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An extended Weight Kernel Density Estimation
model forecasts COVID-19 onset risk and identifies
spatiotemporal variations of lockdown effects in
China
Wenzhong Shi 1✉, Chengzhuo Tong1, Anshu Zhang1, Bin Wang2, Zhicheng Shi3, Yepeng Yao 1 &

Peng Jia 1,4

It is important to forecast the risk of COVID-19 symptom onset and thereby evaluate how

effectively the city lockdown measure could reduce this risk. This study is a first compre-

hensive, high-resolution investigation of spatiotemporal heterogeneities on the effect of the

Wuhan lockdown on the risk of COVID-19 symptom onset in 347 Chinese cities. An

extended Weight Kernel Density Estimation model was developed to predict the COVID-19

onset risk under two scenarios (i.e., with and without the Wuhan lockdown). The Wuhan

lockdown, compared with the scenario without lockdown implementation, in general, delayed

the arrival of the COVID-19 onset risk peak for 1–2 days and lowered risk peak values among

all cities. The decrease of the onset risk attributed to the lockdown was more than 8% in over

40% of Chinese cities, and up to 21.3% in some cities. Lockdown was the most effective in

areas with medium risk before lockdown.
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Emerging infectious diseases, such as the coronavirus disease
2019 (COVID-19), have become global challenges for the
public health sector1,2. This new virus is highly contagious

and can be transmitted through respiratory droplets or physical
contact3,4. As of 8 April 2020, 1,353,361 people worldwide have
been identified as being infected by COVID-195. Confirmed cases
have appeared in 213 countries or regions5, and currently, the
number continues to rapidly increase. With the fast development
of modern transportation, people are currently able to travel on
an accelerating scale and speed, which could make pathogens
spread more easily, hence greatly aggravating the disease trans-
mission. To reduce the spread of COVID-19, China, from 23
January 2020, imposed lockdown measures in Wuhan, China’s
epicentre of the COVID-19 pandemic at that time. The Wuhan
lockdown basically prevented anyone from entering or leaving
Wuhan by any means of transportation, as well as limiting local
movements of residents to only critical activities, including
medical treatment, epidemic prevention and security operations6.
From around 10 February 2020, just 18 days after the imple-
mentation of the lockdown, an obvious drop in daily new
COVID-19 infections was witnessed in all of China’s provinces
except for Hubei. Due to the early decreases in new infections, the
relatively limited healthcare resources, across China, could be
devoted to both COVID-19 and also the non-COVID-19 patients
in the greatest need. Thus, when necessary, such as at the height
of the pandemic, healthcare resources were sufficient to be real-
located to COVID-19 patients in Wuhan, hence contributing to
the enablement of the whole country recovering from the epi-
demic more rapidly. By the end of the Wuhan lockdown on 8
April 2020, 77,838 (~93%) confirmed cases across China have
recovered7.

Lockdown increasingly appears to have been necessary to
enable a country to curb the current escalating pandemic, thus it
is of prime importance to provide scientific evidence regarding
the exact effect of lockdown measures and to what extent such
measures could bring COVID-19 under control8. It is important
to note that early effort has been made in this direction, however
the findings are mixed. For example, Yang et al.9 showed that, if
Wuhan had been locked down 5 days later, the cumulative
number of COVID-19 infections from 23 January to 24 April
2020 would have tripled in China. Wu et al.10 predicted that, even
with the lockdown implemented in Wuhan, many other major
cities in China would still undergo local outbreaks, with the
similar exponential growth of infections seen in Wuhan.

A recent study estimated that the Wuhan lockdown was
associated with the later appearance of the reported COVID-19
cases in other cities by 2.91 days (95% CI: 2.54–3.29)11. However,
most existing studies have used mathematical models for infec-
tious disease transmission that rely on theoretical epidemiological
parameters for making prediction. Such mathematical models
include, for example, Susceptible-Infected models, Susceptible-
Infectious-Recovered models, Susceptible-Exposed-Infectious-
Recovered models and Logistic models. In these models, the
spatial relationships among cities typically have been down-
played. Facing new infectious diseases (e.g., COVID-19) with
limited prior knowledge of their features and also limited asso-
ciated comparability with previous diseases, there has been much
uncertainty in setting the theoretical parameters and assumptions
of mathematical prediction models12–15. Knowledge uncertainty
such as this could possibly have led to the highly mixed and
uncertain conclusions among the above, existing studies. More-
over, most existing models make predictions based on the diag-
nosis date (i.e., the date on which the cases are confirmed) in
historical data. Also, these models make predictions regarding
future occurrences of confirmed COVID-19 cases. The estimated
diagnosis date is usually later than the date of symptom onset.

