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A shape-morphing cortex-adhesive sensor 
for closed-loop transcranial ultrasound 
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Transcranial focused ultrasound has shown promising non-invasive 
therapeutic effects for drug-resistant epilepsy due to its spatial 
resolution and depth penetrability. However, current manual 
strategies, which use fixed neurostimulation protocols, cannot provide 
precise patient-specific treatment due to the absence of ultrasound 
wave-insensitive closed-loop neurostimulation devices. Here, we report 
a shape-morphing cortex-adhesive sensor for closed-loop transcranial 
ultrasound neurostimulation. The sensor consists of a catechol-conjugated 
alginate hydrogel adhesive, a stretchable 16-channel electrode array 
and a viscoplastic self-healing polymeric substrate, and is coupled to a 
pulse-controlled transcranial focused ultrasound device. It can provide 
conformal and robust fixation to curvy cortical surfaces, and we show 
that it is capable of stable neural signal recording in awake seizure rodents 
during transcranial focused ultrasound neurostimulation. The sensing 
performance allows real-time detection of preseizure signals with 
unexpected and irregular high-frequency oscillations, and we demonstrate 
closed-loop seizure control supervised by intact cortical activity under 
ultrasound stimulation in awake rodents.

An incomplete understanding of the treatment mechanism of intrac-
table epilepsy has led to the low efficacy of conventional medication. 
To address this, efforts have been made to develop tissue site-specific 
neurostimulation tools—including deep brain stimulation and vagus 
nerve stimulation—for drug-resistant epileptic seizures1,2. However, 
such methodologies suffer from issues related to instability of inva-
sive electrical stimulation. Transcranial focused ultrasound (tFUS) 
has shown effective suppression of drug-resistant seizures due to its 
inflammation-free and long-term stable stimulation, as well as high spa-
tial resolution3–7. However, the preclinical3–6 and clinical7 trials reported 
so far, which have used fixed tFUS protocols, have offered limited pro-
gress in determining patient-specific neurostimulation parameters. 

Furthermore, while previous translational studies demonstrated the 
suppressive effect of tFUS stimulation with a fixed protocol for sei-
zure in animal models, these were verified in only anaesthetized3–5 or 
awake animals with relatively minor symptoms of epileptic behaviour6, 
without considering the state of the neural activities. What is required 
is a closed-loop system capable of the optimal therapeutic setting 
depending on the severity level of the seizure8,9 identified by accurate 
neurophysiological feedback on stimulation tools.

In this regard, soft brain devices with conformal osculation10,11, 
robust fixation and mechanical adaptation at the biotic–abiotic inter-
face are essential for both early detection of high-frequency oscilla-
tions (HFOs) (80–500 Hz) generated by epileptogenic tissues12,13 and 
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are thus required to realize artefact-insensitive neural devices coupled 
with ultrasound stimulation.

In this Article, we report a shape-morphing cortex-adhesive 
(SMCA) sensor for closed-loop tFUS neurostimulation (Fig. 1a). The 
SMCA sensor consists of a catechol-conjugated alginate (Alg–CA) as 
a viscoelastic hydrogel adhesive (Supplementary Fig. 1a)35,36, a stretch-
able thin (~3 μm) 16-channel microelectrode array and an isophorone 
bisurea-functionalized polydimethylsiloxane (PDMS–IU) as a visco-
plastic self-healing polymer (SHP) substrate (Supplementary Fig. 1b)37. 
We show that it is capable of conformal and robust fixation to a rodent 
brain by active shape-adaptation and tough adhesiveness (inset image 
in Fig. 1a). The cortex-interfacing steps of the SMCA sensor (Fig. 1b and 
Supplementary Note 1) are as follows. First, robust tissue adhesion via 
instantaneous gelation of the Alg–CA hydrogel at the contact, which 
involves conformal contact by filling of interfacial microvoid areas with 
the swollen hydrogel, brain-mimetic stiffness matching of the tissue–
device interface and formation of covalent or non-covalent chemical 
bonds (Supplementary Fig. 1c and Supplementary Note 1). Second, 
shape-morphing progress of the patch and complete adhesive gela-
tion resulting in conformal osculation on the wrinkled cortex, which 
is the synergistic effect of viscoplastic behaviour of the SHP substrate 

long-lasting neurophysiological feedback to the closed-loop tFUS 
neurostimulation system. In particular, micro-electrocorticography 
(ECoG) devices feature high fidelity and high spatiotemporal resolution 
in electrical neurosignalling, making them suitable for such purposes 
due to their high-frequency capacity and large-area coverage. However, 
typical substrate and/or encapsulation materials—such as thick polyim-
ide (PI) and thermally grown silicon dioxide (SiO2)—possess intrinsically 
high stiffness and poor shape adaptability14–20, resulting in nonuniform 
contact on the convolutional structures of cortical surfaces21. Ultrathin 
mesh devices with dissolvable substrates can offer brain conformability 
while improving signal quality22,23, but their sensing position accuracy 
on microsized target tissue points can be limited due to cerebrospinal 
fluid and tissue micromotion. Existing interfacing devices with low 
bonding strength to brain tissue24–28 are also vulnerable to ultrasound 
waves, since the neuromodulatory sonication that delivers acoustic 
pressure7,29–32 generates vibration-related mechanical noise. This cre-
ates challenges for neurosignal feedback by brain-integrated electrode 
devices, and optimal closed-loop tFUS neurostimulation cannot be 
accomplished due to electrical artefact intervention originating from 
sonication-induced oscillations33. Soft brain-interfacing materials with 
robust tissue adhesion and conformability34,35 even on a curved surface 
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Fig. 1 | SMCA sensor for ultrastable brain interfacing enables closed-loop 
tFUS neurotherapy. a, A schematic illustration and corresponding image for 
the SMCA sensor mounted conformally on bilateral cerebral hemisphere tissue 
of rodents. The inset shows the image illustrating robust brain adhesion of the 
SMCA sensor device on the rat cortex under shear force tension. b, Schematic 
illustrations of sequential brain-interfacing steps of the SMCA sensor for 
explaining the tissue-adhesive shape-morphing mechanism. c, An illustration of 
the closed-loop neural recording and feedback stimulation system integrated 
with the SMCA sensor and tFUS transducer. The corresponding image (inset) 
shows the closed-loop therapeutic system implanted into an awake freely 
moving rat. d, Schematics and corresponding conceptual plots of neural 

signals of the ECoG devices (top, the conventional ECoG device without tissue 
adhesion and conformability; bottom, the SMCA sensor) as a function of time 
under tFUS stimulation. Certainly, the SMCA sensor shows ultrastable neural 
recording that is not affected by tFUS stimulation. e, Schematic illustrations 
of the demonstration of closed-loop tFUS seizure suppression in an awake 
rodent model. The ultrastable neurophysiology capability of the SMCA sensor 
realizes the real-time delivery of feedback information to the closed-loop 
neurostimulation system for optimal therapy. Panels adapted from: a and  
c, mouse skull and brain, ref. 49, under a Creative Commons licence CC BY 4.0;  
c, rat, ref. 50, under a Creative Commons licence CC BY 4.0.
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and viscoelastic property of the swollen Alg–CA hydrogel. Finally, 
stress-free bio-electronic interfacing involves the efficient dissipation 
of deformation-induced compressive stress energy on the cortex due 
to the dynamic stress relaxation of the SHP substrate.

A miniaturized tFUS transducer was used for awake rodent models 
with an intracranial SMCA sensor (Fig. 1c). To implement a portable 
headstage system for a closed-loop brain interface, the tFUS device 
was coupled with the adaptor of an implanted SMCA sensor using a 
three-dimensionally printed holder (inset image in Fig. 1c). With the 
approach, we demonstrate artefact-free ECoG under tFUS neuro-
stimulation in both anaesthetized animals and awake seizure animals. 
(Fig. 1d). The stable neurosignalling performance allows our platform 
to function as a chronic seizure predictor and an automatic trigger for 
neurostimulation by detecting epileptic HFO with high quality. We also 
use these functionalities to create a strategy for the closed-loop seizure 
control based on tFUS and the SMCA-ECoG: tFUS initiation triggered by 
seizure-preceding HFO detection; continuous neurostimulation with 
an initial dose within a predetermined time interval; tFUS protocol 
modification in response to real-time feedback that indicates insuf-
ficient suppressive efficacy and tFUS termination under the deter-
mination that the seizure has been suppressed (Fig. 1e). We illustrate 
our approach in awake rodents, highlighting the stable closed-loop 
feedback performance of the SMCA sensor.

