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Mitochondria are the main suppliers of energy for cells and their bioenergetic function is regulated by
mitochondrial dynamics: the constant changes in mitochondria size, shape, and cristae morphology to
secure cell homeostasis. Although changes in mitochondrial function are implicated in a wide range of
diseases, our understanding is challenged by a lack of reliable ways to extract spatial features from the
cristae, the detailed visualization of which requires electron microscopy (EM). Here, we present a semi-
automatic method for the segmentation, 3D reconstruction, and shape analysis of mitochondria,
cristae, and intracristal spaces based on 2D EM images of the murine hippocampus. We show that our
method provides a more accurate characterization of mitochondrial ultrastructure in 3D than common
2D approaches and propose an operational index of mitochondria’s internal organization. With an
improved consistency of 3D shape analysis and a decrease in the workload needed for large-scale
analysis, we speculate that this tool will help increase our understanding of mitochondrial dynamics in

health and disease.

Mitochondria are the main producers of adenosine triphosphate (ATP) via
oxidative phosphorylation in eukaryotic cells. Consequently, the study of
their function is relevant in a plethora of diseases. While functional analysis
of mitochondria can be performed on fresh, untreated tissue'” it is not
applicable to preserved specimens. To this end, mitochondrial function is
thought to be closely linked to its structural characteristics. Specifically, the
electron transport chain is located in the mitochondrial crista membrane
(CM) (Fig. 1). Morphological features that may relate to function include (i)
CM surface area, which we speculate could scale with the capacity for
respiratory ATP production, and (ii) crista shape, as the assembly and
stability of electron transport chain complexes depend on it’. In particular,
high local CM curvature near complex V (ATP synthase) may facilitate ATP
production’. Dimerized complex V imposes local curvature®”®, whereas
loss of dimerization results in wider cristae with blunt apices(’. In vitro, the
degree of oligomerization was found to be higher in respiratory- than in
glycolytic cells”. Methods to reliably extract cristae properties could thus
potentially narrow the gap between structure and function.

The majority of previous and current studies demonstrating mito-
chondrial ultrastructure have used manual annotations on electron
microscopical and -tomographical sections. This approach is labor inten-
sive, typically restricting analyses to a limited number of mitochondria.
Most often subsequent evaluation of crista properties has been performed in
2D’""? and the validity of generalizations to 3D is questionable. Fortunately,
studies of mitochondria and cristae in 3D based on manual reconstructions
of individual mitochondria have also been performed for decades*™.
Mendelsohn et al. evaluated 12 mitochondria and within this small sample,
the volume estimates varied by almost an order of magnitude' highlighting
the importance of analyzing a larger population to ensure a representative
sample. This becomes even more important for the dynamic mitochondrial
cristae'*.

For large-scale analysis of mitochondria and cristae in 3D to be rea-
listic, an automated approach is highly desirable. Recent advances in
machine learning have made large-scale automatic segmentation of mito-
chondria feasible*>* but until now, such automated tools have not allowed
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Fig. 1 | Structure of mitochondria. Mitochondria are characterized by two mem-
branes that define three functional compartments. The outer mitochondrial mem-
brane (OMM) acts as a barrier between the cytosol and the intermembrane space. The
inner mitochondrial membrane (IMM), in turn, separates the intermembrane space
from the mitochondrial matrix. In doing so, the IMM forms numerous invaginations
into the matrix, the mitochodrial cristae. At the base of these cristae, the crista junction
separates the IMM into crista membrane (CM) and inner boundary membrane
(IBM), respectively, of which the latter runs largely parallel to the OMM, separated by
the intermembrane space. The OMM is highly permeable to small solutes and con-
tains proteins that allow larger molecules to pass. The IMM, however, acts as a tight
diffusion barrier that only allows the passage of certain molecules via specific
transport proteins. This enables the maintenance of a proton gradient between the
intermembrane space and the matrix, which is critical for adenosine triphosphate
(ATP) synthesis in the CM. While the matrix provides enzymes for citric acid cycle
activity A, enabling the production of substrates for oxidative phosphorylation, the
CM contains the respiratory chain protein complexes B that generate the ATP*>*-,
Graphics were in part produced by Vibe Fog Sporring.

segmentation and analysis of the structures most intimately connected to
mitochondrial function: the cristae. There may be several reasons for this.
First, there is a scarcity of sufficiently large training datasets to train 3D
segmentation models to identify cristae. Secondly, the distinction of cristae
from other features in gray-scale images from the electron microscope is
difficult. Thirdly, well-defined distance and curvature measures in 3D, that
can be extracted automatically, are needed. In this work, we suggest solu-
tions to the challenges, enabling large-scale analysis of mitochondria and
their cristae in 3D based on the application of machine learning.

Results

Multiplanar UNet overcomes the 3D training set barrier
Supervised machine learning models require correctly labeled data points.
For 3D segmentation models, the data points are image sub-volumes that
need to be densely annotated by experts for proper model training and
validation. This is a tedious process that involves the manual annotation of
hundreds of consecutive image slices for each sub-volume, possibly intro-
ducing a directional bias since the annotator tends to label slice-wise in a
single slicing direction. In contrast, 2D models work on image slices, which
are considerably less labor-intensive to annotate, and models are often
smaller and require less data to converge. However, the 3D structural
information is lost.

