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Proteomic profiling reveals diagnostic
signatures and pathogenic insights in
multisystem inflammatory syndrome in
children
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Multisystem inflammatory syndrome in children (MIS-C) is a severe disease that emerged during the
COVID-19 pandemic. Although recognized as an immune-mediated condition, the pathogenesis
remains unresolved. Furthermore, the absence of a diagnostic test can lead to delayed
immunotherapy. Using state-of-the-art mass-spectrometry proteomics, assisted by artificial
intelligence (AI), we aimed to identify a diagnostic signature forMIS-C and to gain insights into disease
mechanisms. We identified a highly specific 4-protein diagnostic signature in children with MIS-C.
Furthermore, we identified seven clusters that differed between MIS-C and controls, indicating an
interplay between apolipoproteins, immune response proteins, coagulation factors, platelet function,
and the complement cascade. These intricate protein patterns indicated MIS-C as an
immunometabolic condition with global hypercoagulability. Our findings emphasize the potential of
AI-assisted proteomics as a powerful and unbiased tool for assessing disease pathogenesis and
suggesting avenues for future interventions and impact on pediatric disease trajectories through early
diagnosis.

Multisystem inflammatory syndrome in children (MIS-C) is a severe, life-
threatening, immunological condition that occursweeks after infectionwith
SARS-CoV-21,2. Although MIS-C is established as an immunological dys-
regulation leading to cytokine storm3, the underlying pathogenesis remains
unresolved4. The incidence of MIS-C was approximately one in 3000 chil-
dren infected with SARS-CoV-2 during the pre-Omicron waves, while the
incidence decreased substantially as the Omicron variants became
dominating5–7. This decrease has been attributed to a reduced ability of

Omicron to trigger hyperinflammation, as the Omicron variant is phylo-
genetically distinct from the pre-Omicron variants with enhanced immune
escape8. Further, vaccination has been shown to decrease the incidence of
MIS-C9,10. Still, sporadic MIS-C cases occur, and resurgence of MIS-C is
possible with waning vaccine-induced immunity and novel variants of
SARS-CoV-2.

Children with MIS-C present with fever and multiorgan involvement,
including mucocutaneous, gastrointestinal, and cardiovascular
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involvement, often accompanied by circulatory shock1,2,6. The condition can
be misinterpreted as sepsis, abdominal emergencies, and Kawasaki
disease11,12. Thus, the lack of a diagnostic test for MIS-C can lead to delayed
lifesaving immunomodulating therapy and prolonged unnecessary courses
of broad-spectrum antibiotics.

To address this diagnostic challenge host-specific innovative omics
methodologies have been suggested4. Proteomics can provide a compre-
hensive unbiased approach that investigates hundreds of plasma proteins
simultaneously13. Proteomics has the potential to identify plasma proteins
useful as diagnostic markers and explore disease mechanisms as circulating
plasma proteins are markers of whole-body metabolic processes14. Due to
recent technological improvements in proteomics pipelines, a compre-
hensive system-wide approach has become feasible15. However, a limitation
of utilizing novel omics approaches is the interpretation of large amounts of
complex data and the translation of this information into clinical medicine.
This limitation may be surpassed by employing artificial intelligence (AI)-
based techniques, which offer a powerful avenue for analyzing compre-
hensive unbiased proteomic data.

We employed AI-assisted proteomics to develop a unique diagnostic
signature for children with MIS-C and to gain insight into the underlying
disease mechanisms.

Results
We enrolled 94 children, including 27 cases with MIS-C and 67 febrile
controls consisting of 28 children with bacterial infection, 22 with viral
infection, 7 with Kawasaki disease, and 10 with severe sepsis (Table 1,
Fig. 1A). Children with MIS-C all had PCR-confirmed SARS-CoV-2
infection including 15 (56%)with theAlpha variant, 11 (41%)with theDelta
variant, and one (4%) with the Omicron variant. None had comorbidities.
Twenty-one of 27 (78%) presented with shock. Twenty-four (89%) were
admitted to intensive care unit or semi-intensive care unit, and 9 (33%)
received inotropes. Their blood samples for proteomics were collected
before or within 24 h of treatment initiation. In nine of 27 (33%) patients,
therapy with intravenous immunoglobulin was initiated before the blood
samplewas collected. Seven patients withMIS-Chad additional samples for
proteomics collected on days 2–4 after treatment initiation, and nine had
additional samples collected when fully recovered a median of 39 days
(19–76) following the diagnosis of MIS-C. All bacterial febrile controls had
urinary tract infection confirmed by positive urine dipstick and urine cul-
ture with Escherichia coli. Viral controls had fever, proven viral detection in
nasopharyngeal specimen, and C-reactive protein below 25mg/L (Table 1).
There were no deaths in any of the groups.