Importantly, it has been found that COVID-19 patients are at
their most infectious during the first week after the symptom
onset16,17. Thus, if using findings based purely on the COVID-19
diagnosis dates, as opposed to the date of symptom onset, the key
period for enabling the prevention of further COVID-19 infec-
tions may be missed.

A common way for infectious diseases to spread is by the
spatial movements of dynamic hosts and/or vectors18–20. Thus,
for exploring the risk progression of new infectious diseases such
as COVID-19, the adoption of appropriate data-driven spatial
models has been considered a minimum requirement. Further,
such models could better enable the evaluation of the effects of
epidemic containment measures (e.g., the Wuhan lockdown)21.
The Weight Kernel Density Estimation (WKDE) model is one
such model. This model conducts retrospective analyses, on the
basis of location information, in order to estimate the dates of
infection of the confirmed cases. By this means, the place-specific
risk of infection caused by spatial movements of infected people is
then predicted22. Such spatial, data-driven models could alleviate
the reliance on theoretical assumptions and parameters, and
thereby, in the contexts of new infectious diseases, have a rea-
sonable potential of making robust and place-specific predictions.
The WKDE model, however, did not consider the effects of such
modern factors as travelling by highway or express trains. By such
means, journey speed could elevate disease transfer speed, at a
greater rate, compared to that of traditional travel modes,
between the areas of interest. To achieve a more accurate pre-
diction, it is necessary to use dynamic mobility data to capture
such modern factors, and moreover, to improve existing spatial
models, so as to incorporate such big data into prediction.

This study aims, for the first time to the best of our knowledge,
to conduct a comprehensive and high-resolution investigation into
the spatiotemporally heterogeneous effects of the Wuhan lockdown
on the risk of the COVID-19 symptom onset in 347 Chinese cities.
The 347 Chinese cities include all prefecture-level cities except for
Sansha City which is free of COVID-19 infections, four munici-
palities directly under the central government (Beijing, Shanghai,
Chongqing and Tianjin), and two special administrative regions
(Hong Kong and Macau). To achieve this goal, an extended
WKDE model was developed, on the basis of the original WKDE
model, to forecast the risk of COVID-19 symptom onset under two
scenarios: (a) with the Wuhan lockdown and its implications and,
(b) without the Wuhan lockdown. The effects of the Wuhan
lockdown on the risk of the COVID-19 onset at a high spatio-
temporal resolution across China were then analysed by comparing
the predicted onset risk, based on each of these two scenarios. To
predict the risk of the COVID-19 onset with the consideration of
the effect of high-speed travel, the extended WKDE model has
incorporated inter-city human mobility data to calibrate traditional
spatial relationships among cities. The analysis was based on a
spatiotemporal dataset of 40,486 confirmed COVID-19 cases in
China during the period from the 31 December 2019 to 2 March
2020 (the 40th day after the Wuhan lockdown). Of these cases,
1189 had reported dates of symptom onset recorded23. The dates
of symptom onset for the remaining 39,297 cases were estimated
by an established statistical method24. Both the daily Wuhan out-
migration to all other cities and the percentage of Wuhan migrants
to every other city were calculated to indicate inter-city human
movements in the extended WKDE model.

Results
Prediction accuracy of the extended WKDE model. In this
study, the accuracy of the predicted risk of symptom onset was
evaluated daily. The prediction accuracy was defined as the per-
centage of confirmed cases reported in areas where the predicted
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risk of symptom onset was >0.8. For example, if 100 cases were
confirmed in the entire study area on the date for which the
prediction is made, and out of which 77 cases occurred in the
areas with predicted onset risk over 0.8, then the prediction
accuracy on that date was 77%. This definition of the prediction
accuracy followed the idea of hit rate25,26, the popular indicator
for the prediction accuracy for the Kernel Density Estimation
model on which the original and extended WKDE models
were based.

The extended WKDE model resulted in prediction accuracy of
over 70% in the first week after the base day. The extended
WKDE model achieved higher accuracy than the original WKDE
model, judged by both visual observation (Fig. 1) and statistical
evaluation (Table 1). Such an outperformance should be
attributed to the incorporation of human mobility, the key
difference between the original and extended WKDE models. The
prediction accuracy during the second week after the base day, as
possibly could be expected, was lower due to the accumulation of
prediction errors over time.

