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MASI enables fast model-free standardization and
integration of single-cell transcriptomics data
Yang Xu 1,4, Rafael Kramann2, Rachel Patton McCord 3✉ & Sikander Hayat 2✉

Single-cell transcriptomics datasets from the same anatomical sites generated by different

research labs are becoming increasingly common. However, fast and computationally inex-

pensive tools for standardization of cell-type annotation and data integration are still needed

in order to increase research inclusivity. To standardize cell-type annotation and integrate

single-cell transcriptomics datasets, we have built a fast model-free integration method,

named MASI (Marker-Assisted Standardization and Integration). We benchmark MASI with

other well-established methods and demonstrate that MASI outperforms other methods, in

terms of integration, annotation, and speed. To harness knowledge from single-cell atlases,

we demonstrate three case studies that cover integration across biological conditions, sur-

veyed participants, and research groups, respectively. Finally, we show MASI can annotate

approximately one million cells on a personal laptop, making large-scale single-cell data

integration more accessible. We envision that MASI can serve as a cheap computational

alternative for the single-cell research community.

https://doi.org/10.1038/s42003-023-04820-3 OPEN

1 UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA. 2 Institute of Experimental Medicine
and Systems Biology, RWTH Aachen University, Aachen, Germany. 3 Department of Biochemistry and Cellular and Molecular Biology, University of
Tennessee, Knoxville, TN 37996, USA. 4Present address: Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
✉email: rmccord@utk.edu; shayat@ukaachen.de

COMMUNICATIONS BIOLOGY |           (2023) 6:465 | https://doi.org/10.1038/s42003-023-04820-3 | www.nature.com/commsbio 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-023-04820-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-023-04820-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-023-04820-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-023-04820-3&domain=pdf
http://orcid.org/0000-0003-4173-4337
http://orcid.org/0000-0003-4173-4337
http://orcid.org/0000-0003-4173-4337
http://orcid.org/0000-0003-4173-4337
http://orcid.org/0000-0003-4173-4337
http://orcid.org/0000-0003-0010-5323
http://orcid.org/0000-0003-0010-5323
http://orcid.org/0000-0003-0010-5323
http://orcid.org/0000-0003-0010-5323
http://orcid.org/0000-0003-0010-5323
http://orcid.org/0000-0001-5919-8371
http://orcid.org/0000-0001-5919-8371
http://orcid.org/0000-0001-5919-8371
http://orcid.org/0000-0001-5919-8371
http://orcid.org/0000-0001-5919-8371
mailto:rmccord@utk.edu
mailto:shayat@ukaachen.de
www.nature.com/commsbio
www.nature.com/commsbio


S ingle-cell RNA-seq (scRNA-seq) technologies have rapidly
evolved over the last decade1–3. Numerous studies have
demonstrated the utility of single-cell transcriptomics

datasets in improving our understanding of cellular heterogeneity
and molecular mechanisms at unprecedented resolution. Over the
past years, many single-cell datasets have been made available
from different research groups, using multiple single-cell plat-
forms, and covering diverse biological conditions. Global colla-
borations, for example, the Human Cell Atlas project, further
make profiling millions of cells possible4. However, this trend of
increasing data generation also introduces the challenge of data
annotation and integration. Though many conventional machine
learning methods5–7 and deep-learning-based approaches8–11

provide solutions to automatic annotation and integration of
single-cell datasets, these methods usually require large prob-
abilistic modeling or gradient backpropagation through a large
neural network. Therefore, their availability to a wider research
community is still limited due to the computational cost. Besides
the need to reduce the computational burden, we also face
another challenge of standardizing data annotation. Different
research groups have their own practices for cell-type annotation.
The same cellular system profiled by different research groups
could have different cell-type annotations, in terms of naming
style and annotation resolution. For example, the human heart
atlas study defined 9 major cell types and 27 sub-types, while a
similar atlas-level study by Tucker et al. defined 17 cell types for
the cardiovascular system12,13. Without the standardization of
cell-type annotation, it is hard to establish an agreement for
integrative analyses. This is also a pressing issue for integrating
COVID-19-related single-cell transcriptomics datasets, which
have been generated by researchers across the globe to under-
stand the SARS-CoV-2 disease mechanism14,15.

To address these issues in the integrative analysis of scRNA-seq
data, we propose MASI, a fast model-free method for standar-
dization and integration of scRNA-seq data. Our method relies
on putative cell-type marker genes from the reference data to
uniformly annotate and integrate query datasets. Cell-type mar-
kers should serve as reliable indicators that hold a constant truth
to define cell types across different studies. Because of its sim-
plicity, MASI can easily accommodate annotation and integration
for millions of cells with limited computational resources. Relying
on cell-type markers to integrate and annotate scRNA-seq data is
a distinct approach, because most of the existing methods for data
integration and annotation, including all methods used in the
following benchmark6,7,10,11,16,17, are training large models either
in a supervised or unsupervised manner. Our benchmark also
shows that such a marker-based approach can compete against
other well-established model-based annotation and integration
methods. Finally, we demonstrated that MASI can standardize
and integrate large-scale single-cell transcriptomics data in three
cases, covering kidney, lung, and heart studies.

Results
Development of MASI. In our previous study, we found that
converting the gene expression matrix to a cell-type score matrix
through a scoring method18 given cell-type markers in
PanglaoDB19 can be used for integrative cell-type annotation20.
However, we did not further investigate what is the essential
component of the integrative annotation, and we did not know if
the power of the cell-type score matrix applies to more general
cases of single-cell data integration. To answer these two
remaining questions, we tested different data processing pipelines
in multiple scRNA-seq datasets and examined how these pipe-
lines deal with the issue of batch effects and integrate single-cell
data from different sources. For this, we selected 6 batch-involved

datasets from 6 different tissues and measured the impacts of 16
different data processing pipelines on revealing cell heterogeneity
while mixing batches (Supplementary Fig. 1a). These 6 batch-
involved datasets include mouse liver across two scRNA-seq
platforms21, human pancreas data across 5 scRNA-seq
platforms22–26, human hematopoietic data across 4 studies27–30,
human heart atlas12, mouse primary cortex data across 3 scRNA-
seq platforms31, and mouse brain data across 4 studies32–35. Of
note, the human heart atlas data were collected from two insti-
tutes and covered single-cell, single-nuclei, and CD45+-enriched
data. The #1 pipeline is the most basic data processing for
scRNA-seq analysis, which does not take batch information into
consideration for calculating the highly variable genes (HVG).
The #2 pipeline differs from #1 in terms of identifying highly
variable genes by batch and only including shared HVGs in
downstream processing. For #3, #4, #5, and #6 pipelines, we
introduced cell-type markers that are obtained from different
sources, including CellMarker36, PanglaoDB19, ScType37, and
specific reference data. We only included marker genes as features
in the downstream analyses. For #7, #8, #9, and #10 pipelines, we
further converted the gene expression matrix to a raw cell-type
score matrix containing cell types in CellMarker, PanglaoDB,
ScType, or in the specific reference data. Just as each cell has a
value for the expression of each gene in the original gene
expression matrix, each cell has a score for each cell type in the
cell-type score matrix. The score for each cell type effectively
represents the signature that the given cell belongs to that cell
type. We call it a raw cell-type score matrix because it is simply
summing up all marker genes for a given cell type. In pipelines
#11, #12, #13, and #14, we added an additional transformation
and thresholding into the process, before converting the gene
expression matrix to a cell-type score matrix by summing up all
marker genes for a given cell type. We call it PlinerScore because
it was proposed by Pliner et al.18. #15 pipeline is a combination
process of #2 and #14 pipelines. Deep-learning-based batch cor-
rection methods demonstrated considerable success in integrative
analysis of scRNA-seq data, and we noticed that the frequent
practice across these methods is the use of batch normalization
layer and non-linear activation layer, which splits the whole
dataset into multiple mini-batches, standardizes cells in each
batch, and transforms the outcome with a non-linear activation
function8,10,11,38,39. This batch normalization and non-linear
activation process do not require weight training, and we inclu-
ded it as the last pipeline, #16. To evaluate the impact of these 16
pipelines on revealing cellular heterogeneity and mixing batches,
we used two common metrics, cell-type silhouette score and
batch mixing entropy score (Supplementary Fig. 1b). Cell-type
silhouette score quantifies how the processing pipeline reveals
cell-type structure, while the batch entropy mixing score mea-
sures how well batches are mixed. A decent data integration
should end up with high values of both cell-type silhouette and
batch-mixing entropy scores. Based on our benchmark here, we
observed that pipelines that convert gene expression matrix to
cell-type score matrix could largely resolve batch effects and
reveal cell-type structure (from pipeline #7 to #14). This is true
regardless of the source of the cell-type markers, whether from
CellMarker, PanglaoDB, ScType, or specific reference data.
However, calling HVG by batch (pipeline #2) and using cell-type
markers (from pipeline #3 to #6) alone couldn’t remove batch
effects in most cases. We also noticed that the pipelines with
PlinerScore (from pipeline #11 to #14) had a slight improvement
from the raw cell-type score pipelines (from pipeline #7 to #10).
Both pipelines #15 and #16 have a higher batch entropy mixing
score, but a lower cell-type silhouette score. These results also
suggest that conversion from gene expression matrix to cell-type
score matrix is the core component for integration analysis in our
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previous study. Pipelines #7 to #14 showed substantial
improvement from pipelines #1 to #6, indicating a general usage
of the cell-type score for single-cell data integration (Supple-
mentary Fig. 1b). In summary, one can convert gene expression
matrix to cell-type score matrix with CellMarker, PanglaoDB,
ScType, or a specific reference data for batch-effect correction and
data annotation. Besides these 3 marker databases (CellMarker,
PanglaoDB, and ScType), there are also other resources that
provide comprehensive or customized cell-type marker infor-
mation. For instance, cell-type markers were identified from bulk
RNA-seq databases like ImmGenData40 and
HumanPrimaryCellAtlasData41. Though the ability to remove
batch effects with the other resources is not tested here, we still
encourage users to select more customized cell-type marker
databases based on their single-cell data source and specific needs.
Compared to pipelines from #1 to #7, paired t-tests also showed
that Pipeline #14 has substantially better integration scores (p-
value < 0.05). Across 6 benchmark datasets here, pipeline #14,
along with #16, was ranked as one of the top processing pipelines
based on integration score (Supplementary Data 1). Considering
#14 is much simpler than #16, and our focus in this study is
annotating and integrating scRNA-seq data with reference data,
we selected pipeline #14 as the final data processing pipeline.

