to be in the range of ~10f] per operation (ref. *) (or
100 TOPS W), which is similar to current memristive-device-based
approaches'>'®. Our approach could potentially offer an energy effi-
ciency of 1,000-10,000 TOPSW™". The technology is also compatible
with complementary metal-oxide-semiconductor technology and
could be fabricated using state-of-the-art processes.

Methods

The technology computer-aided design (TCAD) simulations were performed

with Synopsys and SPICE-level simulations were performed with LTspice. In

the TCAD simulations, the drift-diffusion equations (electron + hole continuity
equation and Poisson equation) were included. Furthermore, Shockley-Read-Hall
recombination and electric-field-, temperature- and dopant-dependent mobility
models were included. The influence of quantum confinement and band-to-band
tunnelling was investigated in Supplementary Section 10.

The devices were fabricated using a silicon-on-insulator wafer with an
n*-handle, 3.5-um-thick epitaxial layer; a 190-nm-thick buried oxide layer; and an
88-nm-thick device layer. First, alignment marks were etched into the device layer,
followed by boron- and phosphorous-ion implantation and subsequent activation
annealing. The interface oxide was chemically grown by Standard Clean 1 solution
and O, oxidation at 750 °C. The Hf,;Zr,;O, deposition with a TiN capping
layer was carried out by atomic layer deposition and annealed at 600°C. The
Hf, ;Zr,;0, was patterned for contact holes and the first aluminium metallization
was deposited by sputtering. The SLs were etched by ion beam sputtering and
the BLs were separated by the reactive-ion etching of 7-um-deep trenches. The
trenches were refilled by SU-8 resist and the second metallization layer (WLs) were
insulated from the first metallization layer by another patterned SU-8 layer.

Measurements were carried out with a function generator (Agilent 33500B), a
lock-in amplifier (Stanford Research Systems SR830) and a current pre-amplifier
(Stanford Research Systems SR570). A DSO5052A oscilloscope was used for
visualizing the measured currents.

The PCB for the neuromorphic chip was designed using EAGLE and
manufactured by Eurocircuits GmbH. A data acquisition system (USB-6363,
National Instruments) was used for controlling the PCB. The measurement
routines were written in LabVIEW. Python was used for simulating the Manhattan
algorithm and Keras for MNIST simulation.

Data availability
The data that support the findings of this study are available from the
corresponding authors upon reasonable request.

Code availability
The code that supports the findings of this study is available from the
corresponding authors upon reasonable request.
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