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Normoglycemia and physiological
cortisone level maintain glucose
homeostasis in a pancreas-liver
microphysiological system
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Current research on metabolic disorders and diabetes relies on animal models because multi-organ
diseases cannot bewell studiedwith standard in vitro assays. Here, we have connected cell models of
key metabolic organs, the pancreas and liver, on a microfluidic chip to enable diabetes research in a
human-based in vitro system. Aided by mechanistic mathematical modeling, we demonstrate that
hyperglycemia and high cortisone concentration induce glucose dysregulation in the pancreas-liver
microphysiological system (MPS), mimicking a diabetic phenotype seen in patients with
glucocorticoid-induced diabetes. In this diseased condition, the pancreas-liver MPS displays beta-
cell dysfunction, steatosis, elevated ketone-body secretion, increased glycogen storage, and
upregulated gluconeogenic gene expression. Conversely, a physiological culture conditionmaintains
glucose tolerance and beta-cell function. This method was reproducible in two laboratories and was
effective in multiple pancreatic islet donors. The model also provides a platform to identify new
therapeutic proteins, as demonstrated with a combined transcriptome and proteome analysis.

Glucose homeostasis, a tightly regulated process, maintains blood glucose
levels within a narrow range. Dysfunctional regulation leads to severe dis-
eases like diabetesmellitus, characterized by hyperglycemia due to impaired
inter-organ communication. Understanding the mechanisms of glucose
dysregulation is crucial for developing new effective treatments. In healthy
individuals, pancreatic beta cells respond to increased blood glucose con-
centration by secreting insulin (Fig. 1a), which in turn regulates glucose
uptake and storage in the liver and other target organs1. The liver plays a

central role in glucose homeostasis by storing glucose as glycogen or lipids
during hyperglycemia and producing glucose via gluconeogenesis during
hypoglycemia tobalance bloodglucose levels2.Glucosedysregulationoccurs
when the target organs become resistant to insulin, leading to improper
blood glucose control (Fig. 1b). Insulin resistance, in turn, evokes increased
insulin secretion (beta-cell adaptation) to compensate for impaired insulin
sensitivity (Fig. 1b), and may ultimately lead to pancreatic beta-cell failure
and type 2 diabetes3 (Fig. 1c). Furthermore, certain drug treatments, such as
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high doses of glucocorticoids, can induce hyperglycemia by influencing
hepatic glucose production and insulin sensitivity4 and even impair insulin
secretion by pancreatic beta cells5.

Due to diabetes mellitus being a multisystem disease, preclinical
studies on its progression have traditionally relied on animal models.
These models have historically been instrumental in discovering anti-

diabetic treatments and remain the primary experimental model for
studying the complex pathophysiology and multi-organ interactions of
diabetes6. However, animal models used in the diabetes research are
genetically and physiologically different from humans limiting the
translatability7. Additionally, these models are not well-suited for
studying human-specific emerging drug classes such as oligonucleotides8

Fig. 1 | Pancreas-liver MPS for investigation of diabetic glucose dysregulation.
aHealthy glucose regulation. Pancreatic islets prevent long-term hyperglycemia by
secreting insulin which promotes glucose uptake and storage as well as de novo
lipogenesis ( ) and inhibits glucose release ( ) in insulin-sensitive tissues
including the liver, muscle, and adipose tissue. b Glucose regulation in the insulin-
resistant state. Insulin resistance causes decreased glucose uptake and storage ( )
as well as increased glucose release ( ) while insulin-stimulated lipogenesis
remains unaffected ( ). Adaptive insulin secretion ( ) prevents hypergly-
cemia by normalizing glucose uptake and storage ( ) and inhibiting glucose release
( ). c Glucose regulation in type 2 diabetes. Long-term hyperglycemia develops
due to a reduced insulin secretion ( ) which reduces glucose uptake and storage
( ) and increases glucose release ( ). d Schematic of the pancreas-liver co-
culture in the Chip2MPS. EachChip2 has two separate circuits (left and right)which
allows for the culture of two independent replicates on one chip. An on-chip

micropump generates a pulsatile flow through the microfluidic channels enabling
cross-talk between the culture compartments. For the pancreas-liver MPS, 40
HepaRG/HHSteC liver spheroids are cultured in the outer culture compartment and
10 islets in the inner culture compartment of one circuit. Each circuit contains 605 µl
of co-culture medium (5 µl in the microfluidic channels and 300 µl in each culture
compartment). Medium is exchanged by replacing the total volume in each culture
compartment. Brightfield images show both organ models on day 1 of co-culture in
their respective compartment. eGraphical illustrations of representative, previously
reported, glucose and insulin responses in the pancreas-liver MPS14 visualize the
development of glucose dysregulation over time. These responses were observed in
seven independent pancreas-liver MPS studies corresponding to seven different
donors of pancreatic islets. Arrows indicate medium exchange. GTT glucose
tolerance test.
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which directly target disease-causing genes and may have low cross-
reaction to the corresponding genes in animals9.

The recent advancements in microphysiological systems (MPS) such
as organ-on-chip models have enabled human in vitro studies of physio-
logical organ crosstalk, disease development, and pharmacological
effects10,11. Since the pancreas and the liver are central organs in blood
glucose regulation, we and others have shown that functional coupling of
pancreatic and liver organmodels on chip can recapitulate human-relevant
pancreas-liver axis12–14. In these two-organmodels, human isletmicrotissues
(InSphero)12,14 (Fig. 1d) or human induced pluripotent stem cell (hiPSC)-
derived islet organoids13 secrete insulin into the circulating co-culture
medium. Secreted insulin was shown to stimulate glucose utilization in the
liver model, composed of HepaRG hepatocytes and human hepatic stellate
cells (HHSteC)12,14 or hiPSC-derived liver organoids13. In response to the
decreasing glucose concentration in the co-culture medium, the insulin
secretion subsideddemonstrating aphysiological feedback loopbetween the
liver and the islet compartment (Fig. 1e, hyperglycemia)12,14.

In our pancreas-liver MPS, both glucose utilization and insulin
response declined over time12,14 (Fig. 1e, hyperglycemia), indicating its
potential for studying glucose dysregulation and beta-cell dysfunction
in vitro.However, using this diseasemodelwould require a healthymodel as
a control group. Initially, we suspected high glucose concentration (11mM)
as the primary driver for glucose dysregulation as hyperglycemia is known
to induce insulin resistance in vitro15 and in vivo16. Surprisingly, declining
glucose utilization and reduced insulin response over the culture time were
observed even in chips maintained in 5.5mM glucose14, mimicking normal
blood glucose levels (Fig. 1e, normoglycemia). However, in the in vitro
adjusted glucose tolerance (GTT) assay, the glucose reductionwas driven by
a significantly lower insulin secretion, suggesting a higher insulin sensitivity
than in hyperglycemic cultures (Fig. 1e, day 13–15).

In this study, we extensively characterize the pancreas-liver MPS and
investigate the factors influencing glucose dysregulation and beta-cell dys-
function. Due to the complex and dynamic nature of organ crosstalk, we
combine the in vitro model with in silico modeling for hypothesis testing,
data analysis, and informed decision-making. This approach allows us to
study whether glucose dysregulation is driven solely by hyperglycemia, and
we describe a physiological culture condition that rescues the glucose
homeostasis and beta-cell function. Furthermore, we use RNA sequencing
and proteomics analysis to profile soluble proteins, potentially affecting islet
proliferation in the chip co-culture. Finally, we evaluate reproducibility,
transferability, and the inter-donor variability of the pancreas-liver MPS
across two laboratories and multiple islet donors.

Results
In silico-supported experimental design to resolve cues driving
glucose dysregulation
To study the factors driving glucose dysregulation in the pancreas-liver
MPS, we formed two hypotheses aimed at determining whether normo-
glycemia alone could improve the insulin sensitivity, as we previously
thought. The first hypothesis (H1; Fig. 2a, left graph) assumes that insulin
resistance stems from hyperglycemia, while the second hypothesis (H2;
Fig. 2a, right graph) proposes that insulin resistance results from a combi-
nation of hyperglycemia and an additional diabetogenic factor. To study
these hypotheses, we employed a computational hypothesis-testing
approach (Fig. 2b; see “Methods” for details) using our recently described
mathematical model of glucose and insulin interplay in the pancreas-liver
MPS14 (Supplementary Fig. 1a).

We conducted a 15-day chip study involving sequential experimental
and modeling iterations to differentiate between the two hypotheses. Spe-
cifically, we exposed the hyperglycemic and normoglycemic chips to a
defined insulin dose at the end of the co-culture, and then differentiated
betweenH1 andH2based on the glucose tolerance curves (Fig. 2c). First, we
developed mathematical models for both H1 and H2 (Supplementary
Fig. 1b) and thenexposed the pancreas-liverMPS to either hyperglycemic or
normoglycemic conditions for 13 days (Fig. 2c). Glucose and insulin

concentrationswere recorded at the beginning (GTTassay ondays 1–3) and
in the middle (GTT assay on days 7–9) of the co-culture study, and these
valueswere used to calibrate themathematicalmodels to account for donor-
dependent variations in the insulin secretion. In this calibration step, both
H1 and H2 provided acceptable agreement with the experimental data
(Fig. 2d, e, left graphs), as confirmedby a statistical χ2 test (see “Methods” for
details).

Next, we utilized the calibrated mathematical models to select an
insulin dose that, when spiked to the co-culture medium, would yield dis-
tinct predictions for the glucose tolerance curves for hypotheses H1 andH2
(SupplementaryFig. 2).Whenperforming theGTTassaywith the suggested
insulin dose (24 nM), we observed similar glucose response to 11mM
glucose load in both hyperglycemic and normoglycemic conditions
(Fig. 2d, e, right graphs).Upon comparing themodel predictions against the
experimental data, we did not find a statistically acceptable agreement for
H1 (Fig. 2d, right graphs), leading to the rejection of the hypothesis that
insulin resistance was induced by hyperglycemia alone. In contrast, H2
aligned with the experimental data (Fig. 2e, right graphs) according to χ2

statistics. Therefore, we further investigated the hypothesis that glucose
dysregulation was induced by a combination of hyperglycemia and an
additional diabetogenic factor.

Hydrocortisone and hyperglycemia impact islet and liver
functionality on chip
The computational hypothesis testing approach indicated the involvement
of an additional diabetogenic factor in the development of glucose dysre-
gulation in the pancreas-liver MPS. Upon reviewing all the supplements
used in the co-culture medium, we suspected that an unphysiological glu-
cocorticoid concentration might be a contributing factor. Hydrocortisone
(HCT) is used in the standard HepaRG culture medium17, and therefore in
our original chip co-culturemedium12, to ensure optimal differentiation and
functionality of the liver model18. However, the supplemented concentra-
tion (50 µM)17 exceeds the physiological plasma concentration (about
5.5–39 nM)19 by several orders of magnitude. We hypothesized that this
heightened HCT concentration might induce a diabetic phenotype in our
pancreas-liver MPS, similar to that seen in patients suffering from
glucocorticoid-induced or “steroid” diabetes. Conversely, reducing HCT to
its physiological level was anticipated to rescue beta-cell function, insulin
sensitivity, and overall glucose homeostasis by enhancing insulin secretion
and preventing the induction of gluconeogenesis and steatosis in the
liver model.

Glucocorticoids have alsobeen shown to impair the insulin secretionof
beta cells in vitro5,20 and in patients susceptible to beta-cell dysfunction5,20,21.
To identify an HCT concentration with minimal effects on glucose-
stimulated insulin secretion (GSIS), we performed a dose-response analysis
with islets cultured in our normoglycemic co-culture medium covering a
broad concentration range (0.05 nM–50 µM; Fig. 3a). We observed an
inhibitory effect on insulin secretion already at 50 nMHCT, whereas 5 nM
HCT showed no difference compared to the untreated control. Next, we
askedwhethera lower, physiological concentrationofHCT in the co-culture
mediumwould,first,maintain liver functions and improve insulin secretion
and, second, improve the overall glucose homeostasis.We set the tested low
HCT concentration to 10 nM to be within the physiological plasma con-
centration range. To study all variables, we maintained pancreas-liver co-
cultures for 2 weeks in four different medium conditions, using either high
HCT (50 µM) or low HCT (10 nM) concentrations and either hypergly-
cemic (HG; 11mM) or normoglycemic (NG, 5.5 mM) glucose concentra-
tions (Fig. 3b). To account for donor-to-donor variability, we carried out
three independent studies, each with a different islet donor in two labora-
tories (Studies 1 and 2 at TissUse, Study 3 at AstraZeneca; Supplementary
Tables 1 and 2).

