communications biology

Article

https://doi.org/10.1038/s42003-024-06370-8

Proteomic profiling reveals diagnostic
signatures and pathogenic insights In
multisystem inflammatory syndrome in

children

% Check for updates

Ulrikka Nygaard ® 2"

, Annelaura Bach Nielsen®'!, Kia Hee Schultz Dungu® '?, Lylia Drici®?,

Mette Holm*, Maud Eline Ottenheijm?®, Allan Bybeck Nielsen ® '°, Jonathan Peter Glenthgj°®,
Lisbeth Samsg Schmidt?’, Dina Cortes®’, Inger Merete Jargensen®®, Trine Hyrup Mogensen ®8,
Kjeld Schmiegelow'?, Matthias Mann®®°, Nadja Hawwa Vissing''? & Nicolai J. Wewer Albrechtsen ® 31

Multisystem inflammatory syndrome in children (MIS-C) is a severe disease that emerged during the
COVID-19 pandemic. Although recognized as an immune-mediated condition, the pathogenesis
remains unresolved. Furthermore, the absence of a diagnostic test can lead to delayed
immunotherapy. Using state-of-the-art mass-spectrometry proteomics, assisted by artificial
intelligence (Al), we aimed to identify a diagnostic signature for MIS-C and to gain insights into disease
mechanisms. We identified a highly specific 4-protein diagnostic signature in children with MIS-C.
Furthermore, we identified seven clusters that differed between MIS-C and controls, indicating an
interplay between apolipoproteins, immune response proteins, coagulation factors, platelet function,
and the complement cascade. These intricate protein patterns indicated MIS-C as an
immunometabolic condition with global hypercoagulability. Our findings emphasize the potential of
Al-assisted proteomics as a powerful and unbiased tool for assessing disease pathogenesis and
suggesting avenues for future interventions and impact on pediatric disease trajectories through early

diagnosis.

Multisystem inflammatory syndrome in children (MIS-C) is a severe, life-
threatening, immunological condition that occurs weeks after infection with
SARS-CoV-2"*. Although MIS-C is established as an immunological dys-
regulation leading to cytokine storm’, the underlying pathogenesis remains
unresolved'. The incidence of MIS-C was approximately one in 3000 chil-
dren infected with SARS-CoV-2 during the pre-Omicron waves, while the
incidence decreased substantially as the Omicron variants became
dominating™. This decrease has been attributed to a reduced ability of

Omicron to trigger hyperinflammation, as the Omicron variant is phylo-
genetically distinct from the pre-Omicron variants with enhanced immune
escape’. Further, vaccination has been shown to decrease the incidence of
MIS-C*". Still, sporadic MIS-C cases occur, and resurgence of MIS-C is
possible with waning vaccine-induced immunity and novel variants of
SARS-CoV-2.

Children with MIS-C present with fever and multiorgan involvement,
including  mucocutaneous,  gastrointestinal, and  cardiovascular
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involvement, often accompanied by circulatory shock"*". The condition can
be misinterpreted as sepsis, abdominal emergencies, and Kawasaki
disease'""”. Thus, the lack of a diagnostic test for MIS-C can lead to delayed
lifesaving immunomodulating therapy and prolonged unnecessary courses
of broad-spectrum antibiotics.

To address this diagnostic challenge host-specific innovative omics
methodologies have been suggested’. Proteomics can provide a compre-
hensive unbiased approach that investigates hundreds of plasma proteins
simultaneously"”. Proteomics has the potential to identify plasma proteins
useful as diagnostic markers and explore disease mechanisms as circulating
plasma proteins are markers of whole-body metabolic processes'’. Due to
recent technological improvements in proteomics pipelines, a compre-
hensive system-wide approach has become feasible'*. However, a limitation
of utilizing novel omics approaches is the interpretation of large amounts of
complex data and the translation of this information into clinical medicine.
This limitation may be surpassed by employing artificial intelligence (AI)-
based techniques, which offer a powerful avenue for analyzing compre-
hensive unbiased proteomic data.

We employed Al-assisted proteomics to develop a unique diagnostic
signature for children with MIS-C and to gain insight into the underlying
disease mechanisms.