To get the best from both the 2D- and 3D models, we implemented a
slightly modified version of the Multiplanar UNet™. This model is a 2D
UNet” that segments a 3D volume by merging 2D segmentations of images
resliced in different orientations as shown in the top left of Fig. 2. At each
voxel, the model produces several label candidates as a function of reslicing
orientation, and these are merged by averaging the predicted softmax scores.

We incorporated the Multiplanar UNet in an active-learning approach
to manual cristae annotation to facilitate the generation of new segmenta-
tion datasets. For details, see Image Segmentation with the Multiplanar
UNet. The final segmentation workflow is illustrated in Fig. 2.

Persistent homology allows distance and curvature
measurements in 3D

Manual analyses of cristae and their organization poses several challenges.
One is the lack of well-defined ways to measure relevant parameters. In the

case of distance measurements, the choice of endpoints is not well-defined
(see Fig. 3) making cross-study comparisons difficult. Even if clear defini-
tions were available, minor deviations in adherence due to limitations in
manual precision could have a large effect. Manual analyses are also often
affected by 2D limitations, because while many software tools allow rota-
tions of a 3D image volume, the interactive elements are designed in 2D for
selection accuracy, which may introduce a measurement bias. Furthermore,
a large number of measurements is needed for statistical validity, and this is
not always feasible in manual analysis.

As a solution to these challenges, we used the concept of persistent
homology to provide a standardized and directionally unbiased way to
measure cristae distances and surface curvatures in 3-dimensional space.
The idea behind persistent homology™ is to use features that exist and vary
across a large parameter range to describe data that may be difficult to
describe directly since their persistence is a sign of the real signal, rather than
random effects from noise, sparseness or high dimensionality. In our case,
the persistent features are the count curves of holes and objects that form as a
function of the number of voxels being added to or removed from our
segmentation surface by mathematical morphology (Fig. 3). Since mor-
phology adds or removes voxels uniformly in all directions, the rate of hole
or object formation depends solely on the shape of our segmentation. This
means that it is possible to extract the features we need directly from the
count curves, which we accomplish using the location of the maximum
count (max location) and the full-width-half-maximum (FWHM). For
more details on how this is done and the reasoning, please refer to Persistent
Homology.

Gross mitochondria morphology

For the mitochondria fully contained in the dataset, we found the mean
volume to be 0.048 +0.059 um’, where the uncertainty is given by the
standard deviation (std). The median mitochondrial volume is lower at
0.031 + 0.017 um®, where the uncertainty is given as the median absolution
deviation (mad). The mean mitochondrial surface area was found to be
0.86 £ 0.92 pmz, and the median mitochondrial surface area is again lower at
0.61 +0.30 um”. Volume and surface area distributions are shown together
with their correlation in Fig. 4. The mitochondrial volume and surface area
show a near-perfect linear relationship with a Pearson correlation value of
098 (p=6.9 x 107>,

Cristae morphology and organization

The mean and median volumes of the intracristal space in murine hippo-
campal mitochondria were found to be 3.6 x 10°+4.8 x 10°nm’ and
2.2 % 10°+ 1.7 x 10° nnr’, respectively (Fig. 5a). The mean and median CM
surface area facing the matrix side was 1.2x10°+ 1.6 x 10°nm* and
7.9 % 10° 5.1 x 10° nm’ (Fig. 5b).

The intracristal volume and the CM surface area (intracristal side)
show a strong Pearson correlation of 0.99 with p=0.0 x 10° (Fig. 5g). We
measured the crista width, defined here as the minimum distance across the
intracristal space (CM included), using persistent homology as described in
Persistent Homology. The mean and median crista widths were
33.0 + 10.2 nm and 36.0 + 2.0 nm, respectively (Fig. 5d). Another parameter
extracted from persistent homology, the FWHM of the count curve,
indirectly measures the relative smoothness and curvature of cristae. The
mean and median FWHM are 10.5+ 3.4 nm and 9.5+ 1.5 nm (Fig. 5e).
Generally, the smoother and less curved the CM is, the smaller the FWHM-
value is, see Fig. 3 and Supplementary note 1.

The mean minimum distance between CM across the matrix is
32.4 £23.2 nm and the median is 28 + 10.0 nm (Fig. 5f). This represents the
average distance between individual cristae in murine hippocampal
mitochondria.