The extended WKDE model was found to be able to correctly
identify a relatively small number of cities in which most
confirmed cases were anticipated in the near future and indeed
confirmed. This success could help enable targeted epidemic
prevention efforts. During the entire study period, the average
number of confirmed cases in cities with predicted risk of over 0.8
was almost 20 times greater than those in cities with predicted
risk between 0.6 and 0.8 (Table 2). Even when the overall
morbidity risk in China was the most severe, only 115 (33.1%) of
the 347 Chinese cities had onset risk >0.8 (30 January 2020 in
Table 3). During most of the study period, ~15% or fewer cities
had onset risk >0.8. Indeed, the average number of confirmed
cases per city increased significantly during each higher interval
of predicted onset risk (Table 2), thus illustrating that, in general,
the model can also correctly predict the relative onset risk among
mid- and low-risk cities.

Spatiotemporal evolution of the risk of COVID-19 symptom
onset. The risk of the COVID-19 symptom onset during the

2 3 4 5 6 7 8 9 10 11 121

Extended WKDE model Original WKDE model

13 14

Fig. 1 Accuracy of the predicted risk of COVID-19 symptom onset by the
extended and original Weight Kernel Density Estimation (WKDE)
models, under the scenario of Wuhan lockdown. The predicted onset risk
is a standardised value between 0 and 1, indicating risk relative to the
highest predicted risk among all locations on the date for which the risk of
symptom onset is predicted, hereafter termed “the prediction date” (see
Methods section for further detail). The prediction accuracy is defined as
the percentage of the confirmed cases in the areas in which the predicted
onset risk was >0.822 on the prediction date. The time interval denotes the
period between the base date and the date of prediction. The horizontal line
in the box denotes the median, while the lower and upper edges of the box
represent the respective first and third quartiles. The lines emanating from
the box upwards and downwards represent the respective maximum and
minimum values.
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study period, under the scenario of the imposed Wuhan lock-
down (i.e., the reality) was first estimated by the extended WKDE
model. The spatiotemporal variations of the estimated risk are
described as follows. On 25th December 2019, areas with the risk
of COVID-19 symptom onset >0.8 were only in Wuhan and the
surrounding cities, most of which were largely in eastern Hubei
Province; the onset risk in 96.8% of the areas in China was <0.2
(Fig. 2a). The influences of human mobility on the onset risk were
not apparent until approximately one week before the Wuhan
lockdown, during which time, cities, such as Chongqing (west),
Beijing (north) and Guangzhou (south) which received a large
number of passengers from Wuhan, started to present a higher
position of onset risk (Fig. 2c). Approximately 1 week after the
Wuhan lockdown, the overall onset risk in China reached the
highest level (Fig. 2f). The onset risk then steadily decreased over
the whole area outside Hubei Province. The onset risk following
two weeks of the Wuhan lockdown (Fig. 2g) dropped below 0.6 in
64.3% of cities outside Hubei Province. The risk following three
weeks of the lockdown (Fig. 2k) dropped below 0.6 in 81.6% of
cities outside Hubei. By the end of the fifth week following the
Wuhan lockdown, the areas with the onset risk >0.8 shrank to
Wuhan and the surrounding cities in Hubei (Fig. 2m).

Spatiotemporal patterns of effects of the Wuhan lockdown
regarding COVID-19 onset risk. The risk of the COVID-19
symptom onset was predicted under two scenarios by the
extended WKDE model, that is, with and without the Wuhan
lockdown. The effects of the Wuhan lockdown on the risk of the
COVID-19 onset were then evaluated based on the predicted risk
under these two scenarios. Compared to the COVID-19 onset risk
under the lockdown scenario (Fig. 2e–g), the onset risk under the
non-lockdown scenario, on the same date, was significantly
higher (Fig. 2h–j; Table 3). For example, in Guangdong Province,
which typically receives large Wuhan migration, from 24 January
to 5 February 2020, onset risk values in all the 21 cities had been