Results

We enrolled 94 children, including 27 cases with MIS-C and 67 febrile
controls consisting of 28 children with bacterial infection, 22 with viral
infection, 7 with Kawasaki disease, and 10 with severe sepsis (Table 1,
Fig. 1A). Children with MIS-C all had PCR-confirmed SARS-CoV-2
infection including 15 (56%) with the Alpha variant, 11 (41%) with the Delta
variant, and one (4%) with the Omicron variant. None had comorbidities.
Twenty-one of 27 (78%) presented with shock. Twenty-four (89%) were
admitted to intensive care unit or semi-intensive care unit, and 9 (33%)
received inotropes. Their blood samples for proteomics were collected
before or within 24 h of treatment initiation. In nine of 27 (33%) patients,
therapy with intravenous immunoglobulin was initiated before the blood
sample was collected. Seven patients with MIS-C had additional samples for
proteomics collected on days 2-4 after treatment initiation, and nine had
additional samples collected when fully recovered a median of 39 days
(19-76) following the diagnosis of MIS-C. All bacterial febrile controls had
urinary tract infection confirmed by positive urine dipstick and urine cul-
ture with Escherichia coli. Viral controls had fever, proven viral detection in
nasopharyngeal specimen, and C-reactive protein below 25 mg/L (Table 1).
There were no deaths in any of the groups.

Plasma proteins in children with MIS-C compared to controls
The data set used to identify differences in protein levels included patients
with MIS-C, febrile controls with viral and bacterial infections, Kawasaki
disease, and severe sepsis (Fig. 1a). We identified 450 plasma proteins across
all plasma samples in the initial proteomic analysis (Fig. 1b, c). Three
samples were excluded due to low numbers of measurable proteins, all from
children with sepsis (Fig. 1d). After data quality assessment, 245 proteins
were selected for further analysis. Further, 66 proteins related to therapy
with intravenous immunoglobulin were excluded resulting in a total of 179
proteins in the final dataset (source data file: Supplementary Data 1).
Overall, proteomic data separated disease categories as visualized by the
uniform manifold approximation and projection (UMAP) plot (Fig. 2a) and
the unsupervised heatmap (Fig. 2b), which both revealed a high correlation
in children with MIS-C. A total of 105 proteins were significantly different in
children with MIS-C compared to febrile controls, Kawasaki disease, and
severe sepsis (Fig. 2c; Table 2). Figure 2d displays the overlap between
significant proteins findings in MIS-C patients compared to the control
groups combined or to each of the control groups separately (Supplemen-
tary Data 2).

Most proteins with significantly different levels between children with
MIS-C and controls could be categorized into four groups: (1) Immuno-
logical response, (2) coagulation, (3) cell death and cell growth, and (4) lipid

profile (Table 2). Immunological response: Plasma proteins involved in the
immunological response included elevated lymphocyte cytosolic protein 1
and Fc Gamma Receptor IIla, both involved in adaptive immune response,
as well as several elevated acute phase reactants including alpha-1-
antichymotrypsin. Further, proteins playing a role in the innate immune
response were significantly different in children with MIS-C, such as
decreased levels of peptidoglycan recognition protein 2, and increased levels
of several complement factors (Table 2). Coagulation: Numerous
coagulation-related proteins differed significantly in children with MIS-C
with reduced coagulation factors XII and XIII, increased procoagulants
fibrinogen and Von Willebrand Factor, and reduced anticoagulants, among
others antithrombin, protein C, and platelet factor 4. Children with MIS-C
also had different levels of proteins related to the recruitment and activation
of platelets. Cell death and growth: The levels of actin B, extracellular matrix
protein 1, fibronectin, and other proteins implicated in cell and tissue
remodeling were affected in MIS-C. Lipid profile: Finally, the lipid profile in
children with MIS-C was different from febrile controls with reduced
apolipoproteins A, C, and H, and elevated apolipoproteins E and F.

Unsupervised protein-protein co-expression network analyses, guided
by machine learning, revealed eight clusters of proteins (Fig. 2e). These co-
expression clusters elucidated interactions between apolipoproteins and
proteins involved in the immune response (clusters 0, 1, and 2), proteins
participating in the complement cascade (cluster 3), proteins involved in
coagulation (cluster 4), proteins playing a role in oxygen transport (cluster
6), and proteins impacting platelet function (cluster 7). Cluster 5 was
composed of heterogeneous proteins related to coagulation, inflammation,
and liver function. The proteins that differed significantly in children with
MIS-C were explored by unbiased pathway enrichment analyses and
revealed 15 biological pathways, also primarily involving (1) immunological
responses, (2) coagulation, (3) cell death and cell growth, and (4) platelet
activation (Fig. 2f).