Spontaneous shape-morphing cortex adhesion
To verify brain-interfacing functionalities of the SMCA consisting of vis-
coelastic Alg–CA hydrogel (Supplementary Fig. 2 and Supplementary 
Note 2) and viscoplastic PDMS–IU SHP (the rationale for material selec-
tion is described in Supplementary Note 3), as a soft patch platform 
resistant to acoustic pressure38, its tissue-adhesion performance and 
shape-adaptation behaviour were comprehensively investigated by 
control tests. When compared to the adhesive strength of unmodified 
Alg coated on the SHP (for example, ~12 kPa) (Fig. 2a, red bars), Alg–CA 
exhibited strong tissue adhesion against both tensile and shear stresses 
(for example, 17.4 kPa for tensile test and 23.9 kPa for lap-shear test) 
(blue bars), originating from the presence of catechol groups39. In par-
ticular, the high shear adhesiveness of Alg–CA is essential for achieving 
no delamination of the implanted device on the cerebral cortex, even 
under ultrasound-induced mechanical vibration. Additionally, to verify 
the importance of the viscoplastic SHP with a Young’s modulus of sev-
eral hundred kPa for stable brain interfacing, the adhesive strength of 
Alg–CA coated on other stiff or elastic substrate materials, namely, PI or 
polydimethylsiloxane (PDMS), was compared (Fig. 2b). As expected, the 
shear adhesive strength of Alg–CA on siloxane-based stretchable mate-
rials (for example, PDMS or SHP) was noticeably stronger than that on 
a conventional flexible substrate, that is, a stiff PI plate with a GPa-scale 
mechanical modulus (Fig. 2b). It should be noted that these results were 
determined under experimental setting where each substrate was fixed 
on the rigid backing film (for example, polyethylene terephthalate 
(PET)) to verify the adhesive strength of the tissue-interfacing hydro-
gel itself coated on the polymeric substrate, which might not reflect 
mechanically dynamic in vivo environments causing deformation of 
the whole soft device patches. Thus, we performed an additional adhe-
sion test without the backing film to investigate the effect of substrate 
materials contributing to tissue-adhesive functionality (Fig. 2c). While 
applying shear stress on the terminal of the Alg–CA coated on the SHP 
(for example, SMCA film), the viscoplastic substrate (Supplementary 
Fig. 4a) was effectively stretched up to 860% of its initial length, verify-
ing the maximized tissue-adhesion performance of the SMCA patch 
realized by combining high fracture toughness and robust adhesive-
ness (Fig. 2c, blue and Supplementary Fig. 3, bottom photographs). 
In contrast, other films, such as Alg on SHP (Fig. 2c, red, and Supple-
mentary Fig. 3, top photographs) or Alg–CA on PDMS (green, and Sup-
plementary Fig. 3, middle photographs), had relatively low toughness 
values and stretchability (for example, 78% for Alg/SHP and 109% for  

Alg–CA/PDMS). Furthermore, the SMCA film showed dramatic stress 
relaxation behaviour as a function of time, indicating its typical visco-
plasticity (Fig. 2d, blue, Supplementary Figs. 4 and 5 and Supplementary 
Note 4). However, the Alg–CA/PDMS film possessed constant stress 
after applied strain (green, Supplementary Figs. 4 and 5 and Supple-
mentary Note 4). In qualitative tests, the excellent stretchability of 
the SMCA film up to 600% also led to strong adhesion performance 
onto wet brain tissue (Fig. 2e, bottom photographs), whereas the  
Alg–CA/PDMS film exhibited mechanical failure (middle photographs) 
and the Alg/SHP film was easily delaminated from the brain tissue (top 
photographs). All results for maximized brain-adhesiveness of the 
SMCA consistently demonstrate the synergistic effect between the 
viscoplastic substrate with high toughness and dynamic stress dissipa-
tion based on reversible hydrogen bonds and the viscoelastic adhesive 
with strong attachment by tissue-specific chemical bonds.

We also examined stress-free shape-adaptive properties of the 
SMCA patch (see Supplementary Note 5 for reasoning on the driving 
source of shape-morphing behaviour of the SMCA). According to finite 
element analysis (FEA), a SMCA film favourably filled the void space 
of the curved objects (for example, brain wrinkles) and alleviated 
deformation-induced stress (Supplementary Figs. 4b and 5), while 
PDMS failed not only conformal contact to the curvature but also 
stress relaxation at the interfaced plane (Fig. 2f, details for FEA analysis 
methodology are described in Supplementary Note 6). Correspond-
ing to the computational models, the spontaneous shape-morphing 
property of the SMCA film was also observed in ex vivo tests using 
bovine brain tissue (Fig. 2g and Supplementary Video 1). Although the 
Alg–CA/PDMS bilayer was not deformed into brain wrinkles (Fig. 2g, 
top photographs), the SMCA film was autonomously shape-morphed 
into the concave flexura of the cortex without any externally applied 
driving force (for example, electromagnetic field, pressure, thermal 
energy), which led to complete conformation to surface profile (Fig. 2g, 
bottom photographs) (see Supplementary Note 7 for detailed discus-
sion on the results). The cross-sectional photographical (top) and 
three-dimensional (3D) confocal microscopic (bottom) images of 
the fluorescent dye-labelled bilayer patches (green coloured label 
for Alg–CA, red coloured labels for PDMS and SHP) interfaced with 
the brain were confirmed (Fig. 2h and Supplementary Fig. 7), which 
verifies osculating capability of the SMCA patch that did not generate 
a spatial void at the interface (Fig. 2h, right photographs) while there 
were large air gaps between the cortical surface and the Alg–CA/PDMS 
bilayer (Fig. 2h, left photographs). The moisture retention of swollen 
Alg–CA in tissue-attached SMCA patch, stably maintained for 7 days 
without substantial water loss even in the ex vivo condition, strongly 
indicates that the SMCA sensor can be chronically integrated with 
the cortex by the Alg–CA interfacing layer in the in vivo condition 
of intracranial space filled with cerebrospinal fluid (Supplementary 
Fig. 8). These results comprehensively demonstrated that our material 
strategy combining Alg–CA polymer with soft fluidity and instantane-
ous gelation and PDMS–IU SHP with thermoplastic deformation and 
effective strain energy dissipation is suitable for biocompatible and 
brain-osculated interface.

Direct transfer-printing process of SMCA sensor
In addition to the spontaneous shape-morphing performance originat-
ing from the thermoplasticity of the viscoplastic SHP, such mechanical 
functionality can be useful to integrate the SMCA sensor incorporating 
a new class of printed stretchable electrode devices (Fig. 3a and Sup-
plementary Fig. 9, see detailed fabrication process of the ultrathin 
stretchable multielectrode devices for the SMCA sensor in Methods). 
The unconventional platform of stretchable electronics is expected to 
be implemented in a way that ultrathin and wavy structures (~3 μm) are 
directly transfer printed onto the SHP substrate even without surface 
stickiness, by embedding the bottom of the device into the shallow 
surface of the SHP layer and anchoring frame of the device in the gentle 
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pressure-induced shape-deformed substrate whose thermoplastic 
behaviour is accelerated by higher thermal energy (Fig. 3b and Sup-
plementary Fig. 6). To fully support our assumption, we prepared 
the transfer-printing process with different temperatures (25, 40 and 
60 °C). As expected, the SEM images illustrating sequentially enhanced 
shape deformation of thermoplastic SHP by higher temperature evi-
dently verify the reliable direct transfer-printing methodology of 
ultrathin electrodes realized by anchoring and embedding processes 
(Fig. 3c), which cannot be achieved in thermoset polymers. Using this 
method, SHP-printed multielectrode arrays from a wafer-scale manu-
factured batch (Supplementary Fig. 9) secure high areal uniformity 
under 0 and 50% strains (Fig. 3d). Our direct transfer-printing pro-
cess also enables electrical resistance (up to 70% strain in the linear 