Plasma proteins in children with MIS-C compared to controls
The data set used to identify differences in protein levels included patients
with MIS-C, febrile controls with viral and bacterial infections, Kawasaki
disease, and severe sepsis (Fig. 1a).We identified 450 plasma proteins across
all plasma samples in the initial proteomic analysis (Fig. 1b, c). Three
samples were excluded due to low numbers ofmeasurable proteins, all from
children with sepsis (Fig. 1d). After data quality assessment, 245 proteins
were selected for further analysis. Further, 66 proteins related to therapy
with intravenous immunoglobulin were excluded resulting in a total of 179
proteins in the final dataset (source data file: Supplementary Data 1).
Overall, proteomic data separated disease categories as visualized by the
uniformmanifold approximation andprojection (UMAP)plot (Fig. 2a) and
the unsupervised heatmap (Fig. 2b), which both revealed a high correlation
in childrenwithMIS-C.A total of 105proteinswere significantly different in
children with MIS-C compared to febrile controls, Kawasaki disease, and
severe sepsis (Fig. 2c; Table 2). Figure 2d displays the overlap between
significant proteins findings in MIS-C patients compared to the control
groups combined or to each of the control groups separately (Supplemen-
tary Data 2).

Most proteins with significantly different levels between children with
MIS-C and controls could be categorized into four groups: (1) Immuno-
logical response, (2) coagulation, (3) cell death and cell growth, and (4) lipid

profile (Table 2). Immunological response: Plasma proteins involved in the
immunological response included elevated lymphocyte cytosolic protein 1
and Fc Gamma Receptor IIIa, both involved in adaptive immune response,
as well as several elevated acute phase reactants including alpha-1-
antichymotrypsin. Further, proteins playing a role in the innate immune
response were significantly different in children with MIS-C, such as
decreased levels of peptidoglycan recognition protein 2, and increased levels
of several complement factors (Table 2). Coagulation: Numerous
coagulation-related proteins differed significantly in children with MIS-C
with reduced coagulation factors XII and XIII, increased procoagulants
fibrinogen andVonWillebrand Factor, and reduced anticoagulants, among
others antithrombin, protein C, and platelet factor 4. Children with MIS-C
also had different levels of proteins related to the recruitment and activation
of platelets.Cell death and growth: The levels of actin B, extracellular matrix
protein 1, fibronectin, and other proteins implicated in cell and tissue
remodeling were affected inMIS-C. Lipid profile: Finally, the lipid profile in
children with MIS-C was different from febrile controls with reduced
apolipoproteins A, C, and H, and elevated apolipoproteins E and F.

Unsupervised protein-protein co-expression network analyses, guided
by machine learning, revealed eight clusters of proteins (Fig. 2e). These co-
expression clusters elucidated interactions between apolipoproteins and
proteins involved in the immune response (clusters 0, 1, and 2), proteins
participating in the complement cascade (cluster 3), proteins involved in
coagulation (cluster 4), proteins playing a role in oxygen transport (cluster
6), and proteins impacting platelet function (cluster 7). Cluster 5 was
composed of heterogeneous proteins related to coagulation, inflammation,
and liver function. The proteins that differed significantly in children with
MIS-C were explored by unbiased pathway enrichment analyses and
revealed15 biological pathways, also primarily involving (1) immunological
responses, (2) coagulation, (3) cell death and cell growth, and (4) platelet
activation (Fig. 2f).