Integrative analysis using cell-type score matrix. Most integra-
tion methods would learn a latent space, in which batch effects
are resolved. However, learning this integrated latent space does
not guarantee that true biological information is also preserved in
the lower dimension42. The key component of our chosen pipe-
line #14 is the conversion of the gene expression matrix into a
cell-type score matrix. This conversion should condense biolo-
gical information from a high-dimension gene feature space into
a lower-dimension cell-type feature space. Meanwhile, this con-
version does not involve any learning but instead relies on prior
knowledge. Thus, it also should preserve the intrinsic biological
structure in a lower dimension without introducing distortion to
the data. In our pipeline from #7 to #14, the prior knowledge
sources are 3 comprehensive marker databases or markers from
closely relevant reference data. Above, we showed that all pipe-
lines which include conversion to a cell-type score matrix can
correct batch effects. To test the idea that the conversion of gene
expression matrix to cell-type score matrix also preserves intrinsic
biological information, we next tested whether the cell-type fea-
tures could construct lineages for multi-batch scRNA-Seq data-
sets. For this, we selected three datasets for integrative lineage
analysis: (1) human peripheral blood mononuclear cell (PBMC)
data of patients with Kawasaki disease obtained before and after
IVIG (intravenous immunoglobulin) treatment43, (2) mouse
brain lineage tracing at different time points44, and (3) zebrafish
embryo from two studies that cover 13 major developmental
stages45,46.

Both human hematopoiesis and mouse brain lineage tracing
studies used a multi-condition design. We were able to obtain
cell-type markers from external 10X Genomics PBMC data30,
while we used author-verified cell-type markers from the original
report for the mouse brain lineage tracking study44. We
constructed an integrative lineage map with cell-type score
matrices and visualized population density and cell-type score
(Fig. 1a and Supplementary Fig. 2). We can directly interpret data
by visualizing cell-type scores, and we identified lineage changes
in human PBMC data before and after IVIG treatment. Our
identification is consistent with the original report. For example,
we observed decreased B1 B-cell and CD16+monocyte lineages
as well as increased plasma cell and CD4+ T native lineages after
IVIG treatment for acute Kawasaki disease patients (Fig. 1a). In

mouse brain lineage tracing study, the integrative lineage map
showed that mitotic progenitor cells injected at E10.5 time point
tend to differentiate to astrocyte and OPC (oligodendrocyte
precursor cell), while the lineage specification may shift to neuron
at 14.5-time point (Supplementary Fig. 2). This is also consistent
with the original findings.

Our integrative analysis of developing zebrafish embryos
consists of data from two independent data sources that cover
different time points of post-fertilization. Wagner et al. collected
cells from 7 stages including 4, 6, 8, 10, 14, 18, and 24 hpf (hours
post fertilization), while Farrell et al. designed 12 finer stages
ranging from 3 to 12 hpf. We were unable to find an external
marker gene reference for the two developing zebrafish datasets.
Given they were in a time-series design, we reasoned that the end-
point data should contain all mature cell types. Therefore, we
intrinsically selected the end-point data that has 8 lineage types
and 30 cell types as a reference to identify both lineage and cell-
type markers. In total, the 2 independent studies cover 30 cell
types along the 13 developmental stages. Next, we transformed
the combined gene expression matrix into a 30-cell-type score
matrix and built an integrative lineage map of the developing
zebrafish embryo. Because of the design differences, we manually
summarized all developmental stages into 13 major stages
(Fig. 1b). Instead of assigning cells to these 30 cell types, we
annotated them as eight major lineage types using our previously
published method MACA20. Briefly, MACA is a marker-based
cell-type annotation tool that searches consensus between cluster-
level and cell-level labels. Due to the lack of a marker database for
zebrafish embryos, we used the marker identification function in
MASI to identify lineage-type marker genes. Then, we can
visualize how lineage compositions change along the develop-
mental timeline (Fig. 1c). First, we found that the two studies are
largely consistent. Second, we observed a decline of germline and
lineage diversification along these developmental stages (Fig. 1c).
We further investigated the original time point of different cell
lineages based on our integrated lineage map by visualizing cell-
type score (Supplementary Fig. 3). We found that the develop-
ment of germline can be retrieved back at least at the 3 hpf time-
point (Fig. 1d). In Wagner et al., the earliest time point at which
germline cells were observed is 4 hpf. However, in Farrell et al.,
authors report that the germ layer appears before 4 hpf and that
many other lineages do not separate until 4 hpf. This is consistent
with our finding from the integrated lineage map, where we show
that germline cells are observed at 3 hpf and are the major cell
lineage composition until that time point (Fig. 1c and d). The
notochord defines the longitudinal axis of the embryo and
determines the orientation of the vertebral column, and our
analysis suggests the notochord emerges at around 7 hpf, while
both Farrell et al. and Wagner et al. showed the emergence of the
notochord takes place between 6hpf and 8hpf. We also observed
that epidermal lineage appears at 3 hpf (Fig. 1c), consistent with
Farrell et al. who observed this epidermal lineage at 3.3 hpf.
Additionally, we observe that non-neural ectoderm separates
from epidermal cells at 12 hpf in our analysis, as seen in Farrell
et al.46. Taken together, these three analyses with temporal
datasets demonstrate the power of cell-type score matrix in the
simple and intuitive approach for integrative lineage analysis.

Workflow of MASI for integrative analysis. Having demon-
strated the advantages of a cell-type score matrix and chosen a
suitable processing pipeline, we next describe the full MASI
workflow to annotate and integrate query data based on fully
annotated reference data. MASI first identifies cell-type marker
genes from the reference data (Step 1), then processes data with
pipeline #14 (Step 2), next annotates cell types via MACA20
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(Step 3) and performs other downstream integrative analyses
(Step 4) (Fig. 2a). The first step of the MASI workflow is to
identify marker genes for each cell type via differential expression
(DE) tests if author-verified markers are not available. To select
the DE method that can facilitate accurate cell-type annotation
through MACA, we benchmarked 12 DE tests, including com-
mon DE tests implemented in Scanpy47 and Seurat7, and two
newly proposed methods COSG48 and Cepo49. For the 6
benchmark datasets, we found that marker genes obtained from
these 12 DE tests have varying performances in terms of pre-
dicting cell types using MACA (Supplementary Fig. 4). This is
consistent with results shown in other benchmark studies on DE
tests50–52, where no single DE test can faithfully identify reliable
cell-type markers for all single-cell data. To account for the
influence of single DE tests, we decided to construct ranked cell-
type markers via an ensemble approach (Fig. 2b and marker rank
aggregation in the “Methods” section)53. In Step 2, we process
reference and all query datasets following pipeline #14, since we
have shown that pipeline #14 can remove batch effects in most
cases of scRNA-seq integration. At this step, MASI will return a
cell-type score matrix. This is a very critical component for
downstream annotation and other integrative analyses. Next
(Step 3), we annotate all datasets through MACA. However, the
MACA algorithm wasn’t initially designed to handle large-scale
scRNA-seq. To accommodate large-scale scRNA-seq data, we
refactored the MACA annotation workflow in a parallel manner
by splitting data into multiple batches and distributing annotation
onto multiple CPU cores (Fig. 2c). This enables MACA to per-
form integrative analysis for large-scale scRNA-seq with limited
computational resources while not losing annotation accuracy.