Diagnostic classifier for MIS-C using machine learning

The data set used to develop a diagnostic signature for MIS-C included
children with MIS-C and febrile controls with viral and bacterial infections
(Fig. 3a). All 12 machine-learning algorithms, except one, had Matthews
Correlation Coefficient (MCC) and area under the curve (AUC) between
0.77-1 (Fig. 3b). We continued the subsequent analysis with the support
vector classification (SVC) model that had an AUC and MCC of 100% and
1, respectively (Fig. 3b). Recursive feature elimination revealed that only
four proteins were necessary to obtain a high predictive performance
(Fig. 3c). The four selected proteins were lymphocyte cytosolic protein 1, Fc
Gamma Receptor II1a, alpha-1-antichymotrypsin and butyrylcholinesterase
(Table 2; Fig. 3e, Supplementary Data 3).

Validation of the 4-protein diagnostic signature

When the 4-protein diagnostic signature was applied to the test set,an AUC
of 100% was achieved (Fig. 3f). The median prediction probability was
83.0% (IQR 11.8) for the patients with MIS-C at the acute stage, 9.1% (IQR
6.0) for viral infections, and 12.2% (IQR 7.1) for bacterial infections (Fig. 3d,
Supplementary Data 4). When applying the 4-protein diagnostic signature
on the internal validation cohorts, including MIS-C patients on days 2-4 of
treatment initiation, fully recovered MIS-C patients, Kawasaki disease and
severe sepsis, the combined AUC was 93.4% (95% CI 92.1-94.7). Children
with MIS-C, who had received immunomodulating therapy for 2-4 days,
had a median prediction probability of 87.7% (IQR 9.3), while children who
had recovered fully after MIS-C had a median MIS-C prediction probability
of 7.3% (IQR 1.5) (Fig. 3d, Supplementary Data 4). Children with severe
sepsis and Kawasaki disease had a median prediction probability of 20.7%
(IQR 13.1) and 55.8% (IQR 43.7), respectively.

To evaluate the generalizability of Al-based proteomic prediction of
MIS-C, an external U.S. validation cohort of 25 children with MIS-C and 34
healthy controls was investigated (Fig. 3a). As the proteins used in our
4-protein signature were not measured in the external cohort, the 28 plasma
proteins measured in both studies were used to assess the validity of our AI-
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Table 1 | Characteristics of patients with MIS-C and febrile controls

MIS-C Febrile controls Kawasaki disease  Severe sepsis®
Acute stage During admission Full recovery Bacterial® Viral®
No. of patients 27 7 9 28 22 7 10
Sex (males/females) 14/13 3/4 3/6 3/25 10/12 6/1 5/5
Age, years 9 (5-15) - - 9 (4-15) 11 (6-15) 2 (1-4) 4 (1-11)
Blood sample collection (day?) 0 (-2-0) 3 (2-4) 39 (19-76) 0(0-5) 0(0-1) 1(0-18) 0(0-2)
Clinical characteristics®
Hypotension 21 (78%) 0 0 0 0 0 3 (30%)
Cardiac involvement 27 (100%) - - 0 0 0 1(10%)
Gastrointestinal involvement 25 (93%) - - 0 0 0 2 (20%)
Hematologic involvement 27 (100%) - - 0 0 0 1(10%)
Dermatologic involvement 25 (93%) - - 0 0 7 (100%) 3 (30%)
Neurologic involvement 0 - - 0 0 0 2 (20%)
Respiratory involvement 7 (26%) = = 0 0 0 5 (50%)
Renal involvement 13 (48%) = = 0 0 0 0
C-reactive protein (mg/L, max) 219 (84-402) 87 (83-202) <10 110 (44-307) 5(0-13) 169 (50-324) 285 (194-356)
Treatment
Antibiotic therapy 26 (96%) - - 28 (100%) 5 (23%) 7 (100%) 12 (100%)
Inotropes 9 (33%) 2 (20%)
Immunoglobulins 24 (89%) - - - - 7 (100%) 0 (0%)
Glucocorticoids 24 (89%) - - - - 2 (29%) 0 (0%)
Anakinra 10 (837%) - - - - 0 (0%) 0(0%)
Intensive Care Unit 24 (89%) 4 (40%)
Length of hospital stay 6 (3-13) - - 1(0-9) 0(0-4) 6 (3-14) 8 (2-21)

(days, range)

Data are given as median (ranges) or proportions.
@ Bacterial infection included children with proven urinary tract infections

® Viral controls had fever, proven viral detection in nasopharyngeal specimen, and C-reactive protein below 25 mg/L
¢ Children with severe sepsis had blood cultures with Neisseria meningitidis (N = 2), Group A Streptococcus (N = 1), S aureus (N = 1), and Group B Streptococcus (N = 2), and H. influenzae meningitis (N = 1)

and perforated appendicitis (N = 2) (E coli and Klebsiella)

9 The day following treatment initiation (MIS-C) or hospital admission (febrile controls), where the blood sample was collected.