Diagnostic classifier for MIS-C using machine learning
The data set used to develop a diagnostic signature for MIS-C included
children with MIS-C and febrile controls with viral and bacterial infections
(Fig. 3a). All 12 machine-learning algorithms, except one, had Matthews
Correlation Coefficient (MCC) and area under the curve (AUC) between
0.77-1 (Fig. 3b). We continued the subsequent analysis with the support
vector classification (SVC) model that had an AUC andMCC of 100% and
1, respectively (Fig. 3b). Recursive feature elimination revealed that only
four proteins were necessary to obtain a high predictive performance
(Fig. 3c). The four selected proteins were lymphocyte cytosolic protein 1, Fc
GammaReceptor IIIa, alpha-1-antichymotrypsin andbutyrylcholinesterase
(Table 2; Fig. 3e, Supplementary Data 3).

Validation of the 4-protein diagnostic signature
When the 4-protein diagnostic signature was applied to the test set, anAUC
of 100% was achieved (Fig. 3f). The median prediction probability was
83.0% (IQR 11.8) for the patients with MIS-C at the acute stage, 9.1% (IQR
6.0) for viral infections, and 12.2% (IQR 7.1) for bacterial infections (Fig. 3d,
Supplementary Data 4). When applying the 4-protein diagnostic signature
on the internal validation cohorts, includingMIS-C patients on days 2–4 of
treatment initiation, fully recovered MIS-C patients, Kawasaki disease and
severe sepsis, the combined AUC was 93.4% (95% CI 92.1–94.7). Children
with MIS-C, who had received immunomodulating therapy for 2–4 days,
had amedian prediction probability of 87.7% (IQR 9.3), while childrenwho
had recovered fully afterMIS-C had amedianMIS-C prediction probability
of 7.3% (IQR 1.5) (Fig. 3d, Supplementary Data 4). Children with severe
sepsis and Kawasaki disease had a median prediction probability of 20.7%
(IQR 13.1) and 55.8% (IQR 43.7), respectively.

To evaluate the generalizability of AI-based proteomic prediction of
MIS-C, an external U.S. validation cohort of 25 childrenwithMIS-C and 34
healthy controls was investigated (Fig. 3a). As the proteins used in our
4-protein signaturewere notmeasured in the external cohort, the 28 plasma
proteinsmeasured in both studies were used to assess the validity of our AI-
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based approach for MIS-C diagnostics. The new support vector classifica-
tion model including the 28 proteins had a high prediction performance
with an AUC of 86.7% (95% CI 79.7-93.7) (Fig. 3f).

Discussion
In this study, we employed AI to complex proteomics data to develop a
diagnostic signature for children with MIS-C and explore the underlying
biologicalmechanisms of the disease. The performance ofmultiplemachine
learning algorithms revealed that MIS-C could be discriminated from
childrenwith bacterial and viral infections as we identified a highly accurate
diagnostic signature with anAUCof 100% based on only four proteins. The
4-protein diagnostic signature holds promising avenues for developing a
rapid, and low-cost, diagnostic bedside test with important implications for
early recognition and targeted treatment. Further, we found proteomics to
be a powerful and unbiased tool for assessing disease pathogenesis in chil-
dren with MIS-C. AI could extract intricate protein patterns, beyond the
reach of traditional methods, which indicated MIS-C as a condition with
immune dysregulation closely linked to changes in apolipoproteins, global
hypercoagulability, and high cell and tissue remodeling.

Thediagnosis ofMIS-C is basedonclinicalmanifestations andelevated
acute phase reactants, such as C-reactive protein, which are often indis-
tinguishable from awide range of other diseases11,12. The lack of a diagnostic
test has resulted in delays with targeted immunomodulating treatment and

unnecessary courses of broad-spectrum antibiotics. The diagnostic sig-
nature found in this studywas based on only four plasma proteins, of which
three were involved in the immune response. Applying the machine
learning technique, recursive feature selection, revealed that these four
plasma proteins, among a total of 179, were sufficient to differentiateMIS-C
from other febrile conditions. Few patients with septic shock and Kawasaki
disease were overlapping, reflecting the possible shared pathophysiological
features between these conditions. The 4-protein diagnostic signature had
high accuracy in children with MIS-C 2–4 days following initiation of
immunomodulating therapy. This demonstrates its robustness to delayed
sample collection and partial clinical recovery. While we could not validate
our 4-protein signature on the external U.S. validation cohort (as those four
proteins were not part of their protein panel), we successfully demonstrated
the validity of our AI-based approach for MIS-C diagnostics, as the new
support vector classificationmodel, using different proteins, also achieved a
high diagnostic accuracy ofMIS-C. During our algorithm selection, we also
found that several models, including different proteins, had high AUCs.
This supports that several proteinsmay be used for anMIS-C signature and
emphasizes proteomics as a very powerful tool for MIS-C diagnostics.