Finally in Step 4, users can use the returned cell-type score matrix
and cell-type annotation to do other downstream integrative
analyses based on their own needs.

Building a marker collection for standardized cell-type anno-
tations. Using the ensemble approach (Fig. 2b) to automatically
identify markers for cell types across species and tissues, we built
a marker collection for cell-type annotation. In addition, we also
added author-verified marker tables into our collection where
available. This marker collection is deposited at the MASI
GitHub. Of note, our marker collection is customizable, where
users can add, delete, or readjust marker gene ranking (Fig. 2d).
Meanwhile, presenting cell-type markers in tables enables more
flexibility to assemble cell-type markers from multiple references.
For example, users can concatenate columns of new cell types
from additional references into the existing cell-type marker table.
With this marker gene collection, we could apply MASI for
integrative analysis of scRNA-seq datasets in different scenarios.
In the following sections, we benchmarked MASI with other well-
established methods for the task of cell-type annotation and data
integration in terms of reliability, speed, and accuracy. Finally, we
provided case examples in three different scenarios.

Benchmarking cell-type annotation and data integration. In
our benchmark of MASI with other well-established methods, we
used the same six mixed-batch datasets above. We selected linear
and non-linear support vector machine (SVM) classifiers as
supervised methods, as another benchmark study has demon-
strated that SVM outperformed other sophisticated cell-type
annotation methods54. scNym10 and scArches11 are semi-

Fig. 1 Integrative lineage analysis using cell-type score matrix. a Integrative lineage analysis for multi-condition human hematopoiesis study43. Cell
density, cell-type score, and batch id for human hematopoiesis samples under different conditions are visualized separately through the first two
ForceAtlas2. b integrative lineage analysis for two developing zebrafish embryo data45,46. Cells are visualized through UMAP and are colored according to
developmental time (left), study id (middle), and developmental stages (right). c Compositions of eight major lineages along the developmental stages in
zebrafish embryo. All lineages sum up to 1 in one stage, and data from the two studies are visualized separately. d Identification of lineage origin time.
Visual investigation is conducted by matching emergence of a cell-type with the earliest developmental stage in the data.
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supervised deep learning methods for cell-type annotation and
data integration, and we included these two methods in our
benchmark. A new efficient data integration tool, Symphony,
demonstrated the great power of label transferring for large-scale
scRNA-seq data17. To integrate scRNA-seq data, Symphony is
built upon an extensively examined integration method,
Harmony5. So, we also included it in our benchmark. Besides
these label transferring methods, we further included batch-effect
correction methods, including Scanorama16, LIGER6, and

Seurat7, since these three batch-correction methods were listed as
top methods by a previous benchmark study55. After removing
batch effects with these three methods, we trained the k-nearest-
neighbors classifier to transfer labels from reference to query data.
For a fair comparison, our benchmark study was performed on a
local workstation with 64GB memory and Nvidia Quadro RTX
6000 as GPU support. Of note, both scNym and scArches use
GPU to speed up computation, while other methods will not use
GPU for computing. Meanwhile, both LIGER and Seurat heavily

Fig. 2 Integrative annotation pipeline through MASI. a A workflow of integrative annotation through MASI, including marker identification from reference
data, label transferring by MACA, and downstream integrative analyses. b Ensemble approach to identify robust cell-type markers from reference data. N
DE test outcomes are aggregated to get the final ranked marker list. c Parallel computation for fast annotation in order to accommodate large-scale scRNA-
seq data. d Suggested actions for improvement of label transferring. Human experts can correct wrong markers, adjust marker ranking, and so on, in order
to improve annotation accuracy by MASI.
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rely on computing memory, and we were unable to perform these
two methods if computation exceeds the memory limit.

We first focused on how well transferring cell-type labels from
reference data to query data is done by these methods. We
intentionally selected datasets that have the greatest number of
cell types as references. So, methods will see all possible cell types
during training. We used macro F1 and overall accuracy to
quantify the performance of these methods in terms of how
accurate annotation is for each cell type and how accurate
annotation is for the overall dataset. We found that all methods
have similar performance in terms of overall accuracy, but MASI
showed consistently higher macro F1 scores across all benchmark
datasets, indicating balanced annotation across major and minor
cell types (Fig. 3a). In the human heart atlas, the authors provided
two levels of annotation. A high hierarchy annotation consists of
9 major cell types in the human heart, and the low hierarchy
annotation consists of 27 refined subtypes deriving from those 9
major cell types12. When reference data is organized in such a
hierarchical structure, it is advantageous to annotate query data in
such a way. Thus, we transferred cell-type labels at 2 annotation
levels with all 9 methods. We found all methods demonstrated
decent accuracy for high hierarchy annotation, but they
deteriorate when annotation reaches low hierarchy, except MASI,
SVM, Symphony, and Scanorama (Supplementary Data 2).
Results above suggest an advantage of MASI in (1) annotating
non-major cell types, considering most single-cell data are class

imbalanced and (2) annotating single-cell data in a hierarchical
structure.

Next, we evaluated how well the integrated representations
learned by these methods capture the cell-type structure while
mixing batches, using the cell-type silhouette score and batch
entropy mixing score mentioned above. Though LIGER always
achieved the highest batch entropy mixing score, it doesn’t
necessarily present the correct cell type structure, for example, the
integration of human hematopoiesis data by LIGER. Cell types,
like Erythroid progenitors only presenting in Oetjen et al., were
mixed with other cell types (Supplementary Fig. 5). Again, MASI
demonstrated a good balance between capturing cell-type
variation and batch mixing (Fig. 3b). We found all seven
methods, MASI, scNym, scArches, Symphony, Scanorama,
LIGER, and Seurat, achieved the same purpose of mixing data
from diverse sources in human pancreas and human hematopoi-
esis data (Fig. 3c and Supplementary Fig. 5). However, we
observed that representations learned by scNym, scArches,
Symphony, Scanorma, and Seurat captured weaker correlations
among different cell-types, while the cell-type score representa-
tion of MASI and representation of LIGER preserved distinct
cellular correlation, especially in human hematopoiesis (Supple-
mentary Figs. 6 and 7). As we showed in integrative lineage
analysis, the cell-type score matrix does not only capture the
biological transition but also reserves a stronger cellular
correlation. Taken together, we conclude that integration by

Fig. 3 Batch correction and label transferring benchmarks. a Comparison of label transferring for MASI, supervised, and semi-supervised methods. ACC:
overall accuracy. Macro F1 is the average of F1 scores per cell type. A higher score in both metrics suggests better cell-type prediction. b Comparison of
batch correction for MASI, scNym10, scArches scANVI11, Symphony17, Scanorama16, LIGER6 and Seurat7. Cell-type silhouette score measures how well the
integrated representation by these methods preserves cell-type variation, while the batch entropy mixing score measures how well the same cell type from
different batches is mixed. c Visualization of MASI integration through UMAP. Cells are colored according to MASI-reported annotation (top left), author-
reported annotation (top right), and batch id (bottom left).
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MASI preserves meaningful biological information, over other
integration methods.

To give a quantitative performance report across all six
benchmark datasets, we summed the cell-type silhouette score
and the batch mixing entropy score to obtain the integration
score, and we summed the macro F1 and the overall accuracy to
generate the annotation score. The overall performance score was
then calculated as an average of the two scores. For annotation,
paired t-tests showed that MASI is significantly better than other
methods (p-values < 0.05) except Scanorama and Seurat. For
integration, MASI has significantly higher scores than scArches
scANVI, Symphony, and Scanorama (p-values < 0.05). Overall,
MASI outperforms all other methods (p-values < 0.05) except
Seurat (Supplementary Data 3). Over all six benchmark datasets,
MASI was also ranked as one of the top methods for both data
integration and annotation (Supplementary Data 3).