We monitored the HepaRG/HHSteC liver spheroids’ functionality by
following albumin secretion over time (Fig. 3c) and measured mRNA
expression of key markers of liver health (Fig. 3d). We observed a stable
albumin secretion at low HCT conditions, both in hyperglycemia and in
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normoglycemia, while a high HCT concentration increased albumin
secretion over time at both glucose concentrations (Fig. 3c). The lowerHCT
concentrationhadminimal effecton themRNAexpressionofHNF4A, a key
transcription factor of liver-specific genes,ALB, encoding the liver-secreted
plasma protein albumin,AHSG, encoding the liver-secreted protein fetuin-
A, and MRP2, encoding a canalicular multi-specific organic anion

transporter (Fig. 3d). In turn, the lower HCT concentration reduced the
expression of CYP3A4 mRNA, a major drug-metabolism enzyme, CPS1
mRNA, an enzymeparticipating in urea production, andABCB11 encoding
BSEP, themajor bile-acid transporter. This, however, was not unexpected as
glucocorticoids are known inducers of cytochromeP450enzymes22, theurea
cycle (e.g., CPS)23, and hepatic bile acid transport24. Furthermore, the
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Fig. 2 | In silico-supported experimental design to resolve cues driving glucose
dysregulation. a, b Schematic representation of the hypothesis testing framework to
unravel the cause of insulin resistance in the pancreas-liver MPS. a Here, we con-
sidered two competing hypotheses (H1, H2) for the development of liver insulin
resistance in the pancreas-liver MPS. Hypothesis H1 (left graph) assumes that
insulin resistance is caused by hyperglycemia alone, while hypothesis H2 (right
graph) assumes that insulin resistance is caused by hyperglycemia in combination
with an additional diabetogenic factor. b Hypothesis testing is an iterative process,
wheremathematical models constructed from experimental data are used to test and
reject hypotheses. c In silico guided experimental design to test the proposed
hypotheses. The computational model was first calibrated for donor-dependent

variations using data from a glucose tolerance test (GTT) on days 1–3 and 7–9. Next,
the computational model was used to select an insulin dose that was added to the co-
cultures on day 13. This experimental design would lead to different glucose toler-
ance curves on day 13–15 and allow differentiation between H1 and H2. Compar-
ison between experimental data (dots) and model simulations (lines) in calibration
phase (blue areas) and validation phase (green areas) for H1 (d) or H2 (e). The
shaded areas in the simulated curves (red and yellow) represent the model uncer-
tainty. Both H1 and H2 agree with calibration data for glucose (top) and insulin
(bottom) but only H2 predicts glucose response during the validation step on days
13–15. Experimental data in (d, e) are shown as mean ± SEM, n = 3 individual co-
culture replicates (circuits). Study was performed at AstraZeneca.
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expression of ACTA2 encoding alpha-smooth muscle actin was increased,
suggesting that HHSteCs proliferate when the HCT concentration is
reduced. This was also expected, as glucocorticoids are known for their anti-
fibrotic effects25. In general, albumin secretion and the expression of liver-
specific genes were preserved at the low HCT concentration, but some
metabolic functions might be reduced compared to co-cultures maintained
at high HCT concentrations.

Next, we studied the effect of the four different media on islet
functionality by analyzing the GSIS of islets extracted from the chips after
the dynamic co-culture as well as of islets monocultured statically
(Fig. 3e). As demonstrated in three independent studies with individual
islet donors, media with low HCT concentration improved the GSIS as
compared to high HCT concentration both in hyperglycemia and in
normoglycemia (Fig. 3e; Basal insulin secretion and stimulation index
reported in Supplementary Fig. 3). In studies 2 and 3, the islet func-
tionality in the most physiological condition, i.e. normoglycemic with
low HCT, was similar or better as compared to the control culture where
the islets were maintained in the organ-specific medium provided by the
islet manufacturer. In addition, we observed that co-cultures in hyper-
glycemic media significantly increased the insulin secretion compared to
static monocultures (Study 1: Low HCT-HG, Study 2: High HCT-HG,
Study 3: High HCT-HG and Low HCT-HG).

Physiological culture condition rescues glucose regulation in the
pancreas-liver MPS
To further evaluate whether a lower HCT concentration or normoglycemic
glucose concentration, or these together, would lead to improved glucose
regulation, beta-cell function, and insulin sensitivity during the pancreas-
liver co-culture, we performed a GTT assay on days 1–3 (only hypergly-
cemic conditions) and on days 13–15 (all four conditions). To determine if
the measured glucose and insulin responses could be explained by our
hypothesis H2, we applied the in silico modeling approach. First, we cali-
brated the computational model corresponding to hypothesis H2 using the
experimental glucose and insulin concentrations from co-cultures exposed
to high HCT (Fig. 4a). Then, we used the calibrated model to predict the
expected insulin and glucose responses assuming that the lower HCT
concentration would not affect the insulin sensitivity, and the insulin
secretion capacity would be maintained. By comparing these predictions to
our experimental data, we found that the computational model can explain
the measured responses indicating that lowHCT concentration can indeed
maintain the insulin sensitivity and beta-cell function in the pancreas-liver
MPS (Fig. 4b).

Total glucose utilization and insulin secretion were also analyzed by
calculating the areas under the glucose and insulin concentration curves
(AUCs). LowHCT conditionsmaintain glucose tolerance and preserve islet
functionality over time, seen as relatively stable AUCs for glucose and

insulin,while in the highHCT theAUCs for glucose increases over time and
the AUCs for insulin drastically drop over time (Fig. 4c). Confirming these
findings, we saw similar responses in a repeated pancreas-liver MPS study
with the difference that the glucose tolerancewas onlymaintained in the low
HCT-normoglycemic condition (Supplementary Fig. 4).

Altogether, we show that a “healthy” pancreas-liver co-culture with
stable liver function, beta-cell function, andglucose tolerance is achieved in a
conditionwith lowHCTconcentrationandnormoglycemic glucose level. In
contrast, a “diseased” co-culture representing impaired glucose tolerance
accompanied by beta-cell dysfunction can be generated by using a high
HCT-hyperglycemic medium. Therefore, we further focused on these two
co-culture conditions and data on the two intermediary conditions can be
found in Supplementary Figs. 5–8.

Hepatic phenotype reflects glucocorticoid-induced diabetes
In patients with glucocorticoid-induced diabetes, hepatic insulin resis-
tance is one factor contributing to dysbalanced glucose regulation and
hyperglycemia21. Glucocorticoids increase endogenous glucose produc-
tion by inducing the transcription of genes encoding gluconeogenic
enzymes (e.g. glucose-6-phosphatase)26,27. Moreover, glucocorticoids
induce glycogen synthesis28 which increases the liver’s capacity to pro-
duce glucose. Furthermore, chronic elevation of glucocorticoid con-
centration has been linked to the development of a steatotic ‘fatty’ liver by
increasing the gene transcription of several enzymes involved in de novo
lipogenesis, including the fatty acid synthase26. Excess fatty acids are
partly converted to ketone bodies, leading to elevated ketone levels in
plasma26,29.

To analyze if our liver model reflects the glucocorticoid-induced
diabetic phenotype, we first looked at gene expression profiles of enzymes
involved in glucose metabolism (Fig. 5a), ketogenesis (Fig. 5b), and lipid
metabolism (Fig. 5c) in the co-cultured HepaRG/HHSteC spheroids. The
diseased condition induced gene expression of glycogen synthase (GYS2)
involved in glycogen synthesis, glucose-6-phosphatase (G6PC) involved
in gluconeogenesis, HMG-CoA lyase (HMGCL) involved in ketogenesis,
and fatty acid synthase (FASN) involved in de novo lipogenesis. Next, we
confirmed these findings by performing separate analyses to evaluate
glycogen storage, ketone-body production, and lipid metabolism in the
co-cultured HepaRG/HHSteC liver spheroids. Liver spheroids in the
diseased co-cultures exhibited higher amounts of glycogen stores as
shown by periodic acid-Schiff (PAS) staining (Fig. 5d), secreted 2.6-fold
more 3-hydroxybutyrate (Fig. 5e), a diagnostic measure of diabetic
ketoacidosis30, and accumulated more intracellular lipids as visualized by
Nile Red staining (Fig. 5f) when comparing to spheroids in the healthy
condition. These data indicate that the diseased liver model reflects
similar pathological alterations as seen in patients suffering from steroid
diabetes.

Fig. 3 | Hydrocortisone and glucose concentrations impact liver and islet func-
tionality. aHydrocortisone (HCT) concentration-dependent inhibition of glucose-
stimulated insulin secretion (GSIS) of islets in static monoculture in normoglycemic
co-culture medium. Symbols represent insulin amount secreted by individual islets
(n = 4) during a 2-h incubation in a low-glucose solution with 2.8 mMglucose (LGS,
triangles) or a high-glucose solutionwith 16.8 mMglucose (HGS, circles). Data were
fitted using nonlinear regression to retrieve a dose-response curve. IC50 was
determined to be 70 nM (95% CI = 23, 240). Differences to the control (no HCT,
represented by dotted line) were evaluated by one-way ANOVA using Bonferroni’s
multiple comparisons post hoc test. b Overview of the four different experimental
conditions studied in the pancreas-liver MPS. c Liver spheroid functionality shown
by albumin secretion over the chip co-culture time. Bars show mean and symbols
represent individual co-culture replicates (circuits) from three independent studies
(n values summarized in Supplementary Table 1). d Gene expression of key liver
markers in liver spheroids extracted at the end of co-culture. Data shown as fold
changes to the high HCT-hyperglycemic condition in a box-whisker plot with
median and min-max values. Symbols represent liver samples from individual co-
culture replicates (circuits) from studies 1 and 2 performed at TissUse (Study 1:

n = 4, Study 2: n = 4). Differences between high and low HCT concentration for the
same glucose concentration were evaluated by one-way ANOVA using Sidak’s
multiple comparisons post hoc test, p values only shown for significantly different
comparisons. ePancreatic islet function (GSIS) after 15 days of staticmonoculture or
chip-based co-culture in the four different co-culture media. Islets cultured for
15 days in static monoculture in culture medium provided by the manufacturer
served as a control (black bar and dotted line). Islets were extracted from theMPS to
perform the assay with individual islets. Bars show mean and symbols represent the
insulin amount secreted by individual islets (n values summarized in Supplementary
Table 1) during a 2-h incubation in a high glucose solution (16.8 mM glucose). An
individual donor was used for each study. Differences between selected pairs were
evaluated by one-way ANOVA using Sidak’s multiple comparisons post hoc test.
Data were log-transformed for normality. Colored p values show comparison
between high and low HCT concentrations in hyperglycemia (red) or normogly-
cemia (yellow) in the same culture format (static or co-culture). Black p values show
significant differences between static monoculture and co-culture in the same
medium. Studies 1 and 2 were performed at TissUse and Study 3 at AstraZeneca.
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Combined omics analysis to examine factors promoting islet
proliferation on chip
Individuals with insulin resistance do not necessarily develop glucose dys-
regulation and diabetes as beta cells can compensate for the increased insulin
demandby either increasing innumber (proliferationor transdifferentiation)
or enhancing their secretoryoutput, or both31. Previously, several studieshave
demonstrated that organs, including the liver, secrete proteins into the
bloodstream which stimulate insulin secretion and proliferation of islets32.
Since we had observed that especially the hyperglycemic chip co-cultures
improve the insulin secretion as compared to the static monocultures
(Fig. 3e), we asked if this could be explained by an increased islet cell number.
To study this, we developed a cell proliferation assay using 5-ethynyl-2’-

deoxyuridine (EdU) incorporation, automated high-throughput confocal
microscope imaging, and automated image analysis (Supplementary Fig. 9).
Surprisingly, when the islets were cultured in the disease condition, pro-
liferation did not differ between the chip co-culture and the static mono-
culture (Fig. 6a). This suggests that other beta-cell adaptation mechanisms
than increased cellmass contribute to the improved insulin secretion capacity
seen in the chip co-cultures (Fig. 3e). Instead, in the healthy condition, pro-
liferation was significantly increased in the co-cultured islets as compared to
the monocultured islets (Fig. 6a). Additionally, the chip co-cultured islets
weremoreproliferative in thehealthy condition than in thedisease condition.

To identify potential liver-secreted proteins influencing the islet pro-
liferation in the co-cultures, we performed exploratory transcriptome and
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proteome analyses of liver spheroid lysates and supernatants from hyper-
glycemic and normoglycemic co-culture conditions after 2-week chip co-
culture. In a combined RNA sequencing and proteomics analysis, IL-1R2
was the most upregulated protein in the hyperglycemic condition (Fig. 6b).
IL-1R2 exists both as soluble and membrane-bound decoy receptor, a
competitive inhibitor preventing IL-1beta signaling33. IL-1beta is an
inflammatory cytokine associated with beta-cell dysfunction and reduced
proliferation capacity34, thus a potential target for diabetes therapies. It has
been shown before in in vitro studies, animalmodels, and clinical trials, that
inhibition of interleukin-1 receptor (IL-1R) and therefore a prevention of
IL-1beta signaling enhanced beta-cell survival and function35–38. Therefore,
we hypothesized that IL-1R2 could as well enhance beta-cell proliferation
and function by reducing the detrimental free IL-1beta concentration. To
test this, we first quantified soluble IL-1R2 in the chip co-culture super-
natant over time and confirmed a significant upregulation of IL-1R2
secretion in the disease condition (Fig. 6c). To increase confidence that IL-
1R2 is primarily produced by the liver model, we analyzed the soluble IL-
1R2 secretion in the supernatant from static monocultured islets and found
no secretion (Supplementary Fig. 10a). Next, we treated islets in static
monoculture with 30 ng/ml or 0.3 ng/ml of recombinant human IL-1R2
mimicking the measured levels in the diseased and healthy condition,
respectively. We cultured the islets in the medium provided by the islet
supplier since the chip co-culture media induce proliferation (Supple-
mentary Fig. 7), and we wanted to decouple the effect of IL-1R2 from any
medium-induced proliferation. Compared to untreated control, we
observed a 4.9-fold increase in proliferation measured as a proportion of
EdU-positive cells in islets treated with 0.3 ng/ml of IL-1R2 (Fig. 6d). In
contrast, 30 ng/ml of IL-1R2didnot affect proliferation.These results reflect
our findings from the pancreas-liver MPS (Fig. 6a) where we observed
higher proliferation in the islets in the healthy condition (low IL-1R2 levels)
compared to islets in thediseased condition (high IL-1R2 levels). In linewith
an earlier observation that proliferating beta cells have an impaired insulin
response39, we observed reduced glucose-stimulated insulin secretion at low
IL-1R2 concentration (Supplementary Fig. 10b).

