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Pan-cancer landscape of epigenetic factor
expression predicts tumor outcome
Michael W. Cheng 1, Mithun Mitra 2,3,5 & Hilary A. Coller 1,2,3,4,5✉

Oncogenic pathways that drive cancer progression reflect both genetic changes and epige-

netic regulation. Here we stratified primary tumors from each of 24 TCGA adult cancer types

based on the gene expression patterns of epigenetic factors (epifactors). The tumors for five

cancer types (ACC, KIRC, LGG, LIHC, and LUAD) separated into two robust clusters that

were better than grade or epithelial-to-mesenchymal transition in predicting clinical out-

comes. The majority of epifactors that drove the clustering were also individually prognostic.

A pan-cancer machine learning model deploying epifactor expression data for these five

cancer types successfully separated the patients into poor and better outcome groups.

Single-cell analysis of adult and pediatric tumors revealed that expression patterns associated

with poor or worse outcomes were present in individual cells within tumors. Our study

provides an epigenetic map of cancer types and lays a foundation for discovering pan-cancer

targetable epifactors.
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Epigenetics refers to protein factors and processes that allow
the establishment and maintenance of different states,
including states of gene activity, at the same genomic locus1.

Epigenetic processes include changes in DNA methylation,
modifications of histone proteins, chromatin accessibility, and
higher order chromatin architecture. These changes in state are
mediated by chromatin-associated protein factors (epigenetic
factors or epifactors) such as those that add, remove, and read
DNA and histone modifications, and remodel the chromatin2.

Cancer has been historically considered to be a genetic disease
with driver mutations in oncogenes or tumor suppressors, but in
the last decade, the advent of next generation sequencing tech-
nologies has led to a greater appreciation of the role of impaired
epigenetic processes, such as inactivation of tumor suppressor
genes by promoter DNA methylation, disruption of the reg-
ulatory language coded by histone modifications, and aberrant
chromatin organization, in cancer progression and drug
resistance3–6. Genetic mutations and epigenetic changes can have
a cooperative effect on cancer development, and one may pre-
dispose cancer cells to the other7–10. For example, epigenetic
silencing of DNA repair genes can lead to new mutations8, and
compact heterochromatin regions marked by H3K9me3 and
H4K20me3 histone marks may be more resistant to new muta-
tions compared to more open euchromatin regions9.

Epifactors themselves can be genetically altered in tumors,
which can cause widespread epigenetic dysregulation5,8,11,12.
Mutations in genes involved in DNA methylation and chromatin
remodeling are consistently observed in hematological malig-
nancies and solid tumors, respectively12,13. Cancer cells can also
acquire epigenetic changes in the absence of mutations in epi-
factor genes14. Abnormal expression or repression of epifactor
genes in cancer cells can result in epigenetic changes that select
for cancer cells with enhanced fitness, resulting in cancer
growth15. This “non-mutational epigenetic reprogramming” has
been proposed as a cancer hallmark15, and is thought to be
especially important for cancers with few mutations, such as
pediatric cancers12.

Genomic profiling has shown that tumors from different
patients with the same cancer type display intertumor epigenetic
heterogeneity13,16,17. Understanding epigenetic heterogeneity
between patient tumors can provide valuable information about
the factors that contribute to variable clinical outcomes and drug
responses18. Previous studies reporting tumor-to-tumor epige-
netic heterogeneity focused mainly on a single epigenetic process
such as DNA methylation or chromatin accessibility9,13,17,19,20.
Because multimodal datasets in which many epigenetic markers
are monitored for the same set of tumors are rare due to limited
multiplexing of technologies and high cost, a more complete
picture of epigenetic differences across tumors is missing. The
gene expression levels of epifactors that constitute the epigenetic
landscape in tumors are readily available for large pan-cancer
patient cohorts (for example, through The Cancer Genome Atlas
(TCGA) program). Previous studies on epifactors, however, did
not address the relationship between their joint or individual
expression patterns and clinical outcomes in detail10,21.

In this pan-cancer study, we investigated epigenetic hetero-
geneity across high purity, primary TCGA patient tumors from
each of 24 different adult cancer types by comparing the
expression of epifactors. By analyzing the power of epifactors to
determine patient outcome across 24 cancer types, we gained
analytical breadth to discover cross-tissue patterns and emerging
themes that would be missed by focusing on one or a few cancer
types16,21,22. We found that the expression levels of these epi-
factors allowed us to classify the patient tumors for each tissue
type into distinct clusters with well-defined epifactor signatures.
For each tumor type, we asked, How do the clusters relate to

clinical outcome? What epifactor signatures that define the
clusters are common across the cancer types? What clinically
relevant pathways could these epifactors regulate? Does the
prognostic value of individual epifactors differ in different cancer
types? Do the expression changes in epifactors relate to genetic
changes? How does the epifactor landscape of adult tumors
compare with pediatric tumors? Finally, what is the relationship
between intertumor and intra-tumor (cell-to-cell) heterogeneity?
Our study delineates the differences in epigenetic characteristics
within and across cancer types through the lens of epifactor
expression.

Results
Tumors from 24 adult tissue types separate into two distinct
clusters based on expression of epifactor genes. We investigated
whether tumors from each of the 24 adult cancer types in the
TCGA repository (Fig. 1a and Supplementary Data 1)16 would
separate into well-defined subgroups based on the expression
patterns of 720 epifactor genes from the Epifactors database23

(Supplementary Data 2). These epifactors encode proteins
involved in the addition, removal, and recognition of DNA
methylation and histone marks, and chromatin remodeling
(Fig.1b, top panel, Supplementary Data 2). The majority of the
epifactor genes (556 out of 720) are not known to be genetically
altered in cancer tissues (Fig. 1b, bottom panel and Supplemen-
tary Data 2)24,25. We clustered the patient tumors from each
cancer type using the non-negative matrix factorization (NMF)
algorithm based on the epifactor genes with the most variable
expression among the patient tumors (Fig.1c and Supplementary
Data 1)26,27. With NMF clustering, a reduced representation of
the gene expression data is generated that delineates a subset of
genes that are important for separating the samples into clusters.
For each of the 24 cancer types evaluated independently, separ-
ating the tumors into two clusters resulted in the best solution
based on three measures of cluster validation (Supplementary
Data 1, Supplementary Fig. 1, and Supplementary Data 3).
The two clusters for each cancer type were characterized by a set
of signature top NMF genes with distinct expression patterns
for the tumors in the two clusters (Supplementary Data 4). As
an example, for breast cancer, two distinct tumor clusters
were observed (Fig. 1d and Supplementary Fig. 2a), and the
PAM50 breast cancer subtypes28,29 were non-randomly dis-
tributed between the two BRCA epifactor expression-based
clusters (Supplementary Fig. 2b), consistent with a previous
study showing different epigenetic characteristics for the
PAM50 subtypes30.

The number of top NMF genes across the 24 cancer types
ranged from 76 genes for LGG to 9 genes for CRC, with a median
of 43 genes (Supplementary Fig. 2c). A pan-cancer map based on
the expression patterns of the top NMF genes from all tumor
types showed that the tumors group largely based on their tissues
of origin, and, to some extent, tissue proximity (Supplementary
Fig. 2d). For example, KIRC and KIRP, two types of kidney
cancer, were found near each other, and LGG and GBM, two
types of brain cancer, were also adjacent to each other in this low-
dimensional representation.

There was a high overlap among the top NMF genes in the
ACC (carcinoma of the adrenal glands that sit atop each kidney),
BRCA, LIHC (liver), LUAD (lung), STAD (stomach), LGG
(brain), UCEC (uterus), and SARC (soft tissues and bone) cancer
types (Fig. 1e). A strong overlap was also observed among the top
NMF genes in the KIRC (kidney), KIRP (kidney) and PAAD
(pancreas) tumors (Fig. 1e). SATB1 was the gene most frequently
represented as a top NMF gene and was a signature gene for 12
cancer types (Fig. 1f). SATB1 mediates chromatin organization
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by acting as a “landing platform” for chromatin remodeling
proteins31. When the top NMF genes were assigned to one of 19
protein complex groups23, epifactors belonging to histone
acetyltransferase (HAT) complexes were significantly enriched
(P < 0.05) among the top NMF genes for seven cancer types
(LIHC, GBM, UCEC, BRCA, LUAD, KIRP, and PAAD).

Epifactor expression-based clusters have different clinical
outcomes for ten adult cancer types. To determine whether
patients in the two clusters developed from expression levels of
epifactors differ with regard to their clinical outcomes, we com-
pared the progression-free interval (PFI), disease-specific survival
(DSS), and overall survival of the patients in the two clusters for
each cancer type. Cox regression was used to adjust for the effects
of age and sex of the patients in each cluster, unless otherwise
mentioned. The clusters from 10 out of 24 cancer types (ACC,
CRC, KIRC, KIRP, LGG, LIHC, LUAD, PRAD, STAD, and
UCEC) had significant differences in clinical outcome (P < 0.05)

for at least one of the three metrics (PFI, DSS, and overall sur-
vival) (Fig. 2a).