A positive linear relationship between the volume of a mitochondrion
and the volume of its intracristal space was seen in Fig. 5h (Pearson cor-
relation of 0.96 (p=8.5x107>")). The volume of the mitochondrion,
however, has no clear correlations with the width of its cristae and the
distance between its cristae across the matrix (Fig. 5i, j). The mitochondrial
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Fig. 2 | A Pipeline for segmenting cristae using the Multiplanar UNet. After driftis
corrected by image registration, 2D image slices are extracted from nine different
resliced planes. Selected image slices are annotated and fed to the UNet for training
in step a. After training completes, the UNet is used in step b to segment the
mitochondria (white), crista membrane (cyan), and intracristal space (red) in all

nine planes. The resulting 2D stacks of segmentations from the different planes are
combined using averaging, and cleaned up by mathematical morphology in step ¢ to
produce the final 3D segmentation (see Image Segmentation with the Multiplanar
UNet). The segmentations produced by this pipeline form the basis for all sub-
sequent analyses.
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Fig. 3 | Persistent homology standardizes shortest distance measures in mito-
chondria. a-c Some of the many possible ways to measure crista widths (purple) and
intercristal distances across matrix (yellow). d, e Persistent homology uses dilation
and hole counting to standardize distance measurements. As pixels are added in
dilation (red arrows), the crista membranes will move closer (dotted line) and a hole

(yellow hatching) will form and eventually disappear. In crista membranes with a
higher degree of curvature e holes will be present for more dilation rounds. This is
indicated by a larger full-width-half-maximum in count curves generated during
analysis, The max location in d and e remains the same at dilation round 2, which is
equivalent to the average half distance between crista membranes.

matrix has a mean and median volume of 3.5 x 107 +4.3 x 10’ nm’ and
23 %107+ 1.2 x 10" nm’ (Fig. 5¢).

Consistency between 2D and 3D mitochondria measures
Because the ultrastructure of mitochondria is frequently evaluated based on
2D EM images, we evaluated the correlation between 2D and 3D shape

features from mitochondria in an attempt to assess the usability of 2D
measurements. When comparing measures made on a single mitochon-
drion in 2D, the average error with respect to the 3D measure is around 86%
for the parameters evaluated here, see Table 1. If a subset of 25, 50, or 100
mitochondria is measured in 2D, the average error of the mean is reduced to
approximately 22%, 16 %, or 11%, respectively. Average errors for
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between mitochondrial surface area and volume is almost perfectly linear. The curve
represents the relationship between surface area and volume for a sphere ¢. mad
median absolute deviation, std standard deviation.

individual parameters can be found in Table 1 and the results of our cor-
relation analysis are visualized in Supplementary Fig. 3. The variance of the
expected 3D value, which is equivalent to the square of the error, changes
approximately by a factor of 1, as should be expected by the law of large
numbers.

Discussion

We have presented a pipeline enabling semi-automatic analysis of mito-
chondrial ultrastructure in 3D from a series of electron microscopice ima-
ges. With a relatively small set of manually annotated images, automatic
segmentation of the outer mitochondrial membrane, CM, and intracristal
space from individual mitochondria was possible using the multiplanar 2D
UNet. Subsequent estimation of 3D shape parameters for mitochondria and
their cristae, along with an assessment of the distance between cristae in 3D,
forms the basis for the evaluation of a population of mitochondria in a tissue
of interest. The described methods are directly applicable to the study of
conditions affecting mitochondria.

Using persistent homology, it is possible to acquire estimates for crista
width (Fig. 5d) and relative curvature of the CM (Fig. 5e) in 3D. Local
curvature of the CM has been proposed to enable proton up-concentration
near complex V and to facilitate a kinetic coupling between the proton
pumps and the ATP synthase, thereby increasing the possibility for the
production of ATP**. In addition to the connection between complex V
dimerization and crista width’, the width might also affect the diffusion
distance for cytochrome c from the crista lumen to complex IV. Remodeling
of mitochondrial cristae occurs as part of adaptive responses to altered
energy substrate availability””** and during apoptosis™””. A cell-type
independent coupling between synaptic function, CM surface area, and
crista shape has also been found'. Cristae change their configuration
dynamically through elongation or shortening and detachment from or
fusion with the inner boundary membrane'*'*. They can also temporarily
fuse to form networks'*™.

Persistent homology can also provide information about inter-
cristal distance (Fig. 5f). A relatively homogenous intercristal distance
could be important for keeping the respiratory chain at a short distance
to required substrates including oxygen and adenosine diphosphate. For
the mitochondria population in a sample, the mad on the intercristal
distance indicates how well-organized the cristae are. A low mad indi-
cates that the distance between individual cristae is relatively homo-
genous across mitochondria whereas a high mad indicates
heterogeneity. Rajab et al. 2022 applied a semi-quantitative scoring
system to evaluate this’’. This is time-consuming, subjective, and
requires a method for random selection of mitochondria to include in
the analysis. The ratio between the intracristal volume and the mito-
chondrion volume also provides information about the organization of

the mitochondrion. If small, it indicates that the mitochondrion has lost
its inner characteristics i.e. cristae. In Fig. 5h, a vertical line of data points
represents these mitochondria.