reduced by 7.56% on average under the lockdown scenario,
compared with those of the non-lockdown scenario. Around the
time when the onset risk reached the peak (i.e., at that moment,
the overall onset risk of COVID-19 in 347 cities in China reached
the maximum) (Fig. 2i), the areas with onset risk >0.8 would have
expanded to include most Chinese cities, except for those in the
north and west, which had low inter-city population flows from
Wuhan. In all 347 cities, the risk values of the COVID-19 onset
under the lockdown scenario were, indeed, lower than those
under the non-lockdown scenario. The decrease in the onset risk
attributed to the Wuhan lockdown achieved up to 21.3%
throughout all cities. The decrease in the onset risk was more
than 8%, 12% and 16% in 146, 58 and 28 cities, respectively
(Fig. 3a). Note that these decreases are the most conservative
estimates, as the predicted onset risk, under the non-lockdown
scenario, was made based on the confirmed cases under the
lockdown scenario. Most, if not all cities without the Wuhan
lockdown, in theory, would have been likely to have more than
the currently recorded cases. Therefore, the actual effect of the
Wuhan lockdown on subsequent risk decrease of COVID-19
symptom onset should undoubtedly have been greater.

A daily comparison of the predicted onset risk under the
lockdown and non-lockdown scenarios reflect the contributions
by the Wuhan lockdown in three aspects: a constant lower daily
onset risk after the lockdown, the delayed arrival of peaks of the
daily onset risk by 1–2 days, and the subsequent lower peak risks.
These three contributions have been observed in megacities such
as Shanghai, Beijing and Shenzhen; in major-size cities such as
Luoyang (in Henan Province); in medium-size cities such as
Xiangtan (Hunan) and Zhangzhou (Fujian); and in minor-size
cities such as Hanzhong (Shaanxi; Fig. 3b). The selection criteria
of the above seven cities for this study is detailed in
Supplementary Table 1. On 25 January, 30 January and 5
February 2020, the number of cities with a predicted risk of
symptom onset >0.8 under the non-lockdown scenario was
consistently much larger than that under the lockdown scenario
(Table 3). Moreover, by approximately 3 weeks after the Wuhan
lockdown, of all cities outside Hubei, in the 285 cities which had
had peak risk values of above 0.4, the risk of symptom onset had
decreased by 21.1% to 78.9%, relative to the corresponding peak
risk values. In the 27 cities with peak risk values of between 0.2
and 0.4, risk decrease ranged from 15.7% to 62.4%. In the 18 cities
with peak risk values of below 0.2, risk decrease ranged from 0.2%
to 5.1% (Fig. 3a).

The reduction of the onset risks in different cities attributed to
the Wuhan lockdown were heterogeneous (Fig. 3a) and related to
two factors: the intensity of human mobility from Wuhan to
individual other cities in normal days, and the level of existing
onset risk in individual cities by the date of the Wuhan lockdown.
Most cities in western and northeastern China showed a small

Table 3 The number of cities, at different onset risk levels, under two scenarios (i.e. with and without Wuhan lockdown
measure) on the dates corresponding to Fig. 2e–j.

No. of cities Onset risk Wilcoxon signed-rank test, P (H0)

0–0.2 0.2–0.4 0.4–0.6 0.6–0.8 >0.8

25 January 2020 Lockdown 183 43 48 56 17 1.180 × 10−58

Non-lockdown 124 58 26 98 41
30 January 2020 Lockdown 126 40 41 25 115 2.009 × 10−37

Non-lockdown 101 35 23 28 160
5 February 2020 Lockdown 178 67 51 26 25 1.076 × 10−57

Non-lockdown 126 49 39 86 47

The rightmost column shows the P values of the Wilcoxon signed-rank test on paired onset risk values of a city under two scenarios on the same date. The null hypothesis of this test, H0, is that the
median difference between the onset risk values under lockdown and non-lockdown scenarios is zero. At a normal significance level, H0 could be rejected, thus showing that the onset risk under the non-
lockdown scenario is statistically significantly higher. N= 347 samples on every date were use in each Wilcoxon signed-rank test.

Table 2 The relationship between the predicted risk of
COVID-19 symptom onset shown by the extended WKDE
model and the average number of confirmed cases in cities.

Onset risk value in cities Average number of confirmed cases
in cities

0–0.2 0.0836
0.2–0.4 0.416
0.4–0.6 0.896
0.6–0.8 2.16
0.8–1 41.81
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reduction (<4%) of the onset of risk attributed to the Wuhan
lockdown (Fig. 3a). The human flows from Wuhan to these cities
was generally quite small in normal days, with very few cities
receiving >0.02% out-migrants from Wuhan (Fig. 4). In the seven
selected cities which were deemed representative of all Chinese

cities in terms of the geography and economic development, it
was also observed that the higher the existing onset risk by the
lockdown date, the smaller the percentage reduction in onset risk
was attributed to the Wuhan lockdown (Fig. 3b). In the whole
country, areas with a high percentage (>8%) of reduction of onset
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risk attributed to the Wuhan lockdown (Fig. 3b) largely coincided
with areas with medium risk of onset (0.2–0.6) before the
lockdown (Fig. 2d).

