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Genome-wide cross-trait analysis and Mendelian
randomization reveal a shared genetic etiology and
causality between COVID-19 and venous
thromboembolism
Xin Huang1,6, Minhao Yao2,6, Peixin Tian2, Jason Y. Y. Wong3, Zilin Li 4, Zhonghua Liu 5✉ &

Jie V. Zhao 1✉

Venous thromboembolism occurs in up to one-third of patients with COVID-19. Venous

thromboembolism and COVID-19 may share a common genetic architecture, which has not

been clarified. To fill this gap, we leverage summary-level genetic data from the latest

COVID‐19 host genetics consortium and UK Biobank and examine the shared genetic etiology

and causal relationship between COVID-19 and venous thromboembolism. The cross-trait

and co-localization analyses identify 2, 3, and 4 shared loci between venous thromboem-

bolism and severe COVID-19, COVID-19 hospitalization, SARS-CoV-2 infection respectively,

which are mapped to ABO, ADAMTS13, FUT2 genes involved in coagulation functions.

Enrichment analysis supports shared biological processes between COVID-19 and venous

thromboembolism related to coagulation and immunity. Bi-directional Mendelian randomi-

zation suggests that venous thromboembolism was associated with higher risk of three

COVID-19 traits, and SARS-CoV-2 infection was associated with a higher risk of venous

thromboembolism. Our study provides timely evidence for the genetic etiology between

COVID-19 and venous thromboembolism (VTE). Our findings contribute to the under-

standing of COVID-19 and VTE etiology and provide insights into the prevention and

comorbidity management of COVID-19.
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Coronavirus disease 2019 (COVID-19), caused by the severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
infection, has led to a worldwide pandemic since March

2020, and caused repeated waves of outbreaks across the globe.
Venous thromboembolism (VTE) is one common and serious
comorbidity. Notably, thrombotic events occur in up to one-third
of patients with COVID-191. People with more pronounced
thrombotic symptoms are more likely to develop severe COVID-
192, and thrombotic complications are a well-established pre-
dictor of mortality in people with COVID-191. Consistently,
several genome-wide association studies (GWASs) of COVID-19-
related traits (severe COVID-19, COVID-19 hospitalization, and
SARS-CoV-2 infection) have identified genetic loci in ABO3–6, an
established gene related to thrombosis. This evidence suggests
that VTE and COVID-19 may share common genetic archi-
tecture. Identifying shared genetic factors contributing to both
COVID-19 and VTE can provide novel insights into disease
pathogenesis and pinpoint targets for therapeutic development or
drug repurposing. However, to our knowledge, this problem has
not been comprehensively investigated.

Meanwhile, the causal relationship between VTE and COVID-
19 has not been clarified. On the one hand, VTE predicts
COVID-19 severity and mortality1,2. On the other hand, the
cytokine storm and excessive inflammation caused by SARS-
CoV-2 infection are hypothesized to lead to systemic coagulation
dysfunction;7–10 therefore, SARS-CoV-2 infection may increase
the risk of VTE. Many institutional evidence-based guidelines
supported the use of prophylactic treatments such as antic-
oagulants for thromboprophylaxis in COVID-19 patients11.
However, the recommendation is mainly based on observational
studies, which might be subject to unmeasured confounding bias.
To resolve this issue, Mendelian randomization (MR) study uses
genetic variants as instruments for causal inference and can
provide unbiased causal effect estimates even in the presence of
unmeasured confounding12. One previous MR study in a rela-
tively smaller GWAS for COVID-19 suggested that genetically
predicted VTE is associated with a higher risk of COVID-19
hospitalization and SARS-CoV-2 infection13, however, the asso-
ciation with severe COVID-19 is uncertain possibly due to the
limited sample size. The reverse association, i.e., the association of
COVID-19 with VTE has not been examined. The recently
updated GWAS for COVID-19 with doubled sample size pro-
vided a well-powered study dataset to investigate the relationship
between VTE and COVID-19.

Taken together, to fill this knowledge gap, we performed a
genome-wide cross-trait analysis and colocalization analysis
based on summary statistics from GWASs of VTE and COVID-
19 and identified shared loci between VTE and three COVID-19-
related traits. We also conducted an enrichment analysis and
found the shared genes were enriched for expression in the lung
tissue and involved in coagulation and immunity. We also applied
bi-directional Mendelian randomization to study the causal
relationship between VTE and three COVID-19-related traits.