Reproducibility of the pancreas-liver MPS
MPS studies are generally complex with multiple confounding factors that
can cause variability during and between the studies40. Here, we examined
technical sources of variability and the reproducibility of key biological
effects in the pancreas-liverMPS, focusing on on-chip readouts relevant for
future decision-making.

Using a statisticalmixedmodel approach,wedecomposed the variance
according to technical factors present: between the laboratories, studies
(performed in the same laboratory), and circuits. For each readout included
in this analysis, we explored a set of mixed models to find the most
appropriate set of random effects to represent the data. This was done by
evaluating differentmetrics formodel fits, as well as exploring how variance
is allocated across technical factors. We also explored the proportion of

variance allocated to residuals—this is observation-to-observation varia-
bility that is not attributable to any other factor. Then, we compared the
optimal statistical models across the readouts to identify how the variance
decomposition varies across different readouts.

Our statistical model, incorporating nested random effects for
laboratory, study, and circuit, revealed that most of the variability is
allocated to residuals, rather than to technical factors. In the liver-specific
readouts, the residuals account for 41.4 and 53.2% of the total variation in
albumin secretion (Fig. 7a) and ketone-body production (Fig. 7b),
respectively. Study-to-study variability contributes minimally to the
overall variance (0.206% for albumin and 0% for ketone bodies). Since
the study-to-study variability is negligible compared to the other factors,
we conclude that it is not necessary to incorporate it in the statistical
model. Similarly, residuals explain most of the variation for IL-1R2
secretion (Supplementary Fig. 11a). Lab-to-lab variation accounted for
13.0–29.6% of the total variance (Fig. 7a, b and Supplementary Fig. 11a),
similar to circuit-to-circuit variation accounting for 10.1–33.8% of the
total variance. In the pancreas-related readouts, donor-dependent
variability is evident, as expected. The study-to-study variation
accounts for 86.2% of the total variation in the GTT insulin response but
only for 10.6% in the glucose utilization (Supplementary Fig. 11b, c). The
lab-to-lab variability is not considered in the statistical analysis of the
GTT insulin and glucose readouts as these studies were done in one
laboratory.

Next, we examined the reproducibility of key biological effects across
the studies and laboratories, focusing on the effect of diseased versus healthy
condition. To estimate these effects, we appliedmixedmodels to each study
independently, and extracted both the effects and their standard errors. For
albumin, standard errors of estimates were very similar across studies, and
the estimated effect sizes were similar within laboratories (Fig. 7c). For the
ketone bodies, the standard errors were again similar although there was
more variability in the estimated effects and especially no effect in Study 3
(Fig. 7d). Like albumin, IL-1R2production in the pancreas-liverMPS is very
reproducible between the laboratories (Supplementary Fig. 11d). Also, for
insulin and glucose readouts, the estimates and standard errors were of
comparable magnitude across studies (Supplementary Fig. 11e, f).

Finally, we assessed intra-study and inter-study reproducibility using a
recently published statistical methodology41 based on intra-class correlation
coefficient (ICC) and the maximum coefficient of variation (CV). In this
analysis, the intra-study reproducibility of albumin, ketone bodies, and IL-
1R2 was classified as acceptable to excellent (Table 1). Additionally, the
reproducibility of glucose and insulinmeasurements during the GTT assay,
the primary context of use for the model, was classified as excellent. In the
inter-study assessment, both healthy and diseased conditions showed
acceptable or excellent reproducibility for all readouts, with the exception of
ketone bodies, which was classified as poor in the healthy condition
(Table 2). Results for all on-chip readouts from each individual circuit in all
studies are presented in Supplementary Fig. 12. Overall, the statistical

Fig. 4 | Physiological hydrocortisone level maintains glucose tolerance in the
pancreas-liverMPS. a,bMPS combinedwith in silicomodeling to study the effect of
HCT on insulin sensitivity. The mathematical model is used to predict glucose and
insulin responses at physiological HCT concentrations that agree with experimental
measurements, indicating that low HCT can maintain insulin sensitivity and beta-
cell function. a The mathematical model was calibrated using experimental data
measured in pancreas-liver MPS exposed to high HCT concentration. Experimental
measurements of glucose (dots, top row) and insulin (dots, bottom row) were
acquired during GTT assays on days 1–3 and 13–15 in hyperglycemic high-HCT
(red) and normoglycemic high-HCT (yellow) conditions. b The calibrated model
was then used to predict glucose (top row) and insulin responses (bottom row) at
physiological HCT concentration. These predictions were compared to the corre-
sponding experimental GTTmeasurements on day 1–3 (left) and 13–15 (right) from
hyperglycemic low-HCT condition (dark blue) and normoglycemic low-HCT (light
blue). Both the model predictions and the experimental measurements show that

glucose tolerance is maintained at day 13–15 (top row, right) compared to day 1–3
(top row, left), and that insulin levels at the end of the co-culture are also similar at
day 13–15 (bottom row, right) compared to day 1–3 (bottom row, left) for both
hyperglycemic low-HCT (dark blue) and normoglycemic low-HCT (light blue)
conditions. Data points fromGTTmeasurements of glucose and insulin on day 1–3,
which are depicted with an X, were used for baseline correction of insulin sensitivity
and insulin secretion capacity (see “Methods” for details). The shaded areas in (a, b)
represent the model uncertainty. Experimental data shown as mean ± SEM from
Study 1 performed at TissUse (day 1–3: n = 6 individual co-culture replicates, day
13–15: n = 4 individual co-culture replicates). c Area under the curve (AUC) for
glucose (left) and insulin (right). Bars show mean and symbols represent individual
co-culture replicates (circuits) from Study 1 performed at TissUse (day 1–3: n = 6,
day 13–15: n = 4). Differences between selected pairs of conditions (day 13–15
compared to day 1–3) were evaluated by one-way ANOVA using Sidak’s multiple
comparisons post hoc test.
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analyses demonstrated that we can draw reproducible conclusions across
the on-chip readouts.

Discussion
In this study, we describe a healthy pancreas-liver MPS with stable glucose
homeostasis and a diseased MPS replicating hallmark features of

glucocorticoid-induced diabetes. We set out to investigate the cues driving
glucose dysregulation in the pancreas-liver MPS and demonstrated that a
combination of hyperglycemia and high cortisone concentration leads to
decreased glucose tolerance and islet dysfunction on chip. Subsequently, we
showed that glucose homeostasis and islet functions can be rescued with
physiological culture conditions. Defined physiological, healthy condition
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—5.5 mMglucose and 10 nMHCT—enables studies ondisease progression
and mechanisms and this type of control group could even be used for
examiningmetabolic disorders or development of insulin resistance caused
by other diseasemediators, such as free fatty acids, fructose, and cytokines42.
Our findings establish the pancreas-liver MPS as a valuable human cell-
basedmodel for studying disease mechanisms of glucose dysregulation and
a tool for drug discovery and development.

Previously, we suspected that hyperglycemia is the primary driver of
the glucose dysregulation in the pancreas-liverMPS12,14, given its known role
in inducing insulin resistance15,16. To test this, we cultured chips in nor-
moglycemia and observed decreased glucose tolerance during the GTT
assay14, suggesting the involvement of additional factors. In this study, we
employed our recently developed mechanistic mathematical model14 to
guide hypothesis testing, support experimental design, and interpret data.
Through a combined experimental and in silico approach, we confirmed
thathyperglycemia alonedoesnot explain the impairedglucosehomeostasis
in the pancreas-liver MPS. We then investigated the influence of unphy-
siological HCT concentration on glucose homeostasis, insulin sensitivity
and beta-cell function. Glucocorticoids are known inducers of whole-body
insulin resistance5,20,21 and their intake can lead to the development of a
condition called glucocorticoid-induced or steroid diabetes.We studied the
effect of glucose and cortisone by maintaining the chips in four different
medium conditions: (1) hyperglycemia and high HCT, (2) normoglycemia
and high HCT, (3) hyperglycemia and low HCT, and (4) normoglycemia
and lowHCT.We utilized the in silicomodel to predict glucose and insulin
responses and demonstrated that HCT is a key factor inducing glucose
dysregulation and beta-cell failure in the pancreas-liver MPS. This
experimental-computational hybrid approach is important for the accurate
interpretation of multi-organ MPS data, particularly due to the complexity
of cross-organ feedback loops, which are challenging to unravel by pure
reasoning. Importantly, computational modeling enables in
vitro–to–in vivo translation. We recently showed that pancreas-liver MPS
results can be translated to humans by using mechanistic mathematical
modeling, even when some MPS characteristics do not mirror human
physiology, such as cell-to-liquid ratio and the flow rate, as these can be
adjusted in the mathematical models14.

The mathematical model indicated that the normoglycemic low-HCT
condition maintains insulin sensitivity, while high HCT contributes con-
siderably to the insulin resistance. Glucocorticoids increase hepatic glucose
production via gluconeogenesis43 andpromotehepatic lipid accumulation26,
suspected to induce insulin resistance44. In our diseased co-culture condi-
tion, liver spheroids exhibited higher expression of genes involved in gly-
cogen synthesis, gluconeogenesis, ketogenesis, and fatty acid synthesis,
alongwith increased lipid storage, glycogenaccumulation, and ketone-body
secretion, reflecting some of the pathological alterations seen in patients
suffering fromglucocorticoid-induced diabetes.We also observed thatHCT
increases the albumin secretion both at normoglycemia and hyperglycemia.
Thismight be an initial sign of developing insulin resistance as patients with
elevated serumalbumin concentrationshave an increased risk of developing
type 2 diabetes45. However, albumin secretion was not normalized to total
protein amount so the effect of cell proliferation cannot be excluded.
Overall, the functional and phenotypic characterization of the diseased liver
spheroids parallels pathological alterations seen in steroid diabetes,

suggesting the development of glucocorticoid-induced insulin resistance.
Further functional readouts could include a measurement of endogenous
glucose production to confirm insulin resistance development in the liver
spheroids.

Islets from different individuals vary in their beta-cell adaptation
abilities46. Our GSIS assay showed that the hyperglycemic chip co-culture
improved the insulin secretion compared to the static monocultures
(Fig. 3e). This aligns with the enhanced beta-cell function observed in
healthy and prediabetic individuals in response to rising blood glucose
levels5,19–21. Thus, our co-culture model might reflect this typical beta-cell
adaptation mechanism. Comparing three pancreas-liver MPS studies
revealed high variability in the donors’ ability to increase beta-cell function
in response to hyperglycemia and, hence, adapt to the suspected develop-
mentof insulin resistance inourpancreas-liverMPS.This reflects the typical
donor-dependent variation in the beta-cell adaptation46 and varying sus-
ceptibility to beta-cell failure due to diabetogenic factors such as
glucocorticoids20.

In preclinical diabetes studies, animal models are essential for
investigating multi-scale mechanisms spanning different timescales and
biological levels47. Therefore, they are well suited to study key mechan-
isms related to metabolic disorders such as body-fat distribution, sys-
temic glucose metabolism, or brain control over metabolic fluxes6.
However, the animal models differ genetically and physiologically from
humans7. For example, rodent islets are known to have higher beta-cell
adaptation capacity via proliferation compared to humans48,49 and, thus,
may not be an ideal model for finding human-relevant targets. In this
study, we observed pronounced islet proliferation in the chip co-culture.
We employed RNASeq and proteomics analysis to identify proteins that
could account for the increased proliferation during the dynamic chip co-
culture. In this exploratory work, we showed that there is 100-fold higher
secretion of IL-1R2 in the diseased chips compared to healthy ones.
Treating static monocultured islets with IL-1R2 showed that only the low
concentration (reflecting the measured levels in healthy chips) stimulated
proliferation, aligning with reports of low IL-1beta concentration bene-
fiting islet functionality50,51. Therefore, it may be possible that the low IL-
1R2 concentration in the healthy condition might have reduced the IL-
1beta concentration to a beneficial range while the high IL-1R2 con-
centrations resulted in ineffectively low IL-1beta concentrations. Our
findings suggest that chip-born IL-1R2 may impact the islet proliferation
in the pancreas-liver co-culture but more studies are needed to better
understand IL-1R2-mediated islet proliferation. Nevertheless, our work
on chip-born factors that modulate the islet proliferation demonstrates,
as a proof-of-concept, that multi-organ MPS can be used to find and
study new targets and therapeutic proteins. Finally, it is important to note
that all studied co-culture media, including the healthy medium, induced
proliferation compared to the supplier’s islet medium. Therefore, the islet
phenotype might represent an initial pre-diabetic stage where islets
compensate by increasing mass31. This surge in basal proliferation may
also be influenced by fetal bovine serum, commonly used to support cell
growth. Future work will investigate serum-free medium to achieve a
pancreas model that fully reflects a healthy state.