For the cancer types in the five-cancer group (ACC, KIRC,
LGG, LIHC, and LUAD), the two clusters (Supplementary Figs. 3
and 4) significantly differed in clinical outcome for all three
metrics (Fig. 2b–f and Supplementary Fig. 5). Consistent with the
differences in outcome, the poor outcome ACCpoor cluster was
composed of tumors with higher cancer stage (TNM stages 3 and
4), larger size (T3 and T4), and greater likelihood of lymph node
spread (N1), compared to tumors in the better outcome ACCbetter

cluster (Fig. 2g–j). The poor outcome LGGpoor and LIHCpoor

tumors also included a significantly higher fraction of patients
with grade 3 tumors than the tumors in the LGGbetter and
LIHCbetter clusters, respectively (Fig. 2g, k, l). When the clinical
outcome differences between the NMF clusters were adjusted for
stage and grade, all three metrics were still significant, except that
for LGG and LIHC, significance was observed for 2 out of 3
metrics (Supplementary Fig 6a). The distributions of the patients’
races and ethnicities did not differ between the clusters

Fig. 1 Expression levels of epifactors create two distinct clusters for 24 TCGA cancer types. a Tissue of origin for the 24 adult cancer types from TCGA
included in the clustering analysis based on epifactor expression. Tissue locations are labeled with TCGA abbreviations. Sex-specific tissue locations are
shown in purple for female (left panel) and blue for male (center panel). The full names for each cancer type are provided (right panel). b Functional
categories for the 720 epifactor genes included in this study (top panel). This list of epifactors genes was obtained from the manually curated Epifactors
database generated by Medvedeva et al.23. The bottom panel shows the overlap of these epifactor genes with the genetically altered cancer genes
cataloged in either the COSMIC24 or OncokB25 databases. c The NMF-based clustering26,27 analysis workflow is provided. Raw RNA-seq counts for all of
the genes in each patient’s tumor for a specific cancer type were normalized using the DESeq267 R package. The most variable epigenetic genes (var_epi)
were selected based on a cancer type-specific standard deviation cutoff. This dimensionally reduced counts matrix (patient x var_epi) was used as an input
to the NMF R program27. d PCA plot showing the two clusters (red and cyan) of the BRCA patient tumors (depicted as dots) as determined by the NMF
method. The variances explained by principal components (PC) 1 (x axis) and PC2 (y axis) are plotted. e Heatmap showing the fraction of the top NMF
genes for the cancer type in the corresponding column that overlaps with the top NMF genes for the cancer type in the corresponding row. Darker colors
indicate a higher fraction of overlap. The rows and columns are hierarchically clustered. f Heatmap describing the most frequent top NMF genes (rows,
genes ranked in decreasing order of frequency) across the 24 cancer types (columns). a and b were created using Biorender. Supporting information for
this figure can be found in Supplementary Figs. 1 and 2, and Supplementary Data 1–4.
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(Supplementary Fig 6b–g and Supplementary Data 1) except for
LIHCpoor, which had a higher fraction (~twofold) of Asian
patients than LIHCbetter.

The prognostic efficacy of epifactor expression-based clusters
was better than grade or epithelial-to-mesenchymal transition
(EMT) for the five-cancer group (Supplementary Fig. 7a–d).

Tumor grade was effective in predicting the outcome for just 1 or
2 cancer types, out of the five, across the three outcome metrics,
while EMT could predict outcome for 2–4 cancer types across the
three outcome metrics (Supplementary Fig. 7a–d). The two tumor
clusters were not significantly different for EMT for ACC,
LGG, LIHC, or LUAD (Supplementary Fig. 7e). For KIRC, we did
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observe a significant difference (P= 0.0015, two-tailed Mann–
Whitney test) in the EMT scores between the two clusters,
however, the tumors in the poor outcome cluster had a lower
EMT score (median = 0.0750) compared to the tumors in
the better outcome cluster (median = 0.17), the opposite of the
expectation that a more mesenchymal phenotype would be
associated with a worse prognosis32.

We asked whether the clinical differences between the clusters
might reflect differences in the purities of the tumors in the two
clusters. There was a significant difference in purity only for ACC
and LGG (P < 0.05, two-tailed Mann–Whitney test) (Supplemen-
tary Fig. 8a), and all three clinical outcomes (PFI, DSS, and
overall survival) were still significantly different for both ACC
(P= 0.002, P= 0.006, and P= 0.001; Cox regression) and LGG
(P= 0.008, P= 0.007, and P= 0.02) after adjusting for tumor
purity. The differences in stromal fraction were significantly
different for ACC and LGG clusters (Supplementary Fig. 8b), but
the clinical outcome differences between the NMF clusters for
ACC (P= 0.0003, P= 0.0006, and P= 0.0003; Cox regression)
and LGG (P= 0.0006, P= 0.001, and P= 0.003) were still
significant after adjusting for stromal fraction. The ACC and
KIRC clusters had different levels of immune infiltration
(Supplementary Fig. 8c), but the clinical outcome differences
between the NMF clusters for ACC (P= 0.007, P= 0.015, and
P= 0.002; Cox regression) and KIRC (P= 0.003, P= 0.005, and
P= 0.0007) were still significant after adjusting for leukocyte
infiltration.

We compared the epifactor expression-derived clusters with
established TCGA subtypes for the five-cancer group33. None of
the clusters were composed of only a single TCGA-defined tumor
subtype. But, for each of the clusters, there was at least one TCGA
subtype that was overrepresented (Fig. 2m, n, Supplementary
Fig. 8d–f and Supplementary Data 5). For example, for ACC and
LGG (Fig. 2m, n), there was a greater representation of some
DNA methylation-based TCGA subtype(s) in the poor outcome
cluster compared with the better outcome cluster, and vice versa.
These results indicate that previously reported TCGA subtypes
may have epigenetic features that contribute to their distinctive
characteristics. Our epifactor expression-derived clusters also
contained tumors with significantly different compositions of
immunologic subtypes (see “Methods”)33 (Fig. 2o and Supple-
mentary Data 5). Epifactor expression-derived clusters with poor
clinical outcomes were enriched in immunological subtypes
associated with poor prognosis (such as C4) and/or depleted of
the subtypes associated with better outcome (such as C3 and C5),
consistent with epifactor expression in cancer cells affecting the
immune response to the tumor.

We performed a detailed analysis to determine the significant
differences (adjusted P value < 0.05, Benjamini–Hochberg
method) in the frequencies (fraction of affected patient tumors)

of mutations and copy number alternations (CNAs) between the
two clusters for these five cancer types (Supplementary Data 4).
For ACC, there were no significant differences in the mutation or
CNA frequencies between the clusters for any gene (epifactor or
non-epifactor). For KIRC, the two clusters were different in terms
of CNA frequencies for six epifactor and 431 non-epifactor
genes. None of these six epifactors (NPM1, UIMC1, NSD1,
HDAC3, DND1, and TAF7) were assigned as cluster-defining top
NMF genes. No differences in mutational frequencies between the
clusters were observed for any gene. For LGG, only three non-
epifactor and zero epifactor genes had significant mutational
frequency differences, while three epifactor and 58 non-epifactor
genes had CNA frequency differences, between the two clusters.
The three epifactors (PRMT8, CHD4, and ING4) with CNA
frequency differences were not part of the cluster-defining
top NMF gene group. For LIHC, none of the genes had a
difference in mutational frequencies between the two clusters.
Twenty epifactor genes including one top NMF gene (TONSL),
and 790 non-epifactor genes had significant differences in CNA
frequencies between the two clusters. The CNA in TONSL
affected <16% of patient tumors in both the clusters suggesting
that this CNA is unlikely to have a major effect on the observed
differences in patient outcome. For LUAD, only TP53, an
epifactor gene, displayed differences in mutational frequencies
between the two clusters (P= 0.006; 68% in LUADpoor vs. 21% in
LUADbetter, two-tailed Fisher’s exact test and adjusted for
multiple hypothesis correction). None of the genes (epifactor or
non-epifactor) showed differences in CNA frequencies between
the two clusters. After adjusting for TP53 mutations, all three
clinical outcomes were still significantly different for the two
LUAD clusters. These results suggest that the differences in
expression levels of signature epifactor genes for the poor and
better outcome clusters were unlikely to exclusively reflect
mutations or CNAs.