° Organ system involvement was defined according to the CDC with the following criteria: (1) Cardiac involvement, e.g. elevated troponin and/or N-terminal pro B-type natriuretic peptide, abnormal
echocardiogram, or arrhythmia; (2) respiratory involvement, e.g. pneumonia, acute respiratory distress syndrome, or pulmonary embolism; (3) renal involvement, i.e. acute kidney injury or renal failure; (4)
gastrointestinal involvement, e.g. abdominal pain, vomiting, diarrhea, elevated liver enzymes, ileus, gastrointestinal bleeding; (5) neurologic involvement, i.e. seizure, stroke or aseptic meningitis; (6)
hematologic involvement, i.e. thrombophilia or thrombocytopenia, elevated D-dimers, and/or (7) dermatologic involvement, e.g. erythroderma, mucositis, other rashes. Shock was defined as persistent

blood pressure below the five percentile, according to age

based approach for MIS-C diagnostics. The new support vector classifica-
tion model including the 28 proteins had a high prediction performance
with an AUC of 86.7% (95% CI 79.7-93.7) (Fig. 31).

Discussion

In this study, we employed Al to complex proteomics data to develop a
diagnostic signature for children with MIS-C and explore the underlying
biological mechanisms of the disease. The performance of multiple machine
learning algorithms revealed that MIS-C could be discriminated from
children with bacterial and viral infections as we identified a highly accurate
diagnostic signature with an AUC of 100% based on only four proteins. The
4-protein diagnostic signature holds promising avenues for developing a
rapid, and low-cost, diagnostic bedside test with important implications for
early recognition and targeted treatment. Further, we found proteomics to
be a powerful and unbiased tool for assessing disease pathogenesis in chil-
dren with MIS-C. AI could extract intricate protein patterns, beyond the
reach of traditional methods, which indicated MIS-C as a condition with
immune dysregulation closely linked to changes in apolipoproteins, global
hypercoagulability, and high cell and tissue remodeling.

The diagnosis of MIS-C s based on clinical manifestations and elevated
acute phase reactants, such as C-reactive protein, which are often indis-
tinguishable from a wide range of other diseases'"'*. The lack of a diagnostic
test has resulted in delays with targeted immunomodulating treatment and

unnecessary courses of broad-spectrum antibiotics. The diagnostic sig-
nature found in this study was based on only four plasma proteins, of which
three were involved in the immune response. Applying the machine
learning technique, recursive feature selection, revealed that these four
plasma proteins, among a total of 179, were sufficient to differentiate MIS-C
from other febrile conditions. Few patients with septic shock and Kawasaki
disease were overlapping, reflecting the possible shared pathophysiological
features between these conditions. The 4-protein diagnostic signature had
high accuracy in children with MIS-C 2-4 days following initiation of
immunomodulating therapy. This demonstrates its robustness to delayed
sample collection and partial clinical recovery. While we could not validate
our 4-protein signature on the external U.S. validation cohort (as those four
proteins were not part of their protein panel), we successfully demonstrated
the validity of our Al-based approach for MIS-C diagnostics, as the new
support vector classification model, using different proteins, also achieved a
high diagnostic accuracy of MIS-C. During our algorithm selection, we also
found that several models, including different proteins, had high AUCs.
This supports that several proteins may be used for an MIS-C signature and
empbhasizes proteomics as a very powerful tool for MIS-C diagnostics.
Previously, a 3-protein signature has been shown to distinguish MIS-C
patients from other disease controls with an AUC of 86% in a study
investigating seven host proteins'®. Additionally a diagnostic signature
based on a 5-gene blood RNA expression signature for MIS-C has been
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Fig. 1 | Patient overview and proteomics workflow. a Overview of the number of
samples included in our study distributed on different diagnostic groups.

b Laboratory and analytical workflow involving sample preparation of plasma using
semi-automated BRAVO robot as well as liquid chromatography using Evosep One
system and tandem mass spectrometry by Exploris 480 Thermo Fischer Scientific
system. Data analysis was performed by Spectronaut processing of raw mass-
spectrometry data followed by bioinformatic analysis with the Clinical Knowledge
Graph in a Jupyter Python environment. Created with Adobe Illustrator software
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and Biorender.com. ¢ Dynamic range of the 450 proteins measured by liquid
chromatography. Proteins are ranked by abundance and colored by missingness
across all samples. Named proteins illustrate the concentration range measured;
from highest abundant (albumin, ALB) to low abundant signaling molecules
(cathelicidin antimicrobial peptide, CAMP; adiponectin, ADIPOQ). d Histogram of
the number of proteins measured in each sample. Three samples were excluded
from further analysis due to low protein numbers (marked in pink).

reported”’. It was validated with an RT-qPCR assay and revealed a high
diagnostic accuracy. Collectively, these results suggest that MIS-C has dis-
tinct host responses detectable by both transcriptomics and proteomics,
which may be suitable for innovative diagnostic tests. However, a diagnostic
test based on few plasma proteins may reveal a faster result and may be
cheaper to implement in clinical medicine as a routine laboratory analysis.