In this work, we conducted three independent pancreas-liver MPS
studies and used a mixed model statistical analysis to decompose the

Fig. 5 | Hepatic phenotype reflects glucocorticoid-induced diabetes. Gene
expression of enzymes involved in hepatic glucose metabolism (a), ketone-body
synthesis (b), and lipid metabolism (c) in liver spheroids extracted at the end of co-
culture. Data shown as fold change between diseased (11 mM glucose, 50 µMHCT)
and healthy (5.5 mM glucose, 10 nM HCT) conditions in a box-whisker plot with
median and min-max values. Symbols represent liver samples from individual co-
culture replicates (circuits) from studies 1 and 2 performed at TissUse (Study 1:
n = 4, Study 2: n = 4). Differences between the diseased and the healthy condition
were evaluated by multiple t-tests using the Holm–Sidak method for multiple
comparisons without assuming a consistent standard deviation, p values only shown

for significantly different comparisons. d Glycogen storage visualized by periodic
acid-Schiff (PAS) staining. Scale bar, 50 µm. eKetone-body synthesis represented by
3-hydroxybutyrate concentration in the co-culture supernatants. Bars show mean
and symbols represent co-culture replicates from three independent studies (n
values summarized in Supplementary Table 1). Studies 1 and 2 were performed at
TissUse and Study 3 at AstraZeneca. Differences between the diseased and the
healthy condition on day 3 or day 13 were evaluated by multiple t-tests using the
Holm–Sidak method for multiple comparisons without assuming a consistent
standard deviation. f Intracellular lipid droplets visualized by Nile Red staining
(amber color). Blue denotes DAPI-stained nuclei. Scale bar, 50 µm.
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variability between the laboratories, studies, and circuits. Variability is often
considered undesirable when designing in vitro systems, but trying to
remove it can lead to the standardization fallacy52 and less reproducible
results. Working with that variability, rather than attempting to remove it,
yields results that better generalize to the target patient population. We
found that the lab-to-lab and circuit-to-circuit variability contributed to the

total variance at a similar magnitude for the analyzed on-chip readouts,
including albumin, ketone bodies, and IL-1R2 production. Moreover,
consistent standard errors across laboratories confirmed the successful
transfer of the model from one laboratory to another without a substantial
increase in technical variability. For the futuremulti-organMPS studies, we
intend to use the randomized block design proposed for the HUMIMIC

Fig. 6 | Assessment of soluble factors promoting islet proliferation on chip.
a Proliferation of islets in static monocultures and in chip co-culture with liver
spheroids. In both culture systems, islets were maintained in the diseased (11 mM
glucose, 50 µM HCT) and in the healthy (5.5 mM glucose, 10 nM HCT) condition
and extracted for the proliferation assay at the end of the culture. Data shown as
percentage of EdU-positive cells in a box-whisker plot with median and min-max
values. Symbols represent individual islets from two independent co-culture studies
(n values summarized in Table S1). Study 2 was performed at TissUse and Study 3 at
AstraZeneca. Differences between selected pairs of conditions were evaluated by
one-way ANOVA using Sidak’s multiple comparisons post hoc test. bMulti-omics
analysis on the effect of hyperglycemia vs. normoglycemia on liver-secreted proteins.
Data fromRNA-Seq (HepaRG/HHSteC liver spheroids) and proteomics (co-culture
supernatants) were merged at the gene level. Point color indicate significance of
change (FDR < 0.05 and p < 0.05 for RNA-Seq and proteomics data, respectively).
Gene names are marked for genes with RNA-Seq and proteomic log2 fold-changes
>1. Transcriptomics data are from three independent studies and proteomics data
from four independent studies (see Supplementary Tables 1 and 2 for details). Two

studies were performed at TissUse (matching donors in RNA-Seq and proteomics
analysis) and two studies were performed at AstraZeneca (one combined RNA-Seq
and proteomics analysis with a matching donor and one additional donor in pro-
teomics analysis). c IL-1R2 concentration in the chip-based co-cultures over time.
Bars show mean and symbols represent individual co-culture replicates (circuits)
from Studies 2 and 3 (Study 2: n = 4, Study 3: n = 4). Study 2 was performed at
TissUse and Study 3 at AstraZeneca. d IL-1R2 treatment of islet monocultures. IL-
1R2 stimulates cell proliferation at low dose (0.3 ng/ml) but not at the high dose
(30 ng/ml) in islets monocultured in static condition in culturemedium provided by
the islet manufacturer. The islets were exposed to IL-1R2 for 16 days, and for the last
5 days of culture, medium was supplemented with 10 µM EdU for proliferation
analysis. Positive control: hyperglycemic low-HCT co-culture medium. Data shown
as percentage of EdU-positive cells in a box-whisker plot with median andmin-max
values. Symbols represent individual islets (n = 11 for untreated, 30 ng/ml IL-1R2
and 0.3 ng/ml IL-1R2, n = 7 for positive control). Differences to the untreated
control were evaluated by one-way ANOVA using Dunnett’s multiple comparisons
post hoc test. Study was performed at AstraZeneca.
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Chip2 platform40 to address possible variations caused by control units,
operators, and incubators.

We evaluated intra-study and inter-study reproducibility with a sta-
tistical methodology recently proposed by Schurdak et al.41. These analyses
confirmed that the on-chip readouts have overall acceptable or excellent
reproducibility within and across studies. Notably, the key readout of the
model, the GTT with glucose and insulin measurements, demonstrated
excellent intra-study reproducibility, ensuring high reliability in themodel’s
primary context of use. The inter-study reproducibility of ketone-body
measurement was poor in the healthy condition. Similar to the findings
reported by Schurdak et al.41, the poor reproducibility statuswas the result of
one outlying study, potentially due to differences in cell source (different
HepaRG batches) or bioanalysis methods (both fresh and frozen samples
used). Furthermore, we demonstrated method’s effectiveness in three
pancreatic islet donors, enabling the investigation of varying susceptibilities
for beta-cell damage and adaptation, which is challenging to achieve in
animal models due to their monogenetic background. To accommodate
studies on inter-donor variability also for the liver compartment, we are
currently developing a pancreas-liver MPS with primary human
hepatocytes.

Our current MPS focuses on liver-pancreas axis—a portion of insulin
resistance which is a complex multi-organ disease. Including other target
tissues for insulin action, such as an adipose-tissue model, would be valu-
able. While the liver plays a central role in controlling the glucose meta-
bolism, adipose tissue regulates glucose and lipid metabolism by releasing
free fatty acids, adipokines, and proinflammatory cytokines53. However,
translational in vitro models of adipose tissue are not trivial to establish54,
especially because the adipose tissue is highly heterogeneous55. Recently,
Slaughter et al. successfully coupled liver and adipose tissue models on chip
with functional adipokine signaling for 14 days56 and Tanataweethum et al.
demonstrated the first insulin resistant liver-adipose (white and brown)
MPS57. Expanding to a pancreas-liver-adipose MPS would broadly reflect
insulin resistance pathophysiology and enable investigations of emerging
therapies targeting adipose tissue58. Additionally, incorporating immune
cells59 and using hiPSC-derived organ models could further increase phy-
siological relevance, reflecting the highly heterogenous disease progression
and patient-specific pathophysiology. Indeed, MPS with patient-derived

cells hold a great potential for personalized medicine, including disease
modeling of rare genetic diseases and selecting personalized drug
treatments60. The pancreas-liverMPS, composedof human cells, holds even
promise for studying new drug modalities such as oligonucleotide ther-
apeutics. Generally, oligonucleotide therapeutics are specific for human
gene sequence with limited homology to non-clinical species. Transgenic
mice models or parallel development of species-specific oligonucleotide
therapeutics are used to overcome the challenge with non-human pre-
clinicalmodels9. ThisMPSmodel could be used for studying efficacy, safety,
targeting efficiency, and off-target effects of oligonucleotide therapeutics,
similar to the recent use of a kidney MPS platform for assessing antisense
oligonucleotide safety profiles50,51.

In conclusion, the described pancreas-liver MPS reflects
glucocorticoid-induced diabetes with impaired glucose regulation and islet
dysfunction when treated with hyperglycemia and high HCT. Conversely,
the model effectively maintains glucose homeostasis under physiological
culture conditions with normoglycemia and lowHCT.We have also shown
that a partnership of MPS and in silico computing is useful for studies on
multisystem diseases with complex organ-to-organ communication loops.
Through testing in two laboratories, we have confirmed good intra-study
and inter-study reproducibility, affirming the potential of the model to
advance drug discovery and development. The human-cell-based pancreas-
liver MPS serves as a preclinical platform for investigating disease
mechanisms, identifying targets, and evaluating candidate drugs.

Materials and methods
Liver spheroid formation
All cell cultures were maintained at 37 °C and 5% CO2 and conducted
according to good cell culture practice61. We used terminally differentiated
human HepaRG cells as a hepatocyte model as their gene expression pro-
files, regulatory pathways, functional glucose machinery and lipid meta-
bolismare similar to that inprimaryhumanhepatocytes62–64. Furthermore, a
functional insulin responsiveness was described forHepaRG cells63 which is
further improved in a three-dimensional spheroid culture12. Before liver
spheroid formation, differentiated HepaRG hepatocyte-like cells
(HPR116080, Biopredic, Lots HPR116NS080003, HPR116239-TA08 and
HPR116222-TA08 or NSHPRG, Lonza, Lot HNS1014) were pre-cultured

Fig. 7 | Evaluation of technical sources of variation
and reproducibility. We analyzed data from on-
chip readouts across all studies using amixedmodel,
which is a statistical model that can account for
different sources of variability. By using the output
from this model, we can understand better how
technical factors affect the endpoints of interest and
can show that even in the presence of this technical
noise, we can still pick upbiological effects of interest
with sufficient precision. a, b The proportion (%) of
total variance associated with each of the technical
factors (circuit, study, laboratory) and the propor-
tion of residual variance (that is, the variance that
cannot be attributed to any of the other factors).
Proportions are plotted respectively for the end-
points albumin (a) and ketone bodies (b). c, d We
viewed the difference between the diseased and
healthy conditions on day 13 as a benchmark bio-
logical difference of interest. Then, we used the
mixed model to both estimate that difference, and
also quantify how precise our estimate is. For each
study, the difference and its associated standard
error are shown for albumin (c) and ketone bodies
(d). Note that in this case, the statistical model was
applied to each study independently. Studies 1 and 2
were performed at TissUse and Study 3 at
AstraZeneca.
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for 4 days as previously described with a modification to medium
composition12. Glucose and insulin concentration of the pre-culture med-
ium were adjusted to physiological levels resulting in the following com-
position: Williams’ medium E (P04-29050S4, PAN-Biotech, w/o glucose,
w/o L-glutamine, w/o phenol red) supplemented with 10% fetal bovine

serum (FBS; 35-079-CV, Corning or 10270-106, Gibco), 5.5 mM glucose
(25-037-CIR, Corning or 072397, Fresenius Kabi), 1 nM insulin (P07-4300,
PAN-Biotech or 12585-014, Gibco), 2mM GlutaMax (35050-061, Gibco),
50 µM hydrocortisone hemisuccinate (H4881, VWR or H2270, Sigma-
Aldrich), 50 µg/ml gentamycin sulfate (30-005-CR, Corning or 15710-049,

Table 1 | Intra-study reproducibility of the pancreas-liver MPS

On-chip readout Study # of circuits # of time points Max CV ICC Reproducibility status

Healthy condition

Albumin 1 10 7 25.2 0.805
Excellent (ICC) 

2 8 7 17.1 0.743
Acceptable (ICC) 

3 8 7 26.3 0.349
Acceptable (ICC) 

Ketone bodies 1 8 2 7.6 0.422
Acceptable (ICC) 

2 8 2 13.2 0.464
Acceptable (ICC) 

3 8 2 15.4 0.355
Acceptable (ICC) 

IL-1R2 2 4 3 46.3 0.969
Excellent (ICC) 

3 4 3 49.9 0.665
Acceptable (ICC) 

GTT Insulin 1 4 4 9.4 0.908
Excellent (ICC) 

2 4 4 2.9 0.960
Excellent (ICC, CV) 

GTT Glucose 1 4 4 20.0 0.953
Excellent (ICC) 

2 4 4 61.6 0.927
Excellent (ICC) 

Diseased condition

Albumin 1 6 7 36.5 0.581
Acceptable (ICC) 

2 4 7 37.1 0.479
Acceptable (ICC) 

3 4 7 20.7 0.890
Excellent (ICC) 

Ketone bodies 1 6 2 16.3 0.843
Excellent (ICC) 

2 4 2 38.2 0.459
Acceptable (ICC) 

3 4 2 38.0 0.294
Acceptable (ICC) 

IL-1R2 2 4 3 14.5 0.939
Excellent (ICC) 

3 4 3 7.3 0.977
Excellent (ICC) 

GTT Insulin 1 4 4 3.5 0.724 Excellent (CV)

2 4 4 5.1 0.882
Excellent (ICC) 

GTT Glucose 1 4 4 50.6 0.905
Excellent (ICC) 

2 4 4 48.1 0.946
Excellent (ICC) 

Statistical assessment of the reproducibility is based on intra-class correlation coefficient (ICC) and themaximum coefficient of variation (CV). Reproducibility is classified as “Excellent” if Max CV ≤ 5% or
ICC ≥ 0.8; “Acceptable” if 5% <Max CV < 15% or 0.2 ≤ ICC < 0.8; or “Poor” if ICC < 0.2. Studies 1 and 2 were performed at TissUse and Study 3 at AstraZeneca.
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Gibco) and 0.25 µg/ml amphotericin B (30-003-CF, Corning). Differ-
entiated HepaRG cells were thawed and seeded confluently in pre-culture
medium containing 0.5% DMSO. One day after thawing, medium was
exchanged with pre-culture medium containing 2% DMSO. The cells were
maintained in this medium for three days until spheroid formation.