Dependence on choice of reference dataset and clustering
resolution. Like all other reference-based label-transferring
methods, MASI is highly dependent on reference data. Therefore,
MASI will not be able to annotate cell types in query data that have
not been seen in reference data. However, it is still worth answering
if a cell-type score matrix constructed with reference data with less
cell types can preserve the cell-type structure for query data that
contains extra unseen cell types. To understand the impact of
choice of reference dataset on the cell-type annotation in the query
dataset, we swapped reference data from Oetjen et al. to 10x
Genomics data in the human hematopoietic benchmark dataset.
The 10x Genomics data has only 12 cell types, while Oetjen et al.
identified 16 cell types in their original report. Thus, the query data
would contain 4 extra unseen cell types. We performed marker
gene identification and transformed the gene expression matrix to
cell-type score matrix using 10x Genomics data as a reference. We
observed that the 12-dimension cell-type score matrix built upon
the 10x Genomics dataset as a reference can reveal cell-type
structure for the Oetjen et al. data that had 16 author-reported
major cell types in total (Supplementary Fig. 8)27. However, as
erythrocytes and erythroid progenitor cell-types are not present in
the reference, MASI mislabeled them as CD14+monocytes and
HSPCs, respectively (Supplementary Fig. 8). We next asked if we
could identify subtypes fromMASI-reported cell types to match the
author-reported annotation resolution. Here, we used SCCAF, a
computational method that was previously proposed for the
identification of putative cell types through a machine learning
approach56. The concept behind this machine learning is: if the
clustering resolution reflects the number of true cell types within
the data, a machine learning classifier can achieve high accuracy
with the clustering label. Thus, we applied SCCAF to identify
potential subtypes for each major cell type identified by MASI. We
evaluated how well these three approaches, MASI annotation alone,
SCCAF identification alone, and SCCAF+MASI annotation com-
bined respectively, could reveal a similar annotation resolution to
the author’s annotation by calculating ARI and NMI. We found
that SCCAF+MASI annotation matches the author’s annotation
resolution more than MASI annotation and SCCAF identification
alone (Supplementary Fig. 8).

Besides combiningMASI and SCCAF for refining annotation, an
alternative solution to annotate unseen cell types in query data
would be treating them as unassigned. In order to identify these
unseen cell types, we designed the certainty score (see certainty
score in the “Methods” section). If the certainty score of MAIS-
reported annotation is lower than a threshold, we could report
unassigned instead of giving the cell a definite cell-type label. Next,
we examined how well we can retrieve those 4 extra cell types in
Oetjen et al. by thresholding the certainty score. We found setting

the threshold of certainty score between 0.5 and 0.6 would retrieve
these 4 extra cell types with decent accuracy (Supplementary
Fig. 9). Using either a low or high threshold would either retrieve
less unseen cell types or mark the majority of cells as unassigned.

To summarize cell-type identification, we conclude that the
choice of reference data is critical to the performance of MASI.
We encourage users to search for the most comprehensively
annotated reference data if available. Though the criteria for the
selection of reference data can vary across users and it depends on
specific research needs, here are two suggestions we have. First, a
quality reference could contain multiple annotation resolutions,
from high to low, like the human heart atlas data12. Second, the
reference should also contain enough cells for each cell type, in
order to call out reliable marker genes through DE tests. Even so,
reference may not help users get annotation resolution as desired.
To unravel potential subtypes, users can either combine SCCAF
and MASI to reach a finer annotation or use the certainty score to
identify unseen cell types.

Annotation of spatial transcriptomics data with MASI. Next,
we used MASI to map cell type labels from scRNA-seq data to
sequencing-based spatial transcriptomics data. We tested this idea
on spatial hippocampus data profiled by Slide-seqV2, since Slide-
seqV2 reaches a higher resolution of spatial profiling than 10X
Visium57. Integrating Slide-seqV2 with scRNA-seq further sug-
gests a potential application of MASI in spatial transcriptomic
analysis (Supplementary Fig. 10a). MASI was able to assign cell
type labels to the mouse hippocampus Slide-seqV2 data (Sup-
plementary Fig. 10b). Spatial expression patterns of marker genes
for 5 distinct cell types also match with their cell locations in
space (Supplementary Fig. 10b–d).

Case studies to explore data integration and standardization in
large datasets. In the last three sections, we applied MASI to
three case studies consisting of 11,3018, 251,057, and 1,196,523
cells from kidney, COVID-19 datasets, and heart. These datasets
consist of 27, 57, and 27 cell types, respectively.

Case 1: Using human kidney atlas for integration of single-cell
human kidney across multiple conditions. The first human kidney
atlas profiled 27 distinct cell types in a mature kidney, containing
25,128 cells58. This atlas provides a good reference to study cel-
lular irregularities in kidney diseases. So far, independent single-
cell studies have been conducted to reveal mechanisms in dif-
ferent kidney diseases59–62. An approach that can provide an
integrative view of multiple kidney diseases may further add
insight into how cellular irregularities vary among different kid-
ney diseases. We used kidney atlas data as a reference and
mapped cell-type labels to human kidney data that were collected
under different conditions, including allograft kidney (4487 cells),
LN (lupus nephritis, 2838 cells) CKD (chronic kidney disease,
51,849 cells) and DKD (diabetic kidney disease, 28716 cells with
internal control). Because cell-type naming and annotation
resolution vary among these studies, we changed to use ARI and
NMI for evaluation. Benchmarking in this task showed MASI has
better agreement with author-reported annotations with con-
sistency (NMI values of 0.49, 0.648, and 0.728, respectively)
(Fig. 4a). Overall mapping, cell type standardization, and batch-
mixing results are shown in Fig. 4b and c. Next, we focused on the
human DKD data, which came with its control set. The popu-
lation density map suggested a decrease of the proximal tubule
(Fig. 4d) and an increase of immune cells (Fig. 4e), especially an
increased cellular composition of NK cell, B cell, and CD4+ T cell
(Fig. 4f). This is consistent with an increase of immune response
identified in DKD60.
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Case 2: transferring human lung atlas for integration of single-cell
COVID-19 data across participants. Our second MASI application
is transferring knowledge learned from the human lung atlas to
understand the global COVID-19 pandemic at the cellular level
among healthy and COVID-19 participants. The human lung
atlas data (75,071 cells) served as reference data with 57 identified
subtypes63. Using this annotation, we aimed to annotate 80
COVID-19 samples collected from nasal swabs (58 participants)

and airways (22 participants) across different individuals, with
175,986 cells in total14,15. These COVID-19 data included nega-
tive (21 participants) and positive samples (59 participants) from
multiple centers. Due to cell-type annotation and resolution dif-
ferences, we cannot directly compare cellular differences between
healthy and COVID-19 participants. We used MASI to annotate
the COVID-19 data to match the annotation resolution of the
human lung atlas. Again, we benchmarked MASI with two SVM

Fig. 4 Transferring human kidney atlas for integration of single-cell human kidney across conditions. a Comparison of label transferring for MASI,
supervised, and semi-supervised methods. ARI and NMI are calculated by comparing method-reported annotation with author-reported annotation in a
study-wise manner. b Visualization of the integrative annotation by MASI. Cells are colored according to MASI-reported cell-type annotation.
c Visualization of integration by MASI. Cells are colored according to the study id. d and e Population densities in DKD and control samples. Cell type
annotation is shown on the left panel. Cell-type population densities of DKD and control samples are presented separately to highlight differences in cell-
type populations. f Quantitative measurement of cellular compositions. CD4+ T cell, NK cell, and B cell are zoomed in to show the difference between
control and DKD groups.
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classifiers, scNym, scArches, Symphony, Scanorama, LIGER, and
Seurat, using ARI and NMI as evaluation metrics. We found
MASI shows consistently great agreement with author-reported
annotations for all COVID-19 data compared to the other 8
methods (Fig. 5a). Since cell-type annotations for all participants
were leveled up to the same resolution, we were able to directly

compare the cellular differences between healthy and COVID-19
participants (Supplementary Fig. 11). We observed distinct cel-
lular compositions between healthy and COVID-19 groups, and
the distinct cellular composition is consistent across participants
within the same group (Fig. 5b). Then, we quantified the changes
of cellular composition for all cell types and found an increase in

Fig. 5 Transferring human lung atlas for integration of single-cell COVID-19 data across individuals. a Comparison of label transferring for MASI,
supervised, and semi-supervised methods. ARI and NMI are calculated by comparing method-reported annotation with author-reported annotation in a
study-wise manner. b Cellular compositions of healthy and COVID-19 participants14,15. Each column represents one individual. c Cellular composition
comparison of healthy and COVID-19 participants. A box covers 25th percentile to 75th percentile samples. Within a box, a median line was drawn. Bottom
and top error bar lines define 5-percentile and 95-percentile.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-04820-3 ARTICLE

COMMUNICATIONS BIOLOGY |           (2023) 6:465 | https://doi.org/10.1038/s42003-023-04820-3 | www.nature.com/commsbio 9

www.nature.com/commsbio
www.nature.com/commsbio


the proportion of Goblet cells and a decrease in ciliated cell
proportions in the COVID-19 group (Fig. 5c). This discovery
may explain other investigations of SARS-CoV-2 virus targeting
ciliated cells via ACE264,65.