The pathogenesis of MIS-C was explored using the extensive proteome
dataset obtained by unbiased mass spectrometry, which revealed global
changes in mechanisms and pathways involved in the pathogenesis of MIS-
C.Immune dysregulation was indicated by the increased levels of proteins in
multiple pathways leading to hyperinflammation, including both the innate
and adaptive immune response, as described in previous studies' . Con-
sistently, three of the four proteins in the identified 4-protein signature, were

involved in immune dysregulation: Alpha-1-antichymotrypsin is involved
in complement activation, while Fc Gamma Receptor IIla is involved in
antibody-dependent cellular toxicity. Further, lymphocyte cytosolic protein
1, which was elevated, indicated activation of T-cells, supporting the
hypothesis of a super-antigen-mediated polyclonal T-cell activation”’. The
last protein in the 4-protein signature was butyrylcholinesterase, which
hydrolyzes choline esters and was reduced. The significance of this protein
in the pathogenesis of MIS-C is unknown.

We found profound changes in lipid metabolism, consistent with
previous studies™* Lipid mediators have been described to be involved in
vasodilation and increased vascular permeability™, a frequent and severe
clinical manifestation of MIS-C°. Further, the unsupervised protein-protein
co-expression network analyses conducted by machine learning indicated
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an intricate connection between apolipoproteins and immune dysregula-  fibrinolysis point towards a global hypercoagulability and may explain the
tion, which may be due to the function of lipids as proinflammatory  risk of thrombosis in children with MIS-C”. Overall, our results align with
mediators, as described in other conditions™. It suggests MIS-C as an  those of a previous study, which also reported upregulated Fc Gamma
immunometabolic condition™. Alterations in numerous coagulation factors ~ Receptor Illa, immune and complement activation and reduced lipid
with elevated procoagulants, reduced anticoagulants, and impaired transport and clearance mechanisms™. Furthermore, our results were
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Fig. 2 | Differences in protein levels between MIS-C and controls. a Uniform
manifold approximation and projection (UMAP) analysis of proteomic data from
each patient. The diagnostic groups are shown by different colors. b An unsu-
pervised heatmap of Pearson correlations between each pair of proteome samples.
The color scale represents Pearson correlation values with light colors indicating
values close to 1 and dark values close to 0.75. Hierarchical clustering of the samples
is shown on the top and left side of the heatmap, where the diagnostic group of each
sample is represented by different colors. ¢ A volcano plot showing proteomic
differences between MIS-C and febrile controls. Each point represents a protein. The
x-axis represents log2 fold change, and the y-axis represents the log10 (p-value). The
dashed line represents the statistical significance threshold after adjusting for mul-
tiple testing. Proteins that were increased in MIS-C patients compared to febrile
controls are shown in red, such as C-reactive protein and Fc Gamma Receptor IIa
(FCGR3A). Proteins that were decreased in MIS-C are shown in blue, including
platelet factor 4 (PF4) and pro-platelet basic protein (PPBP). Proteins that did not
differ significantly in MIS-C are shown in gray. Proteins marked with a name were

both significant and had a high log2 fold change (>1 or <—1). d A Venn diagram
illustrating the overlap of proteins that were statistically different when MIS-C
protein levels were compared to those of each febrile condition or febrile controls
combined. For example, 59 significant proteins overlapped between all comparisons
except severe sepsis. No proteins differed between MIS-C and Kawasaki disease after
adjusting for multiple testing. e Protein-protein network based on the proteins with
significantly different levels in MIS-C compared to febrile controls. The network is
based on the Spearman correlation of protein levels followed by Louvain clustering.
As an example, cluster 7 illustrates three platelet-related proteins, platelet factor 4
(PF4), pro-platelet basic protein (PPBP), and thrombospondin-1 (THBS1), with
significantly lower protein levels in MIS-C patients compared to febrile controls.

f Gene ontology biological processes enrichment analysis of proteome data identi-
fied 15 biological pathways affected in MIS-C patients compared to febrile controls.
The red color illustrates an upregulated pathway and the blue a downregulated
pathway. The x-axis shows the order of statistical strength by adjusted p-value to
the log10.

consistent with studies exploring single coagulation factors or coagulation
profiles””. The significant alterations in proteins related to cell growth, cell
death, and/or cell remodeling in children with MIS-C are unprecedented but
align with the profound dysregulation of cellular and immunological pro-
cesses and the multiorgan nature of the disease™. These results serve as a
proof-of-concept of Al-assisted proteomics in exploring disease mechan-
isms of new diseases, or complex diseases not yet fully comprehended.