Primary human hepatic stellate cells (HHSteC, S00354, BioIVT, Lot
PFP) were expanded in Stellate Cell Medium (5301, ScienCell) supple-
mented with Stellate Cell Growth Supplement, 2% FBS and 1% penicillin/
streptomycin, and cryopreserved in FBS with 10% DMSO (23500.297,
VWR). The HHSteCs (P3-4) were thawed at least two days before spheroid
formation and pre-cultured in stellate cell medium until spheroid
formation.

Liver spheroids were formed for 3 days in 384-well spheroid micro-
plates (3830, Corning) with 24,000 differentiated HepaRG hepatocytes and
1000HHSteCs per spheroid as described previously12. Briefly, differentiated
HepaRG cells and HHSteCs were collected from their culture vessel using
0.25%/2.21mM or 0.05%/0.53mM trypsin/EDTA respectively. Trypsin
was neutralized with pre-culture medium (without DMSO) and the cells
were pelleted by centrifugation (HepaRG: 300 × g for 5min,HHSteC: 80 × g
for 5min). Pellets were resuspended in pre-culture medium and cell con-
centrations were determined. Cell suspensions were combined and the
volumewas adjustedwith pre-culturemedium (withoutDMSO) in order to
obtain a HepaRG concentration of 480,000 cells/ml and a HHSteC con-
centration of 20,000 cells/ml. Fifty μl of thisHepaRG/HSteC cell suspension
was loaded into eachwell of the 384-well spheroidmicroplate. The platewas
centrifuged for 2min at 200 × g and incubated at 37 °C and 5% CO2 for
3 days. Once compact spheroids had formed, 40 spheroids were collected
into a 24-well ultra-low attachment plate (3473, Corning) for each co-
culture replicate, and incubated in 1ml pre-culture medium (without
DMSO) overnight on a 3D rotator (PS-M3D; Grant-bio) before transfer to
the islet-liver co-culture.

Pre-culture of pancreatic islets
We used commercially available human pancreatic islet microtissues (MT-
04-002-0, InSphero) as a pancreatic islet model. The microtissues are

manufactured from a dissociated human pancreatic islet suspension and
have a defined cell number. After arrival, the pancreatic islet microtissues
(here called islets) were maintained for 5 days in Akura™ 96 Spheroid
Microplate (CS-09-004-01, InSphero) according to the manufacturer’s
instructions. Medium was exchanged every 2–3 days with 70 µl of Human
IsletMaintenanceMedium (CS-07-005-02; InSphero). The used pancreatic
islet donors are listed in Supplementary Table 2.

Pancreas-liver MPS
Experimental design of the work is summarized in Supplementary Table 1.
We performed co-cultures with islet and liver spheroids on a commercially
available multi-organ-chip HUMIMIC Chip2 (TissUse) platform (Fig. 1d).
This MPS has two culture compartments for the integration of spatially
separated organmodels. The culture compartments are interconnected by a
microfluidic channel which enables re-circulation of the common co-
culture medium. An on-chipmicropump drives a pulsatile flow supporting
long-termperfusionandcommunicationbetween theorganmodels.Design
and fabrication of the Chip2 were described previously65,66.

Three days before insertion of the organ models, the chips were pre-
pared for cultivation by replacing the storage buffer with 300 µl co-culture
medium in each culture compartment (total volume per circulation was
605 µl). The chips were connected via air tubes to the control unit
(HUMIMIC Starter) operating the on-chip micropump. The control unit
was set to0.45 Hz,500mbarpressure and–500mbar vacuumresulting in an
average volumetric flow rate of 4.94 µl/min between the culture
compartments.

On the day of organ model transfer, the liver spheroids were washed
twice with phosphate-buffered saline (PBS) to remove insulin from pre-
culture medium. Subsequently, the liver spheroids were equilibrated for at
least 2 h in an insulin-free co-culture medium composed of Williams’
mediumE (w/o glucose, w/o L-glutamine, w/o phenol red), 10%FBS, 2mM
GlutaMax, 50 µg/ml gentamycin sulfate, and 0.25 µg/ml amphotericin B.
Glucose concentration was 5.5mM in the normoglycemic condition and
11mM in the hyperglycemic condition, and hydrocortisone concentration
was either 10 nM or 50 µM (indicated in each study and condition). The

Table 2 | Inter-study reproducibility of the pancreas-liver MPS

On-chip readout Studies # of circuits # of time points Max CV ICC Reproducibility status

Healthy condition

Albumin 1,2,3 26 7 34.6 0.277
Acceptable (ICC) 

Ketone bodies 1,2,3 24 2 32.1 0
Poor (CV) 

IL-1R2 2,3 8 3 54.5 0.739
Acceptable (ICC) 

GTT Insulin 1,2 8 4 92.8 0.499
Acceptable (ICC) 

GTT Glucose 1,2 8 4 7.1 0.861
Excellent (ICC) 

Diseased condition

Albumin 1,2,3 14 7 40 0.553
Acceptable (ICC) 

Ketone bodies 1,2,3 14 2 30 0.566
Acceptable (ICC) 

IL-1R2 2,3 8 3 24 0.924
Excellent (ICC) 

GTT Insulin 1,2 8 4 89.6 0.384
Acceptable (ICC) 

GTT Glucose 1,2 8 4 4.8 0.753
Excellent (CV) 

Statistical assessment of the reproducibility is based on the intra-class correlation coefficient (ICC) and themaximumcoefficient of variation (CV). Reproducibility is classified as “Excellent” if MaxCV ≤ 5%
or ICC ≥ 0.8; “Acceptable” if 5%<Max CV < 15% or 0.2 ≤ ICC < 0.8; or “Poor” if ICC < 0.2. Studies 1 and 2 were performed at TissUse and Study 3 at AstraZeneca.
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islets were similarly equilibrated in the co-culture medium for at least 2 h.
After equilibration, 40 liver spheroids and 10 pancreatic islets were trans-
ferred to their respective culture compartment with 300 µl of fresh co-
culture medium. Liver spheroids were collected using a wide-bore filter tip
(T-205-WB-C-R-S, Corning), and carefully transferred into the liver com-
partment. In parallel, 10 islets were collected into a 1.5ml microtube, pel-
leted by a brief centrifugation (1min, 200 × g) and transferred to the islet
compartment. Alternatively, the islets were collected using an electronic
single-channel pipette (Xplorer plus, Eppendorf) and directly transferred
into the chips. The chips were reconnected to the control units and incu-
bated at 37 °C and 5% CO2. The co-culture medium in both culture com-
partments was exchanged completely after 24 h (adaptation time to the
dynamic culture) and subsequently every 48 h for a total co-culture duration
of 15–16 days. In studies 2 and 3, medium was supplemented with 10 µM
EdU for proliferation analysis for the last 5 days of culture. In studies 1, 2,
and 3, some islets were statically cultured inAkura™ 96 SpheroidMicroplate
and 70 µlmediumwas exchanged on day 1, 3, 5, 7, 9, 11 and 13 tomimic the
co-cultures medium exchange regime.

Hydrocortisone dose-response
Islets were cultured in Akura™ 96 Spheroid Microplate in 70 µl of normo-
glycemic co-culture medium containing 0, 0.05 nM, 0.5 nM, 5 nM, 50 nM,
500 nM, 5 µM and 50 µMHCT.Mediumwith HCTwas renewed on day 1,
3, 5, 7, 9, 11 and13 tomimic the co-culturesmediumexchange regime.After
15 days of culture, the islets were analyzed for their glucose-stimulated
insulin secretion as described below.

IL-1R2 treatment
Islets were cultured in Akura™ 96 Spheroid Microplate in 70 µl of Human
Islet Maintenance Medium and they were treated with 0.3 ng/ml or 30 ng/
ml of human recombinant IL-1R2 protein (10111-H08H, Sino Biological)
for 16 days. Medium with IL-1R2 was renewed three times a week. For the
lastfivedays of culture,mediumwas also supplementedwith10 µMEdUfor
proliferation analysis. Islets cultured in insulin-free chip co-culturemedium
with 10 nMhydrocortisone and 11mM glucose (LowHCT-HG condition)
served as a positive control since this medium was shown to significantly
induce islet proliferation (Supplementary Fig. 7). After finishing the culture,
the islets were analyzed for their glucose-stimulated insulin secretion and
proliferation using EdU incorporation assay as described below.

Glucose tolerance test
GTTassayswereperformed as describedpreviously12 at different timepoints
during the co-culture.Briefly, the co-culturemediumwas exchanged inboth
culture compartmentswith a co-culturemediumcontaining11mMglucose
(−300 µl,+315 µl). Fifteen µl of supernatant samples were collected at 0, 8,
24, and 48 h to monitor glucose and insulin concentrations. To obtain
sufficient sample volumes for the analysis, samples from the liver and islet
compartments were pooled. For optimal sample recovery, samples were
stored in 96-well PCR plates (30133358, Eppendorf) and sealed using alu-
minum foil tominimize evaporation during storage. Samples were stored at
−80 °C until glucose and insulin measurements (see “Analysis of soluble
markers”).

Glucose-stimulated insulin secretion
To assess functionality of the islets after the co-culture, islets from the
chips were extracted, transferred into Akura™ 96 Spheroid Microplate
and a GSIS assay was performed on individual islets. The islets were first
washed twice with 70 µl of Krebs-Ringer solution containing 2.8 mM
glucose (low-glucose solution), followed by equilibration in 70 µl of low-
glucose solution for 1–2 h. Next, the islets were washed twice with 70 µl
of low-glucose solution and incubated for 2 h in 50 µl of low-glucose
solution to measure basal insulin secretion. Following this, the islets were
washed once with 70 µl of Krebs-Ringer solution containing 16.8mM
glucose (high-glucose solution) and subsequently incubated in 50 µl of
high-glucose solution for 2 h to measure the glucose-stimulated insulin

secretion. Basal and glucose-stimulated samples were collected after
incubations and stored at −80 °C until insulin measurement.

Analysis of soluble markers
Cell culture supernatant collected duringmedium exchanges were analyzed
for albumin (10242, Diagnostic Systems) and ketone bodies (3-beta-
hydroxybutyrate,Autokit 3-HB, FujifilmWako) on an IndikoPlus chemical
analyzer (Thermo Fisher Scientific) according to the manufacturer’s
instructions. IL-1R2 concentrations were determined in culture super-
natants by an ELISA assay (EHIL1R2, Thermo Scientific) according to the
manufacturer’s instructions. Samples taken during the GTT were analyzed
for glucose (1070-500, Stanbio Laboratory) and insulin (10-1113-10, Mer-
codia) according to the manufacturer’s instructions.

Computational models
Hypothesis testing using computational modeling. We used mathe-
matical modeling as a tool to test mechanistic hypotheses on experi-
mental data. A mechanistic hypothesis corresponds to a formulation of
causal mechanisms key to produce the observed behavior in the data.
Hypothesis testing via mathematical modeling is an iterative
approach (Fig. 2b).

In the first step, the existing hypotheses are translated into a set of
mathematical equations (i.e., corresponding mathematical models). We
considered twohypotheses for the observed glucose and insulin responses in
the pancreas-liver MPS: H1, “Insulin resistance is caused by hyperglycemia
alone”, and H2, “Insulin resistance is caused by a combination of hyper-
glycemia and an additional diabetogenic factor”.

The second step involves the acquisition of experimental data and
fitting the mathematical models to these data by optimization of the
model parameters. The hypotheses are initially evaluated based on the
outcome of this optimization. If the mathematical model cannot provide
an acceptable agreement with the data, according to statistical analyses,
then the corresponding hypothesis is rejected and must be revised. On
the other hand, if the model can provide an acceptable agreement with
data, the corresponding hypothesis is not rejected. The non-rejected
models can then be used to generate uniquely identified predictions with
uncertainty67, that allow for designing new experiments that could dis-
tinguish between the remaining hypotheses. The experiments are per-
formed, and the predictions are compared against the new experimental
data. If the model predictions agree with the experimental data, the
corresponding hypothesis is accepted. On the contrary, if the predictions
do not agree with the experimental data, the model is rejected and a new
iteration in the hypothesis testing cycle is performed. Several iterations
can be performed until a final model has been found. In the following, we
describe the mathematical model with its equations, and the hypothesis
testing procedure in detail.