In addition to the evaluation of cristae, the assessment of gross mito-
chondrial morphology may give us a crude indication of tissue state.
Mitochondrial morphology is modulated by cycles of fusion and fission
events’ adapting the mitochondrial network to the availability of substrates
and metabolic needs of the cell””’. The selective fusion of mitochondria
enables transfer/sharing of organelle components® and allows for a more
efficient energy conversion during substrate deficiency and acute oxidative
stress™””. Fission is involved in the removal of mitochondria’* and is a main
event in apoptosis™. After fission, some mitochondria daughter organelles
are depolarized targeting them for autophagy . The shape of mitochondria
is furthermore crucial for their proper axonal transport and distribution®.
An indication of overall mitochondria shape is provided by the correlation
between volume and surface area. In the population of mitochondria
examined here, the relationship between mitochondrial volume and surface
area is linear in accordance with a previous study of mouse cerebellum'. A
curve representing the relationship between volume and surface area for a
sphere has been added to the plot (Fig. 4). In vitro, elongated mitochondria
have been shown to be spared during autophagy while more spherical
mitochondria were not”. If the points in the correlation plot fall on the curve
for a sphere, a plausible guess would therefore be that the mitochondria are
damaged. The curve may also help in the evaluation of data reliability. A
sphere has the smallest possible volume-to-surface area ratio so no points in
the correlation plot should fall above the curve. We have explored whether
the ratio between surface area and volume can be used as a standalone shape
descriptor to distinguish if an object (e.g. the crista membrane) is lamellar or
cylindrical, as previously done by others'*'*. We concluded mathematically
that it is not a good predictor. For more details, see Supplementary Note 2.

The frequent use of 2D EM images for evaluation of mitochondria and
their cristae prompted us to make a comparison of the consistency between
2D and 3D measurements. We have already mentioned the reliability of
results and analysis time as potential challenges related to 2D manual
measurements (Introduction). An additional consideration relates to the
characteristics of the tissue and region under study. If rotational invariance
is present in the tissue, meaning that the distribution of size, orientation, and
shape of objects is independent of the direction of imaging planes, then valid
information can be obtained from 2D if enough images are analysed. In
other words, if 2D images are acquired in a random orientation through a
tissue, the mitochondria profiles available for analysis in the images should
represent all sizes, orientations, and shapes of mitochondria in that tissue
(seealsofig. 10 in*®). For many biological tissues, however, this is not the case
and here it becomes important to use 3D shape for analysis as opposed to
profiles from 2D slices.
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Fig. 5 | Morphology and organization of cristae. The distribution of total volumes
of the intracristal space a and surface areas of mitochondrial cristae b in 3D are
presented. Distributions of average crista half-widths d, cristae curvature/roughness
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shown. The distribution of volumes of the mitochondrial matrix is given in c. The
correlations between cristae surface area (intracristal side) and intracristal volume
are almost perfectly linear g. A positive linear relationship between the volumes of
mitochondria and their intracristal spaces is also visible h. No clear relationship is
detected between mitochondria volume and cristae width i or intercristal distance j.
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Please note that the counts and bin boundaries in histograms are computed on log-
transformed values to better visualize the data, as the untransformed data are highly
left skewed. For 32 out of 360 mitochondria, it was not possible to detect the inner
mitochondria membrane. In subfigure h this results in the vertically scattered data
points near the origin. Since the segmentation of these mitochondria does not seem
to be erroneous, the data points are included in the scatter plot. The sample sizes vary
for plots due to the differences in inclusion criteria for the parameters. CM crista

membrane, FWHM full-width-half-maximum, mad median absolute deviation, std
standard deviation.

From (Table 1) it can be seen that the average expected error of a 3D
parameter based on a related 2D parameter depends on the number of
random 2D profiles analysed. For a subset of 100 mitochondria, the 3D
parameters evaluated in our dataset can be estimated based on 2D mea-
surements with an average error (imprecision) of around 11%. If the average
expected error in other datasets is similar, this means that for group com-
parisons, the mean difference between groups needs to be at least 22% to be
detectable from 2D measurements. On top of this technical variation comes
the biological variation. Whether a lower detection limit of 22% difference is
sufficiently precise and biologically meaningful is study dependent. Further
increasing the subset of mitochondria analysed will continue to decrease the
error following a power law function. Simultaneously, there is an increase in
the required workload and a need for very stringent rules to make mea-
surements on different profiles consistent. Even then, it is our opinion that
conclusions should be made carefully as minimal deviations in measure-
ment precision can have a substantial impact on results, when the objects

measured are as small as the mitochondrial cristae. Finally, if 2D mea-
surements are made, a practical assessment of whether the requirement of
rotational invariance is fulfilled is needed. From the evaluation of the dis-
tributions of shape parameters for mitochondria estimated in 3D in this
study, we saw that the majority of the parameters have a mean that is
significantly higher than the median. This suggests that a few extreme
outliers are affecting the mean but due to the considerable sample size made
feasible with semi-automatic detection, it is possible to identify them as
outliers. A similar assessment in 2D would require a considerable number of
manual annotations.