This study has several limitations. First, while the quality and size of the
dataset were sufficient to develop a diagnostic signature, the size of our
validation cohort was too small to identify significant protein changes
between children with MIS-C and Kawasaki disease. Second, there is a
possibility of spurious findings, unrelated to MIS-C, in our large proteome
dataset, as we were unable to explain the function of all significantly altered
proteins. As Al techniques model complex data patterns, understanding the
precise features influencing the predictions can be challenging. Never-
theless, the disease mechanisms we discovered are supported by clinical
correlations and the existing knowledge of the disease pathogenesis and
pathophysiology. Third, we were unable to validate the 4-protein signature
from external validation cohorts, as studies including those four proteins
have not been published. Further, the decline in the incidence of MIS-C
during the Omicron era refrained us from validating the accuracy of the
4-protein signature in a prospective MIS-C cohort. Finally, the MIS-C
decline could challenge the relevance of our findings. However, as a resur-
gence of MIS-C remains possible with new variants and waning vaccine-
induced immunity, we find that continuous investigation of this severe and
potentially life-threatening disease is important.

In conclusion, we harnessed the power of Al to explore complex
proteomic data from children with MIS-C, a condition that remains elusive.
The study demonstrated the potential of proteomics to impact pediatric
disease trajectories through early diagnosis as we identified a 4-protein
diagnostic signature that was accurate in distinguishing MIS-C from chil-
dren with phenotypically similar diseases. We provided a global char-
acterization of proteomic changes in the pathogenesis of MIS-C,
empbhasizing Al-assisted proteomics as a powerful and unbiased tool for
assessing disease pathogenesis and potentially paving the way for more
efficient future interventions.

Methods

This nationwide population-based study prospectively included patients
aged 0-17 years with MIS-C from all 18 Danish pediatric departments from
April 1,2020 to March 15, 2022%". Patients met the US Centers for Disease
Control and Prevention MIS-C case definition. Febrile controls consisted of
children with viral and bacterial infections. Patients with Kawasaki, and
severe sepsis were enrolled from January 1, 2019, to December 31, 2019,
before the COVID-19 pandemic. Children with Kawasaki disease met
American Heart Association criteria for complete or incomplete disease.
Two pediatric infectious disease specialists adjudicated the final diagnosis
for all patients when testing results and clinical outcomes were known.

Sample size calculations were not performed due to the exploratory
nature of the study.

Patients were recruited under approval by the research ethics com-
mittees of the Ethics Committee of Capital Region of Denmark (H-
20028631) and the Danish Data Protection Agency (P-2019-29). Informed
oral and written parental consent was provided before participation. All
ethical regulations relevant to human research participants were followed.
The study was registered at ClinicalTrials.gov, NCT05334134.

Liquid chromatography mass spectrometry data analysis
Venous blood samples were collected into EDTA-containing tubes, spun at
3000 g for 10 min at 4 °C within 2 h, and stored at -80 °C. Sample pre-
paration for proteomic analysis was performed as previously published™.
Samples were analyzed using an Exploris 480 Thermo Fischer Scientific
system by Evosep One (Evosep Biosystem, Denmark) and proteomic data
were acquired in a data-independent acquisition mode. Proteins related to
therapy with intravenous immunoglobulin, including heavy-chains, light-
chains, j-chains and variable regions, were excluded”. The mass spectro-
metry raw files were processed with Spectronaut version 17 (Biognosys,
Zurich, Switzerland). A previously generated plasma spectral library con-
taining 2137 protein groups and 16,254 peptides was used.

Statistics and reproducibility
Data was processed using the Clinical Knowledge Graph and Jupyter
Notebook™. In short, protein intensities were log-transformed, a stringent
filter for missingness was applied (>70% completeness across all samples
and at least 50% within each group), and missing values were imputed based
on a downshifted normal distribution. Sample quality was assessed as
described previously™. Batch correction was performed with Clinical
Knowledge Graph (pyCombat) to ensure that the plate a sample was run on
would not affect downstream results. Unpaired t-tests were used to identify
proteins with significantly different levels between the cohorts. Multiple
hypothesis correction was applied using the Benjamini-Hochberg method,
with adjusted P-values < 0.05 considered statistically significant.