Case 3: Cell-type annotation and batch-mixing of human heart
datasets. Tucker et al.13 and human heart atlas (Litviňuková et al.)12

provide two atlas-level resources for human health heart data at
single-cell resolution. More recently, two studies by Koenig et al. and
Kuppe et al. profiled atlas-scale single nuclei/cell transcriptome of
heart failure and myocardial infarction, respectively66,67. In addition,
other human heart datasets are also available68,69. However, these
studies did not use the same cell-type naming style, and they
reported annotations at different resolutions. The human heart atlas
with 486134 cells in total identified 27 subtypes while Tucker et al.
(17 subtypes, 287,269 cells), Koenig et al. (15 subtypes, 220,752 cells),
Kuppe et al. (11 cell types, 191,795 cells), Wang et al. (5 cell types,
6731 cells), and Cui et al. (9 cell types, 3842 cells) reported different
numbers of cell-types in their own studies12,13,66–69. We think uni-
form annotation of cell-type labels and batch-mixing of these
datasets can yield insights into common themes and inter-human
variability across these datasets. Since the human heart atlas data
provided both high and low hierarchy annotations and its low
hierarchy annotation revealed the greatest number of subtypes, we
chose human heart atlas data as the reference. Because the data size
exceeds our computation capacity, we were unable to run LIGER
and Seurat for the integration of human heart datasets. For all 7
methods compared here, we found they have similar performance
for mapping cell-type labels to Tucker et al., but MASI, scArches,
and Scanorama show better outcomes than the other 4 methods in
both Wang et al. and Cui et al. (Fig. 6a). Surprisingly, the non-linear
SVM had a worse annotation for Koenig et al. and Kuppe et al.,
compared to its linear counterpart. Methods, including scNym and
Scanorama, also showed disappointing annotation outcomes in these
two datasets (Fig. 6a). Benchmarking in human heart datasets again
demonstrated that MASI has consistent annotation performance.
Relying on a greater resolution of Litviňuková et al. data, we were
able to standardize annotation for the other five studies at two levels,
high and low hierarchy, respectively (Fig. 6b). We visualized inte-
gration via MASI and observed no distinct batch differences
(Fig. 6c). We noticed MASI annotated a number of cells in Tucker
et al. as fibroblast while the author-reported annotation for these
cells includes cardiomyocyte, endothelium, and neural cells (Fig. 6d).
We looked deeper into these cells and examined expressions of
marker genes for fibroblast, endothelium, and neural cells and found
that the disagreement between MASI-reported and author-reported
annotation is likely due to background mRNA from fibroblasts
(Supplementary Fig. 12).WithMASI, we identified pericyte inWang
et al. and natural killer cell in Cui et al., which were not reported by
the authors (Fig. 6d and Supplementary Fig. 13).

MASI is fast and can accommodate annotation for large-scale
single-cell data. Taken together, we show that MASI can quickly
annotate large-scale scRNA-seq data. Our runtime test showed
runtime of model-based methods increases dramatically once the
data scales up (Supplementary Fig. 14). For an extreme test, we
performed integration of mouse brain data (nearly 1 million cells)
by MASI on a personal laptop, with 16 GB memory and no GPU
support. Without sacrificing annotation accuracy, MASI can scale
up to accommodate label transferring for 1 million cells (Sup-
plementary Data 4).

Discussion
Here, we present MASI, a new tool to quickly and accurately
annotate single-cell datasets based on marker genes obtained from

a reference dataset. We show that MASI can also be used for batch-
mixing and serve as a data integration method for single-cell
transcriptomics data. We benchmarked MASI with supervised and
semi-supervised methods, and our results show that the perfor-
mance of MASI is comparable or even superior to other tested
methods based on the datasets used in this study. A core compo-
nent of MASI is the conversion to a cell-type score matrix. We have
shown that cell-type scores can be used as features for integrative
lineage analysis and demonstrated their intuitive interpretability.
Finally, we showed the utility of MASI in three different case stu-
dies of data integration covering different biological conditions,
surveyed participants, and research groups. Like other supervised
and semi-supervised methods that rely on reference data, accurate
annotation via MASI is also dependent on the quality of reference
data. Thus, the choice and resolution of the reference are critical to
downstream analysis. We would recommend users to select refer-
ence data that provides annotation resolution compatible with their
downstream investigations. If query data has unseen cell types not
in reference, MASI in combination with SCCAF can be used to
identify subtypes within major cell types. Additionally, we showed
that MASI can also be applied for cell-type prediction in spatial
transcriptomics datasets using comparable single-cell tran-
scriptomics datasets as a reference.

There are many well-established integration methods available
to address batch effects in scRNA-seq datasets, for example,
Seurat, Harmony, and LIGER5–7. Additionally, some deep
learning-based methods such as HDMC and CarDEC are also
available70,71. In this study, we rigorously tested cell-type score-
based integration via MASI across various single-cell platforms,
cytoplasm/nuclei, research groups, conditions, and individuals.
Our analyses suggest that marker-based feature engineering can
be useful for reference-based cell-type annotation, batch-mixing,
and data integration.

Overall, MASI is easy to set up and requires limited compu-
tation resources to run. It can be used for reference-based cell-
type annotation and batch-mixing, which could facilitate quick
hypothesis-driven exploration of diverse datasets obtained from
different labs. Moreover, the democratization of single-cell tran-
scriptomics data (larger cellular output with lower cost) could
empower researchers even with limited computational resources
to investigate millions of single cells among diverse biological
systems.

Methods
Data preprocessing. Raw gene expression counts data were ‘LogNormalized’,
which divides the total count in that cell and multiplies it by a scale factor of 10,000
(in all our analyses), followed by log-transformation to get the normalized
expression matrix. For implementing MASI, we skipped the step of calling highly
variable genes, because only the identified marker genes were used for integrative
annotation. For training scNym and scArches, we used the top 5000 highly variable
genes by batch, which were calculated using the function “pp.highly_varia-
ble_genes” in Scanpy47.

Marker rank aggregation. We considered two ensemble marker ranking schemes.
In the first scheme, the top 20 marker genes from each DE test were compiled
together. For the second scheme, only statistically significant marker genes based
on the p-values corrected for multiple hypothesis correction were considered. In
the first scheme, we searched the consensus ranking via robust rank aggregation53.
In the second scheme, rank aggregation was done through Lancaster
combination72.

Weighing markers. When data to be annotated contains distinct cell types and cell
types do not share marker genes, we reasoned that weighing markers would not
influence the final annotation by MASI. However, this can be beneficial to dis-
tinguish cell subtypes that share common markers, for example, subtype T cells.
We used a simple weighing strategy that returned good label transferring. Given N
markers for cell type A, the 1st marker in this ranked list will contribute 100% of its
expression to the cell-type score of A, while the Nth marker only contributes 50%
of its expression. For the ith marker in the rest, we form this discount calculation as
(1) 1� ð iNÞ * ð12Þ to get their weights in cell-type A. Beside the weighing strategy
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Fig. 6 Transferring human heart atlas for integration of single-cell human heart across research groups. a Comparison of label transferring for MASI,
supervised, and semi-supervised methods. ARI and NMI are calculated by comparing method-reported annotation with author-reported annotation in a
study-wise manner. b Visualization of the integrative annotation by MASI. Cells are colored according to MASI-reported cell-type annotation at both high
and low hierarchy levels. c Visualization of integration by MASI. Cells are colored according to the study id. d confusion matrix of MASI-reported
annotation against author-reported annotation. Confusion matrix is normalized to have column sum as 1. Row names use the naming style of human heart
atlas, and column names remain the original naming styles of Tucker et al.13, Koenig et al.66, Kuppe et al.67, Wang et al.69, and Cui et al.68 data.
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above, other weighing strategies, including Rank Order Centroid and Ratio
method, can also be considered for customization.