A computational model for glucose metabolism in the pancreas-
liverMPS.We used our previously developed computationalmodel14 as a
basis to implement the hypotheses studied in this paper. The model
describes glucose metabolism in the pancreas-liverMPS (Supplementary
Fig. 2b). More specifically, it describes crucial biological processes
underlying glucose regulation on a short-term basis (meal response), as
well as long-term changes in physiological variables related to impaired
glucose homeostasis, such as insulin resistance and beta-cell adaptation.
This model was constructed based on experimental data from seven
independent studies corresponding to seven different islet donors14.

The computational model is formulated using ordinary differential
equations (ODEs), which have the following general structure:

d
dt~x tð Þ ¼ f ~x tð Þ;~p;~u tð Þ� �

~x 0ð Þ ¼ ~x0
~y tð Þ ¼ g ~x tð Þ;~p;~u tð Þ� �
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where~x tð Þ is the state vector describing the dynamics of concentrations or
amounts and~p are the parameters, which here correspond to kinetic rate
constants.~u tð Þ is a vector containing the external inputs.~x 0ð Þ contains the
initial conditions, i.e., the values of the states at t = 0. The vector ~y tð Þ
represents the simulatedmodel outputs, which correspond to themeasured
experimental signals. Finally, f and g are non-linear smooth functions that
describe a set of mechanistic assumptions.

Derivation of the computational model. The computational model is
based on the interplay between two components corresponding to dif-
ferent time scales: fast (hours) and slow (weeks). The fast model describes
glucose and insulin dynamics between medium exchanges, which take
place every 48 h. The slow model describes the dynamics of long-term
variables representing disease progression, such as the development of
insulin resistance in the liver spheroids and beta-cell adaptation in the
islets. The interplay between these two models allows short-term vari-
ables to impact long-term disease progression (e.g., impact of daily glu-
cose levels on insulin resistance and beta-cell volume) and vice versa. The
model includes two compartments, each of them representing a specific
culture compartment in the MPS (liver or pancreas) comprising a cor-
responding organmodel and co-culture medium. The compartments are
connected in a closed loop, with circulatingmediumdetermined by aflow
rate parameter. The model equations are described in detail previously14

and summarized below.
Glucose content in the co-culture medium within the liver compart-

ment varies with glucose dosing to the system, endogenous glucose pro-
duction and glucose uptake by the liver spheroids, as well as glucose inflow
from and outflow to the pancreas compartment:

dNGm;liver tð Þ
dt

¼Gd tð Þ þ VHepaRG;spheroids � EGP tð Þ

� VHepaRG;spheroids EG0 þ SI tð Þ �
NIm;liver tð Þ
Vm;liver

 !
NGm;liver tð Þ
Vm;liver

þ Q � NGm;pancreas tð Þ
Vm;pancreas

� Q � NGm;liver tð Þ
Vm;liver

mmol
h

� �

where NGm;liverðtÞ and NGm;pancreasðtÞ are the number of glucose molecules
(mmol) in the culture medium corresponding to the liver and pancreas
compartments, respectively, and NIm;liverðtÞ) is the number of insulin
molecules in the co-culture medium within the liver compartment (mIU).
The glucose input rate Gd tð Þ (mmol/h) defines glucose variations due to
media exchanges, and EGPðtÞ describes endogenous glucose production in
the liver spheroids (mmol/L/h). EGPðtÞ was set to zero based on the
observed decline in glucose levels below normoglycemia (5.5mM) in our
system. Glucose uptake by the liver spheroids accounts for both insulin-
independent uptake, determined insulin-independent glucose disposal rate
EG0 (1/h), and an insulin-dependent uptake regulated by the insulin
sensitivity of the liver spheroids SI tð Þ (L/mIU/h). The parameters describing
the flow rate between culture compartments (Q (L/h)), the total volume of
HepaRG cells in the liver spheroids (VHepaRG;spheroids (L)) and the volume of
co-culture medium in the liver and pancreas compartments (Vm;liver and
Vm;pancreas (L), respectively) account for the operating conditions in
the MPS.

In the computational model, insulin sensitivity of the liver spheroids
SI tð Þ decreases progressively from its initial value at the beginning of the co-
culture SI0 (L/mIU/h), as the liver spheroids are exposed to hyperglycemic
concentrations (i.e., above normoglycemia) over time:

SI tð Þ ¼ SI0 � 1� Imax;Si � GintðtÞ
EC50Si þ GintðtÞ

� �
ðL=mIU=hÞ:

This decrease is determined by the maximal fractional reduction
Imax;Si, and with half of the maximal fractional reduction occurring
at EC50Si (mmol*h/L). The hyperglycemic periods are quantified

by the integral of excess glucose Gint tð Þ, which represents the difference
between the glucose concentration in the liver compartmentNGm;liver tð Þ=
Vm;liver (mmol/L) and a normoglycemic glucose concentration Gnormo

(5.5 mmol/L):

dGint tð Þ
dt

¼

NGm;liver tð Þ
Vm;liver

� Gnormo
NGm;liver tð Þ
Vm;liver

� Gnormo ≥ 0

0
NGm;liver tð Þ
Vm;liver

� Gnormo < 0
ðmmol=LÞ

8>><
>>:

Glucose content in the pancreas compartment is described as:

dNGm;pancreasðtÞ
dt

¼ Gd tð Þ þ Q � NGm;liver tð Þ
Vm;liver

� Q � NGm;pancreas tð Þ
Vm;pancreas

ðmmol=hÞ

Insulin content in the pancreas compartment depends on the release
of insulin from beta cells in the islets, and insulin inflow from and
outflow to the liver compartment. Insulin release from the beta cells was
modeled as a combination of the volume of beta cells in the islets
(Vβ;isletsðtÞ (L)), the insulin secretion capacity per unit volume of beta
cells (denoted σðtÞ (mIU/L/h)), and the glucose concentration resulting in
half-of-maximum response to insulin (denoted EC50I (mmol/L)). The
full equation describing insulin content in the pancreas compartment
then becomes:

dNIm;pancreas tð Þ
dt

¼Vβ;islets tð Þ � σ tð Þ �
NGm;pancreas tð Þ
Vm;pancreas

� �2
EC502I þ

NGm;pancreas tð Þ
Vm;pancreas

� �2
þ Q � NIm;liver tð Þ

Vm;liver
� Q � NIm;pancreas tð Þ

Vm;pancreas
ðmIU=hÞ

where NIm;pancreasðtÞ and NIm;liverðtÞ are the number of insulin molecules
(mIU) in the pancreas and the liver compartment, respectively.

Furthermore, the insulin secretion capacity of the beta cells was
modeled as a decreasing function of time, determined by the parameter
α (h2):

σ tð Þ ¼ σmax � 1� t2

αþ t2

� �
ðmIU=L=hÞ

where σmax (mIU/L/h) represents the maximal insulin secretion rate of the
beta cells (i.e., at the beginning of the co-culture).

The variableVβ;isletsðtÞ (L) describes the changes in volume of beta cells
in the pancreatic islets over the co-culture time, according to the following
equation:

dVβ;isletsðtÞ
dt

¼ kvð�d0 þ r1Gslow;pancreasðtÞ � r2Gslow;pancreasðtÞ2Þ � Vβ;isletsðtÞ ðL=hÞ

where d0 is the death rate at zero glucose (h−1) and r1 ¼ r1;r þ r1;a
(L/mmol/h) and r2 ¼ r2;r þ r2;a (L

2/mmol2/h), where r1;r , r1;a (L/mmol/h),
r2;r , r2;a (L

2/mmol2/h) are parameters that determine the dependence on
glucose of the replication and apoptosis rates. The dimensionless para-
meter kv was introduced to account for potential differences in behavior
between islets in our in vitro system and rodent islets in the model of
Topp et al.

The variable Gslow;pancreasðtÞ (mmol/L) represents the long-term aver-
age (i.e., daily) glucose concentration in the co-culture medium as given by:

dGslow;pancreas tð Þ
dt

¼ Gpancreas tð Þ � Gslow;pancreas tð Þ
τslow

ðmmol=L=hÞ

where the parameter τslow (h) represents the time scale of the averaging
process.
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Insulin content in the liver compartment decreases over time due
according to the hepatic insulin elimination rate constant kelimination I;spheroids
(1/h):

dNIm;liverðtÞ
dt

¼ Q � NIm;pancreas tð Þ
Vm;pancreas

� Q � NIm;liver tð Þ
Vm;liver

� VHepaRG;spheroids � kelimination I;spheroids �
NIm;liver tð Þ
Vm;liver

ðmIU=hÞ

The concentrations of glucose and insulin in each compartment were
calculated by dividing the insulin and glucose content, respectively, by the
volume of co-culture medium in the compartment:

GliverðtÞ ¼
NGm;liverðtÞ
Vm;liver

ðmmol=LÞ

GpancreasðtÞ ¼
NGm;pancreasðtÞ
Vm;pancreas

ðmmol=LÞ

I liverðtÞ ¼
NIm;liverðtÞ
Vm;liver

ðmIU=LÞ

IpancreasðtÞ ¼
NIm;pancreasðtÞ
Vm;pancreas

ðmIU=LÞ

Glucose and insulin samples in the co-culture studies were obtained by
pooling samples from both the liver and the pancreas compartment.
Therefore, the resulting glucose and insulin measurements (G tð Þ and I tð Þ,
respectively), were computed as:

G tð Þ ¼ Gliver tð Þ � V sample;liver þ Gpancreas tð Þ �
Vsample;pancreas

Vsample;liverþV sample;pancreasð Þ ðmmol=LÞ

I tð Þ ¼ I liver tð Þ � V sample;liver þ Ipancreas tð Þ �
Vsample;pancreas

Vsample;liverþV sample;pancreasð Þ ðmIU=LÞ

where V sample;liver and V sample;pancreas are the volumes of co-culture media
collected from the liver and pancreas compartment, respectively, in each
sample (15 µl).

The initial conditions for the model states are listed below:

NGm;liverð0Þ ¼ ðGdose þ ΔGd1Þ � Vm;liverðmmolÞ
NGm;pancreasð0Þ ¼ ðGdose þ ΔGd1Þ � Vm;isletsðmmolÞ

NIm;liverð0Þ ¼ ΔId1 � Vm;liverðmIUÞ
NIm;pancreasð0Þ ¼ ΔId1 � Vm;pancreasðmIUÞ

tð0Þ ¼ 0 ðhÞ
Gint 0ð Þ ¼ 0 ðmmol � h=LÞ

Gslow;pancreas 0ð Þ ¼ 5:5 ðmmol=LÞ
Vβ;isletsð0Þ ¼ 8:8 � 10�9ðLÞ

where ΔGd1 (mmol/L), ΔId1 (mIU=L) are offset parameters that account for
experimental errors related to the medium exchange performed on day 1.
The experimental errors in the glucose concentration at 0 h can be due to
varying co-culture medium volumes in the culture compartments, varying
glucose concentration in the co-culture medium, or glucose assay-dependent
variations. Values of insulin concentration different from zero at t= 0 h
could be due to co-culture medium remaining in the chip (both in the
culture compartments and the microfluidic channel) during the medium
exchange corresponding to the first GTT. Similarly, the model para-
meters ΔGd13;ΔId13

� �
account for errors in glucose and insulin concentra-

tions, respectively, during the medium exchanges performed on day 13.

Hypothesis testing to unravel the origin of insulin resistance in the
pancreas-liver MPS. We tested two hypotheses that could explain the
glucose and insulin responses observed in the MPS (Fig. 1e). The first
hypothesis (H1) assumes that insulin resistance is caused by hypergly-
cemia alone, while the second hypothesis (H2) assumes that insulin
resistance is caused by hyperglycemia and an additional diabetogenic
factor. The model described in Casas et al.14 implements hypothesis H1.
Therefore, we created a second computational model implementing

hypothesis H2, by including an equation to model the effect of an
additional diabetogenic factor on insulin sensitivity. This effect was
modeled as a sigmoidal function of time, with maximal fractional
reduction Imax;additional, and with half of the maximal fractional reduction
occurring at EC50additional (mmol h/L):

SI tð Þ ¼ SI0 � 1� Imax;Si�Gint ðtÞ
EC50SiþGintðtÞ

� �
� 1� Imax;additional�t

2

EC50additional
2þt2

� �
Each computational model was calibrated against the experimental

data of glucose and insulin from the pancreas-liver MPS. To perform this
calibration, the model parameters were estimated using nonlinear optimi-
zation, by finding parameter values that provided an acceptable agreement
with the experimental data according to the following cost function:

VðpÞ ¼
X
i

X
t

yi tð Þ � ŷi t; p
� �� �2

SEMiðtÞ2

where i is summed over the number of experimental time-series for the
given experiment yi tð Þ and ŷi t; p

� �
represents the model simulations and p

themodel parameters. SEMdenotes the standard error of themeanand t the
measured time points in each time-series. To handle uncertainty in the
estimation, we used a simulated annealing approach68 to find the set of
acceptable parameters that provided an acceptable agreement with the
experimental data according to a statistical χ2 test67,69 with a significance
level of 0.05.

We found a good visual agreement with the experimental data for
both models corresponding to H1 and H2 (Fig. 2d, e). This visual
agreement was statistically supported by the fact that both models passed
a χ2 test at a significance level α = 0.05, with a value of the cost for the
optimal parameter set popt lower than the χ2-thresh-
old (Vðpopt;H1Þ ¼ 21:62 < 37:65; Vðpopt;H2Þ ¼ 28:32 < 37:65Þ.