UMAP was performed to illustrate the underlying structure of the data.
The UMAP plot reduces the multidimensional proteomic data into two
dimensions, thereby allowing the separation of patient group by visual
interpretation. Hierarchical clustering using Pearson correlation distance
was used to compute a sample correlation heatmap. Both the UMAP and
heatmap of Pearson correlations were unsupervised, meaning that the
grouping of individuals was based on the proteomic data alone and not
informed by disease grouping. Volcano plots were used to visualize plasma
proteins that differed significantly between MIS-C and controls. Gene
Ontology Biological Process enrichment analysis was performed to identify
the enrichment of biological processes based on a set of significantly dif-
ferent proteins. Protein-protein co-expression clusters were identified with
Clinical Knowledge Graph by Spearman correlation analysis, followed by
Louvain network clustering. The clusters were visualized using Cytoscape™.
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Table 2 | Plasma protein alterations in children with MIS-C

Protein name Protein symbol Level Protein description
Immune response
Adaptive immune response
Lymphocyte Cytosolic Protein 1° LCP1 1 Activates T-cells in response to co-stimulation through TCR/CD3 and
CD2 or CD28.
Fc Gamma Receptor Illa® FCGR3A (CD16a) 1 Cell surface receptor that binds antigen-lgG complexes and triggers antibody-
dependent cellular cytotoxicity
Beta-2-microglobulin B2M 1 A component of the MHC class | molecule, which presents antigen to cytotoxic
T cells
Fc y Binding Protein FCGBP T Interacts with the Fc portion of immunoglobulin G
Acute phase reactants
Alpha-1-antichymotrypsin?, C-reactive protein, oroso- SERPINA3 T Acute phase reactants promote, among others, inflammation, facilitate pha-
mucoid, serum amyloid, haptoglobin CRP, ORM1/2, gocytosis, and activate the complement system
SAA1, HP
Innate immune response
Peptidoglycan Recognition Protein 2 PGLYRP2 ! Recognizes peptidoglycan and triggers the release of pro-inflammatory
molecules
Glycoprotein CD14 CD14 1 CD14 is a co-receptor for Toll-like receptors (TLRs), which increases pro-
inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-a) and
interleukin-1 beta (IL-1B)
Complement factors C1QB,C1S,C2,C4BPB, 1 Activation of the classical complement pathway leads to a widespread
C4B, C9, CFI inflammatory response
Ficolin 2 FCN2 1 Alternative complement factors
Coagulation
Coagulation factors F12, F13A1, F13B | Procoagulants: F12 initiates coagulation and F13 converts fibrinogen to fibrin
F10, F11 T Procoagulants: Key components in the coagulation cascade
Fibrinogen FG 1 Procoagulant: When converted to fibrin by thrombin
Von Willebrand Factor VWF T Procoagulant: Aggregates platelets and activates FVIII
Antithrombin SERPINC1 ! Anticoagulant. Inhibits thrombin and several coagulation factors
Protein C PROC ! Anticoagulant: Inhibits FV & FVIII, and thrombin
Heparin Cofactor Il SERPIND1 l Anticoagulant: Inhibits thrombin
Platelet factor 4 PF4 l Anticoagulant: Neutralizes heparin
Kallikrein KLKB1 l Anticoagulant: Activates plasminogen to plasmin through bradykinin
Plasminogen PLG ) Initiates fibrinolysis (dissolution of thrombus)
Thrombospondin-1 THBS1 | Initiates platelet activation and aggregation
Pro-platelet basic protein PPBP ! Recruit other platelets
Cell death and cell growth
Actin B ACTB ! A key component of the cytoskeleton
Extracellular matrix protein 1 ECM1 ! Participates in tissue repair and angiogenesis
Fibronectin FN1 ! Facilitates tissue remodeling
Clusterin CLU l Involved in tissue remodeling and has anti-apoptotic effects
Lipid metabolism
Apolipoproteins APOE, APOF 1 The major component of high-density lipoprotein
Apolipoproteins APOA, APOCA1, l Components of high-density lipoprotein (HDL) and very-low-density lipopro-
APOC3, APOH tein (VLDL)
Others
Butyrylcholinesterase® BCHE l Hydrolyzes choline esters

?Proteins in the 4-protein diagnostic signature

| Indicate reduced protein levels in MIS-C compared to controls; 1 indicates increased protein levels in MIS-C compared to controls.