The 2D Multiplanar UNet, we have used here, has the advantage of
needing only a limited amount of manually annotated images to train. It has
a performance (Supplementary Note 3) comparable to current state-of-the-
art 3D models for segmenting mitochondria” and is less labor intensive.
Various 3D models have been tested on mitochondria from the same
dataset™, that was used here, and F1 scores between 0.901 and 0.947 were

Communications Biology | (2024)7:377



https://doi.org/10.1038/s42003-024-06045-4

Article

Table 1| The average expected error of a 3D parameter givena
related 2D parameter estimated from a randomly chosen slice
of a randomly chosen mitochondrion

Parameter n=1 n=25 n=50 n=100
Mitochondrial Volume  85.01% 22.15% 15.71% 11.27%
Mitochondrial Sur- 83.28% 19.49% 13.82% 9.97%
face Area

Intracristal Volume 86.10% 23.20% 17.13% 12.06%
Cristae Surface Area  88.12% 23.01% 15.92% 11.49%

Rows give the Mitochondrial and Intracristal Volume in 3D as compared to corresponding 2D
sectional areas, and Mitochondrial and Cristal Surface Areain 3D as compared to corresponding 2D
sectional circumference. Columns give the number of randomly selected mitochondria used for
each estimate. E.g., when estimating the functional relation between the true Mitochondrial Volume
V and the corresponding 2D area A from 25 randomly chosen mitochondria, we assume a condi-
tional normal distribution P(V|A) = N(uy (A), oy (A)) and estimate mﬁ; = 22.15%. This means that an
estimation of the average mitochondrial volume based on measurement of 2D cross-sectional area
on a single random slice through each of 25 random mitochondria can be expected to be 22.15%
erroneous. Please refer to 2D to 3D relationships for details and in particular Supplementary Fig. 3
which shows the corresponding / and ¢ curves.

reported, against ours at 0.929 (supplementary table 2). For the segmenta-
tion of crista membrane and intracristal space, since as far as we know there
is no densely annotated 3D volume available for testing, we cannot
empirically evaluate the relative performance of the models. We speculate
that they would be at similar level, with 3D models having a slight edge at the
expense of needing exponentially more dense manual annotations in 3D.
This is because 3D models can learn directly using an explicit view of the 3D
structure, whereas 2D multiplanar models infer the 3D structure implicitly
from multiple views. We suspect this may have a slightly larger effect on
small structures like the crista membrane and intracristal space. Gross
mitochondrial shape parameters in rodent brain'*'***, and crista width
based on manual reconstruction in rat- and chick nervous tissue, and Hela
cells"*"**, have previously been estimated in 3D. Our results (Figs. 4 and 5d)
are in line with the previous findings. Our measure of intercristal distance
(Fig. 5f) deviates from a previous finding in Hela cells (2D)**. It is unknown if
the discrepancy stems from species- and tissue variation, methodological
differences, or 2D to 3D discrepancy.

The internal organization of mitochondria is increasingly being eval-
uated, and focus on mitochondrial cristae changes in the study of disease has
been seen in different research fields'™"”. Cristae have been shown to
increase in width and have more rounded apices under hypoxic conditions
in vitro* and in patients with the oxidative phosphorylation disease Leigh
syndrome’.

Gomes et al. observed a connection between the elongation of mito-
chondria and increased cristae density during starvation (2D, in vitro and
in vivo)¥, altered organization of cristae have been shown in ovarian cancer
(2D, in vitro)*', non-small cell lung cancer (2D, in vitro)*, and after cerebral
ischemia (2D, in vitro)', and ischemic stroke resulted in a loose, hetero-
geneous organization of cristae (2D, in vivo)'’. The changes are most likely
related to the pathological conditions as combining results about gross
mitochondrial volume with information about internal distances in our
sample suggests that the organization of the inner mitochondrial membrane
is independent of mitochondria size (Fig. 5i, j), which suggest that pattern of
cristae of comparable width is merely repeated more times in large mito-
chondria. Additional experiments are needed to determine if this is general
for normal tissue. Even though there may be challenges with the inter-
pretation of 2D analyses, the results by others presented here indicate the
relevance of examining a spectrum of mitochondria of different sizes in
disease and this is feasible with the methods described here.

A limitation to our analyses is that only mitochondria, where it is
possible to segment cristae, can be included. The subpopulation where this is
not possible may be of poorer quality due to organelle degradation, it may be
an issue related to tissue processing, or a combination of the two. To evaluate
the potential impact of this undesired selection, we suggest always assessing

the fraction of the whole which these mitochondria constitute. In our study,
9% of the evaluated mitochondria were of this type. An additional challenge
is that mitochondria gross shape parameters are affected by cellular
location'****. Separating mitochondria into subpopulations depending on
location for example in the cell soma or in processes requires larger 3D
volumes with concomitant increased imaging times and data amounts.
Thirdly, individual mitochondria with touching membranes may be seg-
mented as one. This potentially complicates the distinction between indi-
vidual mitochondria and an interconnected network. However, with
increasing sample size the impact of this error decreases. Moreover, it is
always possible to go back and evaluate the raw images. Lastly, cristae shape
is dependent on phylogenetic group'”**, species®, and tissue type®.
Within the same tissue, the crista shape can vary with age*® and metabolic
demand. In addition to natural shape variations, disease mediated changes
in morphology occur. Our model was trained on mitochondria from the
normal murine hippocampus. We expect the model to perform well on
mitochondria with similar topology independent of origin. With markedly
altered crista morphology, the requirement for ground truth data (i.e.
manual annotations) and necessity of model retraining will increase.