Previously, a 3-protein signature has been shown to distinguishMIS-C
patients from other disease controls with an AUC of 86% in a study
investigating seven host proteins16. Additionally a diagnostic signature
based on a 5-gene blood RNA expression signature for MIS-C has been

Table 1 | Characteristics of patients with MIS-C and febrile controls

MIS-C Febrile controls Kawasaki disease Severe sepsisb

Acute stage During admission Full recovery Bacteriala Viralb

No. of patients 27 7 9 28 22 7 10

Sex (males/females) 14/13 3/4 3/6 3/25 10/12 6/1 5/5

Age, years 9 (5–15) - - 9 (4–15) 11 (6–15) 2 (1–4) 4 (1–11)

Blood sample collection (dayd) 0 (-2–0) 3 (2–4) 39 (19–76) 0 (0–5) 0 (0–1) 1 (0–18) 0 (0–2)

Clinical characteristicse

Hypotension 21 (78%) 0 0 0 0 0 3 (30%)

Cardiac involvement 27 (100%) - - 0 0 0 1 (10%)

Gastrointestinal involvement 25 (93%) - - 0 0 0 2 (20%)

Hematologic involvement 27 (100%) - - 0 0 0 1 (10%)

Dermatologic involvement 25 (93%) - - 0 0 7 (100%) 3 (30%)

Neurologic involvement 0 - - 0 0 0 2 (20%)

Respiratory involvement 7 (26%) - - 0 0 0 5 (50%)

Renal involvement 13 (48%) - - 0 0 0 0

C-reactive protein (mg/L, max) 219 (84-402) 87 (83-202) <10 110 (44–307) 5 (0–13) 169 (50–324) 285 (194–356)

Treatment

Antibiotic therapy 26 (96%) - - 28 (100%) 5 (23%) 7 (100%) 12 (100%)

Inotropes 9 (33%) 2 (20%)

Immunoglobulins 24 (89%) - - - - 7 (100%) 0 (0%)

Glucocorticoids 24 (89%) - - - - 2 (29%) 0 (0%)

Anakinra 10 (37%) - - - - 0 (0%) 0 (0%)

Intensive Care Unit 24 (89%) 4 (40%)

Length of hospital stay
(days, range)

6 (3-13) - - 1 (0–9) 0 (0–4) 6 (3–14) 8 (2–21)

Data are given as median (ranges) or proportions.
a Bacterial infection included children with proven urinary tract infections
b Viral controls had fever, proven viral detection in nasopharyngeal specimen, and C-reactive protein below 25mg/L
c Children with severe sepsis had blood cultures withNeisseria meningitidis (N = 2), Group A Streptococcus (N = 1), S aureus (N = 1), andGroup B Streptococcus (N = 2), andH. influenzaemeningitis (N = 1)
and perforated appendicitis (N = 2) (E coli and Klebsiella)
d The day following treatment initiation (MIS-C) or hospital admission (febrile controls), where the blood sample was collected.
e Organ system involvement was defined according to the CDC with the following criteria: (1) Cardiac involvement, e.g. elevated troponin and/or N-terminal pro B-type natriuretic peptide, abnormal
echocardiogram, or arrhythmia; (2) respiratory involvement, e.g. pneumonia, acute respiratory distress syndrome, or pulmonary embolism; (3) renal involvement, i.e. acute kidney injury or renal failure; (4)
gastrointestinal involvement, e.g. abdominal pain, vomiting, diarrhea, elevated liver enzymes, ileus, gastrointestinal bleeding; (5) neurologic involvement, i.e. seizure, stroke or aseptic meningitis; (6)
hematologic involvement, i.e. thrombophilia or thrombocytopenia, elevated D-dimers, and/or (7) dermatologic involvement, e.g. erythroderma, mucositis, other rashes. Shock was defined as persistent
blood pressure below the five percentile, according to age
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reported17. It was validated with an RT-qPCR assay and revealed a high
diagnostic accuracy. Collectively, these results suggest that MIS-C has dis-
tinct host responses detectable by both transcriptomics and proteomics,
whichmay be suitable for innovative diagnostic tests. However, a diagnostic
test based on few plasma proteins may reveal a faster result and may be
cheaper to implement in clinical medicine as a routine laboratory analysis.