Top NMF epifactor genes form co-expression networks. We
performed weighted correlation network analysis (WGCNA)34

to identify the gene ontology (GO) terms35 associated with
gene groups (modules) with similar patterns of expression as the
top NMF epifactor genes of poor outcome or better outcome
clusters (Fig. 3a, b, Supplementary Fig. 9a–c and Supplementary
Data 6). The GO terms for the modules related to poor outcome
clusters were enriched for cell cycle genes (dark orange module,
ACC; midnight blue module, LGG; grey60 module, LIHC; and
green module, LUAD) and developmental genes (turquoise
module, LIHC), indicating that differences in proliferation rate or
stem-like features36 may contribute to the clinical differences
observed between the clusters. The protein-protein interaction
(PPI) networks formed from the top NMF epifactors were sig-
nificantly enriched (P < 0.05) compared to background for all

Fig. 2 Epifactor expression-based tumor clusters for five TCGA cancer types (ACC, KIRC, LGG, LIHC, and LUAD) correlate strongly with clinical
outcome. a Heatmap showing the significance (P value from multivariate Cox regression analysis; adjusted for age and sex) of the difference in the clinical
outcome (PFI, DSS, and overall survival) between the two epifactor expression-based tumor clusters for each of the 24 cancer types. The grey color
indicates that the difference in clinical outcome between the two clusters is not significant. b–f Kaplan–Meier plots comparing the progression-free
intervals of the two NMF-derived clusters for the five-cancer group that show significant differences in clinical outcome for the three metrics PFI, DSS, and
overall survival. Significance was determined with the log-rank Mantel–Cox test. The cluster with poor outcome is designated (in superscript) “poor,” while
the cluster with better outcome is designated “better.” The number of patients (n) in each cluster is shown. b ACCpoor n= 40, ACCbetter n= 31. c KIRCpoor

n= 61, KIRCbetter n= 108. d LGGpoor n= 107, LGGbetter n= 146, e LIHCpoor n= 70, LIHCbetter n= 72, f LUADpoor n= 20, LUADbetter n= 49. g Heatmap
showing the significance (P value; two-tailed Fisher’s exact test) of the difference in clinical metrics (pathologic M, pathologic T, pathologic N, stage, and
grade) between the epifactor expression-derived clusters for the five-cancer group. h–l Barplots of the clinical characteristics for instances (shown in g) in
which the two clusters significantly differ. m, n Composition of epifactor expression-derived clusters for ACC (m) and LGG (n) with regard to established
TCGA subtypes. o Classification of the epifactor expression-derived clusters for the five-cancer group based on established immunologic subtypes from
ref. 33 with the following prognostic order (worst to best): C4 ~ C6 > C2 ~ C1 > C3 ~ C5. Data for the clinical metrics were obtained from cBioPortal for
Cancer Genomics60. Supporting information for this figure can be found in Supplementary Figs. 3–8 and Supplementary Data 5.
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the five cancer types (Supplementary Data 6, Fig. 3c, d and
Supplementary Fig. 9d–f). The top NMF epifactors belonging to
the cell cycle-related modules formed tight, well-connected PPI
networks indicating a possible coordinated mechanism of
action37.

Epifactor expression-based clusters differ in DNA methylation
patterns. PCA plots based on array-based DNA methylation
levels for the five cancer types13 revealed that DNA methylation
captures some of the differences between the clusters developed
based on epifactor gene expression, but that DNA methylation
alone provides significantly less separation between the two
tumor clusters than can be achieved by analyzing data from all
epifactor genes (Supplementary Fig. 10).

DNA methylation factors tend to be expressed at higher levels
in tumors with poor outcome (red color in the heatmap in Sup-
plementary Fig. 11a). This is true for the epifactors that are

directly involved in de novo DNA methylation (DNMT3A and
DNMT3B) or in the maintenance of DNA methylation (DNMT1
and UHRF1)13. For each tumor type, we determined the number
of hypermethylated and hypomethylated loci in the poor outcome
cluster compared to the better outcome cluster (Supplementary
Fig. 11b and Supplementary Data 7). The pattern of differential
methylation between the clusters varied across the five cancer
types with more hypermethylation events in the tumors in poor
outcome clusters for ACC and LIHC, while the reverse was true
for LGG. We determined for all hypermethylated and hypo-
methylated sites linked to genic regions, whether the closest gene
was upregulated or downregulated in the poor outcome cluster
(Supplementary Fig. 11c–g). The relationship between DNA
methylation state and gene expression levels was significant
(Fisher’s exact test) for all cancer types except KIRC, suggesting
an impact of DNA methylation levels on downstream gene
regulation.
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Fig. 3 Top NMF gene signatures for clinically-distinct clusters reveal enriched biological functions. a, b GO terms (bar labels on the right) associated
with gene modules containing top NMF genes for ACC (a) and LIHC (b). Modules were generated using the WGCNA analysis tool34 applied to co-
expressed genes. Only modules containing at least five top NMF genes were considered. Modules in which top NMF genes are associated with poor
outcome are shown in blue, and modules for better outcome are shown in purple. Adjusted P values (Padj) were obtained by applying Benjamini–Hochberg
multiple test correction to the unadjusted P values in a module. Only the top representative GO terms related to “biological process” or “molecular
function” were considered for each gene module. c, d PPI networks were generated for the encoded proteins of the top NMF genes for the ACC (c) and
LIHC (d) cancer types. The top NMF genes in the networks (nodes; shown as circles) are colored based on the modules in which they reside. Top NMF
genes that were not assigned to a module with 5 or more top NMF genes were depicted as white circles (no color fill). The thickness of a line (edge)
connecting two top NMF genes (nodes) indicates the confidence level of the protein-protein interaction prediction between those two top NMF genes.
Supporting information for this figure can be found in Supplementary Fig. 9 and Supplementary Data 6 and 7.
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Expression levels of individual epifactors predict patient out-
come. To complement our clustering analysis based on patterns
detected among all of the epifactors, we performed a systematic
analysis of the prognostic value of the expression levels of each of
the variable epifactor genes (see Methods) considered individually
across the 24 cancer types (Supplementary Data 8). The fraction of
prognostic epifactors (out of the total number of variable epifac-
tors) varied across the cancer types and ranged from 77% for KIRC
to 0.4% for TGCT (Fig. 4a), with a median of 21%. The prognostic
direction of a gene was not always the same across the cancer types
(Supplementary Data 8) and the expression levels of these prog-
nostic genes among the tumors were not consistently associated
with mutations or CNAs that could explain the expression level
differences associated with patient outcome (Supplementary
Data 8). Among the 24 cancer types, the fractions of prognostic
epifactors and non-epifactors were highly correlated (Supplemen-
tary Fig. 12a, b), but on average, the fraction of prognostic genes

was higher for epifactor genes than for non-epifactor genes
(P= 0.015, Wilcoxon matched-pairs signed rank test) (Supple-
mentary Fig. 12c). The fraction of variable epifactors that are
prognostic among tumor types had a weak negative correlation that
did not reach statistical significance (P > 0.05) with either the total
number of mutations (Supplementary Fig. 13a) or the total number
of copy number alterations (CNAs) (Supplementary Fig. 13b).

The top ten most frequent prognostic epifactor genes across
the cancer types (Fig. 4b) were involved in chromatin remodeling
(DPF1 and TOP2A) and in depositing and reading histone
modifications including histone phosphorylation, methylation,
and deubiquitination (AURKA, BUB1, CDK1, CHEK1, GSG2,
MSH6, SMYD2, and USP49). Out of these, AURKA, TOP2A,
CDK1, and BUB1 were also included in the list of most frequent
top NMF genes across the 24 cancer types (Fig. 1f). For the most
significant prognostic gene for each of the 24 cancer types, high
expression of the prognostic gene was associated with poor

Fig. 4 Prognostic potential of epifactor genes depends on the cancer type and in some cancers, is proliferation independent. a Number of prognostic
epifactor genes for each of the 24 cancer types. Prognostic genes were identified based on a significant difference in PFI outcome between patient tumors
with high and low expression levels of the gene. p values were adjusted for age and sex of patients and for multiple hypothesis testing
(Benjamini–Hochberg method). b Circos plot showing the epifactor genes that are most frequently prognostic across cancer types. The lines connect the
genes and the cancer types in which they were determined to be prognostic. Red lines indicate the five-cancer group (ACC, KIRC, LGG, LIHC, and LUAD)
and blue lines indicate other cancer types. c Forest plot showing the hazard ratio and 95% confidence interval (CI) for the most significant prognostic gene
(gene symbols in parentheses) for each of the 24 cancer types. Hazard ratios lower than one indicate that higher expression of the gene is associated with
poorer PFI. d Heatmap for the enrichment of protein complexes among the prognostic genes for the 24 cancer types. White rectangles indicate no
significant enrichment. Significance was determined using permutation tests. e Barplot showing the fraction of top NMF genes that are prognostic for the
24 cancer types. f Heatmap indicating the prognostic status of the most frequent top NMF genes across the five cancer types. g Kaplan–Meier plots for the
most significant prognostic SWI/SNF genes for ACC and LIHC. Significance was determined with a log-rank Mantel–Cox test and the number of patient
tumors (n) in each group are provided. ACCSMARCD1,high n= 20, ACCSMARCD1,low n= 51, LIHCARID1A,high n= 19, LIHCARID1A,low n= 123, LIHCCHAF1B,high

n= 60, LIHCCHAF1B,low n= 82. h Bar plots indicating the effect of meta-PCNA correction on the number of cancer types for which a gene is prognostic for
the top NMF genes that were included in WGCNA-derived gene modules for ACC (left and center) and LIHC (right). i Prognostic status for genes that
remain prognostic after the meta-PCNA correction among the cancer types. Supporting information for this figure can be found in Supplementary Data 8.
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outcome for 15 cancer types (hazard ratio <1), while high
expression of the prognostic gene was associated with better
outcome for nine cancer types (hazard ratio >1) (Fig. 4c). Genes
associated with the HAT or chromatin remodeling (SWI/SNF or
ISWI) complexes were significantly overrepresented among the
prognostic genes (P < 0.05) in 11 or more cancer types (Fig. 4d).