For the future, we would like to find ways to reduce the workload for
the end user even further, e.g, by exploring studies on uncertainty and
diversity for annotation efficiency’”**. Another matter worth looking into
is the segmentation performance when the mitochondria are more densely
packed and touching. In our image volume, irrelevantly few mitochondria
were inseparable, but the instantiation task may be more challenging for
other datasets. In this case, modeling the outer and inner mitochondrial
membranes separately may help. In addition, we are investigating whether
the method can be successfully used on EM volumes with anisotropic voxels,
i.e., differences in axial resolution, making the method compatible with a
variety of imaging modalities. It is of great interest to apply our model to
samples from different tissues, metabolic environments, and disease states
to deepen our knowledge about the correlation between shape variations in
cristae and mitochondria function. To strengthen the results from the
ultrastructural analyses, they can be combined with an evaluation of
mitochondrial function, e.g., via an analysis of glycolytic and aerobic
metabolism'. Changes in ultrastructure may also be evaluated further using
molecular biological analyses of important components in cristae assembly.

In conclusion, we provide a method for detailed analysis of mito-
chondrial ultrastructure in 3D based on a deep learning algorithm. From a
limited amount of images with manually annotated ground truth data, we
were able to reliably segment the mitochondria and their cristae. From these
segmentations, we extracted information about crista surface area, volume,
and shape. Furthermore, with the persistent homology method, introduced
in this article, we derived statistical summary information about the internal
organization of the cristae. Our new method is not restricted to cristae
structures but can be applied to any other tubular shape.

Methods
In this work, we have employed a standard deep-neural network for seg-
menting the images, estimated standard geometric object features, used a
topology measure to characterize long-range object relations, and investi-
gated the relationship between parameters estimated from 2D slices and
measured in 3D, respectively. All of this will be detailed in the following.
The images used in this study were acquired by Graham Knott and
Marco Cantoni from Ecole Polytechnique Fédérale de Lausanne and are
available from®: A 5-micrometer-cubed volume from cornu ammonis 1 in
hippocampus from a mouse brain was imaged using Focused Ion Beam
Scanning Electron Microscopy, and the mitochondria in two sub-volumes
were annotated by experts. The image volume is 1065 x 2048 x 1536 voxel’,
and the sub-volumes are 165 x 1024 x 768 voxel’. Voxel size is approxi-
mately 5 x 5 x 5 nanometer’. The original images show a small drift, hence,
we performed image registration using vesicle-based drift correction™.
Examples of the data together with the initial segmentation of mitochondria
are shown in Fig. 2. To access the registered images and the annotated sub-
volumes, please refer to Data availability.
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Image segmentation with the multiplanar UNet

All segmentations in this study were done using a modified version of the
Multiplanar UNet™. The idea is that by merging 2D segmentation results
from multiple planes at different angles, we can compensate for the loss of
3D information in 2D because structures not seen in one plane will most
likely be visible in another plane. Further, since the core segmentation model
is 2D, we can avoid having to annotate the ground truth masks in 3D, which
is a labor-intensive task. To maximize the field of view for better 3D cov-
erage, while minimizing the number of planes for computational efficiency,
we used nine planes angled at 45 degrees to each other (Fig. 2).

We extended the original annotation of mitochondria in the 2 sub-
volumes supplied by* with our annotation of the CM and intracristal space.
We used an active learning approach, iterating the following steps to build
up a dataset of 150 image slices: Step 1 - Select a few 256 x 256 pixel image
slices from the image volume. In the first iteration, this would be random
slices from random planes. In all subsequent iterations, the slices can either
be random (like the first iteration) or be chosen from places where the model
didn’t work very well; Step 2 - Manually label or correct the CM in the cyan
channel and the intracristal space enclosed by them in the red channel; Step
3 - Train a multi-class multiplanar 2D UNet, initialized with weights from
the mitochondria segmentation task for transfer learning; Step 4 - Apply the
multi-class multiplanar 2D UNet in a multi-planar fashion to acquire 3D
results. The merging of results from different planes is achieved by averaging
the predicted softmax scores; Step 5 - Repeat all steps until segmentation
quality is sufficiently good.

The final model for CM and intracristal space was trained on the
150 selected slices chosen using the multiplanar active learning approach
described above, where 80% was used for training and 20% for validation.
Image augmentation consisting of translation, rotation, shearing, intensity
adjustment, and noise introduction was actively applied to the training set.
The augmentation parameters were chosen after extensive visual inspection
of examples to make sure they are realistic and possible. The validation set
was also augmented but only once to ensure each epoch is validated on the
same data. The validation set also excluded intensity and noise augmenta-
tions to ensure we only validate on variations of real images without syn-
thetic intensity values. Model optimization was done using the ADAM
optimizer on Intersection over Union (IOU) loss. This is important because
of the extremely unbalanced class ratio in favor of the background. To
achieve efficient training speed and optimize performance, an adaptive
learning rate was used, where we reduced the learning rate by a factor of 3 if
the validation loss did not improve for 5 epochs, starting with learning rate
0.0001. The training was stopped early if the validation loss did not decrease
for 25 epochs.

The segmentation results were binarized and cleaned up before per-
forming any analysis. This included filling in the holes between the intra-
cristal space and crista membrane by a maximum size threshold and binary
openings to remove segmentation noise for the mitochondria. Mitochon-
dria touching the boundary of the image volume, and mitochondria with a
volume smaller than 25’ voxel’, were excluded from the analysis. The per-
formance of our segmentation model was evaluated using 5-fold cross-
validation (see Supplementary Note 3 and Supplementary Fig. 2).