The pathogenesis ofMIS-Cwas explored using the extensive proteome
dataset obtained by unbiased mass spectrometry, which revealed global
changes inmechanisms and pathways involved in the pathogenesis ofMIS-
C. Immunedysregulationwas indicatedby the increased levels of proteins in
multiple pathways leading to hyperinflammation, including both the innate
and adaptive immune response, as described in previous studies18–20. Con-
sistently, threeof the four proteins in the identified 4-protein signature,were

involved in immune dysregulation: Alpha-1-antichymotrypsin is involved
in complement activation, while Fc Gamma Receptor IIIa is involved in
antibody-dependent cellular toxicity. Further, lymphocyte cytosolic protein
1, which was elevated, indicated activation of T-cells, supporting the
hypothesis of a super-antigen-mediated polyclonal T-cell activation21. The
last protein in the 4-protein signature was butyrylcholinesterase, which
hydrolyzes choline esters and was reduced. The significance of this protein
in the pathogenesis of MIS-C is unknown.

We found profound changes in lipid metabolism, consistent with
previous studies22,23 Lipid mediators have been described to be involved in
vasodilation and increased vascular permeability24, a frequent and severe
clinical manifestation ofMIS-C6. Further, the unsupervised protein-protein
co-expression network analyses conducted by machine learning indicated
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Fig. 1 | Patient overview and proteomics workflow. a Overview of the number of
samples included in our study distributed on different diagnostic groups.
b Laboratory and analytical workflow involving sample preparation of plasma using
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system and tandem mass spectrometry by Exploris 480 Thermo Fischer Scientific
system. Data analysis was performed by Spectronaut processing of raw mass-
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Graph in a Jupyter Python environment. Created with Adobe Illustrator software

and Biorender.com. c Dynamic range of the 450 proteins measured by liquid
chromatography. Proteins are ranked by abundance and colored by missingness
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an intricate connection between apolipoproteins and immune dysregula-
tion, which may be due to the function of lipids as proinflammatory
mediators, as described in other conditions25. It suggests MIS-C as an
immunometabolic condition26. Alterations in numerous coagulation factors
with elevated procoagulants, reduced anticoagulants, and impaired

fibrinolysis point towards a global hypercoagulability and may explain the
risk of thrombosis in children with MIS-C27. Overall, our results align with
those of a previous study, which also reported upregulated Fc Gamma
Receptor IIIa, immune and complement activation and reduced lipid
transport and clearance mechanisms28. Furthermore, our results were
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consistent with studies exploring single coagulation factors or coagulation
profiles29,30. The significant alterations in proteins related to cell growth, cell
death, and/or cell remodeling in childrenwithMIS-Careunprecedentedbut
align with the profound dysregulation of cellular and immunological pro-
cesses and the multiorgan nature of the disease3,6. These results serve as a
proof-of-concept of AI-assisted proteomics in exploring disease mechan-
isms of new diseases, or complex diseases not yet fully comprehended.

This studyhas several limitations. First, while the quality and size of the
dataset were sufficient to develop a diagnostic signature, the size of our
validation cohort was too small to identify significant protein changes
between children with MIS-C and Kawasaki disease. Second, there is a
possibility of spurious findings, unrelated to MIS-C, in our large proteome
dataset, as we were unable to explain the function of all significantly altered
proteins. AsAI techniquesmodel complex data patterns, understanding the
precise features influencing the predictions can be challenging. Never-
theless, the disease mechanisms we discovered are supported by clinical
correlations and the existing knowledge of the disease pathogenesis and
pathophysiology. Third, we were unable to validate the 4-protein signature
from external validation cohorts, as studies including those four proteins
have not been published. Further, the decline in the incidence of MIS-C
during the Omicron era refrained us from validating the accuracy of the
4-protein signature in a prospective MIS-C cohort. Finally, the MIS-C
decline could challenge the relevance of our findings. However, as a resur-
gence of MIS-C remains possible with new variants and waning vaccine-
induced immunity, we find that continuous investigation of this severe and
potentially life-threatening disease is important.