Supervised machine learning analysis was performed to investigate the
feasibility of a diagnostic signature for MIS-C. Our dataset including chil-
dren with MIS-C and febrile controls with viral and bacterial infections was
divided into a training set (80%) for model development and a test set (20%)
for model validation in a 5-fold cross-validation scheme. Each set had the
same ratio of MIS-C and febrile control samples. Z-scored data (mean 0 and
standard deviation 1 within each sample) was used as input. MIS-C

diagnosis (yes/no) was used as the classification target. Twelve different
machine-learning algorithms were investigated. A final model was based on
a hyperparameter search (random grid search specific to each algorithm)
and recursive feature elimination (only for models with a feature impor-
tance attribute) combined with 5-fold cross-validation to identify the bal-
ance point between a minimal combination of proteins and a high predictive
performance. Model selection was based on the highest prediction
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performance using the area under the receiver operating characteristic
curve, AUC and MCC. Prediction probabilities were calibrated for the final
model. Machine learning analyses and model calibration were performed
using Python (3.7.9) in combination with the scikit-learn (sklearn) library™.
Analyses were performed using the scikit-learn (sklearn) Python library.

The performance of the developed model was tested on both the test set
and internal validation cohorts including Kawasaki disease, severe sepsis,
and children with MIS-C, both during partial and full recovery. The model
was also tested on an external validation cohort from the Proteomics
Identifications Database (PRIDE) consisting of 22 children with MIS-C and
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Fig. 3 | Development of a diagnostic signature using artificial intelligence.

a Overview of the strategy used for machine learning analysis. Model development
was carried out on samples from patients with MIS-C (acute stage), virus, and
bacteria. Model development was split in 5 cross-validation folds with 80% in the
training set and 20% in the test set. Cross-validation was used to assess which
combination of machine learning algorithms that resulted in the most optimal
model. After model training and selection, model performance was reported on the
test set from model development, on internally collected validation cohorts,
including Kawasaki disease, severe sepsis, MIS-C 2-4 days after treatment initiation
(‘during admission’, i.e., still ‘MIS-C positive’) and after full recovery (MIS-C
‘negative’). Lastly, the strategy of machine learning-based diagnostic support was
applied to an external MIS-C cohort. b Output of the cross-validation search of
algorithms, hyperparameters, and the number of proteins is displayed as the area
under the receiver operating characteristic curve (AUROC) and Matthews Corre-
lation Coefficient (MCC) from the predictions on the test sets. The number of
proteins used in each model is shown to the right. The error bars represent the
standard deviation across the 5-fold cross-validation runs. ¢ Recursive feature
elimination for the best-performing algorithm, the support vector classification
(SVC) model, is illustrated. The x-axis represents the number of proteins, and the y-

axis the weighted F1-score. The SVC model achieved high performance across the
entire range of protein numbers, with the highest performance obtained using four
proteins. d Boxplots of the probability of each sample being classified as MIS-C was
computed using the support vector classification models from each cross-validation.
The probabilities were plotted for the test set and for each sample in the different
diagnostic groups. The inner quartile range (IQR) is represented by a box, the
median as a line in the box and 1.5xIQR as whiskers. e Boxplots of the protein levels
across the different diagnostic groups (measured in label-free quantification) for the
four proteins included in the diagnostic signature. Fc Gamma Receptor IIla
(FCGR3A), lymphocyte cytosolic protein 1 (LCP1), alpha-1-antichymotrypsin
(SERPINA3) and butyrylcholinesterase (BCHE). The inner quartile range (IQR) is
represented by a box, the median as a line in the box and 1.5xIQR as whiskers.

f Prediction performance of the 4-protein diagnostic signature is depicted with the
area under the receiver operating characteristic curve (AUC) and Matthews Cor-
relation Coefficient (MCC). Standard deviation from the 5 cross-validation folds is
shown as semi-transparent error borders on the curves. The shadings represent the
standard deviation in tpr/fpr values across the 5-fold cross-validation. The text in the
plot “AUC = 0.87 (std = 0.1)” refers to the variation in AUC across the 5-fold cross-
validation runs.

25 healthy controls (PXD029375)". Data were z-scored (sample-wise) and
only proteins found in both cohorts were used as features in the model. We
used the same algorithm type and hyperparameters as the previous model,
but the model was refitted with the new input consisting of the protein
overlap between the two cohorts. The model was trained on our training set
and applied to the test set and the external validation cohort.

The performance metrics used included the MCC, AUC, ROC curves,
the distribution of prediction probabilities, and confusion matrices.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability

The mass spectrometry proteomics data have been deposited to the Pro-
teomeXchange Consortium via the Proteomics Identifications Database
(PRIDE) partner repository™*, with the dataset identifier PXD045661. The
source data behind the graphs in the paper can be found in Supplementary
Data 1-4.

Code availability
The jupyter notebooks are available at https://github.com/nicwin98/MIS-C.
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