To be able to discriminate between H1 and H2, we performed
predictions of glucose and insulin responses for different doses of added
insulin to the co-culture medium, and selected an insulin dose that would
provide detectable differences between the glucose responses for these
hypotheses (i.e., differences larger than the average SEM across samples
in the experimental data). The model predictions were made for the
entire set of acceptable parameters. To visualize these predictions, we
simulated model responses for the maximal and minimal values of each
parameter within the set of acceptable parameters. We then calculated
the boundaries of the prediction by computing the maximal and minimal
value of the prediction for each time point and visualized the area
between these boundaries (Fig. 2d). We performed the corresponding
experiments for the calculated insulin dose (23 nM) and computed the
model prediction. No acceptable agreement with the experimental data
was found for H1, and this hypothesis was therefore rejected (Fig. 2d).
H2, on the other hand, showed good visual agreement with the experi-
mental data (Fig. 2e), which was also confirmed with a χ2 test at sig-
nificance level α = 0.05 (Vðpopt;H2Þ ¼ 3:45 < 12:59).

Simulating the effect HCT concentration in the pancreas-liver MPS.
In the computational model, the effect of highHCT on the pancreas-liver
MPS was modeled as a decrease in both the insulin sensitivity of the liver
spheroids SI tð Þ and the insulin secretion capacity of the β cells σ tð Þ over
time, as follows:

SI tð Þ ¼ SI0 � 1� Imax;Si�Gint ðtÞ
EC50SiþGintðtÞ

� �
� 1� Imax;additional�t

2

EC50additional
2þ t2

� �
σ tð Þ ¼ σmax � 1� t2

αþt2

� �
ðmIU=L=hÞ

where the term in SI tð Þ with two additional parameters Imax;additional and
EC50additional represents the effect of high HCT SI tð Þ.

To model the effect of physiological HCT levels on the pancreas-liver
MPS, we omitted the terms corresponding to these decreases in SI tð Þ and
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σ tð Þ, leading to the following equations:

SI tð Þ ¼ SI0 � 1� Imax;Si�GintðtÞ
EC50Si þGintðtÞ

� �
σ tð Þ ¼ σmax

To predict the glucose and insulin responses in the pancreas-liverMPS
under physiological HCT concentrations, we first calibrated the computa-
tionalmodel using experimental data under highHCT levels from twoGTT
experiments; one GTT starting at day 1 (GTT day 1–3) and one GTT
starting at day 13 (GTT day 13–15) (Fig. 4a, high HCT). With the optimal
parameter values obtained from this estimation as a start guess, we then
optimized theparameters representing insulin sensitivity at the beginningof
the co-culture SI0 and the insulin secretion capacity of the beta cells σmax
usingdataunderphysiologicalHCT levels fromanotherGTTstarting at day
1 (Fig. 4b, lowHCT). This optimization was done to establish a baseline for
SI0 and σmax to predict the glucose and insulin responses.We then used this
parameter set to predict the glucose and insulin responses under physio-
logical HCT levels. In doing so, we omitted the decreases in SI tð Þ and σ tð Þ
over time, as previously described.

Data pre-processing. Given the small number of replicate platforms in
the MPS studies (2–6), we assume that the SEM values measured
experimentally are an underestimation of the true uncertainty in the data.
We considered SEM values below 5% of the corresponding mean to be
unrealistic and corrected for possiblemeasurement errors by setting these
SEMvalues to the largestmeasured SEMvalue across all data points in the
experimental dataset. Furthermore, we accounted for experimental
errors in glucose and insulin measurements due to media-exchanges by
including measured offsets in concentrations at the beginning of GTTs
(t = 0 within a given GTT) as an additional contribution to the total SEM
for all data points corresponding to the given GTT. The resulting SEM
values are given as error bars in all figures.

Software. Computations were carried out in MATLAB R2022b (The
Mathworks Inc., Natick, Massachusetts, USA) using IQM tools (Inti-
QuanGmbH,Basel, Switzerland) and theMATLABGlobalOptimization
toolbox, as well as in Python (v 3.9.13). Figures 1a–c, e, 2a–c and Sup-
plementary Fig. 1 were created with BioRender.com.

Gene expression analysis
RNA isolation and quantitative real-time PCR. After the co-culture,
liver spheroids in the culture compartments were washed three times
with PBS and the spheroids were removed using a sterile blunt end needle
(9180117, B.Braun) for RNA isolation. Spheroids were transferred into
PCR-clean 1.5 ml microtubes with 100 µl of lysis buffer (LB1 from
Macherey-Nagel or 700 µl of Buffer RLT (79216, Qiagen). Lysates were
snap-frozen and stored at −80 °C. RNA was isolated using the
NucleoSpin® RNA Plus XS kit (740990.50, Macherey-Nagel) or RNeasy
Mini Kit (74104, Qiagen). cDNA was synthesized using TaqMan®
Reverse TranscriptionKit (Thermo Fisher Scientific). Real-time PCRwas
performed using the SensiFAST SYBR Lo-ROXKit (BIO-94020, Bioline)
in a QuantStudio 5 Real-Time PCR System (Thermo Fisher Scientific).
Primers are shown in Supplementary Table 3. Relative gene expression
was determined using the comparative CT (ΔΔCt) method with TBP as
endogenous control gene.

RNA sequencing. The quantity and quality of RNA samples was
assessed using the standard sensitivity RNA fragment analysis kit on
Fragment Analyzer (Agilent Technologies). All samples had an RNA
integrity number >8 and were deemed of sufficient quantity and quality
for RNA-seq analysis. Samples were diluted to a final quantity of 150 ng/
sample of total RNA. The KAPAmRNAHyperPrep kit (Roche) was used
for reverse transcription, generation of double stranded cDNA and
subsequent library preparation and indexing to facilitate multiplexing

(Illumina TruSeq). All libraries were quantified with the Fragment
Analyzer using the standard sensitivity NGS kit (Agilent Technologies),
pooled in equimolar concentrations and quantified with a Qubit Fluo-
rometer (Thermo Fisher Scientific) with the DNAHS kit (Thermo Fisher
Scientific), the library poolwas further diluted to 2.2 pMand sequenced at
>20M paired end reads/sample using the High Output regent kit to 150
cycles on an Illumina NextSeq500.

RNASeqdatawere analyzedusing bcbio (version1.1.0) anddifferential
analysis was performed with DESeq2 (version 1.18.1).

Proteomic analysis
Sample preparation for proteomic analysis. For proteomic analysis,
the co-cultures were incubated in FBS-free co-culturemedium for the last
4 days (d11–15). After finishing the culture, supernatants were collected
from both pancreas and liver compartments and combined in a 1.5 ml
microtube. Samples were first centrifuged at 300 × g for 10 min at RT, to
remove any remaining cells, and then supernatants were transferred into
new tubes for centrifugation at 10,000 × g for 10 min at 4 °C. The
supernatants were stored at −80 °C until sample preparation for nano-
scale liquid chromatographic tandem mass spectrometry (nLC-MS/MS)
performed on two MPS media experiments and MS instruments, Q
Exactive™ HF Orbitrap or Fusion™ Lumos™ Tribrid™ (Thermo Fisher
Scientific).

Sample preparation, peptide labeling and fractionation for Q
Exactive™ HF analysis. Equal volumes of the cell culture supernatants
from each condition was concentrated on nanosep 10k omega filters (Pall
Corporation, Port Washington, NY, USA) prerinsed with 50 mM trie-
thylammonium bicarbonate (TEAB, Sigma-Aldrich) and was washed
twice in the filter with 500 µL 50 mMTEAB, by spinning at 14,000 × g for
20 min at 4 °C. Proteins were reduced on the filters using 100 µl 10 mM
TCEP (77720, Bond-Breaker™ TCEP solution, Thermo Scientific) in
50 mMTEAB at 55 °C for 45 min followed by a 10 min spin at 14,000 × g,
20 °C and free cysteine residues were modified using 100 µl freshly pre-
pared 15 mM iodoacetamide (IAA, Sigma-Aldrich) in 50 mMTEAB and
incubated for 20 min at room temperature in the dark. The IAA solution
was removed by washing with 10% acetonitrile (ACN) in 50 mM TEAB
followed by centrifugation and filters transferred to new LoBind
Eppendorf tubes. Tryptic digestion was performed by adding 1.6 µg of
trypsin (V5111, Promega, sequencing grade modified trypsin) in 40 µl
10% ACN in 50mM TEAB and incubated at 37 °C under humid con-
ditions. Next day digested peptides were collected after spinning and then
rinsing the filters with 60 µL 10% acetonitrile in 50 mM TEAB followed
by a final centrifugation at 14,000 × g, which collected all tryptic peptides
in the LoBind tube.

An equal amount (54 µg, determined by Pierce Quantitative Fluoro-
metric peptide assay, 23275, Thermo Scientific) of peptides from each
sample was subjected to isobaric labeling using Tandem Mass Tag (TMT-
10plex) reagents (90110, Lot RG234662, Thermo Fischer Scientific)
according to the manufacturer’s instructions. The labeled samples were
combined into one pooled sample, concentrated using vacuum cen-
trifugation and separated into eight fractions using Pierce™ High pH
Reversed-Phase Peptide Fractionation Kit (84868, Thermo Scientific)
according to the manufacturer’s instructions for TMT-labeled peptides.
After vacuumcentrifugationof peptide fraction todryness thepeptideswere
resuspended in 0.2% Formic Acid (FA) in 3% ACN.

Nano-liquid chromatography tandem mass spectrometry with Q
Exactive™HF. TheTMT-labeled peptide sampleswere analyzedwith an
Easy-nLC1200 liquid chromatography system combined with Q Exactive
HFmass spectrometer (Thermo Scientific) using a 136min gradient. The
separation was performed using an Acclaim PepMap precolumn (75 µM
ID by 20mm) connected to a 75 µM by 150mm analytical Easy Spray
PepMap RSLC C18 column (2 µm particles, 100 Å˚ pore size; Thermo
Scientific) using a gradient from 5% solvent B to 15% solvent B over
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47min, then up to 25% B the next 58min and up to 50% B in 20min
followed by an increase to 98% solvent B for 1 min, and 98% solvent B for
9 min at a flow of 280 nL/min. Solvent A was 0.1% formic acid and
solvent B was 80% acetonitrile, 0.1% formic acid. MS scans were per-
formed at 120,000 resolution, m/z range 350–1400. MS/MS analysis was
performed in a data-dependent experiment, with top 15 of the most
intense doubly or multiply positive charged precursor ions selected.
Precursor ions were isolated in the quadrupole with a 1.2m/z isolation
window and 0.2m/z offset, with dynamic exclusion set to a duration of
30 seconds. Isolated precursor ions were subjected to collision induced
dissociation (CID) at 32 collision energy (arbitrary unit) with a max-
imum injection time of 100ms. Produced MS2 fragment ions were
detected at 60,000 resolutions, with a fixed first mass of 120m/z and a
scan range of 200–2000m/z.

Proteomic data analysis of Q Exactive™ HF data. The data files were
merged for identification and relative quantification using Proteome
Discoverer version 2.1.1.21 (Thermo Fisher Scientific). Swiss-Prot
Human database was used for the database search, using the Mascot
search engine v. 2.5.1 (Matrix Science, London, UK) with MS peptide
tolerance of 6 ppm and fragment ion tolerance of 0.02 Da. Tryptic pep-
tides were acceptedwith 1missed cleavage andmethionine oxidationwas
set as a variable modification. Carbamidomethyl on cysteines and TMT
on peptide N-termini and on lysine side chains were set as fixed mod-
ifications. Percolator was used for PSM validation with the strict FDR
threshold of 1%. Quantification was performed in Proteome Discoverer
2.1.1.21. The TMT reporter ions were identified with 20 ppm mass tol-
erance in the MS2 spectra and the TMT reporter S/N values for each
sample were normalizedwithin ProteomeDiscoverer on the total peptide
amount. Quantitative results were only based on unique peptide
sequences with a co-isolation threshold of 50 and an average S/N
threshold of 10 for the protein quantification.

Sample preparation, peptide labeling and fractionation for Fusion™
Lumos™ Tribrid™ analysis. Each sample was mixed with sodium
dodecyl sulfate (SDS), triethylammonium bicarbonate (TEAB) and DL-
dithiothreitol (DTT) to concentrations of 0.5% SDS, 50mM TEAB,
100mM DTT and incubated at 95 °C for 5 min for denaturation and
reduction. The reduced samples were processed using the modified filter-
aided sample preparation (FASP) method70. In short, the reduced sam-
ples were diluted to 1:4 by 8M urea solution, transferred onto Nanosep
10k Omega filters (Pall Corporation, Port Washington, NY, USA) and
washed repeatedly with 8M urea and once with digestion buffer (0.5%
sodium deoxycholate (SDC) in 50mM TEAB). Free cysteine residues
were modified using 10mM methyl methanethiosulfonate (MMTS)
solution in digestion buffer for 20min at RT and the filters were washed
twice with 100 µl of digestion buffer. One µg Pierce trypsin protease (MS
Grade, Thermo Fisher Scientific) in digestion buffer was added and the
samples were incubated at 37 °C for 3 h. An additional portion of trypsin
was added and incubated overnight.