For each epifactor, we determined the number of cancer types
in which high expression (N) or low expression (M) of that
epifactor was associated with poor outcome. Positive prognostic
residuals (N-M > 0) were more frequent than negative prognostic
residuals, indicating that high expression of epifactors was more
often associated with poor outcome for the epifactors overall (“all
groups” in Supplementary Fig. 14a, b) and for subsets of
epifactors associated with DNA modification (n= 25), histone
modifications (n= 487), and chromatin remodeling (n= 124)
(Supplementary Fig. 14a, b). We observed a similar trend among
epifactors that are histone writers (n= 147), erasers (n= 57), and
readers (n= 80) (Supplementary Fig. 14c, d). When we further
divided the histone writers based upon the specific histone mark
they deposit, the writers that catalyze histone acetylation (n= 33),
but not those that catalyze methylation (n= 47), phosphorylation
(n= 36), or ubiquitination (n= 28), had more negative prog-
nostic residuals than positive residuals, indicating that high
expression of histone acetylases is associated with a more
favorable prognosis (Supplementary Fig. 14e, f).

A higher fraction of the top NMF genes for the five-cancer group
were prognostic for outcome as compared with other cancer types
(Fig. 4e, f). Further, the prognostic direction of these frequent top
NMF genes was consistent across the five-cancer group, with the
exception of PPARGC1A (Fig. 4f). The frequent top NMF genes
ASF1B, ATAD2, BUB1, CDK1, CHAF1A,HJURP, PBK, and TOP2A
(Fig. 4f) that were signature genes for the poor outcome cluster in
ACC, LGG, LIHC, and LUAD (Supplementary Fig. 4 and
Supplementary Data 4) were also significantly associated with
poor outcome when expressed at high levels for those same cancer
types (Fig. 4f). The prognostic genes for ACC and LIHC had a
shared enrichment for SWI/SNF chromatin remodeler genes
(Fig. 4d) with SMARCD1 in ACC, and ARID1A and CHAF1B in
LIHC, being the most significantly prognostic SWI/SNF genes
(P < 0.0001) in these two cancer types (Fig. 4g). The top NMF
epifactors were more likely to be predictive of outcome than SWI/
SNF epifactors, overall (Supplementary Fig. 15a, b).

In their investigation of genes that predict breast cancer
outcome, Venet et al. found that the prognostic value of the
majority of signature genes was eliminated when they adjusted for
the expression levels of a “meta-PCNA” signature that removed
the confounding effects of cell proliferation38,39. After adjusting
for the meta-PCNA signature, in addition to age and sex, we
found that the expression levels of some prognostic epifactor
genes were no longer associated with clinical outcome (Supple-
mentary Data 8). Analysis of the instances in which an epifactor
gene was “proliferation-independent” (prognostic even after
meta-PCNA correction) or “proliferation-dependent” (not prog-
nostic after meta-PCNA correction) revealed that the top NMF
genes belonging to a co-expression module (Fig. 3a, b and
Supplementary Fig. 9a–c) with a highly enriched “cell cycle” GO
term (such as the dark orange module of ACC) were more
affected by meta-PCNA correction compared to top NMF genes
in modules highly enriched for other GO terms such as
autophagy (the blue module of ACC) or development (the
turquoise module of LIHC) (Fig. 4h). The frequently prognostic
epifactor genes that were also unaffected by the meta-PCNA
correction included those involved in histone modifications
(KDM4B, KAT6A, MBTD1, MTA1, and PHF1), histone binding
(BRD3, MBTD1, and PHF1), and chromatin organization and
remodeling (MTA1) (Fig. 4i).

A machine learning model based on epifactor expression pre-
dicts clinical outcome of the adult patients from the five-
cancer group. We asked whether pan-cancer epigenetic features
can be used to develop a predictor for patient outcome for the
five-cancer group. To achieve this, we used the Cox-nnet artificial
neural network (ANN) framework by Ching et al.40. The Cox-
nnet model consists of an input layer, a hidden layer with 143
nodes, and a final Cox-regression layer that outputs the prog-
nostic index (PI), equivalent to the log hazards ratio (Fig. 5a).
Patients from the combined cohort of the five cancer types were
randomly split (80:20) into training and test sets. For the model
trained on the epifactor expression data, age and sex of the
patients in the 5-cancer group, the clinical outcomes (PFI) for the
high PI and low PI groups of the test set were significantly dif-
ferent (P < 0.0002) (Fig. 5b), indicating that the trained model was
able to successfully predict the likely clinical outcome for patients
that were not included in the training set. As the top NMF epi-
factor genes of KIRC showed less overlap with the remaining four
cancer types (Figs. 1e and 4f), we also trained a Cox-nnet model
based only on the other four cancer types (ACC, LGG, LIHC, and
LUAD). With this 4-cancer-type model, the log-rank P value for
the test set was highly significant (P < 0.0001) (Fig. 5c). The
model trained only on KIRC did not result in groups with a
significant difference in outcome (P= 0.19) (Fig. 5d).

Most of the top 20 important features for clinical outcome
from the pan-cancer model (Supplementary Data 9) were
individually prognostic (P < 0.05; Supplementary Data 8) with
higher expression of these features associated with poor outcome
(Fig. 5e, f, left panels). About half of these important features (10
out of 20 for the 5-cancer model and 11 out of 20 for the 4-cancer
model) were top NMF genes in at least one of the 5 cancer types
(Fig. 5e, f, right panels).

To further test and validate our findings on the prognostic role
of epifactors, we used independent, publicly available datasets for
KIRC, LGG, and LUAD (Supplementary Data 9). For each cancer
type, we assigned the tumors in this validation cohort to either
poor outcome or better outcome groups (Supplementary
Fig. 16a–g and Supplementary Data 9) based on the expression
pattern of the top NMF epifactor markers that we determined
based on the original datasets (Supplementary Fig. 4). In the case
of KIRC and LUAD, we observed significant clinical differences
(P < 0.05; Cox regression, adjusted for age and sex) between the
two groups of tumors (Supplementary Fig. 16b–g), while for
LGG, the difference was nearly significant (P= 0.071) (Supple-
mentary Fig. 16a). There was also a significant overlap (P < 0.05,
based on the hypergeometric distribution) between the epifactors
that were individually prognostic for the validation and primary
datasets (Supplementary Fig. 16h and Supplementary Data 9) for
KIRC (P= 0.019), LGG (P= 0.0003), and LUAD (P= 0.014).
These results demonstrate that expression levels of these
epifactors, together or individually, have a robust capacity to
classify tumors based on clinical outcomes.

Epifactor expression-based clustering of pediatric tumors
predicts patient outcome. Mutation frequencies are estimated to
be 14 times lower in pediatric than adult cancers41. In one
detailed genomic study, for 10% of pediatric tumors, no under-
lying, cancer-promoting mutation or structural copy number
variant could be identified41. From this perspective, pediatric
tumors have the potential to be more epigenetically driven than
adult tumors. To compare our findings on epifactors in adult
tumors with pediatric cancers, we obtained genomic and clinical
data for pediatric tumors from four high-risk cancer types
(neuroblastoma (NBL), osteosarcoma (OS), acute myleoid leu-
kemia (AML), and Wilms tumor (WT)) in the Therapeutically
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Applicable Research to Generate Effective Treatments (TARGET)
datasets (Fig. 6a). These four pediatric cancer types are difficult to
treat and originate in different tissues and cells within the body:
immature nerve cells of the sympathetic nervous system (NBL);
bone (OS); immature white blood cells of the bone marrow
(AML); and kidney (WT).