Results
Genetic correlation of VTE with COVID-19-related traits. The
heritability (h2) estimated by Linkage disequilibrium score
regression (LDSC) analysis suggested severe COVID-19, COVID-
19 hospitalization, SARS-CoV-2 infection, and VTE are heritable
(P < 0.05 shown in Supplementary Table 1). We found positive
overall genetic correlation of VTE with COVID-19 hospitaliza-
tion (rg= 0.2320, P value= 0.0092) (shown in Fig. 1 and Sup-
plementary Table 2). The genetic correlation between VTE and
severe COVID-19 and SARS-CoV-2 was positive but not sig-
nificant at p value of 0.05 level. Further partitioned LDSC analysis

found that severe COVID-19, COVID-19 hospitalization, and
SARS-CoV-2 infection are genetically correlated with VTE in five
(Fetal DNase I hypersensitivity sites (DHS), H3K4me1, H3K9ac
H3K27ac and transcription factor-binding site (TFBS)), 11
(except for super-enhancers regions) and 10 (except for con-
served and super-enhancers regions) of the 12 functional cate-
gories, respectively (Fig. 2 and Supplementary Data 7).

Multi-trait analysis of GWAS (MTAG). Based on the COVID-
19 host genetics initiative (HGI) updated GWAS meta-analysis
(release 7), there were 45 genome-wide significant (P < 5 × 10−8)
and uncorrelated (r2 < 0.01) loci for severe COVID-19, 46 for
COVID-19 hospitalization and 26 for SARS-CoV-2 infection
(Supplementary Data 1), and 12 for VTE in the GWAS from UK
Biobank (Supplementary Data 2). Compared with these pre-
viously identified SNPs, using MTAG incorporating information
from GWAS of COVID-19 and VTE we did not identify addi-
tional genome-wide significant loci for COVID-19 traits or VTE.

As shown in Table 1, we identified 2 genetic loci associated
with both VTE and severe COVID-19, 3 with both VTE and
COVID-19 hospitalization, and 4 with both VTE and SARS-CoV-
2 infection (Pmeta < 5 × 10−8; single trait P < 5 × 10−3). In line
with previous studies3–6,14,15, we identified ABO gene and FUT2
gene, which contributed to both VTE and COVID-19. The
strongest association signals were localized on or near the ABO
gene (index SNP: rs11244061 for severe COVID-19 and COVID-
19 hospitalization; rs550057 for SARS-CoV-2 infection) at locus
9q34.2. We also identified ADAMTS13, which has not been
reported yet. Figure 3 displays the Manhattan plots of these
results (also shown in Supplementary Data 8–10).

Fine-mapping and colocalization analysis identify shared cau-
sal variants. For each loci associated with VTE and COVID-19,
Supplementary Tables 3–5 listed all SNPs within 500 kb of these
variants in the 99% credible sets. Co-localization analysis shows
that all loci identified in cross-trait meta-analysis had the con-
ditional posterior probability of colocalization >0.8, (Table 1),
indicating that they are shared loci between the two traits.

GTEx tissue-specific expression analysis (TSEA) and over-
representation enrichment analysis of shared genes. The
potential associated genes identified for severe COVID-19 and
COVID-19 hospitalization with VTE were significantly enriched
for expression in the lung tissue; however, no highly enriched
tissues were found for SARS-CoV-2 infection and VTE (Fig. 4
and Supplementary data 11). Gene ontology (GO) analysis
highlighted several significant shared biological processes between
three COVID-19 traits and VTE, such as “calcium-mediated
signaling”, “second-messenger-mediated signaling”, “chemokine-
mediated signaling pathway”, “response to chemokine”, “response
to type I interferon” (Supplementary Tables 6–8).