stretching test and 35% strain for 100 cycles in the repetitive stretch-
ing test) and electrochemical impedance (up to 50% strain) values 
of the stretchable electrodes to be highly uniform (Fig. 3e–g). We 
then completed the SMCA sensor by formation of the Alg–CA film 
onto the front of electrode array by facile coating and dehydrating 
of the Alg–CA-dispersed aqueous solution (Supplementary Fig. 10). 
The hydrogel solution was easily formed into the adhesive dry film by 
being coated on the front of electrode array as a whole piece without 
concerns about electrical crosstalk between adjacent channels since the 
deprotonated polysaccharide hydrogel still possesses high electrical 
resistance35. Furthermore, the use of the ionically conductive adhesive 
hydrogel as a bio-interfacing layer resulted in lower magnitude of elec-
trochemical impedance (Supplementary Fig. 11a) by capacitance effect 
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sectional view of a tissue-attached patch while stretched. e, Comparative images 
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of the brain tissue was set at 37 °C. h, Cross-sectional photographs (top) and 
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and SMCA (right) films mounted on the largely winkled surface of bovine cortex. 
Each image was obtained 1 h after tissue contact.
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(Supplementary Fig. 11b) indicating that Alg–CA layer itself functions 
as a low-impedance coating without additional micropatterned or 
nanostructured films (for example, poly(3,4-ethylenedioxythiophen
e)-polystyrene sulfonate (PEDOT:PSS), iridium oxide (IrOx) and titanium 

nitride (TiN)). In addition to providing interfacial modulus matching 
(Supplementary Fig. 2) and adhesive functionality (Fig. 2a–c) at the 
tissue–device contact, therefore, the Alg–CA hydrogel was expected 
to improve neurosignalling performance of SMCA sensor platform.
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transferred electrode device patch before and after stretching. f, Normalized 
electrical resistance during repetitive stretching cycles with 35% strain. The 
inset graph shows magnified raw plot of resistance in ten stretching cycles. 
g, Electrochemical impedance while stretching up to 50% strain. h–j, Images 
showing the ultraconformal, robust brain-adhesive performance of the SMCA 
sensor device on an ex vivo bovine cortex with a curvilinear surface. h, Formation 
of an ultraconformal osculation of the SMCA sensor device along a randomly 
wrinkled surface of the cortex via shape-morphing properties. i, Robust brain 
integration of the SMCA sensor device withstanding shear force tension.  
j, Durable brain-adhesive interface after circumfusing a water droplet.
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Before the in vivo demonstration using the SMCA sensor, its 
on-brain adhesion was investigated on the ex vivo bovine cortex 
(Fig. 3h–j). The SMCA sensor was conformally mounted on the une-
ven wrinkled cortex surface and spontaneously shape-morphed into 
the various valleys with different depths (Fig. 3h). It is clearly con-
firmed that integration of the ultrathin stretchable electrode array 
with mesh-like serpentine interconnect pattern does not decrease 
thermoplasticity or stress relaxation property of the SMCA sensor 
patch compared to bare SHP film, which leads to ultraconformal-
ity of the cortex-interfacing device (Supplementary Fig. 12). Such 
tissue-adhesion performance was stably maintained when shear 
stress was applied to the SMCA sensor (Fig. 3i and Supplementary 
Video 2); moreover, the robust adhesion property was proved even 
in the washdown condition by water (Fig. 3j, Supplementary Fig. 13 
for extended sequential images and Supplementary Video 3 showing 
the full sequence of the adhesion test in the washdown condition). 
Considering the successful ex vivo demonstration, our SMCA sensor 
is highly suitable for achieving the ultimate brain–device interface.

tFUS artefact-resistant neural recording
Designed for spontaneous adaptation to the 3D curvilinear geom-
etry and surface morphology of the cortex, the shape-morphing and 
tissue-adhesive functionalities of the SMCA sensor were expected to 
contribute to securing clear electrical brain activity during tFUS neu-
rostimulation without sonication-induced artefacts, which would not 
be achieved in other soft neural device platforms (Fig. 4a). To prove our 
assumption, we prepared an acute in vivo experimental setting where 
the neurosignalling stability under tFUS sonication of the SMCA sensor 
is investigated (details of the experimental setup are described in Sup-
plementary Note 8). We presented the quantitative neurophysiology 
performance of soft ECoG devices coupled with ultrasound stimulation 
by signal qualities of baseline activity and tFUS-evoked event-related 
potentials (ERPs). Each parameter was evaluated by averaging power 
spectral density (PSD) of their noise sources, which are 60 Hz line noise 
and the tFUS-defining pulse-repetition frequency (PRF) respectively, 
extracted from the neural signal for multiple animals (see Methods, 
Supplementary Fig. 14 and Table 1 for detailed information on the acute 
in vivo experiment). A typical protocol of tFUS with a PRF of 1 kHz and 
a 50% duty cycle, which has been previously reported for eliciting a 
neuronal response40, was used due to not only its guaranteed neuro-
activative effect but also its identifying frequency distinct from the 
principal range of brain activity (0.1 to 600 Hz for rat)41, which could 
easily be considered as tFUS-induced artefact in power spectral analysis 
(see Supplementary Fig. 15 for detailed information on acute in vivo 
sonication setup and neurostimulation protocol).

Clearly, the ECoG devices using SHP, Alg/SHP and SMCA were 
conformally adapted to the cortex surface except PDMS, which led us 
to reason that this conformability originates from the shape-morphing 
characteristic of the SHP substrate (Fig. 4b–e). Compared to 
electrode-printed devices supported on the SHP substrate, opaque air 
gaps were dominantly formed at the interface between the PDMS-based 
ECoG device and cortex since the supporting patch of the device did 
not conform to the cortical surface even after the gentle touch resulted 
from the lack of shape adaptability, which indicates that soft ECoG 
devices coupled with the conventional elastomeric substrate without 
its own tissue conformality are incapable of forming uniformly osculant 
interface even with the small animal’s brain whose cortical structure of 
sulcus and gyrus is not very flexuous compared to that of non-human 
primates or human (Fig. 4b). The non-conformal bio-electronic inter-
face caused a degradation in the neural signal, possibly by 60 Hz of 
line noise (Fig. 4f and Supplementary Fig. 16). Moreover, such unstable 
tissue-interfacing led to a large distortion of the original neural signals 
under tFUS sonication (a magnified graph below, Fig. 4f). On the other 
hand, the soft ECoG device platforms using shape-morphing SHP sub-
strate including the SMCA sensors uniformly conformed to the surface 

morphology of the cortex without any void in a short time (within 1 min) 
due to the accelerated shape deformation by gentle touch (Fig. 4c–e). 
The ECoG device printed on the SHP substrate demonstrated better 
baseline signal quality (Fig. 4c,g and Supplementary Fig. 16). The Alg 
hydrogel with fluidic material property and modulus-matching capabil-
ity further reinforced brain conformality (Fig. 4d) and baseline stability 
(Fig. 4h and Supplementary Fig. 16). Despite satisfactory improvement 
with respect to baseline, the tFUS-induced noise still greatly intervened 
during neuromodulation period, indicating that tissue conformality 
alone cannot completely prevent mechanical artefacts (Fig. 4g,h, mag-
nified graphs below). In this regard, we observed that such artefacts 
were effectively reduced in the SMCA sensor conformally affixed to 
the cortex (Fig. 4e,i). In addition to stable baseline neural recording 
due to extremely conformal interfacing with ionically conductive 
soft hydrogel (Fig. 4i and Supplementary Figs. 12 and 16), continuous 
neurophysiology capability of the SMCA sensor under tFUS sonica-
tion also realizes monitoring of the intact tFUS-modulated neural 
response in the manner of specific ERP patterns from channels close 
to the sonicated visual cortex (Fig. 4i, a magnified graph). Time trace 
plot of multichannel ECoG streaming further verifies that there was 
no crosstalk issue between the electrodes both in Alg/SHP devices 
and SMCA sensors that used a cortex-interfacing hydrogel layer as a 
whole piece35. To further quantitatively support the unprecedented 
neurophysiological stability under tFUS neurostimulation of the SMCA 
sensor, we analysed the PSD of 1 kHz PRF sonication-induced artefacts 
within in vivo neural signals recorded from the aforementioned four 
ECoG devices (Fig. 4j). Considering the frequency range of neural 
oscillation41, if the power of the 1 kHz frequency increased during 
tFUS stimulation, then it is regarded as a tFUS-induced artefact, not 
a neural signal. The representative and statistical results regarding 
the power level trends on each ECoG platform clearly support our 
assumption (Fig. 4j and Supplementary Fig. 17). The control groups 
without tissue-adhesive functionality were evidently vulnerable to 
tFUS neurostimulation (Fig. 4f–h and Supplementary Fig. 17a–c). In 
contrast, our SMCA sensor effectively minimized 1 kHz PRF-related 
mechanical artefact intervention (Supplementary Fig. 17d), which 
was not enough to be realized by only conformality without a robust 
surface fixation property (Supplementary Fig. 17b,c) (a detailed discus-
sion on visualized tFUS-induced artefacts in recorded neural signals 
appears in Supplementary Note 9). Put together, the results highlight 
that the coexistence of tough adhesion and shape-morphing proper-
ties inherent in the SMCA sensor platform played the most important 
role in achieving high-fidelity monitoring of cortical activity coupled 
with ultrasound modulation, thereby increasing the possibility for the 
realization of closed-loop tFUS neurostimulation (see Supplementary 
Fig. 18 and Supplementary Note 10 for the discussion on the probable 
operating mechanisms of the soft ECoG device platforms including the 
SMCA sensor with the correlation between material functionalities and 
neurosignalling performance).