The segmentation model can be extended to other datasets by
repeating the active learning procedure described above either by fine-
tuning or re-training from scratch as the user sees fit.

Computation of basic shape measures
All shape measures were computed on a mitochondrion by mitochondrion
basis and the results were collected as distributions of values. To link indi-
vidual mitochondria with their respective CM and intracristal spaces, the
mask from connected-component analysis on the mitochondria segmen-
tation was multiplied with the segmentation of CM and intracristal space,
respectively.

The volume is a measure of object size. Since our segmentation results
are binary images, where the foreground is 1 and the background is 0, the

volume is a summation of every voxel value (assuming the object has been
isolated).

The volume unit can be converted to real-world measurement by
multiplying with the image resolution (here 125 nm’). In this study, we
measured the mitochondrion volume, the intracristal space volume, and the
matrix volume, the latter of which is defined as:

matrix_volume = mitochondrion_volume — cristae_membrane_volume

—intracristal _space_volume

O

for each object.

To calculate the surface area of an object, the segmentation volume was
initially converted to a triangular mesh using marching cubes. The output of
the algorithm contains a list of all vertices (with coordinate values) and all
the triangular faces (made up of the vertex indices). The total surface area of
the object is then the sum of the surface areas of the faces:

surface_area = sum_of _face_areas(marching_cubes(object))  (2)

In this study, we measured the surface areas of the mitochondria, the
intracristal space, and the CM (facing the matrix).

Persistent homology

In this paper, we combined persistent homology and image analysis. By
applying mathematical morphology to our segmentation masks and
counting the number of holes or objects that appear and disappear, we
indirectly measured object distances and relative curvatures in
3-dimensional space.

Existing implementations of mathematical-morphology-based per-
sistent homology are primarily designed to describe the distribution of
multi-dimensional point clouds. One study’' did implement a method for
calculating persistent homology of 3D image volumes at subpixel accuracy.
Here, we extend their analysis with the notion of full-width half-maximum
as an estimate of fine-scale curvature and present an alternative way of
computing persistent homology, which produces a more suitable result
structure for extracting novel and more complex features.

The two main types of morphological operations used in our persistent
homology analysis were dilation and erosion which respectively enlarge or
shrink an object uniformly in all directions by adding or removing a layer of
voxels from the object’s surface. To enable measurements at subpixel
accuracy, we took a PDE approach to mathematical morphology. Starting
with the 2D first-order Osher-Sethian upwind scheme™ >, we adapt them to
3D by introducing new terms into the square root and subsequently
enforcing a value constraint between 0 and 1:

Dilation

2 2
U?Ikl = U?‘j.k + )L((max (07 U?+1A,j‘k - Uz@',k)) + (max <0> U:‘—l.j.k - U?,j.k))
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Erosion

2 2
U = UL, — A((max<o, Ul - Ul .j,k)) + (max(O, Ul — U?_l.j,k>)
2 2
+ (max((), Ulix— U?_ﬁ_l_k)) + (max 0,Ufjx— U:j—Lk))

2 2\ :
+ (max(0, U = Uty ) )+ (max(0, U7 = U7, ) ) >

©)
0, if Ujf <0
Uri=4 1, if U >1 (6)
U:‘]*kl, else

Where U” represents the segmentation volume at the current timestep, U
represents the segmentation volume after a single round of subpixel mor-
phology is applied to U", and A represents the timestep. In our case, A = 0.1
were used. This means that 10 rounds of subpixel morphology was be
equivalent to one full round of standard mathematical morphology, and it
represents the point where a single layer of voxels is either added or removed
from the segmentation surfaces (depending on whether it is dilation or
erosion). We applied persistent homology on a mitochondrion-by-
mitochondrion basis.

Conceptually, in the case of dilation: As segmented objects are
enlarged, previously non-touching points on different objects or
different branches of the same object will eventually make contact
with each other. When this happens, holes will begin to form in the
background region and the hole count increases, see Fig. 3. As the
dilation continues, different objects or different branches of the same
object will fully merge and the holes that formed earlier will dis-
appear. The resulting count curve, therefore, acts as an indirect shape
descriptor from which information can be extracted. The equivalent
curve can be obtained by erosion and object counting.

To measure the average minimum distance between cristae across the
matrix, we performed dilation and hole counting on the sum of intracristal
space- and CM segmentations (e.g. red objects + cyan objects in Fig. 2). For
crista width, we also used the sum of intracristal space- and CM segmen-
tation but performed erosion and object counting instead.

In all cases, each round of subpixel morphology produced a non-binary
grayscale mask valued between 0 and 1. Although this raw mask is always
the one to be used for the next round of subpixel morphology, a binarized
version with a threshold of 0.5 was needed for the counting step. For hole
counting after dilation, we first multiplied the binarized dilation mask with
the mitochondrion segmentation to ensure the dilation did not go out of
bounds. The dilation mask was then inverted before a 26-connected 3D-
connected component algorithm was used to calculate the number of holes.
Since an extra hole will always exist in the background, we subtracted 1 from
the resulting count. Object counting after erosion works the same way,
except counted without multiplying and inverting the mask, and we did not
subtract anything from the object count.