Bi-directional MR analysis. We found that genetically predicted
VTE was positively associated with higher risk of all three
COVID-19-related traits (OR= 1.11 for severe COVID-19, 95%
CI: 1.06–1.17, P value= 1.51 × 10-5; OR= 1.10 for COVID-19
hospitalization, 95% CI: 1.06–1.14, P value= 1.33 × 10−7; OR=
1.06 for SARS-CoV-2 infection, 95% CI: 1.04–1.09, P
value= 1.13 × 10−5) (Fig. 5 and Supplementary Data 12). MR-
Egger intercept test did not indicate directional pleiotropy
(Supplementary Table 9), which supported the validity of the
findings. MR-PRESSO detected outliers in the associations of
VTE with three COVID-19 traits (shown in Supplemental Data
3), and the positive associations of VTE with severe COVID-19
and COVID-19 hospitalization remained after removing these

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-04805-2

2 COMMUNICATIONS BIOLOGY |           (2023) 6:441 | https://doi.org/10.1038/s42003-023-04805-2 | www.nature.com/commsbio

www.nature.com/commsbio


Fig. 1 Genetic correlation of VTE with COVID-19-related traits. Results were derived from linkage disequilibrium score regression (LDSC) analysis.
Vertical axis represents the genetic correlation estimate Rg, with red indicating a negative correlation and blue indicating a positive correlation. The size of
the colored squares is proportional to the P value, where larger squares represent a smaller P value. Asterisk represents significance (P < 0.05). The
presented data are available in Supplementary Table 2.

Fig. 2 Partitioned genetic correlation between VTE and COVID-19-related traits. Results were derived from partitioned linkage disequilibrium score
regression (LDSC) analysis. The x axis represents the 12 functional categories, and the y axis represents the estimated partitioned genetic correlation. The
significant functional categories (P < 0.05) are starred. Error bars represent the standard error of genetic correlation estimates. DGF DNaseI digital
genomic footprinting, DHS DNase I hypersensitivity site, TFBS transcription factor binding sites. The presented data are available in Supplementary Data 7.
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outliers (Supplementary Figure 1). In the reverse direction, we
found a positive association of genetically predicted SARS-CoV-2
infection with higher risk of VTE (OR= 1.75, 95% CI: 1.18–2.58,
P value= 4.92 × 10−3), and null associations of genetically pre-
dicted severe COVID-19 or COVID-19 hospitalization with VTE
(Fig. 6 and Supplementary Data 12). These results are robust to
different MR methods (Supplementary Figure 2). And we
obtained similar bi-directional associations between VTE and
COVID-19 if we used COVID-19 HGI release 7 excluding data
from UK Biobank (Supplementary Table 10).

Discussion
In this study, we comprehensively investigated the shared genetic
etiology between three COVID-19 related traits and VTE based
on the latest data from COVID-19 HGI and UK Biobank. We
found a significant positive genetic correlation of VTE with
COVID-19 hospitalization and identified specific shared loci for
VTE with each COVID-19 trait in ABO, ADAMTS13 and FUT2
genes, which was involved in coagulation. Enrichment analysis
suggested that genes potentially associated with VTE, and
COVID-19 were enriched for expression in the lung tissue, and
supported pathways related to coagulation and immunity.
Moreover, we examined their causal relationship using bi-
directional MR, which suggested that VTE may increase the
risk of severe COVID-19, COVID-19 hospitalization, and SARS-
CoV-2 infection, and interestingly, SARS-CoV-2 infection may
increase the risk of VTE.

LDSC analysis in our study found genetic correlation between
VTE and COVID-19, which provided genetic evidence of a sig-
nificant positive genetic correlation between VTE and COVID-19
hospitalization. Although LDSC analysis did not find significant
overall genetic correlation between severe COVID-19 and VTE,
however partitioned LDSC analysis found severe COVID-19 and
VTE was positively correlated in some functional categories,
including TFBS, Fetal DHS, H3K4me1, H3K9ac and H3K27ac,
which are associated with the control of transcription and the
status of cis-regulatory elements such as promoters and enhancers
within gene regulatory regions16–19.