Converting gene expression matrix to cell-type score matrix. Cell-type score
for a given cell-type A with N expressed markers is calculated by summing up the
expression of all N markers with consideration of weighing markers as above. This
is defined as the raw cell-type score. From this, the PlinerScore is calculated by
adding a TF-IDF transformation and suppressing expression values of a marker
gene to zeros if they are below the X-percentile of expression values across all cells
before the raw cell-type score conversion. The default value for PlinerScore
threshold is 0.25 as the percentile threshold18.

Classification by linear and non-linear SVM. Both linear and non-linear SVM
classifiers can be impacted by feature selection. As a benchmark reported, linear and
non-linear SVM can have varying prediction accuracies for scRNA-seq data when
different feature selection processes were applied73. Nevertheless, using more dis-
criminative features should improve the accuracy of these two supervised models.
Instead of using highly variable genes and PCA-reduced features, we used the same
cell-type markers that were used for MASI to train both linear and non-linear SVM
classifiers. This is primarily because we observed cell-type markers have a good
balance between cell-type preservation and batch-effect removal, compared to both
highly variable genes and PCA-reduced features, as shown in Supplementary Fig. 1.

Label transferring through MASI. Once cell-type markers are identified, Mapping
cell-type labels to query data is performed using MACA20. Briefly, for each cell,
MACA generates two labels: the per-cell cell-type Label 1 and group-based clus-
tering Label 2. Then, MACA maps clustering Label 2 to cell-type Label 1 to get the
overall cell-type annotation. In MACA, we used different clustering parameters to
generate multiple Label 2s, for the purpose of reproducibility20. In this study, we
also ran Louvain community detection with a range of clustering parameters to get
multiple clustering Label 2s. These include clustering resolution 3, 5, 7 with 5, 10,
15 as neighborhood sizes to over-cluster cells. With multiple clustering Label 2s, we
were able to map them to Label 1 and get a more reproducible ensembled cell-type
annotation. To accommodate for large-scale scRNA-seq data, we split the whole
data into N batches and ran MACA with one batch per CPU core.

Label transferring through scNym and scArches. Both scNym and scArches are
deep-learning-based transfer learning methods. Therefore, an optimal outcome for
a specific data might require customized parameter tuning. However, for bench-
marking, we used default pipelines of both methods for all data involved in this
study. Respective tutorials can be found at https://github.com/calico/scnym and
https://scarches.readthedocs.io/en/latest/scanvi_surgery_pipeline.html.

Label transferring through Symphony. A developer-provided tutorial on using
Symphony could be found on GitHub (https://github.com/immunogenomics/
symphony). In this study, we first built a reference with genes by cell matrix.
Multiple procedures, including variable gene selection, scaling, PCA, and batch
correction via Harmony, were already implemented in Symphony. Next, we
mapped cell-type labels from reference to query data and integrate query data with
reference data at the same time, using Symphony. The default tutorial for using
Symphony can be found at https://github.com/immunogenomics/symphony.

Label transferring using Scanorama, LIGER, and Seurat. All Scanorama, LIGER,
and Seurat are primarily batch-correction methods. Thus, we first followed their
own tutorials to remove batch effects. Then, we used the batch-corrected latent
space to train k-nearest neighbors classifiers, with k as 5 all datasets.

Certainty score. We designed a certainty score to quantify how certain the
assigned cell-type annotation for a cell. The certainty score is defined as (2)
C ¼ 1� D1st

DNth
, where D1st is the distance to the closest cell-type centroid DNth is the

distance to least close cell-type centroid in reference. The intuition behind is that if
it is certain that a cell belongs to cell type A, the cell would have small D1st to the
centroid of cell type A and small DNth to the centroid of an unrelated cell type.
Therefore, D1st

DNth
would be small, and C would be closer to 1.

2D visualization using UMAP. To visualize integrations by these three methods,
we used the same parameter setting for all datasets. We set up metrics “cosine” to
define distance, cells within 0.1 were considered as neighbors, and minimum of 15
cells form a community.

Integrative lineage analysis. We used ForceAtlas2 with PAGA (partition-based
graph abstraction) initialization to layout integrative lineage maps with cell-type
scores instead of any other hidden space features, like principal component analysis
(PCA) representation or representation from neural network model74,75. To initialize
PAGA, we performed Louvain community detection to assign cells as multiple meta

cells76. We used resolution 5 for Louvain community detection in order to get enough
meta cells. Once cells are laid out on the ForceAtlas2 space, we directly visualize
lineage paths with cell-type scores, without clustering cells into cell types.

Evaluation metrics. (3) Overall accuracy: Acc ¼ Total number of correction predictions
Total number of cells .

(4) Macro F1: F1 ¼ precision * recall
ðprecisionþrecallÞ * 2. F1 was calculated for each cell type, then

macro F1 is the average of F1 scores for all cell types. Because this metric doesn’t
consider class weights for imbalanced data, a higher macro F1 could suggest
correction predictions for both dominant and non-dominant cell types.

Cell-type silhouette score: We first used function
“sklearn.metrics.silhouette_score” in scikit-learn Python package to calculate a
typical silhouette score S77. The author-reported cell type label served as the
ground truth. This calculation uses the hidden space returned by integration
methods with cell-type labels. Both scNym and scArches learned a 10-dimension
hidden space representation by default. The lower representation by MASI depends
on the number of unique cell types available in the reference dataset. Next, we re-
scaled the score from 0 to 1 by (1+S)/2, defined as a cell-type silhouette score. The
higher the score is, the better cell-type variation is captured.

(5) Batch entropy mixing score78: E ¼ ∑c
i¼1xi logðxiÞ. In this study, xi is the

proportion of cells from batch i in a region of the first two UMAPs, and
∑c

i¼1xi ¼ 1. This score should quantify how well-mixed cells from different batches
are in a region. The same as Cell-type silhouette score, the calculation of Batch
entropy mixing score is based on the hidden space returned by integration methods
with batch information as label. The higher the score is, the better mixing.

Adjusted rand index (ARI): The rand index (RI) measures a similarity or
agreement between two clustering labels. The ARI then is defined through (6)
ARI ¼ RI�expected RI

maxðRIÞ�expected RI. In this study, we used ARI to measure the agreement

between cell-type annotation reported by a transfer learning method and the
author-reported cell-type annotation.

Normalized mutual information (NMI): Like ARI, NMI also qualifies the
agreement between two clustering labels. It is defined as (7) NMI ¼ IðP;TÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

HðPÞHðTÞ
p . P

and T are empirical categorical distributions for the predicted and real clustering, I
is mutual entropy, and H is the Shannon entropy.

Score aggregation and ranking. To report aggregated scores and rank the data
processing pipelines and integration methods benchmarked in this study, we
selected a weighted averaging approach to quantify our performances in the tasks
of integration and annotation. This is similar to the weighted averaging in the
benchmark study by Luecken et al.79. The integration score is defined as (8)
Sintegration ¼ 0:7 ´ Scell�type þ 0:3 ´ Sbatch�mixing, while the annotation score is defined
as (9) Sannotation ¼ 0:7 ´ F1macro þ 0:3 ´ACCoverall . Aggregation for integration
score gives a higher weight to cell-type silhouette score, emphasizing the higher
importance of preserving biological information over batch mixing. Higher weight
to macro F1 in the annotation score reflects a balanced annotation accuracy for
both major and non-major cell types.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All datasets used in this study are publicly available (Supplementary Data 5). The use of
these datasets, either as reference or query data, is also specified in Supplementary Data 5.
Raw data can be found through their associated publications. Ready-to-use data are
available for some datasets, and downloadable links are provided in Supplementary
Data 5. Source data underlying the main figures are presented in Supplementary Data 6.

Code availability
The source code of MASI including analyses of key results in the study can be found at
https://github.com/hayatlab/MASI80. Processed data required for reproducing major
results can also be found at MASI GitHub. Source data for making major figures in this
study is available in Supplementary Data 6. To reproduce each major figure in this study,
please follow tutorials deposited at https://github.com/hayatlab/MASI/tree/main/tutorial.

Received: 5 December 2022; Accepted: 6 April 2023;

References
1. Svensson, V., Vento-Tormo, R. & Teichmann, S. A. Exponential scaling of

single-cell RNA-seq in the past decade. Nat. Protoc. 13, 599–604 (2018).