In conclusion, we harnessed the power of AI to explore complex
proteomic data from childrenwithMIS-C, a condition that remains elusive.
The study demonstrated the potential of proteomics to impact pediatric
disease trajectories through early diagnosis as we identified a 4-protein
diagnostic signature that was accurate in distinguishing MIS-C from chil-
dren with phenotypically similar diseases. We provided a global char-
acterization of proteomic changes in the pathogenesis of MIS-C,
emphasizing AI-assisted proteomics as a powerful and unbiased tool for
assessing disease pathogenesis and potentially paving the way for more
efficient future interventions.

Methods
This nationwide population-based study prospectively included patients
aged 0–17 years withMIS-C from all 18Danish pediatric departments from
April 1, 2020 toMarch 15, 20226,10. Patientsmet the US Centers for Disease
Control and PreventionMIS-C case definition. Febrile controls consisted of
children with viral and bacterial infections. Patients with Kawasaki, and
severe sepsis were enrolled from January 1, 2019, to December 31, 2019,
before the COVID-19 pandemic. Children with Kawasaki disease met
American Heart Association criteria for complete or incomplete disease.
Two pediatric infectious disease specialists adjudicated the final diagnosis
for all patients when testing results and clinical outcomes were known.

Sample size calculations were not performed due to the exploratory
nature of the study.

Patients were recruited under approval by the research ethics com-
mittees of the Ethics Committee of Capital Region of Denmark (H-
20028631) and the Danish Data Protection Agency (P-2019-29). Informed
oral and written parental consent was provided before participation. All
ethical regulations relevant to human research participants were followed.
The study was registered at ClinicalTrials.gov, NCT05334134.

Liquid chromatography mass spectrometry data analysis
Venous blood samples were collected into EDTA-containing tubes, spun at
3000 g for 10min at 4 °C within 2 h, and stored at -80 °C. Sample pre-
paration for proteomic analysis was performed as previously published31.
Samples were analyzed using an Exploris 480 Thermo Fischer Scientific
system by Evosep One (Evosep Biosystem, Denmark) and proteomic data
were acquired in a data-independent acquisition mode. Proteins related to
therapy with intravenous immunoglobulin, including heavy-chains, light-
chains, j-chains and variable regions, were excluded32. The mass spectro-
metry raw files were processed with Spectronaut version 17 (Biognosys,
Zurich, Switzerland). A previously generated plasma spectral library con-
taining 2137 protein groups and 16,254 peptides was used.

Statistics and reproducibility
Data was processed using the Clinical Knowledge Graph and Jupyter
Notebook33. In short, protein intensities were log-transformed, a stringent
filter for missingness was applied (>70% completeness across all samples
and at least 50%within each group), andmissing valueswere imputedbased
on a downshifted normal distribution. Sample quality was assessed as
described previously34. Batch correction was performed with Clinical
KnowledgeGraph (pyCombat) to ensure that the plate a sample was run on
would not affect downstream results. Unpaired t-tests were used to identify
proteins with significantly different levels between the cohorts. Multiple
hypothesis correction was applied using the Benjamini-Hochberg method,
with adjusted P-values < 0.05 considered statistically significant.

UMAPwasperformed to illustrate the underlying structure of the data.
The UMAP plot reduces the multidimensional proteomic data into two
dimensions, thereby allowing the separation of patient group by visual
interpretation. Hierarchical clustering using Pearson correlation distance
was used to compute a sample correlation heatmap. Both the UMAP and
heatmap of Pearson correlations were unsupervised, meaning that the
grouping of individuals was based on the proteomic data alone and not
informed by disease grouping. Volcano plots were used to visualize plasma
proteins that differed significantly between MIS-C and controls. Gene
Ontology Biological Process enrichment analysis was performed to identify
the enrichment of biological processes based on a set of significantly dif-
ferent proteins. Protein-protein co-expression clusters were identified with
Clinical Knowledge Graph by Spearman correlation analysis, followed by
Louvain network clustering. The clusters were visualized using Cytoscape35.