Notably, we identified several shared genetic loci between VTE
and COVID-19 using cross-trait meta-analysis and colocalization
analysis. These loci were located on or near the ABO, FUT2, and
ADAMST13 genes, which are well-established VTE related
genes20,21. Our findings are consistent with previous genetic
studies showing ABO gene is associated with severe COVID-19
and SARS-CoV-2 infection3–5,14, possibly by regulating
thrombosis3,22, as ABO gene is responsible for post-translational
glycosylation of coagulation factors. In line with the role of ABO
gene, we found that FUT2 gene, a fucosyltransferase gene
involved in ABO blood group antigen synthesis, was associated
with both VTE and SARS-CoV-2 infection. We also found a
shared gene, ADAMST13, encoding the protein ADAMST13,
which has not been previously reported in COVID-19 GWAS.
Defects in this gene are associated with blood clotting and
thrombotic thrombocytopenic purpura23, and a previous MR
study showed genetically predicted ADAMST13 level is asso-
ciated with severe COVID-1924.

In addition, findings from enrichment analysis suggest
immune function might be involved in the shared etiology. In the
enrichment analysis, we found several shared pathways related to
immune function, such as calcium-mediated signaling and che-
mokine/interferon related response. Previous studies suggested
that calcium signaling may play a role in hemostasis and
thrombosis25,26. Calcium signaling is also of paramount impor-
tance in immune cells27,28, and chemokine and interferon play a
major role in activating host immune and inflammatoryT
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responses29–31. Our TSEA reported that shared genes for severe
COVID-19 and COVID-19 hospitalization with VTE were
mainly enriched for gene expressions in the lung tissue. Con-
sistently, pulmonary vascular endothelial injury and immuno-
thrombosis (most of which occur within the lung microvessels)
are key drivers of severe events after SARS-CoV-2 infection, such
as acute respiratory failure and ARDS32,33. So, these evidence
suggests that the common pathways between COVID-19 and
VTE may relate to immunity, endothelial cell function, and
coagulation.

Our study also provided timely evidence regarding the causal
relationship between VTE and COVID-19 traits. Interestingly,
our MR analysis showed a positive association between genetic
susceptibility for VTE and the risk of severe COVID-19, COVID-
19 hospitalization and SARS-CoV-2 infection, as well as a positive
association of SARS-CoV-2 infection with VTE. Despite the
statistical significance, our finding still needs to be interpreted
with caution as we cannot exclude that this positive association

may have occurred by chance. However, the positive association
was also shown in a previous MR study using COVID-19 HGI
release 5 data which showed that genetically predicted VTE was
associated with higher risk of COVID-19 hospitalization and
SARS-CoV-2 infection13. Using COVID-19 HGI release 7 with
doubled sample size of release 5, we added by showing a positive
association of genetically predicted VTE with higher risk of severe
COVID-19. In addition, there are concerns that partial overlap of
the samples may bias the estimates, however, we obtained con-
sistent associations when we used COVID-19 HGI release 7
excluding data from UK Biobank. We also considered that the
observed associations may be mediated by coagulation factors, as
VTE is associated with coagulation factors34, and coagulation is a
risk factor of COVID-1935,36. Although a previous MR study on
12 coagulation factors and COVID-19 severity found that VWF
was link to COVID-19 severity using COVID-19 HGI release 524,
we found null associations of these coagulation factors with three
COVID-19 traits using the latest and much larger GWAS of

Fig. 3 Circular Manhattan plot of cross-trait analysis. a VTE and severe COVID-19; b VTE and COVID-19 hospitalization; c VTE and SARS-CoV-2
infection. Each point represents a SNP, and significant loci with meta-analysis P value <5 × 10−8 are colored in red. Shared loci with meta-analysis P
value < 5 × 10−8 and single-trait P value <5 × 10−3 are labeled with the mapped genes. SNPs are arranged according to the chromosome position. The
presented data are available in Supplementary Data 8–10.
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COVID-19, COVID-19 HGI release 7 (Supplementary Figure 3).
Further studies are needed to explore whether there are other
potential mediators.

Our study delivers an important information that VTE possibly
increase the risk of COVID-19, which matters in the considera-
tion of COVID-19 management strategies, especially for people

with VTE. For example, taking vaccination to lower the risk for
severe COVID-19 in people with VTE. Meanwhile, our MR
analysis suggested that genetically predicted SARS-CoV-2 infec-
tion was possibly associated with a higher risk of VTE. Partly
consistent with our results, in a cohort of 153,760 individuals with
COVID-19, as well as two sets of control cohorts with 5,637,647

Fig. 4 GTEx tissue enrichment analysis for expression of shared significant genes (meta-analysis P value < 5 × 10−6). a VTE and severe COVID-19;
b VTE and COVID-19 hospitalization; c VTE and SARS-CoV-2 infection. P values of Fisher’s exact test after Benjamin−Hochberg correction are presented
in –log10 scale. Orange represents significant tissue enrichment (Lung, P value= 7.16 × 10−4 for severe COVID-19 and VTE, P value= 8.20 × 10−3 for
COVID-19 hospitalization and VTE). The presented data are available in Supplementary Data 11.