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-04820-3

12 COMMUNICATIONS BIOLOGY |           (2023) 6:465 | https://doi.org/10.1038/s42003-023-04820-3 | www.nature.com/commsbio

https://github.com/calico/scnym
https://scarches.readthedocs.io/en/latest/scanvi_surgery_pipeline.html
https://github.com/immunogenomics/symphony
https://github.com/immunogenomics/symphony
https://github.com/immunogenomics/symphony
https://github.com/hayatlab/MASI
https://github.com/hayatlab/MASI/tree/main/tutorial
www.nature.com/commsbio


2. Aldridge, S. & Teichmann, S. A. Single cell transcriptomics comes of age. Nat.
Commun. 11, 4307 (2020).

3. Quake, S. R. A decade of molecular cell atlases. Trends Genet. 38, 805–810
(2022).

4. Rozenblatt-Rosen, O., Stubbington, M. J. T., Regev, A. & Teichmann, S. A. The
Human Cell Atlas: from vision to reality. Nature 550, 451–453 (2017).

5. Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data
with Harmony. Nat. Methods 16, 1289–1296 (2019).

6. Liu, J. et al. Jointly defining cell types from multiple single-cell datasets using
LIGER. Nat. Protoc. 15, 3632–3662 (2020).

7. Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177,
1888–1902.e1821 (2019).

8. Lopez, R., Regier, J., Cole, M. B., Jordan, M. I. & Yosef, N. Deep generative
modeling for single-cell transcriptomics. Nat. Methods 15, 1053–1058 (2018).

9. Xu, C. et al. Probabilistic harmonization and annotation of single-cell
transcriptomics data with deep generative models.Mol. Syst. Biol. 17, e9620 (2021).

10. Kimmel, J. C. & Kelly, D. R. Semi-supervised adversarial neural networks for
single-cell classification. Genome Res. 31, 1781–1793 (2021).

11. Lotfollahi, M. et al. Mapping single-cell data to reference atlases by transfer
learning. Nat. Biotechnol. https://doi.org/10.1038/s41587-021-01001-7 (2021).

12. Litviňuková, M. et al. Cells of the adult human heart. Nature https://doi.org/
10.1038/s41586-020-2797-4 (2020).

13. Tucker, N. R. et al. Transcriptional and cellular diversity of the human heart.
Circulation (New York, N. Y.) 142, 466–482 (2020).

14. Chan Zuckerberg Initiative Single-Cell, C.-C. et al. Single cell profiling of
COVID-19 patients: an international data resource from multiple tissues.
Preprint at medRxiv https://doi.org/10.1101/2020.11.20.20227355 (2020).

15. Chua, R. L. et al. COVID-19 severity correlates with airway
epithelium–immune cell interactions identified by single-cell analysis. Nat.
Biotechnol. 38, 970–979 (2020).

16. Hie, B., Bryson, B. & Berger, B. Efficient integration of heterogeneous single-
cell transcriptomes using Scanorama. Nat. Biotechnol. 37, 685–691 (2019).

17. Kang, J. B. et al. Efficient and precise single-cell reference atlas mapping with
Symphony. Nat. Commun. 12, 5890 (2021).

18. Pliner, H. A., Shendure, J. & Trapnell, C. Supervised classification enables
rapid annotation of cell atlases. Nat. Methods 16, 983–986 (2019).

19. Franzén, O., Gan, L.-M. & Björkegren, J. L. M. PanglaoDB: a web server for
exploration of mouse and human single-cell RNA sequencing data. Database
2019, baz046 (2019).

20. Xu, Y., Baumgart, S. J., Stegmann, C. M. & Hayat, S. MACA: marker-based
automatic cell-type annotation for single cell expression data. Bioinformatics
38, 1756–1760 (2021).

21. Almanzar, N. et al. A single-cell transcriptomic atlas characterizes ageing
tissues in the mouse. Nature 583, 590–595 (2020).

22. Grün, D. et al. De novo prediction of stem cell identity using single-cell
transcriptome data. Cell Stem Cell 19, 266–277 (2016).

23. Muraro, M. J. et al. A single-cell transcriptome atlas of the human pancreas.
Cell Syst. 3, 385–394.e383 (2016).

24. Segerstolpe, Å. et al. Single-cell transcriptome profiling of human pancreatic
islets in health and type 2 diabetes. Cell Metab. 24, 593–607 (2016).

25. Baron, M. et al. A single-cell transcriptomic map of the human and mouse
pancreas reveals inter- and intra-cell population structure. Cell Syst. 3,
346–360.e344 (2016).

26. Lawlor, N. et al. Single-cell transcriptomes identify human islet cell signatures
and reveal cell-type–specific expression changes in type 2 diabetes. Genome
Res. 27, 208–222 (2017).

27. Oetjen, K. A. et al. Human bone marrow assessment by single-cell RNA
sequencing, mass cytometry, and flow cytometry. JCI insight 3, e124928
(2018).

28. Freytag, S., Tian, L., Lönnstedt, I., Ng, M. & Bahlo, M. Comparison of
clustering tools in R for medium-sized 10x Genomics single-cell RNA-
sequencing data [version 2; peer review: 3 approved]. F1000 Res. 7, 1297–1297
(2018).

29. Sun, Z. et al. A Bayesian mixture model for clustering droplet-based single-cell
transcriptomic data from population studies. Nat. Commun. 10, 1649–1649
(2019).

30. 10x Datasets Single Cell Gene Expression, Official 10x Genomics Support.
https://www.10xgenomics.com/resources/datasets/.

31. Yao, Z. et al. A transcriptomic and epigenomic cell atlas of the mouse primary
motor cortex. Nature 598, 103–110 (2021).

32. Schaum, N. et al. Single-cell transcriptomics of 20 mouse organs creates a
Tabula Muris. Nature (Lond.) 562, 367–372 (2018).

33. Zeisel, A. et al. Molecular architecture of the mouse nervous system. Cell 174,
999–1014.e1022 (2018).

34. Rosenberg, A. B. et al. Single-cell profiling of the developing mouse brain and
spinal cord with split-pool barcoding. Science (Am. Assoc. Adv. Sci.) 360,
176–182 (2018).

35. Saunders, A. et al. Molecular diversity and specializations among the cells of
the adult mouse brain. Cell 174, 1015–1030.e1016 (2018).

36. Zhang, X. et al. CellMarker: a manually curated resource of cell markers in
human and mouse. Nucleic Acids Res. 47, D721–D728 (2019).

37. Ianevski, A., Giri, A. K. & Aittokallio, T. Fully-automated and ultra-fast cell-
type identification using specific marker combinations from single-cell
transcriptomic data. Nat. Commun. 13, 1246 (2022).

38. Lotfollahi, M., Wolf, F. A. & Theis, F. J. scGen predicts single-cell perturbation
responses. Nat. Methods 16, 715–721 (2019).

39. Xu, Y., Das, P. & McCord, R. P. SMILE: mutual information learning for
integration of single-cell omics data. Bioinformatics 38, 476–486 (2022).

40. Heng, T. S. P. et al. The Immunological Genome Project: networks of gene
expression in immune cells. Nat. Immunol. 9, 1091–1094 (2008).

41. Mabbott, N. A., Baillie, J. K., Brown, H., Freeman, T. C. & Hume, D. A. An
expression atlas of human primary cells: inference of gene function from
coexpression networks. BMC Genom. 14, 632 (2013).

42. Tyler, S. R., Bunyavanich, S. & Schadt, E. E. PMD uncovers widespread cell-
state erasure by scRNAseq batch correction methods. Preprint at bioRxiv
https://doi.org/10.1101/2021.11.15.468733 (2021).

43. Wang, Z. et al. Single-cell RNA sequencing of peripheral blood
mononuclear cells from acute Kawasaki disease patients. Nat. Commun. 12,
5444 (2021).

44. Bandler, R. C. et al. Single-cell delineation of lineage and genetic identity in
the mouse brain. Nature https://doi.org/10.1038/s41586-021-04237-0 (2021).

45. Wagner Daniel, E. et al. Single-cell mapping of gene expression landscapes
and lineage in the zebrafish embryo. Science 360, 981–987 (2018).

46. Farrell Jeffrey, A. et al. Single-cell reconstruction of developmental trajectories
during zebrafish embryogenesis. Science 360, eaar3131 (2018).

47. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene
expression data analysis. Genome Biol. 19, 15–15 (2018).

48. Dai, M., Pei, X. & Wang, X.-J. Accurate and fast cell marker gene
identification with COSG. Brief. Bioinform. 23, bbab579 (2022).

49. Kim, H. J. et al. Uncovering cell identity through differential stability with
Cepo. Nat. Comput. Sci. 1, 784–790 (2021).

50. Soneson, C. & Robinson, M. D. Bias, robustness and scalability in single-cell
differential expression analysis. Nat. Methods 15, 255–261 (2018).

51. Mou, T., Deng, W., Gu, F., Pawitan, Y. & Vu, T. N. Reproducibility of
methods to detect differentially expressed genes from single-cell RNA
sequencing. Front. Genet. 10, 1331 (2020).