Fig. 2 | Differences in protein levels between MIS-C and controls. a Uniform
manifold approximation and projection (UMAP) analysis of proteomic data from
each patient. The diagnostic groups are shown by different colors. b An unsu-
pervised heatmap of Pearson correlations between each pair of proteome samples.
The color scale represents Pearson correlation values with light colors indicating
values close to 1 and dark values close to 0.75. Hierarchical clustering of the samples
is shown on the top and left side of the heatmap, where the diagnostic group of each
sample is represented by different colors. c A volcano plot showing proteomic
differences betweenMIS-C and febrile controls. Each point represents a protein. The
x-axis represents log2 fold change, and the y-axis represents the log10 (p-value). The
dashed line represents the statistical significance threshold after adjusting for mul-
tiple testing. Proteins that were increased in MIS-C patients compared to febrile
controls are shown in red, such as C-reactive protein and Fc Gamma Receptor IIIa
(FCGR3A). Proteins that were decreased in MIS-C are shown in blue, including
platelet factor 4 (PF4) and pro-platelet basic protein (PPBP). Proteins that did not
differ significantly in MIS-C are shown in gray. Proteins marked with a name were

both significant and had a high log2 fold change (>1 or <−1). d A Venn diagram
illustrating the overlap of proteins that were statistically different when MIS-C
protein levels were compared to those of each febrile condition or febrile controls
combined. For example, 59 significant proteins overlapped between all comparisons
except severe sepsis. No proteins differed betweenMIS-C andKawasaki disease after
adjusting for multiple testing. e Protein-protein network based on the proteins with
significantly different levels in MIS-C compared to febrile controls. The network is
based on the Spearman correlation of protein levels followed by Louvain clustering.
As an example, cluster 7 illustrates three platelet-related proteins, platelet factor 4
(PF4), pro-platelet basic protein (PPBP), and thrombospondin-1 (THBS1), with
significantly lower protein levels in MIS-C patients compared to febrile controls.
f Gene ontology biological processes enrichment analysis of proteome data identi-
fied 15 biological pathways affected in MIS-C patients compared to febrile controls.
The red color illustrates an upregulated pathway and the blue a downregulated
pathway. The x-axis shows the order of statistical strength by adjusted p-value to
the log10.
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Supervisedmachine learning analysis was performed to investigate the
feasibility of a diagnostic signature for MIS-C. Our dataset including chil-
dren withMIS-C and febrile controls with viral and bacterial infections was
divided into a training set (80%) formodel development and a test set (20%)
for model validation in a 5-fold cross-validation scheme. Each set had the
same ratio ofMIS-C and febrile control samples. Z-scored data (mean 0 and
standard deviation 1 within each sample) was used as input. MIS-C

diagnosis (yes/no) was used as the classification target. Twelve different
machine-learning algorithmswere investigated. A finalmodel was based on
a hyperparameter search (random grid search specific to each algorithm)
and recursive feature elimination (only for models with a feature impor-
tance attribute) combined with 5-fold cross-validation to identify the bal-
ancepoint betweenaminimal combinationof proteins andahighpredictive
performance. Model selection was based on the highest prediction

Table 2 | Plasma protein alterations in children with MIS-C

Protein name Protein symbol Level Protein description

Immune response

Adaptive immune response

Lymphocyte Cytosolic Protein 1a LCP1 ↑ Activates T-cells in response to co-stimulation through TCR/CD3 and
CD2 or CD28.

Fc Gamma Receptor IIIaa FCGR3A (CD16a) ↑ Cell surface receptor that binds antigen-IgGcomplexes and triggers antibody-
dependent cellular cytotoxicity

Beta-2-microglobulin B2M ↑ Acomponentof theMHCclass Imolecule,whichpresents antigen tocytotoxic
T cells

Fc ɣ Binding Protein FCGBP ↑ Interacts with the Fc portion of immunoglobulin G

Acute phase reactants

Alpha-1-antichymotrypsina, C-reactive protein, oroso-
mucoid, serum amyloid, haptoglobin