Discussion
This study has provided data-driven evidence on the effects of the
Wuhan lockdown measures on the risk of COVID-19 symptom
onset in 347 Chinese cities in a high spatiotemporal resolution.
That is, changing patterns of the risk of COVID-19 symptom
onset has been demonstrated at city level on a daily basis. Spe-
cifically, the Wuhan lockdown has lowered the peak of the daily
onset risk, delayed the arrival of the peak of onset risk for

1–2 days in other cities, and decreased the onset risk in those
cities after the Wuhan lockdown on, compared to the scenario
without the lockdown. The Wuhan lockdown was also found to
reduce the infection risk by imported cases from Wuhan in other
cities within one week after the lockdown had been imposed. This
situation varied across cities: cities receiving larger volume of
Wuhan migrants in normal days, in general, could avoid larger
risk of symptom onset. Furthermore, the Wuhan lockdown was
found to be most effective in reducing the onset risk in areas with
medium risks prior to lockdown.

Findings from this study have important and unique implica-
tions for public health and especially epidemic response. They
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Fig. 2 Predicted risk of COVID-19 symptom onset across 347 Chinese cities. a–d The predicted onset risk before the date of Wuhan lockdown. e–m The
predicted onset risk after the date of Wuhan lockdown under two scenarios, i.e., with (e–g, k–m) and without (h–j) Wuhan lockdown. The predicted
COVID-19 symptoms onset risk were generated by the extended WKDE model, by using historical confirmed cases and inter-city human mobility data. The
historical confirmed cases data included the locations at which these cases had a period of study prior to the diagnosis. The predictions under two
scenarios were made by differing the human mobility intensity from Wuhan to other cities after the date of the Wuhan lockdown. Under the lockdown
scenario, the outward human flows from Wuhan were regarded as not increasing the onset risk of other cities, due to the dramatic decrease in human
mobility intensity, together with strict quarantine measures. Under the non-lockdown scenario, the human mobility intensity was estimated based on that
of the corresponding time period in 2019 (see Methods section for details).
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would serve as strong place-specific evidence regarding the
effectiveness and efficiency of the city lockdown measures in
reducing the COVID-19 onset risk. Results presented in this
study can also be supported by those from some recent studies,
which concluded from the results of Susceptible-Exposed-
Infectious-Recovered model and global epidemic and mobility
model that the Wuhan lockdown delayed the arrival of COVID-
19 in other cities by 2.91 days11 and 3–5 days27, respectively.
However, the delayed arrival presented in those studies referred
to the ‘delayed reporting’, as only the reported dates of confirmed
cases were used. This current study has predicted the risk of
symptom onset, which typically occurs days before the diagnosis
and reporting of the cases, and corresponds to the time at which
the patients are the most infectious16,17. Such predictions could
inform public health agencies ahead of catastrophic spread and
hence guide local epidemic control and subsequently precise
prevention efforts. Beyond early warnings, this study sheds fur-
ther light on spatiotemporal heterogeneities in the onset risk,
which would enable precision disease control and prevention. For
example, by using the extended WKDE model, the exact areas of
high risk of symptom onset and the level of risk in the near future
could be predicted, thus the decisions concerning precise inter-
ventions could be better enabled.

This study does have some limitations. Firstly, only 40,486
confirmed cases with community-level locations were used rather
than all 75,465 confirmed cases revealed during the study period
in China. The incompleteness of such exposure history collected
from confirmed cases could affect the results. Such effects, how-
ever, are considered limited toward our study aim, which focuses
more on the areas outside Hubei Province. Cases without detailed

locations mainly took place in severely affected cities, such as
Wuhan. In those cities, people were intensively engaged in
treatments and quarantine, and thus had limited capacity of
committing to such epidemiological data collection efforts. Sec-
ondly, the method of estimating dates of symptom onset used in
this study, although officially documented24, may still be subject
to uncertainties, which needs to be further improved in the
future. Thirdly, COVID-19 infectiousness and susceptibility in
different populations were not considered in the current model,
due to incomplete demographical information. Although this is
considered acceptable as the travel and contact history has been
playing a major role in the COVID-19 infection, more detailed
demographical information and confirmed findings on varying
infectiousness and susceptibility from clinical studies would fur-
ther improve the quality of the model. Lastly, the current model
considers only out-migrants from Wuhan without including
travel flows between other cities, although the latter has been
largely minimised within the study period, due to a high tendency
to avoid COVID-19, and lockdown measures implemented to a
different extent across China. Due to lack of relevant data, the
current model did not consider the population who migrated
from Wuhan, either, after the lockdown was announced at early
morning on 23 January 2020 and before it took effect at 10.00 a.
m. on the same day.