Seizure-preceding epilepsy control with tFUS
Considering the tFUS artefact-resistant neural signal monitoring 
performance of the SMCA sensor, our materials synthesis and device 
fabrication strategies were expected to remain valid for acoustically 
transparent interfacing to both normal and seizure-induced brain tis-
sues even in long-term intracranial implantation. Notably, the accurate 
detection of the seizure-preceding HFO as an informative biomarker 
of the following ictal phase can lead to instantaneous triggering of 
effective neurostimulation for early-stage suppression of epileptic 
seizures. In this regard, the HFO recording capability of the SMCA 
sensor in an awake rat model with a kainic acid-induced seizure was 
investigated (Fig. 5a–d). Typical HFO signals included in raw corti-
cal activity were confirmed by fast and short burst oscillations in the 
range of 80 to 500 Hz (Fig. 5a, top and middle) and the corresponding 
power spectrum (Fig. 5a, bottom), whose signal quality is not degraded 
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for long-term implantation (see Supplementary Figs. 19 and 20 and 
Supplementary Note 11 for details). Not only capable of of long-term 
multichannel ECoG recording, the implanted SMCA sensor also verifies 

its chronic biocompatibility (Extended Data Fig. 1 and Supplementary 
Fig. 21). Staining for glial fibrillary acidic protein to show its expression 
in astrocytes, and IBA-1, representative of ionized calcium-binding 
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Fig. 4 | Acute in vivo neural recording performance of the SMCA sensor under 
tFUS stimulation compared with different brain-interfacing materials in 
an anaesthetized rodent model. a, Schematic image of the in vivo material 
performance test. b–e, Top-view images of brain-mounted stretchable 
electrodes integrated with four different materials, including PDMS (b), SHP (c), 
Alg (interface)/SHP (substrate) (d) and SMCA (SMCA sensor) (e). f–i, Series of 
electrocorticogram raw plots from a representative trial of each material platform 
(upper graphs) and magnified data plots of three consecutive channels, including 
a channel located on the visual cortex of the left hemisphere (channel 15) directly 
stimulated by tFUS of each material platform (lower graphs), including PDMS  
(f), SHP (g), Alg (interface)/SHP (substrate) (h) and SMCA (SMCA sensor) (i).  
j, Statistical analysis results of average noise and artefact level showing the signal 
quality of electrical activity from each material platform. The power density of 

PRF shows the artefact level caused by ultrasound stimulation (n = 60). Box plots 
indicate median (white line), 25 and 75% quartiles and maximal and minimal values 
except outliers (whiskers) (NS, not significant, indicates P > 0.05 among the PDMS, 
SHP and Alg/SHP groups, ***P < 0.001 between the SMCA sensor and other control 
groups with the Wilcoxon rank sum test. P = 2.5996 × 10 × 10−6 for PDMS(tFUS)-
SMCA(tFUS), P = 5.4934 × 10 × 10−5 for SHP(tFUS)-SMCA(tFUS), P = 0.0002 for 
Alg/SHP(tFUS)-SMCA(tFUS), P = 7.0151 × 10 × 10−12 for PDMS(Baseline-tFUS), 
P = 7.3078 × 10 × 10−10 for SHP(Baseline-tFUS), P = 2.6968 × 10 × 10−13 for  
Alg/SHP(Baseline-tFUS) and P = 2.3678 × 10 × 10−9 for SMCA(Baseline-tFUS)).  
M, motor; S, somatosensory; C, cingulate; R, retrosplenial; P, posterior parietal;  
V, visual; B, bregma; Ref, reference; Gnd, ground. Panel a, mouse skull and brain, 
adapted from ref. 49 under a Creative Commons licence CC BY 4.0; rat, adapted 
from ref. 50 under a Creative Commons licence CC BY 4.0.
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adaptor molecule 1 protein expression in microglia, revealed sus-
tained biosafety of the SMCA sensors both in the short- (4 weeks) and 
long-term (24 weeks) when compared to the sham group.

Next, neural recording performance of the SMCA sensor coupled 
with customized tFUS stimulation with the therapeutic protocol in 
awake animals for monitoring and treating epileptic seizures was 
investigated. To better facilitate portable bidirectional neural interface 
platform in freely moving animals, a customized headstage system 
combined with a tFUS transducer and an implanted SMCA sensor was 
devised (Supplementary Fig. 22 and Supplementary Note 12). In the 
system, responsive tFUS stimulation determined by seizure-preceding 
HFO detection was set to be targeted to the right CA3 of the hippocam-
pal area before ictal onset. With this approach, our customized system 
precisely predicted the following seizure spike wave and appropriately 

performed a proactive therapeutic action (Fig. 5b). We adopted a tFUS 
protocol of 40 Hz PRF as the therapeutic trial42 to be applied to awake 
seizure animals (see Supplementary Fig. 23 and Supplementary Note 
13 for rationale of the tFUS protocol and detailed information of stimuli 
pulse engineering).

Consequently, neural recording performance of the SMCA sensor 
in awake seizure rats was stably maintained regardless of the interven-
tion of continuous tFUS neurostimulation (Fig. 5c,d) (see Supplemen-
tary Figs. 24 and 25 for detailed information on the system setup and 
in vivo experimental procedure). In the representative time trace of 
all channels, raw signals recorded from the same seizure animal, we 
observed that the amplitude and duration of epileptic spike waves 
were dramatically diminished by 3 min of stimulation initiating from 
the moment of seizure-preceding HFO detection with the protocol of 
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Fig. 5 | tFUS-induced in vivo real-time seizure control with HFO detection-
triggered prespike-wave stimulation. a, Raw signal (top), filtered HFO 
(80–500 Hz bandpass filter, middle) and power spectrogram (bottom) of HFO 
measured by the SMCA sensor in the kainic acid seizure model. b, Automated 
tFUS stimulation in the awake kainic acid model triggered by HFO detection. 
Seizure spike waves (SW) sequentially followed HFO (indicated by #). The time 
trace was adopted from channel 8 (Ch. 8) in Fig. 4b (indicated by *). c, Sham trial 
16-channel raw time traces and spectrogram of the tFUS/ECoG-based automated 

stimulation system. d, tFUS stimulation trial 16-channel raw time traces and 
spectrogram, triggered by HFO detection. e,f, Averaged z score topography 
of epileptic oscillatory power of sham (e) trials and tFUS stimulation (f) trials 
(eight pairs of Sham-tFUS trials from six animals). g–j, Normalized average PSD 
of delta (1–4 Hz) (g), theta (4–8 Hz) (h), alpha (8–13 Hz) (i) and beta (13–30 Hz) 
(j) from Sham and tFUS seizure cases (HFO detection at t = 0). Data points are 
mean ± s.e.m. All channel averaged, eight pairs of Sham-tFUS trials from six 
animals are used (Wilcoxon rank sum test, *P < 0.05). Max., maximum.
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40 Hz PRF and 5% duty cycle during a tFUS-stimulated seizure episode 
(termed tFUS) (Fig. 5d, upper graph) in comparison with those of ictal 
waves during the sham seizure episode (termed sham) of the same 
period of time (recording for 3 min without neurostimulation after 
the moment of HFO detection) right before the tFUS case (Fig. 5c, 
upper graph). Corresponding to the electrophysiological activities 
recorded in the seizure epoch, the normalized power spectrogram 
of a channel electrode in the SMCA sensor array near the tFUS neu-
rostimulation site (Ch. 9) supported the online seizure-suppressive 
effect of tFUS neurostimulation (Fig. 5c,d, lower graphs). It should be 
noted that there was no tFUS artefact interference in any frequency 
band of the brain activity including the 40 Hz corresponding to the 
PRF of the seizure-suppressive protocol, which again definitely high-
light the ultrasound artefact-resistant neurosignalling performance 
of our SMCA sensor platform allowing us to evaluate the efficacy 

of the neurostimulation protocol. On the premise of that, in terms 
of the power spectrogram free from the artefact, the therapeutic 
result indicates that the trend of abnormal neural activity was effec-
tively suppressed by a control protocol of tFUS neurostimulation 
rather than natural sedation over time, as presented in the sham case 
(Fig. 5c, lower graph) (see Extended Data Fig. 2 for the control study 
of tFUS-modulated seizure activity from a single channel and the spa-
tiotemporal pattern of neural recordings from the principal seizure 
phase, details are described in Supplementary Notes 14 and 15).