We summarized our curves using the max location and FWHM, as
measured by the iteration number. Given that the data was discrete and has a
degree of randomness, the raw count curves will be slightly jagged and
should be filtered using a Gaussian kernel. Due to noise susceptibility, the
initial five rounds of subpixel morphology, corresponding to half of a full
round of dilation/erosion, were not included when finding the max loca-
tions and their FWHM.

The max location can be interpreted as half of the average
minimum distance across the region being dilated or eroded because
an iteration having the most holes/objects implies that it is also the
iteration where most surface points make contact. The FWHM
measures the surface smoothness and curvature of the same region.
In this case, smoothness and curvature, respectively, refer to the
degree of roughness and the extent to which the surface bends, but

despite their slightly different definitions, surface smoothness, and
surface curvature are the same shape parameter but on different
scales. With rougher and more curved surfaces, the existence of more
convexities and concavities will make holes and objects appear earlier
and prolong the number of iterations it takes for them to disappear
(as a result of a full merge). See Fig. 3 for an example. See also
supplementary note 1 for a synthetic experiment illustrating the
relation between our suggested measures and shapes. The result of
this experiment is summarized in Supplementary Fig. 1 and Sup-
plementary Table 1.

To ensure numeric validity, the following filtering criteria were applied
when performing statistics on the calculated max locations and FWHMs.
For the average minimum distance between cristae across the matrix, we
required the presence of cristae membrane and that there must exist dif-
ferent branches, folds, or instances of cristae membrane to measure
against. In technical terms, we only included results computed from count
curves with a maximum hole count >1. For crista width, we required that
both the intracristal space volume and the cristae membrane volume be
larger than 0.

Alternatives to persistent homology include methods that seek the
largest contained sphere inside objects”® and where a larger sphere
dominates neighboring and overlapping smaller spheres, and thus, statistics
on object widths and internal distances will be biased towards larger values.
The M-rep methodology represents 3-dimensional objects as 2-dimensional
sheets defined by the collection of centers of spheres and their radii which
has first or higher-order contact with the boundary in at least two places™. A
calculation of the average widths can be done using Riemannian geometry
on the 2-dimensional sheets. M-reps do not have the larger sphere bias but
are considerably more complex to use than our method based on persistent
homology.

2D to 3D relationships

Initially, the connected components of our mitochondria segmentation
were used to extract the 3D sub-volume for each mitochondrion. Random
image slices were then sampled from the nine predefined planes orientated
at 45 degrees from each other to maximize data variability, see Fig. 2. The 2D
perimeters and 2D cross-sectional areas of mitochondria were subsequently
computed from the image slices and paired against their corresponding 3D
surface areas and 3D volumes for further analysis. The comparison was
made for varying sample sizes ranging from » = 1, which is equivalent to a
direct single-data point comparison, to n =100, where a comparison is
made between the 2D and 3D averages of 100 data points. To ensure
statistical reliability, 10,000 subsets of matching data points were randomly
generated for each sample size tested.

Given a series of 2D parametric values and their 3D equivalents,
we estimated the mapping function from 2D to 3D by first plotting
the 2D values against the 3D values on a scatter plot, and then slided
a window of size w over the 2D value range on the x-axis. For each
step of the moving window, we calculated the mean and std using the
3D values contained within the window. The mean is the expected
3D value for a given 2D value range and the std is the corresponding
upper and lower bound: mean = std. Since the parameters cannot be
negative, all negative lower bounds were set to 0. To eliminate noise
caused by data sparsity at the higher end of 2D values, we terminated
the sliding window when it contained less than 10 data points. The
size w should be adjusted based on the scale of the 2D values, and we
found empirically that w = 0.025 % max(2D_values ) works well.

The degree of correlation between 2D and 3D shape parameters can be
summarized by computing the average error for approximated mapping
functions:

T
1 . Z < upper_bound, + lower_bound,) 7

average_error =
‘= 2 * mean,

where T is the total number of windows and ¢ is the window index.
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Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability

The dataset is available from the website of Ecole polytechnique fédérale de
Lausanne (EPFL): https://www.epfl.ch/labs/cvlab/data/data-em/. A zip
folder containing our cristae annotations can be found at: https://erda.ku.
dk/workgroup/dikuUltrastructures/UCPH_IMAGE_cristae_dataset.zip.
The source data behind Figs. 4 and 5 in the paper can be found in Sup-
plementary Data 1. All other data are available from the corresponding
author (or other applicable sources) on reasonable request.

Code availability
The code for this paper can be found at:
ohttps://qim.dk/portfolio-items/3d-shape-analysis-using-persistent-
homology/
ohttps://erda.ku.dk/workgroup/dikuUltrastructures/UCPH_IMAGE _
persistent_homology.zip® (alternative link)
The implementation is done in Python 3 with the help of the following
major packages: TensorFlow 2/Keras, SciPy, NumPy, CC3D, OpenCV,
Matplotlib, scikit-image and scikit-learn.
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