The peptideswere collected by centrifugation and isobaric labelingwas
performed using Tandem Mass Tag (TMT-10plex) reagents (Thermo
Fischer Scientific) according to themanufacturer’s instructions. The labeled
samples were combined into one pooled sample, concentrated using
vacuum centrifugation, and SDC was removed by acidification with 10%
TFA and subsequent centrifugation. The labeled pooled sample was treated
with Pierce peptide desalting spin columns (Thermo Fischer Scientific)
according to the manufacturer’s instructions.

Each purified desalted sample was pre-fractionated into 40 primary
fractions with basic reversed-phase chromatography (bRP-LC) using a
Dionex Ultimate 3000 UPLC system (Thermo Fischer Scientific). Peptide
separations were performed using a reversed-phase XBridge BEH C18
column (3.5 μm, 3.0 × 150mm, Waters Corporation) and a linear gra-
dient from 3% to 40% solvent B over 18min followed by an increase to
100% solvent B over 5 min and 100% solvent B for 5 min at a flow of

400 µl/min. Solvent A was 10mM ammonium formate buffer at pH 10.0
and solvent B was 90% acetonitrile, 10% 10mM ammonium formate at
pH 10.0. The fractions were concatenated into 20 fractions, dried and
reconstituted in 3% acetonitrile, 0.2% formic acid.

Nano-liquid chromatography tandem mass spectrometry with
Fusion™ Lumos™ Tribrid™. The fractions were analyzed on an orbi-
trap Fusion™ Lumos™ Tribrid™ mass spectrometer interfaced with Easy-
nLC1200 liquid chromatography system (Thermo Fisher Scientific).
Peptides were trapped on an Acclaim Pepmap 100 C18 trap column
(100 μm× 2 cm, particle size 5 μm, Thermo Fischer Scientific) and
separated on an in-house packed analytical column (75 μm× 35 cm,
particle size 3 μm, Reprosil-Pur C18, Dr. Maisch) using a gradient from
5% solvent B to 33% solvent B over 77 min followed by an increase to
100% solvent B for 3 min, and 100% solvent B for 10 min at a flow of
300 nL/min. Solvent A was 0.2% formic acid and solvent B was 80%
acetonitrile, 0.2% formic acid. MS scans were performed at 120,000
resolution, m/z range 375–1375. MS/MS analysis was performed in a
data-dependent experiment, with top speed cycle of 3 s for the most
intense doubly or multiply charged precursor ions. Precursor ions were
isolated in the quadrupole with a 0.7m/z isolationwindow, with dynamic
exclusion set to 10 ppm and duration of 45 s. Isolated precursor ions were
subjected to collision induced dissociation (CID) at 35 collision energy
(arbitrary unit) with a maximum injection time of 50 ms. Produced MS2
fragment ions were detected in the ion trap followed by multinotch
(simultaneous) isolation of the top 10 most abundant fragment ions for
further fragmentation (MS3) by higher-energy collision dissociation
(HCD) at 65% and detection in the Orbitrap at 50,000 resolutions, m/z
range 100–500.

Proteomic data analysis of Fusion™ Lumos™ Tribrid™ data. The
data files were merged for identification and relative quantification using
Proteome Discoverer version 2.4 (Thermo Fisher Scientific). Swiss-Prot
Human database was used for the database search, using the Mascot
search engine v. 2.5.1 (Matrix Science, London, UK) with MS peptide
tolerance of 5 ppm and fragment ion tolerance of 0.2 Da. Tryptic peptides
were accepted with 0 missed cleavage and methionine oxidation was set
as a variable modification. Cysteine methylthiolation and TMT on
peptide N-termini and on lysine side chains were set as fixed modifica-
tions. Percolator was used for PSM validation with the strict FDR
threshold of 1%. Quantification was performed in Proteome Discoverer
2.4. The TMT reporter ions were identifiedwith 3mmumass tolerance in
the MS3 HCD spectra and the TMT reporter S/N values for each sample
were normalized within Proteome Discoverer 2.4 on the total peptide
amount. Only the quantitative results for the unique peptide sequences
with theminimum SPSmatch% of 40 and the average S/N above 10 were
included for the protein quantification.

Combined omics data analysis. Proteomic data were compared to
RNASeq results by pairing log2 fold-changes at the gene level and plotted
in Fig. 6b. Data was plotted with R version 4.0.2 with ggplot2
version 3.3.5.

Lipid droplet staining
Liver spheroids in the culture compartments were fixedwith 4%methanol-
free paraformaldehyde (PFA; 28908, Thermo Scientific) at 4 °C overnight.
On the following day, the spheroids were washed three times with PBS and
then stored in PBS at 4 °C until use. Fixed spheroids were stainedwith 2 µM
Nile Red (72485, Sigma-Aldrich) and 16 µMHoechst 33342 (Invitrogen) in
PBS. Samples were first incubated at 37 °C for 2 h, followed by an overnight
incubation at RT. Next, the staining solution was removed, and the com-
partments were washed three times with PBS. Fluorescence imaging was
performed using confocal laser scanning microscope (LSM880 Airyscan
Zeiss) and image processing and reconstructionwere carried out using ZEN
3.2 software (Zeiss).
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Glycogen staining
Liver compartments were washed with 0.1% BSA in PBS and the liver
spheroidswere detached from the bottomof the culture compartment using
a sharp needle. The spheroidswere transferred into 1.5mlmicrotubes using
wide-bore pipette tips for fixation using 4% methanol-free PFA at 4 °C
overnight. The spheroidswere thenwashed three timeswith PBS and stored
at 4 °C until use. PAS staining to visualize the storage of glycogen was
performed by Histocenter (Mölndal, Sweden). Briefly, after standard par-
affin embedding and sectioning, the sections were sequentially treated with
0.5%periodic acid,water, Schiff reagent, water,Weigert’s ironhaematoxylin
solution, water, hydrochloric acid, water, and 95% ethanol. Imaging was
carried out using an inverted microscope (Axiovert 40 CFL, Zeiss).

Cell proliferation analysis by EdU incorporation
We developed a method to quantify cell proliferation in pancreatic islets by
using EdU incorporation, automated HT imaging, optical slicing, and
automated image analysis (Supplementary Fig. 9a). To test robustness of the
method, islets were cultured in Akura™ 96 Spheroid Microplate for 4 days,
either in Human Islet Maintenance Medium (untreated control) or in the
presence of 10 µM of the MST1 kinase inhibitor 4-(5-amino-6-(1-oxo-
1,2,3,4-tetrahydroisoquinolin-6-yl)pyrazin-2-yl)-N-cyclopropyl-N-
methylbenzenesulfonamide71 (CAS 1396771-17-7) which was used as a
positive control. To label proliferating cells, media were supplemented with
10 µM EdU. Donor for the robustness analysis study was a male, 45 years
with BMI of 29.8 and HbA1c of 5.10%.

Fixation, permeabilization, and EdU staining were performed in
Akura™ 96 Spheroid Microplates. The islets were fixed with 4% PFA at
RT for 2 h, washed twice with 0.1% BSA in PBS, and permeabilized with
1x BD Perm/Wash buffer (554723, BD Biosciences) for 1 h at RT. Next,
the islets were stained with Click-iT EdU reaction cocktail (C10638,
Click-iT® Plus EdU Alexa Fluor® 555 Imaging Kit, Molecular Probes),
for 2 h at RT in dark. After removal of the reaction cocktail, islets were
washed once with 1x BD Perm/Wash buffer and transferred into Akura™
384 Spheroid Microplate (CS-09-003-02, InSphero). Finally, a sorbitol-
based clearing reagent Scale S4(0)72 (40 (w/v)% D-(-)-Sorbitol (S3889,
Sigma-Aldrich), 10(w/v)% Glycerol (G9012, Sigma-Aldrich), 4M Urea
(U0631, Sigma-Aldrich), 15–25(v/v)% DMSO) containing 3.0–3.9 μM
SiR-DNA73 (Spirochrome) for nuclear staining was added, and the plate
was incubated overnight at RT. The plate was then centrifuged at 700 × g
for 1 min to remove bubbles and collect islets in the middle of wells and
stored at 4 °C until imaging.

Images were acquired on a CellVoyager 7000 high-throughput
spinning disc confocal microscope (Yokogawa). All microwells were first
screened using a 10X 0.16NA objective at 2 × 2 binning (Supplementary
Fig. 9b). A MATLAB-based Search First script (Wako Software Suite;
Wako Automation) was used for automated detection of islet position in
each micro-well. Then, high-resolution z-stacks of 200 µm from well
bottom were acquired for each islet at its exact position, using a 40X
0.75NA objective at 2 × 2 binning in two fluorescence channels—EdU-
positive nuclei (Click-iT EdU Alexa Flour 555; 561 nm laser) and nuclei
(SiR-DNA far-red DNA stain; 640 nm laser) (Supplementary Fig. 9c).
Using optical clearing in combination with 561 nm and 640 nm laser
allowed for penetration of laser light and acquisition of fluorescent signal
from throughout the islets, which usually have a diameter of
100–150 µm. Analysis of total number of nuclei and EdU-positive nuclei
was performed using Columbus™ Image Data Storage and Analysis sys-
tem (ver. 2.8.1, Perkin Elmer).

We observed that the percentage of EdU-positive cells is largely
independent of optical sampling distance in the range of 0.4–20 µm (Sup-
plementary Fig. 9d). Islets treated with theMST1 kinase inhibitor showed a
significantly higher number of EdU-positive cells as compared to the
untreated control islets (Supplementary Fig. 9e) demonstrating that the
developed method can reliably separate different study groups.

In the pancreas-liver MPS, 10 µM EdU was added into co-culture
medium for the last 5 days to label proliferating cells. After finishing a co-

culture, islets were first transferred from chips into individual wells of an
Akura™ 96 Spheroid Microplate followed by fixation, permeabilization,
staining, and imaging as described above.

Statistical analysis, evaluation of technical confounders and
reproducibility analyses
GraphPadPrism software (Version8)was used to plot the data andperform
comparative analysis between the means of different conditions. For com-
paring two unpaired means of normal distributed data with homogenous
variance, a two-tailed Student’s t test or a multiple t-test using the
Holm–Sidak method (in case of several independent comparisons e.g., for
comparing gene expression of multiple genes between two conditions) was
performed.Normalitywas testedusing the Shapiro–Wilknormality test and
equality of variance was tested using the F-test. A p value < 0.05 was con-
sidered statistically significant.

For comparing three or more means of normal distributed data with
homogenous variance, a one-way ANOVA was performed. Normality was
tested using the Shapiro–Wilk normality test and equality of variance was
tested using the Brown–Forsythe test. Bonferroni’s multiple comparison
post hoc test was used to compare the means of several conditions to a
control mean and Sidak’s multiple comparison post hoc test was used to
compare the mean of selected pairs of conditions. A p value < 0.05 was
considered statistically significant.

Fold changesof gene expression inFigs. 3 and5 andGSISdata inFig. 3e
were log-transformed for normality. The area under the glucose and insulin
GTT curves was calculated with GraphPad Prism using the trapezoidal
method.

Evaluation of technical confounders and reproducibility was con-
ducted using the R Statistical language (version 4.2.1). Mixedmodeling was
performedusing the lmer() function fromthe lme4package (version1.1.34),
with theNelder-Mead optimizer to address convergence issues. Significance
was tested through summary functions in the lmerTest package (version
3.1.3), using Satterthwaite’s correction for degrees of freedom. Contrasts for
estimated marginal means were computed using the emmeans package
(version 1.8.2). All evaluated endpoints were log-transformed before
analysis.

Data reproducibility metrics were calculated according to statistical
methodology proposed by Schurdak et al.41. Briefly, we calculated repro-
ducibility both across studies and within each study, for a given condition,
by pooling all relevant values and applying the max coefficient of variation
(max CV) and intra-class correlation coefficient (ICC). Max CV was
computed by finding themaximumCVacross all timepoints, where the CV
is calculated as the ratio of the standard deviation to the mean, across all
endpoint values at that timepoint:

Max CV ¼ Maxt CVt

� � ¼ Maxt
σ̂t
μ̂t

� �

ICC procedure used was ICC2 from the R package psych (version
2.4.1), where each circuit was considered a “judge” and each timepoint a
“target”. Hence the formula is:

ICC 2; 1ð Þ ¼ MSB �MSE
MSB þ nr � 1

� �
MSE þ nrðMSJ �MSEÞ=nc

where MSB and MSJ are the mean squares between targets and judges
respectively, MSE is the residual mean square error, nr is the number of
“judges”, andnc is the total number of observations.Note that, in contrast to
the mixed model approach above, data were not log-transformed before
these procedures.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.
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Data availability
Transcriptomics data are publicly available on GEO (GSE249277). The
mass spectrometry proteomics data have been deposited to the Proteo-
meXchange Consortium74 via the PRIDE partner repository75 with the
dataset identifier PXD052854. All source data underlying the graphs pre-
sented in the main figures are available as Supplementary Data.

Code availability
The code for data analysis, visualization, and mathematical modeling is
publicly available on GitHub (https://github.com/belencasasgarcia/Insulin-
resistance). The code for the mixed model statistical analysis is publicly
available on Zenodo76 (11545665).
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