NMF clustering based on expression levels of epifactors in the
pediatric patient tumors resulted in two clusters for each of the four
pediatric cancer types (Supplementary Data 10). The two clusters
were significantly different in overall survival (corrected for age and
sex, Cox regression) for NBL (P= 0.024) and OS (P= 0.032)
(Fig. 6b and Supplementary Fig. 17a–d), but not for AML
(P= 0.092) and WT (P= 0.693). The top NMF genes for the four
pediatric cancer types (81 top NMF genes for NBL; 34 for OS; 27
for AML; and 31 for WT) (Supplementary Data 10) overlapped to
different degrees (ranging from 0 to 44%) with the top NMF genes
of the 24 adult cancer types from TCGA (Fig. 6c). Out of the 21
genes that were a top NMF gene in at least two pediatric cancer
types (Fig. 6d), seven genes (ASF1B, AURKB, SMARCD3, TONSL,
UBE2T, ZBTB7C, and ZNHIT1) were shared with the 27 most
frequent top NMF genes in adult cancers (Fig. 1f). Across the
24 adult cancer types, LIHC and OV had the most overlap of
8 genes between their top NMF genes and the frequent pediatric

top NMF genes (Fig. 6d, right heatmap). The top NMF genes of the
pediatric cancer types were enriched for genes related to SWI/SNF
(WT and OS), HMT (WT), MLL (WT), and HAT (NBL) protein
complexes23 (Fig. 6e). Similar to our findings for the adult cancer
types, the signature top NMF genes for the poor outcome clusters
of both NBL and OS (Fig. 6b) correlated in expression with cell
cycle genes in the green modules of NBL (Fig. 6f) and OS
(Supplementary Fig. 17e). Also similar to our findings in adult
tumors, the top NMF genes included in the green module for NBL
formed a well-connected PPI interaction network (Fig. 6g).

Out of 720 epifactors, 51 genes were prognostic for overall
survival in NBL, 98 genes in OS, and 97 genes in AML
(Supplementary Data 11). None of the epifactor genes were
prognostic for overall survival in WT. Kaplan–Meier plots for the
most significantly prognostic genes for NBL (RUVBL2) and OS
(PRDM12) are shown in Fig. 6h. The prognostic value did not
change after the meta-PCNA correction for any of the pediatric
prognostic genes (Supplementary Data 11). Twenty-four epifactor
genes were prognostic in at least 2 of 3 pediatric cancer types
(Fig. 6i, left heatmap). The prognostic value (and direction) of
these 24 epifactor genes varied across the adult cancer types
(Fig. 6i, right heatmap) with the most overlap observed for ACC,
KIRC, and LGG, three members of the 5-cancer group.

Fig. 5 Pan-cancer neural network model predicts patient outcome based on epifactor gene expression patterns. a A Cox-nnet model40 was used as a
framework for predicting patient outcomes. The patient cohort was randomly split (80:20) into training and test sets. The model was trained on input
features consisting of the expression values of the 720 epifactor genes, and the age and sex of the patients in the training set. The model consisted of an
“input layer” that accepts the input features and is fully connected to a “hidden layer.” The output of the nodes of the “hidden layer” was fed to a “cox-
regression layer.” The final output of the model was the log hazard ratios of the patients (prognostic index, PI). To evaluate the performance of the model,
the test set patients were divided into high PI and low PI groups based on the median PI of the patients. The clinical outcomes between these two groups
were compared using the log-rank Mantel–Cox test (Kaplan–Meier method). Created using Biorender. b–d Kaplan–Meier plots evaluating the performance
of the model. b Results when the model was trained and tested on patients from the 5-cancer group (ACC, KIRC, LGG, LIHC, and LUAD). High PI n= 71,
Low PI n= 70. c Results when the model was trained and tested on four cancer types (ACC, LGG, LIHC, and LUAD). High PI n= 55, Low PI n= 56.
d Results for a model trained and tested on only KIRC. High PI n= 17, Low PI n= 17. e Prognostic status of the top 20 input features (left panel) ranked on
the basis of their importance in the Cox-nnet machine learning (ML) model for the five cancer types is shown. A heatmap indicating which of the top 20
features from the left panel are also top NMF genes across the five cancer types is shown on the right. Only the features that are a top NMF gene for at
least one cancer type are shown. f Same as (e), but for the four cancer type model. KIRC was not included in the Cox-nnet model, but is included in these
heatmaps for comparison. Supporting information for this figure can be found in Supplementary Data 9.
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Single-cell RNA-seq analysis of LGG and NBL tumors reveals
that the epigenetic gene expression pattern is present in
individual cells. Given our observation that tumors were asso-
ciated with one epifactor expression-based cluster or another, we
asked whether the individual cells within a tumor would display a
gene expression profile related to one of the two clusters.
Expression-based composite scores derived from the signature

genes for each of the two epifactor expression-based clusters
(Supplementary Fig. 3c) were mapped to each cancer cell in a
two-patient, single-cell RNA-seq dataset for LGG42 (see Meth-
ods). Individual cancer cells were assigned to one of the four
different groups: LGGpoor, LGGbetter, LGGpoor+LGGbetter

(“mixed” group with characteristics of both clusters), and “none”
(not scoring high for genes enriched in either cluster) (Fig. 7b).
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Both of the sequenced LGG tumors contained cells from all four
groups in different proportions (Fig. 7a, b). The signature top
NMF genes of LGG were differentially expressed in cells in the
four groups (Fig. 7c). In a similar analysis of a pediatric single-cell
dataset for NBL43 (Fig. 7d), individual cells contained patterns of
NBLpoor, NBLbetter, both NBLpoor and NBLbetter, and neither
(Fig. 7e, f), thus, supporting these epifactors as possible deter-
minants of cellular states.

Discussion
In this study, we used the pattern of epifactor gene expression as
the basis for separating patient tumors for each of 24 adult cancer
types into two well-separated clusters. Using just the signature
epifactors that drove the clustering (top NMF genes), we created a
low-dimensional pan-cancer map where the tumors clustered
predominantly by cancer type, and to some extent, by tissue
similarity or proximity (Supplementary Fig. 2d). A previously
reported map of TCGA tumors based on genome-wide DNA
methylation and genome-wide mRNA expression revealed similar
groupings based on organ system and tissue-of-origin, including
for the brain, kidney and lung44. Our findings show that these
same relationships among the tumors can be recapitulated when
the clusters are generated based on the expression of a limited
number of epifactors.

Out of the 24 cancers, the two clusters generated based on
epifactor expression were significantly different for PFI for a
subset of 10 cancer types: ACC, CRC, KIRC, KIRP, LGG, LIHC,
LUAD, PRAD, STAD, and UCEC. For the five-cancer group
(ACC, KIRC, LGG, LIHC, and LUAD), the two clusters differed
significantly for all three clinical outcomes measured (PFI, DSS
and OS) (Fig. 2a). The top NMF genes for the 10 cancer types
with PFI differences overlapped to a greater extent than the
remaining 14 cancer types (Fig. 1e). There were also more sig-
nature epifactor genes that were individually prognostic for these
10 cancer types compared with the remaining cancer types
(Fig. 4e). GO terms associated with signature genes in the poor
and better outcome clusters for the five-cancer group were dif-
ferent, indicating the involvement of different biological
mechanisms for the different tumor types. These findings suggest
that for these 10 cancer types, and especially for the five-cancer
group, intertumor epigenetic heterogeneity is more clinically
relevant than for the other cancer types.

The signature epifactors were predictive for multiple cancers.
Using machine learning, we developed a neural network model
for the five-cancer group combined that was highly predictive of
outcome. The most informative genes for the model showed

significant overlap with cluster-defining signature top NMF genes
(Fig. 5e).

Pediatric tumors are more likely to have relatively few
mutations20,41,45–48, and thus are strong candidates for more
epigenetically driven tumors. Previous investigations of epifactor
gene mutations revealed some overlap between pediatric and
adult cancer types, and some mutations that are characteristic of
only pediatric or only adult tumors41. A pan-cancer analysis of
DNA methylation in adult and pediatric tumors showed a wide
range in the fraction of CpGs that are hypermethylated or
hypomethylated in adult tumors19, and hypermethylation and
hypomethylation frequencies for pediatric Wilms tumor were
within the range of the adult tumors19. Among four pediatric
tumors analyzed here, we found clinically relevant clusters for
NBL and OS (Fig. 6b). While the top NMF genes for the pediatric
tumors were more similar to each other than the adult tumors,
the top NMF genes for NBL and OS showed the highest degree of
overlap with adult cancer types with clinically-distinct clusters
(LIHC, LGG, LUAD, and STAD for NBL; and KIRC and KIRP
for OS) (Fig. 6c). Following this trend, the common prognostic
genes between NBL, OS, and AML, also showed a high degree of
overlap with prognostic genes for each other, and some overlap
with the prognostic genes for LGG, KIRC, LIHC, KIRP, and ACC
(Fig. 6i). Thus, epigenetic similarities between adult and pediatric
cancer types can transcend the shared features from tissue simi-
larity or proximity. Single-cell analysis of the brain-related adult
cancer LGG and the pediatric tumor NBL showed that some
individual cancer cells exhibit gene expression patterns associated
with either better or poor outcome clusters. Our data taken
together support a model in which a subset of signature epifactors
working together can modulate the chromatin barriers of tumor-
suppressing and oncogenic processes, leading to different clinical
outcomes.