Fig. 5 Mendelian randomization analysis on the association of genetically predicted VTE with the risk of COVID-19-related traits using inverse
variance weighting (IVW). The estimates are presented as odds ratios (OR) with 95% confidence intervals (CI). The presented data are available in
Supplementary Data 12.
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(contemporary controls) and 5,859,411 (historical controls)
individuals, people with SARS-CoV-2 infection had higher risk of
cardiovascular events, including VTE37. Nevertheless, a replica-
tion study of MR analysis in a larger GWAS of VTE will be
worthwhile.

To the best of our knowledge, our study is the first to use large-
scale genetic data to explore the shared genetic architecture between
COVID-19 related traits and VTE, providing timely evidence and
more insights into the genetic etiology between them. The GWAS
summary-level data for COVID-19 was obtained from the
COVID19 HGI release 7 summary statistics, the largest and latest
GWAS of COVID-19 available, which doubles the sample size from
the previous version, and improves study power.

We also acknowledge several limitations of our study. First, the
GWAS data for COVID-19 and VTE used in this study were
derived from the European population, so the associations may
not be generalizable to other ancestries. Second, although GWAS
summary statistics conducted study-specific quality control,
misclassification of COVID-19 might exist. Third, the summary
statistics limit us to assess sex and age-specific genetic effects.
Fourth, the GWAS of COVID-19 related traits might be con-
ducted at different time periods, so there might be differences in
the SARS-CoV-2 infection strain. However, our study does not
aim to assess the association with specific strain of SARS-CoV-2
infection. Fifth, genetic instruments for COVID-19 only capture a
small proportion of variance. Although MR analysis provided
unconfounded estimates, it is less precise than conventional
observational studies. We observed a positive association of
genetically predicted SARS-CoV-2 infection with VTE using
inverse variance weighting and MR-RAPS, but the association
included the null in weighted median, MR-Egger, MR-PRESSO
and weighted mode, which may be due to the wider confidence
intervals. Replication in a larger GWAS will be needed for vali-
dation. Finally, although our study provides evidence of genetic
correlation and genetic overlap between COVID-19 and VTE, the
underlying biological mechanisms are still unclear. For example,
we identified rs149181677, the variant located on the ADAMTS13
gene, was shared between COVID-19 and VTE. Although this
SNP was associated with the expression of ADAMTS13 genes38,
we cannot fully confirm the link between this genetic variant with
the protein ADAMTS13, as there is no study assessing the
association between this genetic variant with ADAMTS13. Future
studies are warranted to test the link.

In conclusion, our findings provided important evidence of
genetic correlations between severe COVID-19, COVID-19 hos-
pitalization, SARS-CoV-2 infection and VTE, and highlighted
their common genetic architecture, with shared genes closely
related to coagulation and immunity. We also found a causal
association of VTE with COVID-19. Our work contributes to the
understanding of COVID-19 and VTE etiology and provides

more insights into the prevention and comorbidity management
of COVID-19.

Methods
Study population. The GWAS summary statistics for COVID‐19 of European
ancestry were provided by the COVID-19 host genetics initiative (COVID-19 HGI)
round 7 (https://www.covid19hg.org/results/, release date: 08 April 2022). COVID-
19 HGI is the largest GWAS of COVID-19 to date, combining data from over 3
million individual samples across 82 large cohort studies in 35 countries. We
included three COVID-19 related traits: (1) Severe COVID-19, defined as COVID-
19-confirmed individuals with very severe respiratory symptoms or those who died
from the disease (up to 13,769 cases and 1,072,442 controls); (2) COVID-19
hospitalization defined as individuals who were hospitalized for related infection
symptoms, with laboratory-confirmed SARS-CoV-2 infection (up to 32,519 cases
and 2,062,805 controls); (3) SARS-CoV-2 infection defined as all individuals who
reported positive (laboratory diagnosis, physician diagnosis or self-report) for
SARS-CoV-2 infection (up to 122,616 cases and 2,475,240 controls). For VTE, we
used summary statistics on the GWAS of VTE (3900 cases and 369,592 controls of
European ancestry) from the UK Biobank provided by Lee Lab (https://www.
leelabsg.org/resources).