Furthermore, the seizure control effect of a 40 Hz PRF stimulation 
on multiple animal subjects was cumulatively investigated to evaluate 
the average efficacy of the tFUS neurostimulation protocol and identify 
its prognostic variation for the individual in vivo models. The series of 
two-dimensional z score topographies classified according to the main 
frequency band of brain activities averaged from all pairs of the sham 
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Fig. 6 | Closed-loop seizure control system with SMCA sensor-monitored 
feedback-based tFUS dose regulation. a, Flow chart of the tFUS–SMCA sensor-
coupled closed-loop seizure control system. b, Schematic illustration of the 
two-type tFUS dose modulation concept, Ispta modulation (‘A’ mode) and Isppa 
modulation (‘B’ mode). AMP, amplitude; PD, pulse duration. c,d, Representative 

time trace of all channels (c) and time trace and spectrogram of a single channel 
(Ch. 9) (d) of the closed-loop seizure control episode with an Ispta dose increase. 
e,f, Representative time trace of all channels (e) and time trace and spectrogram 
of a single channel (Ch. 9) (f) of the closed-loop seizure control episode with an 
Isppa dose increase. Norm., normalized; PD, pulse duration.
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and tFUS cases illustrates that oscillatory power and duration from 
delta (1–4 Hz) to beta (13–30 Hz) oscillations were largely suppressed 
in both hemispheric areas after applying the tFUS neurostimulation 
triggered by HFO detection to the right CA3 region (Fig. 5f) in com-
parison with sham cases (Fig. 5e). Each of the averaged oscillatory 
power density values also illustrated that oscillation energy ranging 
from the delta to beta frequency bands was largely suppressed during 
tFUS stimulation compared to that of the Sham cases in the same time 
interval (Fig. 5g–j). These results consistently demonstrated that the 
amplitude of ictal oscillation and duration of seizure-like hyperactiv-
ity were reduced by the 40 Hz PRF protocol, successfully verifying its 
online therapeutic efficacy.

Closed-loop dose-regulating seizure control
Although the optimally selected tFUS protocol may act as a key enabler 
for effectively suppressing irregular ictal symptoms originating from 
epileptic seizures, as intractable epilepsy is an unforeseeable disorder 
that features discrete patterns of ictal oscillations, tFUS neurostimu-
lation with a fixed protocol remains limited to personalized electro-
ceuticals. Considering the critical challenge, the closed-loop function 
should be integrated into the bidirectional sensing-stimulation system. 
In this regard, we systemically designed a closed-loop framework capa-
ble of adaptive-feedback control of tFUS neurostimulation protocols 
corresponding to various seizure states in numerous individual cases 
(Fig. 6a,b) (details for design and operational flow of the closed-loop 
seizure control system are described in Supplementary Note 16). The 
unconventionality of the proposed system, equipped with an autono-
mous dose-regulating function, originates from the use of an intact 
neural response for therapeutic sonication as a feedback parameter, 
which is achieved by the artefact-free SMCA sensor.

In general, based on the precise HFO detection via the SMCA 
sensor, the evoked seizure oscillation was effectively controlled 
by tFUS neurostimulation with the default protocol (spatial-peak 
temporal-average intensity (Ispta) of 0.05 W cm−2 and spatial-peak 
pulse-average intensity (Isppa) of 1 W cm−2) in our closed-loop sys-
tem (Extended Data Fig. 3 and Supplementary Note 17). For more 
undesired cases not resolved by the default setting, our two types 
of closed-loop were also demonstrated. Representative examples of 
the ‘A’ mode and ‘B’ mode closed-loop illustrated seizure control by 
Ispta- or Isppa-modulated three-level tFUS protocols (Fig. 6c,e). In the 
detailed trace of neural activity as a magnified profile documented 
from a channel located in the posterior parietal cortex, the five dif-
ferent phases of the closed-loop sequence could be indexed at the 
individual neural waveforms from preseizure (or interictal) (phase 
I) oscillation, through the seizure epoch, to baseline recovery ranges 
under three-level closed-loop tFUS neurostimulations (Fig. 6d,f). In 
both cases, the induced seizure model was an intransigent type that 
was not alleviated by the initial neurostimulation trial (dose 1) with the 
default setting (phase II), resulting in a dose increase. Although the fol-
lowing Ispta and Isppa modulations (dose 2) were certainly effectual, the 
considerable amplitude and duration of ictal waves were still observed 
(phase III). Another dose increment (dose 3) finally led to full mitiga-
tion of residual epileptiform discharge (phase IV) (see Supplementary 
Notes 18 and 19 for a detailed description of the closed-loop Ispta or Isppa 
dose-regulating tFUS seizure suppression). The corresponding power 
spectrogram also supported that the dose-regulating closed-loop 
system was effective in suppressing different types of randomized sei-
zure. The maximum intensity of tFUS protocol used in the closed-loop 
system satisfies the recent guidelines of biophysical safety for tFUS 
stimulation43, inducing tissue temperature rise less than 2 °C, which 
considered to be safe and unlikely to result in tissue-damaging issues 
(Supplementary Fig. 27). The most intensive soundwaves we used 
were also verified to be free from undesired blood-brain barrier (BBB) 
opening issues (see Supplementary Fig. 28 and Supplementary Note 
20 for detailed information on the BBB opening verification test). In 

addition to the single channel-driven neural signal trace, the three 
kinds of spatiotemporal amplitude topographic map data of neural 
dynamics in the full sequence of tFUS-regulated seizure suppression 
were achieved by the SMCA sensor array (Extended Data Figs. 4 and 
5, Supplementary Note 21 and Video 6). It should be noted that the 
seizure spikes recorded by the multielectrode array in the SMCA 
sensor clearly indicate that there is no electrical interference in the 
neural signal, supported by temporally delayed ictal peaks from the 
channel near the signal source (Supplementary Fig. 26). The case study 
for closed-loop tFUS seizure suppression includes a seizure model 
with repetitive radial dynamics triggered from a channel located 
nearly on the posterior parietal cortex that might be considered the 
seizure source (Ch. 13) and spread throughout the right hemispheric 
area (Fig. 4, Extended Data Fig. 5 and Supplementary Video 7). During 
the three-level closed-loop tFUS epoch, two-dimensional topogra-
phies of electrical seizure activity in the colour map also illustrate its 
most intense level (representative peaks *1 to *3, phase II) almost not 
affected by the dose 1 protocol, gradual attenuation trend of seizure 
intensity and oscillation frequency with maintaining its character-
istic propagating pattern by the dose 2 protocol, and suppression 
of residual ictal waves by the dose 3 protocol (a representative peak 
*8, phase IV) (see Supplementary Video 6 for sequential topographic 
clips of spatiotemporal electrographic neural dynamics during 
the closed-loop Ispta-regulating seizure suppression episode). Such 
informative findings regarding effective suppression of the varied 
epileptiform discharges and distinct ictal dynamics involved in each 
seizure case from individual animals were clearly visualized.

Conclusions
We have reported a SMCA sensor for closed-loop tFUS neurostimula-
tion. The SMCA device has a layered structure consisting of ionically 
conductive and adhesive Alg–CA polymers and viscoplastic SHPs. It 
exhibits conformal and robust fixation on a curved cortical surface, 
providing stable ECoG signal monitoring even under tFUS neurostimu-
lation in freely moving awake rodents. In particular, our closed-loop 
epilepsy therapeutic system effectively suppressed irregular ictal 
waves through tFUS dose-regulating neurostimulation. Further-
more, the spatiotemporal mappings obtained by the SMCA sensor 
array illustrate how tFUS neurostimulation positively affects injured 
tissue sites associated with abnormal neural activities even in the pres-
ence of acoustic waves. Our SMCA platform could potentially be used 
to develop closed-loop tFUS systems that can flexibly determine an 
optimal manoeuvre in response to the state of the intact brain activity 
modulated by ultrasound stimulation.