Many epifactors, such as enzymes involved in DNA methyla-
tion, histone methylation, and histone acetylation have been
suggested as targets for anti-cancer therapy49–52. Our extensive
and unbiased survey of 720 epifactor genes revealed several novel
genes that may represent possible drug targets. In particular,
histone acetyltransferases were enriched among prognostic genes
and associated with improved patient outcome. This finding
would support a possible benefit for histone deacetylase inhibitors
that are being approved for cancer treatment53. In addition, the
SWI/SNF family of chromatin remodelers54,55 was also enriched
among the prognostic genes across the 24 adult cancer types
(Fig. 4d). SWI/SNF factors bind to gene regions, distal enhancers,
and CTCF sites54, and their role in evicting and sliding nucleo-
somes has the potential to affect gene expression levels. Our

Fig. 6 Comparison of pediatric and adult tumors reveals common and distinct epigenetic characteristics. a Schematic depicting the four high-risk and
hard-to-treat pediatric cancer types (NBL, OS, AML, and WT) from the TARGET program in this study. These cancer types originate in brain (NBL), bone
(OS), immature white blood cells (AML), and kidney (WT) in children and adolescents. These pediatric tumors were compared with 24 adult cancer types
(depicted in Fig. 1a) from TCGA. b Two epigenetic expression-based clusters showed significantly different survival outcomes for NBL and OS
(Kaplan–Meier survival plots). NBLpoor n= 68, NBLbetter n= 37. OSpoor n= 40, OSbetter n= 28. c Heatmap showing the fraction of cluster-defining top
NMF genes for four pediatric cancer types (columns) that overlap with the top NMF genes of the 24 adult cancer types (rows). d Heatmap showing status
of the most frequent pediatric top NMF genes (rows) as top NMF genes for the different pediatric and adult cancer types. e Enrichment of different protein
complexes in the top NMF genes of the four pediatric cancer types. Only the significantly enriched complexes (purple) are shown. Significance was
calculated using the two-tailed Fisher’s exact test. f Barplot indicating the GO terms for three different gene modules for NBL obtained from the WGCNA
analysis. These modules included at least 11 top NMF genes that were either all upregulated in the poor outcome or better outcome clusters obtained from
the NMF algorithm. g PPI network generated using the top NMF genes of NBL. The genes are color-coded based on their associated WGCNA modules
(shown in f). Thicker edges (connecting lines between the genes (nodes)) indicate higher degree of PPI between the two genes connected by the edge.
h Kaplan–Meier survival plots for the most prognostic gene for NBL (RUVBL2) and OS (PRDM12). NBLRUVBL2,high n= 16, NBLRUVBL2,low n= 89.
OSPRDM12,high n= 13, OSPRDM12,low n= 55. i Heatmap indicating the prognostic value of the most frequent pediatric prognostic genes (rows) across the
pediatric and adult cancer types (columns). White indicates the gene is not prognostic; green indicates that low expression is associated with a poor
outcome; pink indicates that high expression is associated with poor outcome. For (b, h), the P values from the log-rank Mantel–Cox and the number of
patients in each cluster (n) are indicated. Supporting information for this figure can be found in Supplementary Fig. 7 and Supplementary Data 10 and 11.
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Fig. 7 Single cell RNA-seq analysis defines cells expressing epifactor gene signatures of both poor-outcome and better-outcome tumor clusters.
a UMAP plot of the LGG tumor cells color-coded (grey or black) based on the tumor sample from which they originate (LGG-03 or -04). b UMAP plot
showing the assignment of tumor cells to four different groups based on the expression levels of the signature genes for the poor outcome (LGGlow) and
better outcome (LGGhigh) tumor clusters for LGG. c Dot plot depicting the expression levels and the percent of cells expressing the signature genes for
LGGlow and LGGhigh tumor clusters across the four groups determined using single-cell analysis. Only the genes that are differentially expressed across the
four different groups are used for the plot. d–f Same plots as (a–c), respectively, but for NBL tumor cells.
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findings thus suggest these two protein families as possible targets
for epigenetics-based cancer therapy.

There are several limitations to our study. The list of 720
epifactor genes is likely not an exhaustive list. Our study does not
take into account other mechanisms of intertumor epigenetic
heterogeneity such as alternative splicing and post-translational
modifications. Additional pediatric cancers would allow us to
better understand the contribution of epifactors to pediatric
tumors from different anatomical sites. The racial category
“white” and the ethnic category “not Hispanic/Latino” are over-
represented in the TCGA tumors, and for many tumors, racial
and ethnic information is unavailable. As a result, our data do not
allow us to conclude whether the findings of this study are
applicable to more diverse populations56,57. Determining the
genomewide impact of the epifactor expression patterns on epi-
genetic processes of nucleosome positioning or histone mod-
ifications will require further studies.

Despite the above limitations, our pan-cancer analysis of epi-
factor expression revealed that: (i) Individual epifactor genes can
have prognostic value even when they are not mutated or
undergo copy number alterations; (ii) Tumor clusters with a
similar landscape of genetic changes have different clinical
behavior that correlates with the expression patterns of epifactors;
(iii) The prognostic value of an epifactor can be independent of
tumor cell proliferation; (iv) Epifactor expression levels predict
outcome for tumors of some sites, but not others; and (v) Among
epigenetic changes, our unbiased analysis revealed a particularly
important role for histone acetylation and nucleosome position-
ing as determinants of patient outcome.

In summary, our pan-cancer study illuminates clinically rele-
vant epigenetic differences among tumors, for both adult and
pediatric cancer types, based on the variable expression of epi-
factor genes. Our analyses add to our growing understanding of
the clinical differences between cancer types based on their tissue-
of-origins and spatial locations in the body, and the epigenetic
contributors to patient outcome for tumors of the same site. The
results from this pan-cancer study can be used as a foundation for
rational drug design targeted at epigenetic regulators.

Methods
Data acquisition. Raw RNA sequencing counts for primary
patient tumors from 24 adult and four pediatric cancer types
included in the TCGA16 and TARGET (https://ocg.cancer.gov/
programs/target) programs, respectively, were downloaded from
the Genomic Data Commons (GDC) portal (https://portal.gdc.
cancer.gov/). Clinical outcome data (PFI, DSS, and overall sur-
vival) for adult cancer patients were obtained from ref. 58, while
overall survival data for pediatric cancer patients were acquired
from the TARGET and GDC portals. Clinical characteristics for
adult patient tumors were obtained from TCGA publications for
the corresponding cancer (https://www.cancer.gov/about-nci/
organization/ccg/research/structural-genomics/tcga/studied-
cancers). For combined analysis of TCGA cancer types, Cox-
nnet40 and pan-cancer uniform manifold approximation and
projection (UMAP) plots59, the batch-corrected and normalized
RNA expression data were obtained from the Pan-Cancer Atlas
(https://gdc.cancer.gov/about-data/publications/pancanatlas).
Mutational and CNA data for adult patient tumors were down-
loaded from The cBioPortal for cancer genomics (cbioportal.
org)60. The EMT scores of individual tumors for the 24 cancer
types were calculated based on the EMT signature genes61 using
the gene set variation analysis (GSVA) module of GSVA R
package62. The stromal and leukocyte fractions of the TCGA
tumors were obtained from ref. 33. Expression microarray
(GSE107850) and clinical data for LGG patients for validation

studies were obtained from ref. 63. For KIRC and LUAD vali-
dation studies, we used TCGA patients with low tumor purity
that were excluded from the primary analysis.

Data on the assignment of patient tumors to immunologic and
TCGA subtypes were downloaded from ref. 33. The immunolo-
gical subtypes (C1-C6) were determined based on five immune
signatures: macrophages/monocytes, overall lymphocyte infiltra-
tion, TGF-β response, IFN-γ response, and wound healing. Each
of the immune subtypes was associated with a different prognosis
and followed the order (from worst to best): C4 (lymphocyte-
depleted) and C6 (TGF-β dominant) >C2 (IFN-γ dominant) and
C1 (wound healing) > C3 (inflammatory) and C5 (immunolo-
gically quiet). The assignments of BRCA tumors from TCGA to
PAM50 subtypes were obtained from ref. 29.

The 720 epifactor genes and related protein complexes were
obtained from the Epifactors database (v1.7.3, https://epifactors.
autosome.org/description) created by Medvedeva et al.23. Unless
specified, we used the GRCh38 (hg38) human genome assembly
and GENCODE v22 gene annotation (https://gdc.cancer.gov/
about-data/gdc-data-processing/gdc-reference-files) for genomic
analysis.

Patient selection. For all 24 adult cancer types, the patient
tumors selected had a value of greater than or equal to 70% for
any one of the two tumor purity metrics, consensus purity esti-
mate (CPE)64 and Clonal Heterogeneity Analysis Tool (CHAT)65,
except for pancreatic cancer, for which tumors with ABSOLUTE
purity66 greater than or equal to 33% were included for this study
(Supplementary Data 1). Out of 31 TCGA adult cancer types that
were initially investigated, we selected 24 cancer types that had
the desired number of patient tumors (>70 tumors) that also met
the purity criteria described above. These selection criteria were
established to ensure a robust clustering of tumors and for the
gene expression patterns to be largely reflective of the cancer cells
themselves rather than non-cancerous cells in the tumor micro-
environment. The raw RNA-seq counts data for the selected
patient tumors were gathered using the GDC command line
client (https://github.com/NCI-GDC/gdc-client - gdc-data-trans-
fer-tool-gdc-client). Pediatric patient tumors from TARGET were
selected using the following criteria: AML, bone marrow and
peripheral blood blast counts >50%; NBL, tumor cellularity >75%
and tumor necrosis <30%; OS, tumor cellularity >50% and tumor
necrosis <50%; and WM, tumor cellularity > 80% and tumor
necrosis <20%.