52. Squair, J. W. et al. Confronting false discoveries in single-cell differential
expression. Nat. Commun. 12, 5692 (2021).

53. Kolde, R., Laur, S., Adler, P. & Vilo, J. Robust rank aggregation for gene list
integration and meta-analysis. Bioinformatics 28, 573–580 (2012).

54. Abdelaal, T. et al. A comparison of automatic cell identification methods for
single-cell RNA sequencing data. Genome Biol. 20, 194–194 (2019).

55. Tran, H. T. N. et al. A benchmark of batch-effect correction methods for
single-cell RNA sequencing data. Genome Biol. 21, 12–12 (2020).

56. Miao, Z. et al. Putative cell type discovery from single-cell gene expression
data. Nat. Methods 17, 621–628 (2020).

57. Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular
resolution with Slide-seqV2. Nat. Biotechnol. 39, 313–319 (2021).

58. Stewart Benjamin, J. et al. Spatiotemporal immune zonation of the human
kidney. Science 365, 1461–1466 (2019).

59. Arazi, A. et al. The immune cell landscape in kidneys of patients with lupus
nephritis. Nat. Immunol. 20, 902–914 (2019).

60. Wilson, P. C. et al. The single-cell transcriptomic landscape of early human
diabetic nephropathy. Proc. Natl. Acad. Sci. USA 116, 19619 (2019).

61. Wu, H. et al. Single-cell transcriptomics of a human kidney allograft biopsy
specimen defines a diverse inflammatory response. J. Am. Soc. Nephrol. 29,
2069 (2018).

62. Kuppe, C. et al. Decoding myofibroblast origins in human kidney fibrosis.
Nature 589, 281–286 (2021).

63. Travaglini, K. J. et al. A molecular cell atlas of the human lung from single-cell
RNA sequencing. Nature 587, 619–625 (2020).

64. Lee, I. T. et al. ACE2 localizes to the respiratory cilia and is not increased by
ACE inhibitors or ARBs. Nat. Commun. 11, 5453 (2020).

65. Ahn, J. H. et al. Nasal ciliated cells are primary targets for SARS-CoV-2
replication in early stage of COVID-19. J. Clin. Investig. 131, 1–14 (2021).

66. Koenig, A. L. et al. Single-cell transcriptomics reveals cell-type-specific
diversification in human heart failure. Nat. Cardiovasc. Res. 1, 263–280 (2022).

67. Kuppe, C. et al. Spatial multi-omic map of human myocardial infarction.
Nature 608, 766–777 (2022).

68. Cui, Y. et al. Single-cell transcriptome analysis maps the developmental track
of the human heart. Cell Rep. (Camb.) 26, 1934–1950.e1935 (2019).

69. Wang, L. et al. Single-cell reconstruction of the adult human heart during
heart failure and recovery reveals the cellular landscape underlying cardiac
function. Nat. Cell Biol. 22, 108–119 (2020).

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-04820-3 ARTICLE

COMMUNICATIONS BIOLOGY |           (2023) 6:465 | https://doi.org/10.1038/s42003-023-04820-3 | www.nature.com/commsbio 13

https://doi.org/10.1038/s41587-021-01001-7
https://doi.org/10.1038/s41586-020-2797-4
https://doi.org/10.1038/s41586-020-2797-4
https://doi.org/10.1101/2020.11.20.20227355
https://www.10xgenomics.com/resources/datasets/
https://doi.org/10.1101/2021.11.15.468733
https://doi.org/10.1038/s41586-021-04237-0
www.nature.com/commsbio
www.nature.com/commsbio


70. Wang, X., Wang, J., Zhang, H., Huang, S. & Yin, Y. HDMC: a novel deep
learning-based framework for removing batch effects in single-cell RNA-seq
data. Bioinformatics 38, 1295–1303 (2021).

71. Lakkis, J. et al. A joint deep learning model enables simultaneous batch effect
correction, denoising, and clustering in single-cell transcriptomics. Genome
Res. 31, 1753–1766 (2021).

72. Li, H.-S., Ou-Yang, L., Zhu, Y., Yan, H. & Zhang, X.-F. scDEA: differential
expression analysis in single-cell RNA-sequencing data via ensemble learning.
Brief. Bioinform. 23, bbab402 (2021).

73. Ma, W., Su, K. & Wu, H. Evaluation of some aspects in supervised cell type
identification for single-cell RNA-seq: classifier, feature selection, and
reference construction. Genome Biol. 22, 264 (2021).

74. Jacomy, M., Venturini, T., Heymann, S. & Bastian, M. ForceAtlas2, a
continuous graph layout algorithm for handy network visualization designed
for the Gephi Software. PLoS ONE 9, e98679 (2014).

75. Wolf, F. A. et al. PAGA: graph abstraction reconciles clustering with trajectory
inference through a topology preserving map of single cells. Genome Biol. 20,
59 (2019).

76. Blondel, V. D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. Fast unfolding of
communities in large networks. J. Stat. Mech. Theory Exp. 2008, P10008 (2008).

77. Buitinck, L. et al. API design for machine learning software: experiences from
the scikit-learn project. arXiv e-prints, arXiv:1309.0238 (2013).

78. Haghverdi, L., Lun, A. T. L., Morgan, M. D. & Marioni, J. C. Batch effects in
single-cell RNA-sequencing data are corrected by matching mutual nearest
neighbors. Nat. Biotechnol. 36, 421–427 (2018).

79. Luecken, M. D. et al. Benchmarking atlas-level data integration in single-cell
genomics. Nat. Methods 19, 41–50 (2022).

80. Xu, Y., & hayatlab. MASI: marker-assisted standardization and integration for
single-cell transcriptomics data (v1.0.1). Zenodo https://doi.org/10.5281/
zenodo.7779497 (2023).

Acknowledgements
This work was partially supported by NIH NIGMS grant R35GM133557 to R.P.M. S.H.
was supported by the Leducq IMMUNO-FIB HF seed award and was partially supported
by Novo Nordisk STAR Post-doc program.

Author contributions
Y.X. and S.H. planned and designed the study. Y.X. performed the computational ana-
lysis. Y.X. and S.H. analyzed and interpreted the data and wrote the manuscript. R.P.M.
and R.K. edited the manuscript and advised on data interpretation. All authors read and
approved the manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests
The authors do not have competing interests in this topic. Disclosures: S.H. has received
funding from Novo Nordisk, R.K. has received grants from Travere Therapeutics,
Galapagos, Chugai, and Novo Nordisk and is a consultant or received honoraria from
Bayer, Pfizer, Novo Nordisk, Lilly-Pharma and Grünenthal.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s42003-023-04820-3.

Correspondence and requests for materials should be addressed to Rachel Patton
McCord or Sikander Hayat.

Peer review information This manuscript has been previously reviewed at another
Nature journal. Communications Biology thanks the anonymous reviewers for their
contribution to the peer review of this work. Primary Handling Editor: George
Inglis. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-04820-3

14 COMMUNICATIONS BIOLOGY |           (2023) 6:465 | https://doi.org/10.1038/s42003-023-04820-3 | www.nature.com/commsbio

https://doi.org/10.5281/zenodo.7779497
https://doi.org/10.5281/zenodo.7779497
https://doi.org/10.1038/s42003-023-04820-3
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsbio

	MASI enables fast model-free standardization and integration of single-cell transcriptomics data
	Results
	Development of MASI
	Integrative analysis using cell-type score matrix
	Workflow of MASI for integrative analysis
	Building a marker collection for standardized cell-type annotations
	Benchmarking cell-type annotation and data integration
	Dependence on choice of reference dataset and clustering resolution
	Annotation of spatial transcriptomics data with MASI
	Case studies to explore data integration and standardization in large datasets
	Case 1: Using human kidney atlas for integration of single-cell human kidney across multiple conditions
	Case 2: transferring human lung atlas for integration of single-cell COVID-19 data across participants
	Case 3: Cell-type annotation and batch-mixing of human heart datasets
	MASI is fast and can accommodate annotation for large-scale single-cell data

	Discussion
	Methods
	Data preprocessing
	Marker rank aggregation
	Weighing markers
	Converting gene expression matrix to cell-type score matrix
	Classification by linear and non-linear SVM
	Label transferring through MASI
	Label transferring through scNym and scArches
	Label transferring through Symphony
	Label transferring using Scanorama, LIGER, and Seurat
	Certainty score
	2D visualization using UMAP
	Integrative lineage analysis
	Evaluation metrics
	Score aggregation and ranking

	Reporting summary
	Data availability
	References
	Code availability
	References
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	Additional information