Methods
Materialization of SMCA bilayer films
The SMCA bilayer films were simply fabricated by coupling a SHP as 
a substrate and an Alg–CA adhesive hydrogel as an adhesive. After O2 
plasma treatment of an SHP surface, 150 μl of an aqueous solution of 
Alg–CA hydrogel (2.5% dissolved in deionized water) was drop-casted 
and uniformly coated on a 100-μm-thick patch of the SHP substrate 
within a mould that defined the adhesive area. The hydrogel-coated 
SHP films were dried over 6 h on a clean bench for solidification of the 
hydrogel and assembly of the SMCA films.

Stress relaxation characterization and FEA
SHP films and PDMS (Sylgard 184, 20:1 crosslinking agent weight ratio) 
(Dow Chemical Company) films, both with 200 μm thicknesses, were 
each cut to a length of 30 mm and a width of 5 mm. Each sample was 
stretched to a tensile strain of 30% with a stretching speed of 50% strain 
per min, and the tensile stress at the strain was measured for 60 min 
by a dynamic mechanical analysis (DMA) instrument (DMA Q800, TA 
Instruments) to characterize the stress relaxation property. The stress 
relaxation properties of the SHP and PDMS films were characterized 
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at two different temperatures (25 and 37 °C) to determine the tem-
perature dependence. On the basis of the DMA results, the mechanical 
behaviour of the materials was simulated by the FEA model (ANSYS, 
Ansys). Mesh structures for the brain-interfaced patch material were 
designed by modelling software (Inventor Professional, AUTODESK). 
The two-dimensional distribution of stress energy at the interface 
between the patch material and brain tissue over time was calculated 
and visualized to verify the dynamic behaviour of the brain-interfaced 
patch materials.

Ex vivo tissue-adhesion test
The bioadhesive properties of the SMCA film were comprehensively 
evaluated by ex vivo investigation using rodent skin and bovine brain 
tissue. The adhesion strength of SHP-coupled bilayer patch materials 
in the tensile and shear directions was investigated to compare the 
performance of Alg and Alg–CA hydrogels by performing a stretching 
test with a universal testing machine (34SC-1, Instron). Additional adhe-
sion tests to investigate the optimal material combination of an Alg–CA 
adhesive and polymeric backbone substrates were also performed 
with a universal testing machine. For the material control test, several 
Alg–CA-coated bilayer platforms, with different substrate materials (PI, 
PDMS and SHP, thickness of 100 μm) whose backside was fixed onto 
a piece of PET film by commercial bonds (Loctite 401, Loctite), were 
attached to wet rodent skin, which was also fixed on a PET fragment. 
To further investigate the synergistic effect between the interfacial 
adhesives and backbone substrates considering dynamic behaviour 
under strain, another adhesion test and stress relaxation test were per-
formed on tissue-assembled bilayer patches without a stiff PET-backing 
layer. To evaluate adhesion strength to tissue with curved surfaces, 
a shear stretching test was performed on patch materials mounted 
on bovine brain tissue with a stretching speed of 50% strain per min 
using an auto-stretcher machine (Motorizer X‐translation Stages, Jaeil 
Optical System). For the all-adhesive tests, tissue-interfaced hydrogel 
materials were swollen by silane precoated on the tissue over 1 min 
before stretching.

Ex vivo verification of shape-morphing property for brain 
conformability
The shape adaptability and brain conformality of the SMCA film were 
investigated by ex vivo experiments using bovine brains with uneven 
surface profiles. For the control test, bilayer adhesive patches, includ-
ing Alg–CA/PDMS and SMCA (Alg–CA/SHP) films whose substrate 
materials were 100 μm thick, were mounted on a piece of bovine brain 
tissue with highly convolutional wrinkles and in contact with both 
convex sides of the tissue flexion. The bottom of the brain tissue was 
immersed in a silane solution, with appropriate heating applied to 
maintain the temperature of the tissue at 37 °C. Without any external 
force applied to the samples, side view images of the contact inter-
face were obtained to evaluate the extent of shape-morphing and 
conformal osculation of the patch materials to the surface flexure 
of the brain tissue over time. Cross-sectional fluorescent images of a 
dyed adhesive hydrogel layer at the adjacent view were obtained to 
also investigate the shape-morphology of the patch materials at the 
brain interface and evaluate the degree of conformal osculation to the 
brain surface. During the ex vivo conformality tests, the bottom area 
of tissues was immersed in a petri dish filled with phosphate-buffered 
saline (PBS) (including 0.137 M sodium chloride, 2.7 mM potassium 
chloride, 4.3 mM sodium phosphate (dibasic) and 1.4 mM potas-
sium phosphate (monobasic)) (PBS, 1×, pH 7.4). To match the tissues’ 
temperature to body temperature, the PBS-filled dishes containing 
the tissue were loaded on a hot plate and the temperature of the 
tissues’ surfaces was raised to 37 °C while being monitored with a 
thermometer embedded in the hot plate. The cortical surface of the 
tissues was coated with PBS using a swab to prevent it from drying 
during the tests.

Fabrication of the stretchable ECoG electrode arrays
Fabrication of the stretchable ECoG electrode arrays began with spin 
coating of a PI (~1.5 μm thick, Sigma-Aldrich) ultrathin backbone layer 
on a silicon oxide wafer (SiO2, 4-inch size), followed by thermal anneal-
ing (soft baking at 150 °C for 30 min, hard baking at 250 °C for 1 h) for 
full crosslinking. Photolithography and lift-off in acetone defined a pat-
tern of electrodes, interconnects and pads in the bilayer of Ti (~20 nm)/
Au (~300 nm) deposited by electron beam evaporation. Another PI 
(~1.5 μm thick) ultrathin encapsulation layer was spin-coated on a 
plasma-treated bottom PI layer, followed by thermal annealing. Photoli-
thography and lift-off in acetone defined a patterned Al (~300 nm) layer 
deposited by thermal evaporation. Reactive ion etching of exposed PI 
layers and wet etching of the Al reactive ion etching blocking layer (in 
APAL-1, APCT defined the pattern of PI-encapsulated electrode arrays. 
The completed stretchable electrode device was transfer printed onto 
a layer of SHP, followed by bonding an anisotropic conductive film 
cable to the output pads for connection to the interfacing circuit board.

Transfer printing of stretchable electrode arrays on the 
shape-morphing SHP and PDMS films
A piece of water-soluble tape was used to delaminate a fabricated 
electrode device from a wafer. The tape used to deliver the device was 
laminated on a substrate film with a thickness of 100 μm, dissolved 
in deionized water and removed from the polymer while the thin film 
device was transferred to a substrate layer. The transfer-printing pro-
cess of ultrathin devices onto PDMS substrate is completed in the step 
for mechanically pressing the front of the transferred device on the 
sticky PDMS surface. In case of the process with the shape-morphing 
SHP, on the other hand, the transferred device on the SHP layer was 
thermally annealed in a hot plate for 10 min and gently pressed by a 
flat glass panel. The electrode arrays were embedded into the sub-
strate surface, accompanied by anchoring of the device frame by the 
shape-morphing SHP driven by pressure and thermal energy.

FE-SEM analysis
Field emission-scanning electron microscopy (FE-SEM) (Inspect 
F50, FEI) was used to observe the interfaces between the transfer 
printed electrode arrays and shape-morphing SHP substrates. Each 
electrode-printed SHP film was cross-sectioned by using a razor blade 
and coated with a platinum layer before imaging. Pt is coated to the 
front of the samples before analysis to enable high-resolution imaging 
by forming electrical path to prevent electrons from being charged 
on the surface of the samples including insulating polymer layer (for 
example, PI and SHP).

Electrical and electrochemical characterization of the ECoG 
array printed on SHP
Stretchable electrode devices coupled with SHP substrate were laterally 
elongated by using an automatic stretching machine with a rate of 20% 
strain per min for resistance-strain characterization. The resistance 
of electrode devices under strain was measured using a four-point 
probe method (Keithley 400, Tektronix). Cyclic stretching tests were 
performed with a strain of 35% for 100 cycles during continuous resist-
ance measurement. To characterize the electrochemical impedance 
property of stretchable electrodes under strain, electrode devices were 
stretched up to 50% while stretching 10% at a time by using a manual 
stretching stage. The impedance of the electrodes was measured using 
a potentiostat analyser (ZIVE) in PBS solution (1×, pH 7.4). A platinum 
wire and an Ag–AgCl electrode (BASiAg–AgCl and 3 M NaCl) were used 
as the counter and reference electrodes, respectively. Potentiostatic 
electrochemical impedance spectroscopy was characterized as a func-
tion of frequency ranging from 1 Hz to 100 kHz in response to the 
input source with fixed amplitude correlation amplitude of 10 mV. 
The measured electrochemical impedance spectroscopy plots were 
profiled with ten points per decade.
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Ex vivo verification of the cortex-interfacing performance of 
SMCA sensor patch devices
The brain-integration performance of the SMCA sensor was evaluated 
by an ex vivo test using a bovine brain model. A combined SMCA sen-
sor patch was mounted on the whole bovine brain coated with silane 
to maintain wet conditions and swelled for 1 min. With the adhesive 
interfacial hydrogel sufficiently swelled, brain-adhesive performance 
was evaluated by holding and pulling the pad area of the SMCA sensor 
device in the transverse direction using a tweezer. To evaluate the 
durability of adhesion, the adhesive area of the SMCA sensor device was 
flushed down by a syringe-released silane stream while being pulled in 
the shear direction, followed by repetitive lateral pull-down motions.