NMF clustering. Preprocessing for all datasets included nor-
malization and selection of variable epifactor genes. Normal-
ization of the raw RNA-seq gene expression counts of the patient
tumors from a cancer type was performed using the “Estimate-
SizeFactors” function from the DESeq2 R package67, followed by
log2 transformation. This patient-gene matrix was then filtered to
include only those 720 epifactor genes from the Epifactors
database (v1.7.3)23 for which the standard deviation of normal-
ized and transformed counts across the patient tumors was
greater than a specified cutoff. The standard deviation cutoff was
selected so that the patient-gene matrix contained about 500–600
epifactor genes. The list of variable epifactors is provided in
Supplementary Data 1 for adult cancer types and Supplementary
Data 10 for pediatric cancer types.

The preprocessed patient-gene matrix was used as the input for
consensus clustering using the NMF algorithm as implemented in
the NMF R package27. With NMF clustering, a reduced
representation of the gene expression data is generated that
delineates a subset of genes that are important for separating the
samples into clusters. NMF was run under the default parameters
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unless specified otherwise in our code (see “Code availability”).
We grouped the tumors for each of the 24 tumor types into two,
three or four clusters (Supplementary Data 1) and used metrics
described below to assess the quality of the clusters formed
(Supplementary Fig. 1).

Clustering validation metrics. We used Euclidean distance as the
distance metric and determined the optimal number of patient
clusters (n= 2, 3, or 4) with three different metrics. Silhouette
coefficient and cophenetic coefficient were determined by the
NMF program (“cluster_metrics” table of Supplementary Data 1).
Silhouette coefficients, quantitative metrics of cluster separate-
ness, range from +1 to −1, with a higher value indicating cluster
coherency. The cophenetic coefficient measures the cluster sta-
bility and higher values indicate better stability. Connectivity was
calculated using the cIValid R package for cluster validation
(https://cran.r-project.org/web/packages/clValid/vignettes/
clValid.pdf)68. The connectivity metric measures how well the
clusters are connected and a lower value indicates better con-
nection. Based on these three metrics, the optimal number of
clusters for each cancer type (adult or pediatric) was determined
to be two.

Identifying top NMF genes. The top contributing genes for each
cluster (signature genes or top NMF genes) were obtained using
the “extractFeatures” function in the NMF package. This function
selects the top NMF genes based on the scoring criteria defined by
Kim et al.69. To generate heatmaps of signature NMF genes, the
patients and top NMF genes were grouped based on NMF cluster
membership, and ordered with Euclidean distance-based hier-
archical clustering. The UMAP coordinates of the 24 cancer types
based on all top NMF genes were calculated using the “umap”
function in the “umap” v0.2.8.0 (https://rdrr.io/cran/umap/) R
package.

Clinical analysis. Survival analyes for the NMF clusters based on
epifactor expression were performed using the Survival v3.3.1
(https://cran.r-project.org/web/packages/survival/index.html) and
Survminer 0.4.4 (https://rpkgs.datanovia.com/survminer/index.
html) R packages, and GraphPad Prism v9.4.1 for macOS
(GraphPad Software, San Diego, CA). Patients were stratified
based on their NMF cluster membership and compared for PFI,
DSS, and overall survival for adult cancer types from TCGA, and
for only overall survival for pediatric cancer types from TARGET.
We implemented multivariate Cox regression based on the Cox
proportional hazard model to adjust for age and sex, unless
otherwise mentioned, with the “coxph” function from the Sur-
vival package. Significance between the two groups was deter-
mined by a log-rank Mantel–Cox test. For the five-cancer group,
ACC, KIRC, LGG, LIHC, and LUAD, additional clinical mea-
sures, including stage, grade, pathologic T, pathologic M, and
pathologic N, were used to compare the NMF clusters. Significant
clinical differences between two groups were determined using
the two-tailed Fisher’s exact test.

For the analysis of prognostic epifactors, the variable epifactors
that were previously selected as input to the NMF clustering
program were used (see the selection criteria in the Methods
section “NMF clustering” above). An epifactor was considered
not prognostic for a cancer type if it was initially excluded from
the analysis because its expression did not vary sufficiently across
the patients for that cancer type and was therefore not a variable
epifactor, or if it was included in the analysis but its resulted in
two patient cohorts with no significant difference in clinical
outcome (P < 0.05) after adjusting for age and sex (Cox
regression). An epifactor was considered prognostic for a specific

cancer type if there was a significant difference in clinical
outcome (PFI metric) between the high and low expression
patient tumor groups (P < 0.05) after correcting for the age and
sex of the patients (Cox regression), and also for multiple
hypothesis testing (Benjamini–Hochberg method)70. For deter-
mining the prognostic value of an epifactor gene in each cancer
type, the Survminer R package functions “surv_cutpoint” and
“surv_categorize” were called to identify the optimal cutoff in
expression for each gene, in order to group patient tumors into
“high” and “low” expression groups, before running the multi-
variate cox regression to adjust for age and sex, unless specified.
To identify significant prognostic genes, the significance values
were corrected for multiple hypothesis testing within each cancer
type using the Benjamini–Hochberg method70. For comparison
with non-epifactors, the prognostic analysis of a random group of
719 non-epifactor genes (Supplementary Data 8) was performed
in the same manner as that of the epifactor genes.

For the meta-PCNA analysis, an expression-based prognostic
survival analysis was performed that was identical to the previous
analysis, except for the inclusion of an additional covariate that
adjusted for the expression of proliferation-related genes (or
meta-PCNA signature genes) as described in ref. 38. This meta-
PCNA signature was comprised of the top 1% of genes with
expression patterns that correlate most closely with the expres-
sion pattern of the PCNA gene, a widely used cell proliferation
marker, across 36 tissues. The median of the log2 normalized
expression values of the meta-PCNA genes was calculated for
each patient and added as a covariate for multivariate Cox
regression. Expression-based grouping of tumors and prognostic
significance were derived in the same manner as previously
described.

Detailed explanations of the clinical metrics, grade, stage,
pathologic T, and pathologic N can be found here: https://www.
cancer.gov/about-cancer/diagnosis-staging/staging and https://
www.cancer.gov/about-cancer/diagnosis-staging/diagnosis/
tumor-grade.

Mutation and CNA analysis. For each gene, the fraction of
tumors with a mutation in that gene was compared between the
two NMF clusters. Only those genes for which at least 10% of
patient tumors were affected in any one of the two clusters were
included for the analysis. The significance of the fraction of
tumors with each mutation between the two clusters was deter-
mined using a two-tailed Fisher’s exact test. The significance
values for all the genes for a cancer type were corrected for
multiple hypothesis testing using the Benjamini–Hochberg
method70. CNA events (amplifications or deletions) were ana-
lyzed in the same manner.

Top NMF and prognostic gene enrichment analysis. To eval-
uate the enrichment of top NMF genes for epigenetic protein
complexes23, we calculated the overlap of top NMF genes with
genes from each of the 19 protein complexes. The list of genes in
each protein complex were obtained from the Epifactors
database23. For each cancer, we grouped the cancer’s most vari-
able epifactor genes (input genes for the NMF program) into “top
NMF” or not. We then calculated the enrichment of multiprotein
complex genes in these two gene groups as the odds ratio from a
two-tailed Fisher’s Exact test. We used a permutation test of
10,000 iterations to generate a null distribution of enrichment
values that we used to calculate significant enrichment in the
actual top NMF genes. In each iteration, we permuted the top/not
top NMF gene group labels and calculated the odds ratios for
containing the multiprotein complex genes. Significance values
were corrected for multiple hypothesis testing for each cancer
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type using the Benjamini–Hochberg method70. Enrichment
analyses for the prognostic genes were performed by overlapping
the multiprotein complex genes with the prognostic epifactor
genes in each cancer type. Enrichment tests were performed as
described above.

Validation analysis. We used KIRC and LUAD TCGA low
tumor purity cohorts, as well as an external LGG microarray
study (Supplementary Data 9), to test the robustness of our
findings in the primary dataset. We used KIRC and LUAD
patients that did not meet the purity requirement of our original
study and normalized the data in the same manner as the high
purity cohorts. We also used the preprocessed LGG microarray
data (GSE107850) from ref. 63 which was already quantile nor-
malized. Array probes from the Illumina DASL beadchip71 were
mapped to HGNC gene ids using the illuminaHumanv4.db Bio-
conductor package72. We excluded probes that mapped to mul-
tiple genes. For genes that are targeted by multiple probes, we
included the probe that had the highest expression in the patient.