Ethics approval. Participants for all studies included in COVID-19 HGI were
recruited following protocols approved by the local institutional review boards and
informed consent was obtained where required4. The UK Biobank has already
received the ethical approval from North West Multi-center Research Ethics
Committee (MREC), which covers the UK. It also got the approval from the Patient
Information Advisory Group (PIAG) in England and Wales and from the Com-
munity Health Index Advisory Group (CHIAG) in Scotland. This study is an
analysis using publicly available summary data that does not require additional
ethical approval.

Linkage disequilibrium score regression (LDSC) analysis. LDSC analysis was
conducted to assess the heritability for a single trait and genome-wide genetic
correlations between two traits, where genome-wide associations were used in the
calculation. The analysis was conducted using the LDSC software based on the
GWAS summary statistics. LD scores of 1000 G European ancestry was used as
reference39

An estimate of the heritability or genetic correlation was obtained by regressing
the χ2 statistics or the products of z scores on LD scores, respectively. LDSC can
also correct for the inflation of test statistics caused by polygeneicity40. Under the
polygenic model, the expected χ2 statistic and the LD score lj of SNP j follows the
linear relationship:39

E χ2j jlj
h i

¼ Nh2lj
M

þ Naþ 1 ð1Þ

where N is the sample size, M is the number of SNPs, h2 is the heritability, and a
measures the cofounding bias. Therefore, an estimate of the heritability can be
obtained by regressing the χ2 statistics calculated from GWAS on the LD scores
from a reference panel.

If we have two studies for two polygenic traits, there is a similar relationship
between the product of the z-scores from two studies and the LD scores:41

E z1jz2jjlj
h i

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p
ρg

M
lj þ

ρNsffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p ð2Þ

where Ni is the sample size for study i, ρg is the genetic covariance, Ns is the
number of overlapping samples, and ρ is the phenotypic correlation. If we regress
the product of the z-scores from two GWASs on the LD scores from a reference
panel, we can get an estimate of the genetic covariance between two traits. The

Fig. 6 Mendelian randomization analysis on the association of genetically predicted COVID-19-related traits with the risk of VTE using IVW. The
estimates are presented as odds ratios (OR) with 95% confidence intervals (CI). An arrow represents the estimate that is out of the boundary in this
direction. The presented data are available in Supplementary Data 12.
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genetic correlation then can be obtained by rg ¼ ρg=
ffiffiffiffiffiffiffiffiffi
h21h

2
2

q
, where h2i is the

heritability of trait i.

Partitioned LDSC analysis. We performed partitioned LDSC analysis to estimate
the genetic correlation between two traits within each of the following 12 functional
categories:17 conserved region, DNaseI digital genomic footprinting region (DGF),
DNase I hypersensitivity sites (DHS), fetal DHS, H3K4me1, H3K4me3, H3K9ac
and H3K27ac, intron region, super enhancers, transcription factor-binding site
(TFBS) and transcribed region. The re-calculated LD scores of the SNPs classified
in each specific annotation category allowed us to find out which functional
categories accounted for the majority of the overall genetic correlation.

Multi-trait analysis of GWAS. We applied MTAG, an approach for meta-analysis
of summary statistics from GWAS of different traits robust to sample overlap, to
identify novel loci with strong signals for COVID-19, and to detect genome-wide
significant loci between VTE and three COVID-19 traits42–44.

MTAG can improve the effect estimates for each COVID-19 trait by
incorporating the weighted sum of GWAS estimates for VTE. Let βj be the true

effects of SNP j on multiple traits with E βj

h i
¼ 0 and Var βj

� �
¼ Ω. MTAG

assumes that Ω is the same for all SNPs. Based on the moment condition, the
MTAG estimates can be expressed as a weighted sum of the GWAS estimates:

β̂MTAG;j;t ¼
ωt 0
ωtt

Ω� ωtωt 0
ωtt

þ Σj

� ��1

ωt 0
ωtt

Ω� ωtωt 0
ωtt

þ Σj

� ��1
ωt
ωtt

β̂j ð3Þ

where ωt is the t-th column of Ω, ωtt is the t-th diagonal entry of Ω, Σj is the

covariance of the GWAS estimates β̂j . Therefore, we can check whether there are
novel loci that are extracted from the MTAG estimates and not identified
using GWAS.