Animal preparation and mobilization for in vivo experiments
All procedures were reviewed and approved by the Institutional Animal 
Care and Use Committee of the Korea Institute of Science and Technol-
ogy (KIST-2021-12-159). All animals were cared for in accordance with 
the guidelines for the Care and Use of Laboratory Animals. Animals 
were housed in a temperature-controlled room with alternating light 
and dark cycles (12 h cycles, light on 07:00–19:00) and ad libitum 
access to water and food. Male Sprague-Dawley rats aged 6–8 weeks 
old were separated for acute in vivo neural recording performance 
test (n = 5), seizure-preceding epilepsy control test (n = 6), closed-loop 
dose-regulating seizure control (n = 3), long-term implantation record-
ing performance test (n = 5) and biocompatibility evaluation (n = 16) 
groups for the study.

In vivo acute animal experiments for neural recording under 
ultrasound stimulation
Acute in vivo neural recording and tFUS stimulation tests were per-
formed on anaesthetized rodents to evaluate the electrophysiological 
recording performance of each brain-interfacing platform under ultra-
sound stimuli conditions. For all ECoG experiments, recordings were 
conducted with Digital Lynx SX (Neuralynx), sampled at 8 kHz. All four 
types of electrode, including PDMS, SHP, Alg/SHP and SMCA sensor 
platforms, were tested with ketamine–xylazine cocktail-anaesthetized 
animals. The ECoG devices were applied alternately to the same ani-
mal to compare the difference in cortex-interfacing performance 
for the identical brain geometry (Supplementary Fig. 14). The order 
of electrodes to test was pseudo-randomly decided to minimize the 
effect of the level of ketamine or xylazine anaesthesia and the possi-
ble effect of previous stimulation performed on the animal. For each 
electrode, experiments were performed as follows: (1) soft patch elec-
trode devices were mounted onto the opened cortical areas of both 
hemispheres. All kinds of ECoG devices mounted on both secured 
hemispheric cortical areas of anaesthetized rats were left on hold 
for 1 min to investigate the spontaneous brain conformality of each 
platform. (2) Baseline neural activity was recorded for 5 min. (3) Neural 
recording under tFUS stimulation follows baseline recording. Rat’s left 
visual cortex (anteroposterior −5.5, mediolateral −3.5) was stimulated 
by a mounted transducer with a sonication protocol of 1 kHz PRF, 50% 
duty cycle, 2.5 W cm−2 Isppa, 200 ms sonication duration for 100 trials. 
Neural activity was continuously recorded by electrode arrays, and 
ultrasound-induced ERPs were verified for each stimulation session. 
These tests were repetitively conducted on five animals to collect 
data (Supplementary Table 1). After the experiments, all animals were 
euthanized by CO2 gas in a hermetic chamber.

In vivo awake animal experiment for seizure monitoring with 
the SMCA sensor under tFUS triggered by HFO detection
Awake in vivo experiments of real-time neural recording and tFUS 
stimulation were performed on the seizure rodent model with the 
intracranially implanted SMCA sensor device. A kainic acid model 
was adopted to model drug-induced seizure in animals. Animals were 
subjected to a single therapy session to standardize the conditions for 

tFUS seizure control experiments. A custom code in MATLAB (R2020a, 
MathWorks) was used to control tFUS stimulation via the VISA interface 
and send events to the Neuralynx recording system to synchronize 
stimulation with the ECoG recording. The experimental setup and 
protocol were configured as follows: (1) preparing the animal acutely 
anaesthetized by isoflurane in an experimental chamber, an ultrasound 
transducer wired with a control system composed of multiple func-
tion generators and radiofrequency amplifier was mounted directly 
on the scalp and assembled with the headstage adaptor connected to 
implanted SMCA sensor devices. A 3D-printed guide system was used 
to fix the transducer on the scalp to stimulate the right CA3 region 
(anteroposterior −3.8, mediolateral 3.3), one of the region reported 
for kainic acid-induced epileptiform activities44,45. Ultrasound trans-
mission gel (Ecosonic, Sanpia) was applied between the scalp surface 
and the transducer for acoustic coupling. The paired adaptor, coupled 
with a preamplifier module tethered from a neural recording instru-
ment, was combined with the headstage adaptor. (2) After the animal 
woke up from anaesthesia, followed by adaptation in the chamber, 
the awake baseline signal was recorded over 5 min. The measured data 
were simultaneously uploaded to a customized ultrasound control 
system to establish a baseline root-mean-square (r.m.s.) power of the 
HFO frequency range (100–500 Hz) of the intact animal’s neural signal 
for judging HFO and seizure activity. (3) An acute seizure model was 
induced by intraperitoneal injection of kainic acid solution (5 mg kg−1, 
Sigma-Aldrich) into awake animals. (4) With the confirmation of sei-
zure modelling through ictal activity and abnormal behaviour after 
injection (approximately 7 to 25 min after kainic acid injection, time 
varied among individual animals), a sequence of neural activity for the 
sham seizure case (no stimulation) for 3 min from the moment when 
the first preceding seizure HFO was detected was instrumented by 
SMCA sensors. The threshold of HFO detection was 9 ms consecutive 
blocks with mean r.m.s. + 5 s.d. (5) An ultrasound control algorithm 
with updated neural signal information of the animal was operated 
during the interictal period after the sham seizure episode to prepare 
for another seizure. The tFUS control algorithm was designed to trigger 
ultrasound stimulation by detecting pathological high-frequency com-
ponents based on baseline information and to automatically terminate 
the operation after 3 min of stimulation. The stimulation protocol was 
40 Hz PRF, 5% duty cycle and 1 W cm−2 Isppa. Simultaneous neural record-
ing by SMCA sensors under seizure-suppressive tFUS stimulation was 
performed for the whole experiment. The seizure control effect of a 
40 Hz PRF stimulation was quantitively evaluated with a total of six 
rodents with eight pairs of tFUS and sham cases. After experiments, 
seizure animals were euthanized by CO2 gas in a hermetic chamber 
after the experiments.

In vivo awake animal experiment for dose-regulating tFUS 
closed-loop epileptic seizure control with SMCA sensor 
feedback
A closed-loop algorithm was designed for dose-regulating tFUS stimu-
lation. For dose regulation, Isppa and Ispta of the stimulation protocol was 
calculated as follows46:

Isppa = max (
1
PD∫

PD

0

P(t)2

ρc dt)

Ispta = max (
1

1/PRF∫
1/PRF

0

P(t)2

ρc dt)

where P is pressure, ρ is density of the propagating medium, c is speed of 
sound in the propagating medium t is the time and PD is pulse duration.