Despite the limitations listed above, this study has presented a
high-resolution spatiotemporal prediction leading to important
findings, thanks to the detailed publicly available information
gathered from anonymous cases. Transparent reporting of travel
and contact history of such a large number of anonymous
infected cases has been realised in China, thus opening an avenue

Fig. 3 The risk of COVID-19 symptom onset under two scenarios (i.e., with and without Wuhan lockdown measure) from 24 January to 5 February
2020. a Average daily percentage reduction in the onset risk in 347 Chinese cities in the lockdown scenario, compared with the non-lockdown scenario.
b The onset risk under two scenarios in seven selected cities. The plotted values were computed from the predicted risk of COVID-19 symptom onset
under the two scenarios resultant from the extended WKDE model, by using historical confirmed cases and inter-city human mobility data. Under the
lockdown scenario, the outward human flows from Wuhan were regarded as not increasing the onset risk of other cities, due to the dramatic decrease in
human mobility intensity, together with strict quarantine measures. Under the non-lockdown scenario, the human mobility intensity was estimated based
on that of the corresponding time period in 2019 (see Methods section for details).
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in the era of big data, for more advanced models to refine results
from mathematical prediction models. It also enables and
encourages multiple stakeholders outside the public health sector
to be involved in collaborative control and prevention efforts to
contribute to the curbing of increasingly more frequent and
complex epidemics in the future28,29.

The high spatiotemporal resolution evidence from this study
would be necessary for lockdown decision-making not only in all
countries undergoing the first wave of infections, but in African
and Latin American countries that will inevitably be hit by the
next wave of infections30. More importantly, the extended WKDE
model can be automatically fed by near real-time spatiotemporal
surveillance data from multiple sources to make robust, timely
predictions, which is difficult to be realised in traditional
approaches. The model can also be flexibly extended by more
available data, such as the effects of non-pharmaceutical inter-
ventions (NPIs) taken by various cities, to further calibrate the
prediction. Such predictions would be a core component of epi-
demic early warning systems regarding the prevention of the
future epidemics31,32.

Methods
Data sources. Spatiotemporal data of 40,486 confirmed COVID-19 cases in China
from the 31 December 2019 to 2 March 2020 (the 40th day after Wuhan lockdown)
were collected in this study. These cases were mainly collected from official reports
produced by provincial and municipal health commissions33–36. For places where
the official reported confirmed cases were incomplete, especially at the beginning
stage of the epidemic, supplementary confirmed cases were collected from public
media, such as the People’s Daily37, Tencent Health38 and Baidu Map39. These
cases had available reporting dates, and self-reported locations at the community
level where they had a period of stay prior to diagnosis. Among the collected cases,

1,189 cases had reported dates of symptom onset, with the earliest symptom onset
dated on 8th December 201923. Among the total of 75,465 confirmed cases during
this period23, the 40,486 cases were all the cases with available community-level
locations founded in the data collection process of this study.

Two human mobility parameters derived from massive positioning service data
in China on the Baidu Map platform40 were obtained during January–March 2019
and 2020. The first parameter was the daily Baidu out-migration index for Wuhan.
This represented the magnitude of the daily population leaving Wuhan and
travelling to all other cities. The second parameter was the percentage of Wuhan
migrants travelling to every other city (Fig. 4). Also obtained were the daily
passenger loads of the flights, railways and bus services from Wuhan to every other
city from December 2019 to March 202041–43.

Daily migration. Two indicators of daily migration during the study period were
calculated. They include: the daily Wuhan out-migration to all other cities, and the
daily percentage of Wuhan migrants to every other city. The indicator values from
1 January 2020 were directly obtained from the Baidu migration data. However, the
Baidu migration data were unavailable for December 2019. Therefore, both indi-
cators for December 2019 were calculated based on Baidu data in early January
2020 and the daily passenger load data:

(a) The daily Wuhan out-migration for December 2019 was calculated as
follows. First, the average of the ratios on each day in early January 2020
between the daily Baidu out-migration index and the daily passenger loads
was obtained. Second, the daily Wuhan out-migration was computed by
multiplying that average ratio by the daily passenger loads leaving Wuhan to
other cities in December 2019. The result of this calculation was produced
by assuming that the daily passenger load factor was stable during both
December 2019 and early January 2020.