SERPINA3
CRP, ORM1/2,
SAA1, HP

↑ Acute phase reactants promote, among others, inflammation, facilitate pha-
gocytosis, and activate the complement system

Innate immune response

Peptidoglycan Recognition Protein 2 PGLYRP2 ↓ Recognizes peptidoglycan and triggers the release of pro-inflammatory
molecules

Glycoprotein CD14 CD14 ↑ CD14 is a co-receptor for Toll-like receptors (TLRs), which increases pro-
inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) and
interleukin-1 beta (IL-1β)

Complement factors C1QB, C1S,C2, C4BPB,
C4B, C9, CFI

↑ Activation of the classical complement pathway leads to a widespread
inflammatory response

Ficolin 2 FCN2 ↑ Alternative complement factors

Coagulation

Coagulation factors F12, F13A1, F13B ↓ Procoagulants: F12 initiates coagulation and F13 converts fibrinogen to fibrin

F10, F11 ↑ Procoagulants: Key components in the coagulation cascade

Fibrinogen FG ↑ Procoagulant: When converted to fibrin by thrombin

Von Willebrand Factor vWF ↑ Procoagulant: Aggregates platelets and activates FVIII

Antithrombin SERPINC1 ↓ Anticoagulant. Inhibits thrombin and several coagulation factors

Protein C PROC ↓ Anticoagulant: Inhibits FV & FVIII, and thrombin

Heparin Cofactor II SERPIND1 ↓ Anticoagulant: Inhibits thrombin

Platelet factor 4 PF4 ↓ Anticoagulant: Neutralizes heparin

Kallikrein KLKB1 ↓ Anticoagulant: Activates plasminogen to plasmin through bradykinin

Plasminogen PLG ↓ Initiates fibrinolysis (dissolution of thrombus)

Thrombospondin-1 THBS1 ↓ Initiates platelet activation and aggregation

Pro-platelet basic protein PPBP ↓ Recruit other platelets

Cell death and cell growth

Actin B ACTB ↓ A key component of the cytoskeleton

Extracellular matrix protein 1 ECM1 ↓ Participates in tissue repair and angiogenesis

Fibronectin FN1 ↓ Facilitates tissue remodeling

Clusterin CLU ↓ Involved in tissue remodeling and has anti-apoptotic effects

Lipid metabolism

Apolipoproteins APOE, APOF ↑ The major component of high-density lipoprotein

Apolipoproteins APOA, APOC1,
APOC3, APOH

↓ Components of high-density lipoprotein (HDL) and very-low-density lipopro-
tein (VLDL)

Others

Butyrylcholinesterasea BCHE ↓ Hydrolyzes choline esters
aProteins in the 4-protein diagnostic signature
↓ Indicate reduced protein levels in MIS-C compared to controls; ↑ indicates increased protein levels in MIS-C compared to controls.
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performance using the area under the receiver operating characteristic
curve, AUC andMCC. Prediction probabilities were calibrated for the final
model. Machine learning analyses and model calibration were performed
using Python (3.7.9) in combinationwith the scikit-learn (sklearn) library36.
Analyses were performed using the scikit-learn (sklearn) Python library.

Theperformance of thedevelopedmodelwas tested onboth the test set
and internal validation cohorts including Kawasaki disease, severe sepsis,
and children with MIS-C, both during partial and full recovery. The model
was also tested on an external validation cohort from the Proteomics
IdentificationsDatabase (PRIDE) consisting of 22 childrenwithMIS-C and
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25 healthy controls (PXD029375)37. Data were z-scored (sample-wise) and
only proteins found in both cohorts were used as features in the model. We
used the same algorithm type and hyperparameters as the previous model,
but the model was refitted with the new input consisting of the protein
overlap between the two cohorts. Themodel was trained on our training set
and applied to the test set and the external validation cohort.

The performance metrics used included theMCC, AUC, ROC curves,
the distribution of prediction probabilities, and confusion matrices.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The mass spectrometry proteomics data have been deposited to the Pro-
teomeXchange Consortium via the Proteomics Identifications Database
(PRIDE) partner repository38, with the dataset identifier PXD045661. The
source data behind the graphs in the paper can be found in Supplementary
Data 1-4.

Code availability
The jupyter notebooks are available at https://github.com/nicwin98/MIS-C.
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