We also used MTAG to conduct genome-wide cross-trait meta-analysis, which
utilizes sample size-weighted, fixed-effect model together with genetic covariance
modeling from all sources to combine evidence of the genome-wide association
between individual variants for VTE and COVID-19. The equation for the MTAG
estimates can be simplified to.:

β̂MTAG;j;t ¼
10Σ�1

j

10Σ�1
j 1

β̂ ð4Þ

Under this assumption, MTAG can summarize the effect estimates from two
GWASs and produce cross-trait effect estimates, which allows us to detect the
shared significant loci between two traits.

Using cross-trait meta-analysis, we identified SNPs reaching genome-wide
significance (Pmeta < 5 × 10−8) in both traits and suggestive significance (single trait
P < 5 × 10−3) in single traits45. We further applied the PLINK clumping function
(r2 threshold= 0.01, distance= 500 kb) to ensure the independence of selected
SNPs, i.e., SNPs in linkage disequilibrium that have a correlation >0.01 with the
most significant SNP within a distance of 500 kb will be pruned46.

Fine-mapping and co-localization analysis. For each locus associated with two
traits, we used the Bayesian fine-mapping algorithm that assumes a multinomial
likelihood for the joint distribution of the phenotypes and genotypes to identify a
99%-credible set of causal variants within 500 kb of the index SNP47,48. This
algorithm uses a flat prior with steepest descent approximation and only requires
summary statistics. Then, we conducted the co-localization analysis to check
whether the loci identified in the cross-trait meta-analysis are causal variants
shared between COVID-19 and VTE. The SNP causality between two traits in a
region can be assigned to one of the following five hypotheses49:

H0 : No association with either trait.
H1 : Association with trait 1 only.
H2 : Association with trait 2 only.
H3 : Association with both traits, two independent SNPs.
H4 : Association with both traits, one shared SNP.
With the R package ‘coloc’, we can calculate the posterior probability for each

hypothesis based on the summary statistics. In colocalization, we calculated the
conditional posterior probability of colocalization (P(H4)/(P(H3)+ P(H4))49. If a
SNP has the probability larger than 0.8, we labeled it as a co-localized genetic
variant.

TSEA and over-representation enrichment analysis. We also performed TSEA
with the HUGO Gene Nomenclature Committee (HGNC) name on genes that
correspond with the associated loci with meta-analysis P value < 5 × 10-6 in cross-
trait meta-analysis to test whether these genes are overly expressed in a specific
tissue. We used the R package ‘deTS’, which uses GTEx RNA-seq data and the
ENCODE panel as a reference panel, and calculates the corresponding z score for

each tissue50. We also used the WEB-based GEne SeT AnaLysis Toolkit to further
assess the overrepresented enrichment of the same genes in Gene ontology (GO)
biological process51.

Mendelian randomization (MR) analysis. We conducted a bidirectional MR
analysis to assess the causal association between each COVID-19 related trait and
VTE. Genetic variants for VTE were obtained from a large GWAS of VTE
restricted to Europeans (23,151 cases, 553,439 controls)52. We extracted genome-
wide significant (P < 5 × 10−8) and uncorrelated (r2 < 0. 2) SNPs, and then exclu-
ded six SNPs in ABO, FUT2, VWF genes (Supplemental Data 3) as these gene
regions have pleiotropic associations with multiple traits, including COVID-19. 107
SNPs has been selected as genetic instruments for VTE (Supplementary Data 3)52.
The genetic associations of these SNPs with COVID-19-related traits were obtained
from COVID-19 HGI release 7 GWAS meta-analysis, as shown in study popula-
tion. Using the same process of identifying instruments (P < 5 × 10−8, r2 < 0. 2),
and after excluding 2, 2, and 8 SNPs in ABO, FUT2, or VWF genes, we obtained 87,
83, and 61 SNPs as instruments for severe COVID-19, COVID-19 hospitalization
and SARS-CoV-2 infection respectively based on COVID-19 HGI release 7 GWAS
meta-analysis (Supplementary Data 4–6). The genetic associations of these SNPs
with VTE were obtained from the GWAS of VTE (3900 cases and 369,592 controls
of European ancestry) in the UK Biobank. We used inverse variance weighted
(IVW) analysis in the main analysis53, and used several other MR methods that are
robust to pleiotropy, including the weighted median54, MR-Egger55, MR-
PRESSO56, MR-RAPS57, and weighted mode58 in sensitivity analysis. Considering
sample overlap, we also repeated the bi-directional analysis in the sensitivity
analysis using the GWAS summary statistics for COVID‐19 excluding data from
UK Biobank provided by COVID-19 HGI release 7 (https://www.covid19hg.org/
results/).