All stimulation protocols used in this study were below the maxi-
mum intensity (0.72 W cm−2 Ispta, with lower than 190 W cm−2 Isppa) of 
Food and Drug Adminstration safety guidance47.
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For every experiment, the stimulation protocol was set to the 
default protocol (40 Hz PRF, 5% duty cycle, 1 W cm−2 Isppa, 0.05 W cm−2 
Ispta) at the beginning of an experimental session. When stimulation 
was turned on by HFO detection, it was kept for a minimum of 30 s. If a 
seizure spike wave was detected, then the system measured whether it 
continued or was suppressed. To monitor seizure spike waves, an ampli-
tude correlation method (modified from ref. 48) was used as follows:

HVn = min[max(Sn), max(Sn−1), max(Sn−2)]

LVn = max[min(Sn), min(Sn−1), min(Sn−2)]

ACn = HVn−LVn

where Sn is signal of the current frame.
The frame size for amplitude correlation measurement was 

300 ms. The measured amplitude correlation was used to decide 
whether to continue, modulate or stop stimulation. For stimulation 
protocol modulation, the tFUS protocol was systemically modulated by 
following the protocol presets of each mode. The stimulation protocol 
preset for each mode (Ispta or Isppa control) was designed, as shown in 
Supplementary Table 2. For the Ispta modulation session, duty cycle was 
systemically increased from 5 to 15% with a step size of 5% (pulse dura-
tion was increased from 1.25 to 3.75 ms), while acoustic pressure was 
fixed to 283 kPa. This resulted in a change in Ispta from 0.05 to 0.15 W cm−2 
with a step size of 0.05 W cm−2, while Isppa was fixed at 1 W cm−2. For the 
Isppa modulation session, duty cycle was systemically decreased from  
5 to 3.8% with a step size of 0.6% (pulse duration was decreased from  
1.25 to 0.95 ms), while acoustic pressure was increased from 283 to 
322 kPa. This resulted in a change in Isppa from 1 to 1.3 W cm−2 with a step 
size of 0.15 W cm−2, while Ispta was fixed at 0.05 W cm−2. If the stimulation 
was over and a new stimulation was started with the next HFO detec-
tion, then the stimulation protocol was reset to the default protocol. 
Since seizure symptoms vary and there is a possibility that the protocol 
modulation range that the system provides is not optimal for some 
individuals, there would still be failed cases where seizure suppression 
is not achieved within the prepared protocol modulation scenario. 
If the seizure becomes severe and reaches upper thresholds during 
stimulation, just in case, then the system decreases intensity or stops 
the operation of tFUS for the safe control of the seizure. After demon-
strations, seizure animals were CO2-euthanized after the experiments.

Data processing and statistical analysis for in vivo animal 
experiments
Data processing and statistical analysis were performed with custom 
MATLAB codes. For acute material tests, a total of 60 electrodes from 
each material sample were randomly selected from all channels of 
animals to match the sample size. The time-locked signal of the base-
line and tFUS stimulation period of ECoG oscillations synchronized 
with the stimulation events were collected from each trial. Baseline 
signals of each trial were collected from −300 to −100 ms, while the 
tFUS stimulation period was 0 to 200 ms from the start of tFUS stimu-
lation. For baseline and tFUS periods, normalized PSD of artefacts 
(60 Hz line noise or noise from 1 kHz PRF) was obtained by short-time 
Fourier transform and grand averaged for each electrode. For seizure 
suppression experiments with awake freely moving animals, a notch 
filter with a cut-off frequency of 60 Hz was used to remove line noise 
from the data. To remove movement noises, movement timepoints 
were collected during the experiment by at least two trained research-
ers with monitoring videos. Movement timepoints were cross-checked 
with animal behaviour video recordings for validation. PSD of move-
ment timepoints were replaced with averaged PSDs collected from 
before the starting point of the movement, or after the end point of 
movement of each frequency. Two seconds of data were collected 
from before or after movement period. To analyse the effect of 3 min 
of tFUS stimulation with fixed protocols, PSD performed by short-time 

Fourier transform was measured from each channel. The PSDs of delta 
(1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz) and beta (13–30 Hz) oscilla-
tions were measured and z scored or normalized by the baseline for z 
score topography and statistical analysis. For z score topography, a 
total of 5 min of data, including 1 min pre-HFO, was averaged by a 30 s 
temporal window for each channel. Topography was performed with 
the EEGLAB toolbox in MATLAB. For statistical analysis, a total of 5 min 
of data, including 1 min pre-HFO, was averaged by a 20 s temporal win-
dow, and the normalized PSD of all channels was averaged. To visualize 
the closed-loop tFUS stimulation, an ECoG signal synchronized with 
time-locked events of tFUS device control was collected from each 
representative case. The normalized PSD was calculated for the chan-
nel placed on the posterior parietal cortex (channel 9). The Wilcoxon 
rank sum test was used for statistical tests of the acute material test 
and awake seizure suppression experiments.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Source data are provided with this paper. Other data that support the 
findings of this study are available from the corresponding author 
upon reasonable request.

Code availability
The customized MATLAB codes used for in vivo demonstration and 
analysing ECoG signals in this work are available from the correspond-
ing author upon reasonable request.
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Extended Data Fig. 1 | Immunohistology analysis of SMCA sensor-attached 
rodent brain tissue. The fluorescence microscopic images show double 
labelling for an immunofluorescent astrocytic marker GFAP and microglia/
macrophage marker Iba-1 at the implantation sites of both positive 
control (Sham) and SMCA sensor (SMCA). Cell nuclei were DAPI-stained 
for visualization. a, b, Representative images of the dissected brain tissue 
harvested from same animal including contralateral Sham (control area only 
with craniotomy procedure) (a) and ipsilateral SMCA (SMCA sensor-attached 
area) (b) hemisphere after 4 weeks of implantation. c, d, Representative images 
of the dissected brain tissue harvested from Sham (pristine tissue) (c) and SMCA 
(SMCA sensor-attached brain (d) animal groups after 24 weeks of implantation. 

e, f, Average immune responsive activation area of GFAP (e) and Iba-1 (f ) for 
hemispheric area of the brain tissues including Sham and SMCA groups after  
4 weeks and 24 weeks of implantation. In case of the GFAP activation area, 
unpaired two-tailed t-test: n.s. = not significant indicates p = 0.8713 between 
the Sham and SMCA groups in 4 weeks (n = 10), and p = 0.2379 between the 
Sham (n = 8) and SMCA (n = 6) groups in 24 weeks. In case of the Iba-1 activation 
area, unpaired two-tailed t-test: n.s. = not significant indicates p = 0.4554 
between the Sham and SMCA groups in 4 weeks (n = 10), and p = 0.4234 between 
the Sham (n = 8) and SMCA (n = 6) groups in 24 weeks. All of data points are 
mean ± standard error of the mean (s.e.m.).
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Extended Data Fig. 2 | Detailed analysis of electrographic seizure dynamics 
for the representative sham and tFUS cases. a, b, Timetrace of neural activity 
recorded from a single channel (Ch.9) for the full sequence of the sham  
seizure episode (a), and that of the tFUS seizure suppression episode (b).  
c, d, Two-dimensional amplitude topographic frames of electrographic seizures 

illustrating the spatiotemporal pattern occurring within the duration of interest 
from the sham (c), and tFUS (d) cases. The seizure-related events of the selected 
duration include seizure spike wave (SW) initiation (*1 in phase I), continuous 
SW (*2 in phase II), and seizure SW termination (transition to interictal phase for 
sham case and seizure suppression for tFUS case) (*3 in phase III).

http://www.nature.com/natureelectronics
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Extended Data Fig. 3 | Detailed analysis of electrographic seizure dynamics 
controlled by tFUS neurostimulation with the default protocol. a, b, tFUS 
with the default protocol (40 Hz, 5% DC, 0.5 W cm−2 Ispta, 1 W cm−2 Isppa) suppressed 
seizure spike waves. In the closed-loop operation determined by neural activity 
information recorded from the SMCA device, tFUS stimulation automatically 
turned on (●) by HFO detection and turned off (▼) after the seizure SW was 

suppressed. Representative timetrace of all channels (a) and timetrace and 
spectrogram of a single channel (Ch.9) (b) of the closed-loop seizure control 
episodes. c, Two-dimensional topographic frames of electrographic seizures 
illustrating the spatiotemporal pattern within the duration of interest from 
seizure SW initiation (*1 in phase II) and SW suppressing (*2 in phase III) events.
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Extended Data Fig. 4 | Spatiotemporal pattern of electrographic seizure 
dynamics occurring in the 3-phase seizure states under closed-loop tFUS 
epilepsy control with Ispta dose-regulation. The selected durations of interest 
were from the representative neurosignal trace in Dose #1 (peaks *1 to *3 in 
seizure phase II), Dose #2 (peaks *4 to *7 in seizure phase III), and Dose #3  

(peak *8 in seizure phase IV) epoch respectively. The sequential topographic 
frames from the seizure-phase series illustrates the representative drift of  
two-dimensional ictal activity being suppressed by the closed-loop Ispta-
regulating tFUS electroceuticals.
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Extended Data Fig. 5 | Spatiotemporal pattern of electrographic seizure 
dynamics from the 3-level seizure states under closed-loop tFUS epilepsy 
control with Isppa dose-regulation. The selected durations of interest were from 
the representative neurosignal trace in Dose #1 (peaks *1 to *3 in seizure phase II), 

Dose #2 (peaks *4 to *7 in seizure phase III), and Dose #3 (peak 8 in seizure phase IV)  
epoch respectively. The sequential topographic frames from the seizure-phase 
series illustrates the representative drift of two-dimensional ictal activity being 
suppressed by the closed-loop Isppa-regulating tFUS electroceuticals.
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