To test the robustness of our top NMF genes to stratify cancer
patients according to clinical outcome, we used GSVA62 to
calculate enrichment scores for the poor and better outcome top
NMF genes (Supplementary Fig. 4) corresponding to the three
cancer types in the validation cohorts. Enrichment for these genes
in the tumors was determined by the log-transformed normalized
gene expression data for each cancer. We classified each patient
tumor into the two clinical outcome categories based on the
higher enrichment value. We performed cox regression and log-
rank test as described above in the clinical outcome survival
analysis to compare the overall survival, DSS, and PFI outcome of
the two outcome groups.

We also performed the prognostic analysis of individual
epifactors in the validation sets using the same workflow as
described above. For KIRC and LUAD, we used the same variable
epifactors that we previously used for the primary datasets. For
LGG, only those variable epifactors that were present in the
microarray data (validation cohort) and RNA-seq data (primary
cohort) were used.

WGCNA co-expression analysis. Weighted correlation network
analysis (WGCNA) was used to identify modules of genes that are
co-expressed with top NMF genes using WGCNA R package34.
This analysis was performed for ACC, KIRC, LGG, LIHC, and
LUAD adult cancer types from TCGA, and NBL and OS pediatric
cancer types from TARGET. All parameters were replicated from
scripts 1, 2c, and 4 of the Introductory Tutorial I from the
WGCNA creators’ website (https://horvath.genetics.ucla.edu/
html/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/).
These tutorials include data cleaning, construction of co-
expression networks, module detection, and pathway enrich-
ment. PPI networks and their significance compared to a back-
ground were obtained by running the STRING73 application
(stringApp; https://cytoscape.org/cytoscape-tutorials/protocols/
stringApp/#/) on Cytoscape74.

DNA methylation analysis. We obtained batch-corrected and
normalized 450 K methylation array data for TCGA patients from
the UCSC Xena Browser (https://xenabrowser.net/datapages). We
obtained DNA methylation subtype information from each can-
cer type’s TCGA publication. We ran principal component ana-
lysis on the methylation probes using PCAtools R package75 and
overlayed the NMF patient grouping and methylation subtype.
Then, we conducted a probe-wise differential methylation ana-
lysis between the poor outcome and better outcome NMF clusters
using the limma R package76. We mapped differentially

methylated probes to their nearest genes with the probe anno-
tations from UCSC Xena Browser (https://xenabrowser.net/
datapages). We excluded instances in which the methylation
site was not associated with any gene or with multiple genes.

Cox-nnet pan-cancer model. The Cox-nnet artificial neural
network (ANN) framework40, a subcategory of machine learning
that loosely mimics the signal processing by neurons, can extract
important features and learn non-linear behavior in the data40.
The inputs to ANN are high-dimensional gene expression data
and other information about a patient tumor, and the output is
the prognostic index (log hazards ratio) value. Hidden layers
between the inputs and the output can capture latent information,
and the Cox-nnet program calculates feature importance scores
that provide information regarding the most important genes for
predicting survival.

Cox-nnet was used to build a predictive pan-cancer model of
patient PFI. Preprocessing, training, cross validation, and testing
steps were performed in accordance with the tutorial entitled
“KIRC example” from the authors’ website (http://traversc.github.
io/cox-nnet/docs/examples/). A model was trained on the log2
normalized gene expression data for the ACC, KIRC, LGG, LIHC,
and LUAD cancers combined, these same five cancer types
excluding KIRC, and just KIRC. For each run, an 80/20 train-test
split, stratified based on PFI events, was applied for each cancer
type using scikit-learn’s “train_test_split” function. The patients
assigned to training and test groups were combined across cancer
types to yield one training and one test set for the analysis.

The fully connected architecture of Cox-nnet includes an input
layer, one hidden layer, and an output layer. The predictor
variables used as inputs for the network include the batch-
corrected, normalized, and transformed expression count values
of 720 epifactor genes for the patient tumors, and age and sex of
the patients. Each predictor was fed into the hidden layer, applied
a bias term, and activated with the tanh function. The outputs of
the hidden layer were fed into the output layer of width 1. The
output yielded the predicted log hazard ratio (or Cox regression
term) for the input patient. The output was fed to a partial log
likelihood cost function with L2 regularization, and all weights
and bias terms were updated through backpropagation. A fivefold
cross validation was applied using Cox-nnet’s “L2CVProfile”
function to optimize model hyperparameters before training on
the full dataset with the “trainCoxMlp” function.

After predicting the test patients’ log hazard ratios using the
“predictNewData” function, patients were grouped into high
prognostic (high PI) and low prognostic (low PI) groups based on
a median log hazard ratio threshold. The Survival and Survminer
R packages were used to plot the Kaplan–Meier curves based on
the two prognostic groups. The importance of each predictor
variable was calculated using the “varImportance” function from
Cox-nnet which replaces the variable’s original expression value
for a patient with the mean expression value of all patients and
measures the difference in the partial log-likelihood cost function.

Single-cell analysis. Single cell RNA-seq data from two LGG
patient tumors were obtained from ref. 42. Preprocessed data and
cell type metadata were hosted by the Broad Institute’s single-cell
portal (https://singlecell.broadinstitute.org/single_cell) with
accession GSE182109. Data were normalized using the “Nor-
malizeData” function of the Seurat v4.1.0 R package77. Two
thousand highly variable features (genes) were included using
Seurat’s “FindVariableFeatures” function. Data were scaled using
Seurat’s “ScaleData” function. Fifty principal components (PCs)
were calculated using “RunPCA.” To correct for technical varia-
tion between patients, the “RunHarmony” function of Harmony
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R package v0.1.078 was applied to the PCs using 10 iterations for
convergence, yielding 50 batch-corrected PCs. The Seurat’s
“FindNeighbors,” “FindClusters,” and “RunUMAP” functions
were used to cluster the cells and plot a UMAP. These functions
were run on the PCs before and after batch correction to account
for technical variation.

Sixteen single-cell NBL patients were gathered from Kildisiute
et al.43. Preprocessed data were hosted by the Neuroblastoma Cell
Atlas https://www.neuroblastomacellatlas.org/. The dataset was
normalized, scaled, clustered, and mapped to cell types. Harmony
was run on the PCs using 10 iterations and yielding 50 batch-
corrected PCs that were corrected for sample-specific batch
effects. Seurat’s “FindNeighbors,” “FindClusters,” and “RunU-
MAP” functions were applied to cluster and plot the cells. Cells
classified as tumor cells were selected to focus on heterogeneity
among cancer cells. Cancer cells were clustered and reduced to
two UMAP dimensions. To quantify top NMF gene expression,
the modular expression of signature top NMF genes for each of
the two NMF clusters (poor and better outcome clusters) were
measured using Seurat’s “AddModuleScore” function, which
calculates the mean expression of a gene group of interest and
subtracts it from the mean expression of a randomly defined
control set of genes. For each cell, we determined the module
expression score for both NMF clusters. A mean module
expression cutoff was used to assign cells into one of four
classifications: “None,” “poor outcome cluster,” “better outcome
cluster,” or “poor outcome cluster+better outcome cluster.”
Differential expression analysis was then performed with Seurat’s
“FindMarkers” function for each gene, using a two-sided
Wilcoxon rank-sum nonparametric test. The two conditions
being tested were based on the one-vs-all approach, in which one
classification group is compared against the rest of the
classifications. Significance in differential expression was mea-
sured using a Bonferroni–corrected adjusted P value of P < 0.05,
which is default for Seurat. Differentially expressed top NMF
genes were plotted and clustered using Euclidean distance-based
hierarchical clustering. The plots for single-cell analysis were
created using the scCustomize package (https://samuel-marsh.
github.io/scCustomize/)79.

Statistics and reproducibility. Statistical tests used in each ana-
lysis are documented in the text, figure legends, and respective
method sections. All tests are two-sided with significance level at
0.05. Significant P values were adjusted for multiple hypothesis
testing when applicable; the FDR significance level was set at 0.05.
Statistical analyses were performed using the R programming
language and GraphPad Prism. For all box plots, 25th and 75th
percentiles were used as the limits, and whiskers extended to the
minimum and maximum values. The number of tumor samples
used for analyses depended on the availability of publicly acces-
sible datasets. Tumors were selected for inclusion based on tumor
purity scores. For RNA-seq and differential methylation analyses,
each group contained at least 30 tumors. Key findings were
validated in additional datasets that were not part of the primary
analysis. The sources of all datasets are provided. Links are pro-
vided for software used.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
The results shown here are based on data generated by the TCGA Research Network:
(https://www.cancer.gov/tcga), and the Therapeutically Applicable Research to Generate
Effective Treatments (https://ocg.cancer.gov/programs/target) initiative, phs000218. The

data used for this analysis are available at https://portal.gdc.cancer.gov/projects. Data
used for figures are provided in Supplementary Data 12. Any remaining information can
be obtained from the corresponding author upon reasonable request.

Code availability
All code was written in R, Python, or Bash. Scripts, required software packages, and
instructions are available on the Github repository80 (https://github.com/collerlab-
github/epifactors_cancer) and Supplementary Data 13.
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