Statistics and reproducibility. We used the following software and packages: R
and R packages: R (version 4.0.5), TwoSampleMR (version 0.5.6), forestplot (ver-
sion 2.0.1), mr.raps (version 0.2), dplyr (version 1.0.5), CMplot (version 3.6.2),
corrplot (version 0.92), ggplot2 (version3.3.5), deTS (version 1.0), WebGestaltR
(version 0.4.4), coloc (version 3.2-1), data.table (version 1.14.2), gprofiler2 (version
0.2.1). Python and Python-based software: Python (version 2.7.5 and 3.6.3), LDSC
(version 1.0.1), MTAG (version 1.0.8). We used publicly available GWAS data with
up to 13,769 cases and 1,072,442 controls for severe COVID-19; up to 32,519 cases
and 2,062,805 controls for COVID-19 hospitalization; up to 122,616 cases and
2,475,240 controls for SARS-CoV-2 infection. To enable us to test the reproduci-
bility of causal associations between VTE and three COVID-19 traits obtained
from MR analysis, we used COVID-19 data excluding the UK Biobank for further
analysis and obtained similar results (Supplementary Table 10).

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Genetic associations with VTE were from the UK biobank GWAS results provided by Lee
Lab (https://www.leelabsg.org/resources). Genetic associations with severe COVID-19,
COVID-19 hospitalization and SARS-CoV-2 infection were obtained from COVID-19
host genetics consortium GWAS meta-analyses round 7, downloaded from https://
storage.googleapis.com/covid19-hg-public/freeze_7/results/20220403/pop_spec/
sumstats/COVID19_HGI_A2_ALL_eur_leave23andme_20220403.tsv.gz; https://storage.
googleapis.com/covid19-hg-public/freeze_7/results/20220403/pop_spec/sumstats/
COVID19_HGI_B2_ALL_eur_leave23andme_20220403.tsv.gz; https://storage.
googleapis.com/covid19-hg-public/freeze_7/results/20220403/pop_spec/sumstats/
COVID19_HGI_C2_ALL_eur_leave23andme_20220403.tsv.gz. In the MR sensitivity
analysis, Genetic associations with severe COVID-19, COVID-19 hospitalization and
SARS-CoV-2 infection excluding data from UK Biobank were obtained from https://
storage.googleapis.com/covid19-hg-public/freeze_7/results/20220403/leave_one_out/
sumstats/COVID19_HGI_A2_ALL_leave_23andme_and_UKBB_20220403.tsv.gz;
https://storage.googleapis.com/covid19-hg-public/freeze_7/results/20220403/leave_one_
out/sumstats/COVID19_HGI_B2_ALL_leave_23andme_and_UKBB_20220403.tsv.gz;
https://storage.googleapis.com/covid19-hg-public/freeze_7/results/20220403/leave_one_
out/sumstats/COVID19_HGI_C2_ALL_leave_23andme_and_UKBB_20220403.tsv.gz.
Source data underlying Figs. 2–6 are provided in Supplementary Data 7–12

Code availability
We used publicly available software for analysis in this study. Here, we listed the URLs
(some of which are online methods) for the software: TwoSampleMR, forestplot, mr.raps,
deTS, WebGestaltR, coloc, gprofiler2, LDSC, MTAG. Detailed code book, and analytic
code will be made available upon request pending application and approval by the
corresponding author.
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