(b) The daily percentage of Wuhan migrants to every other city, during
December 2019, was estimated as the daily percentage of passenger load
departing from Wuhan to every other city. This method was also used to
calculate the daily percentage of migrants in 2020 from Wuhan to those
cities receiving a considerably small number of migrants from Wuhan. It is
of note that in such cities, the Baidu migration data were suppressed from
reporting for confidentiality reasons.

Fig. 4 The percentage outflows of migrants fromWuhan to 100 cities in China which received the largest numbers of Wuhan migrants, on 8 December
2019–23 January 2020. The lowest percentage of Wuhan migrants received by any of the 100 cities was 0.02%. This figure is based on the massive
positioning service data on the Baidu Map platform, available on https://qianxi.baidu.com/ 38. Several hotspot destinations of the Wuhan migrants are
labelled in this figure. Lines with gradient colours represent the distance from the origin (Wuhan, shown in red) to the 100 cities.
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Date of symptom onset for COVID-19 cases. An established statistical method
proposed by Shi et al.24 was adopted to estimate the dates of symptom onset for the
39,297 confirmed cases which did not have reported onset dates. This method was
based on an erlang distribution of the waiting time from the onset date to the
diagnosis date of the confirmed cases, and had good performance in supporting the
estimation of the onset date of confirmed cases in China. The method results in a
probability pwaiting(Δt) that each confirmed case had a waiting time of Δt day(s)
between onset and diagnosis. Among m confirmed cases in the same city, and on
the same day, a total of m∙pwaiting(Δt) confirmed cases were randomly selected and
assigned a waiting time of Δt. As a result, the distribution of the dates of symptom
onset regarding the 40,486 confirmed cases used in this study is consistent with
that of the actual dates of symptom onset of all 75,465 confirmed cases reported by
the World Health Organization23 (WHO) (Fig. 5).

The extended WKDE model for predicting the risk of COVID-19 onset. The
model made the prediction by means of the following three steps:

Step 1: retrospective inference regarding the historical existence of the COVID-
19 infection at each location, in which a confirmed case had a period of stay prior
to diagnosis. The main aim of this step is to estimate the infection date of each
confirmed case, given the date of symptom onset. From the infection date, that case
had the risk of transmitting pathogens to others. The incubation period of each
confirmed case from infection to symptom onset is modelled by following a
Weibull distribution44.

pincubation Δtð Þ ¼ kλ�kΔtk�1e�ðΔt=λÞk ð1Þ
where pincubation(Δt) denotes the probability that the incubation period of each
confirmed case equals to Δt days; λ and k denotes the mean and standard deviation
of the incubation period, which, in this study, was assumed to be 5.2 and 2.8 days,
respectively45–47. The natural exponential is denoted by e.

All days in this study period (8 December 2019 to 27 February 2020) are in the
order denoted as t1, t2,… t82. The probability that each confirmed case was infected
on a certain day and thus became infectious is:

Pinfection L; tið Þ ¼ 1�
Y

tL>ti

1� pincubation tL � tið Þð Þn tLð Þ
ð2Þ

where Pinfection(L, ti) denotes the probability that one confirmed case at location L
was infected on day ti; tL denotes the day of symptom onset for the confirmed case
at location L; n(tL) is the number of onset cases at location L on day tL;
pincubation(tL-ti) denotes the probability that the incubation period of the confirmed
case is equal to (tL–ti) days.

Step 2: spatial extrapolation for inferring historical existence of COVID-19
infection in the whole study area. Let L1, L2,… Ln be the unique locations of all
confirmed cases used for the prediction. The risk of infection at each random
location is estimated as:

Pinfection S; tið Þ ¼ n tið Þ�1
XnðtiÞ

j¼1

M S; tið ÞPinfectionðLj; tiÞKhðS� LjÞ ð3Þ

where Pinfection(S, ti) denotes the probability that any infected person visited a
random location S on day ti, and posed the risk of infection to others nearby; Lj
denotes the j-th location among unique locations of all the confirmed cases; Kh(S –
Lj) denotes a Gaussian kernel between locations S and Lj:

KhðS� LjÞ ¼
1

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
det hð Þp exp � 1

2
ðS� LjÞTh�1ðS� LjÞ

� �
ð4Þ

where h denotes the bandwidth matrix equating to n
�1=3

Σ̂, with n being the total
number of confirmed cases in all 82 days, and Σ̂ being the covariance matrix of (x1,
…, xn) and (y1 …, yn), denoting the vectors of x and y coordinates of L1, L2,… Ln.
M(S, ti) denotes a human mobility factor at location S, on day ti, calculated as:

M S; tið Þ ¼ i�1
Pi

k¼1 bSkVk; S is outsideWuhan

1; S is insideWuhan

(
ð5Þ

where bSk denotes the daily percentage of Wuhan migration to the city containing
location S, on day tk; Vk denotes the daily Wuhan out-migration to other cities on
day tk prior to ti. Note that M(S, ti) after the lockdown day t47 is calculated
differently under two scenarios, i.e., with and without the Wuhan lockdown having
been implemented. M(S, ti) after t47 is equal to M(S, t47) under the lockdown
scenario. This was due to: (a) very small flows of humans and vehicles leaving
Wuhan after the lockdown. Also, such journeys were mostly for critical needs, such
as medical treatment; (b) strict quarantine measures imposed on these outflows9.
Under the non-lockdown scenario, after t47, bSk and Vk values on the same lunar
calendar date in 2019 as tk are assigned to bSk and Vk, since the migration patterns
were similar during that period over two years11. Then M(S, ti) after t47 is
computed accordingly.

Step 3: to predict the risk of COVID-19 onset at each random location on a
specific day in near future:

Ponset S; tzð Þ ¼ 1�
Y

ti<tz

1� Pinfection S; tið Þpincubation tz � tið Þð Þ ð6Þ

where Ponset(S, tz) denotes the likelihood that at least one person infected by a
confirmed case at location S develops clinical symptoms on day tz; ti denotes the
date of infection for that person, so always i < z. Note that Ponset(S, tz) values
represent point estimates over the continuous space. Such a risk measure may not
be intuitive for decision making, and hence could be standardised to the range of 0
and 1 by being divided by the maximum predicted risk among all locations on day
tz. By doing so, the standardised predicted risk is seen as the relative risk of
symptom onset to the highest risk of symptom onset in the study area. Hence, it
can serve as an intuitive indicator suitable for epidemic control and also be a strong
alert that prevention work must begin. Estimates of the risk can be averaged
flexibly in any areal unit such as a city or residential community, and hence could
overcome the modifiable areal unit problem (MAUP) during epidemic response48.

Assessment of prediction models. The accuracy of the predicted risk of symptom
onset was evaluated daily, by calculating the percentage of confirmed cases
reported in areas where the predicted symptom onset risk was >0.8. The predicted
results were also compared to results from the original WKDE model24. Since
prediction errors could accumulate with time as regards a prediction for further
future, the risk predicted on the basis of data no later than “the day before” is
usually the most accurate. As a consequence, all risks of symptom onset, mentioned
in this study, have been predicted based on confirmed COVID-19 cases with onset
dates no later than the previous day. However, the risk on 27 February 2020 was
predicted based on the data on or before 20 February 2020 (the final date of
symptom onset estimated from confirmed cases).

Statistics and reproducibility. Statistical significance of data was tested by two-
sample T-test and/or the Wilcoxon signed-rank test by using Excel and SPSS
(https://www.spss-tutorials.com/spss-wilcoxon-signed-ranks-test-simple-example/),
respectively. The sample size (n) and the nature of replicates have been given
wherever relevant.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data generated or analysed during this study are included in this published article
and related Supplementary files (Supplementary Data 1–5) or are available upon
reasonable request.

Fig. 5 Distribution of the estimated dates of COVID-19 symptom onset
among 40,486 confirmed cases used in this study, and of the actual
dates of COVID-19 symptom onset among 75,465 confirmed cases
reported by the World Health Organization. The available data on 40,486
confirmed cases in China from 31 December 2019 to 2 March 2020 were
collected from official reports by provincial and municipal health
commissions and public media. These cases had the dates on which they
were reported, together with the community-level locations at which they
had a period of stay prior to diagnosis. Of these cases, 1189 had reported
dates of symptom onset. The statistical method proposed by Shi et al.24

was used to estimate the onset dates of the cases for which the onset dates
were unavailable. The 75,465 confirmed cases were reported by the
WHO23 and did not include the fine-scale location needed in this study.
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Code availability
The MATLAB scripts developed and used in this study are available at the DOI-minting
repository (Zenodo)49.
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