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Unveiling errors in soil microbial
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reference soils and improved diagnostics
for nanopore sequencing
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The sequencing platform and workflow strongly influence microbial community analyses through
potential errors at each step. Effective diagnostics and experimental controls are needed to validate
data and improve reproducibility. This cross-laboratory study evaluates sources of variability and error
at three main steps of a standardized amplicon sequencing workflow (DNA extraction, polymerase
chain reaction [PCR], andsequencing) usingOxfordNanoporeMinION toanalyze agricultural soils and
asimplemockcommunity. Variability in sequence results occurs at eachstep in theworkflowwithPCR
errors and differences in library size greatly influencing diversity estimates. Common bioinformatic
diagnostics and the mock community are ineffective at detecting PCR abnormalities. This work
outlines several diagnostic checks and techniques to account for sequencing depth and ensure
accuracy and reproducibility in soil community analyses. These diagnostics and the inclusion of a
reference soil can help ensure data validity and facilitate the comparison of multiple sequencing runs
within and between laboratories.

The soilmicrobiome is crucial to soil sustainability andadriver for processes
of decomposition, biogeochemical cycling, and physical structuring of soil
imparting both direct and indirect effects on the soil environment1. How-
ever, the response of soil biota to environmental changes, either short-term
or long-term, has motivated research to evaluate microbial assemblages as
indicators of perturbation,management, or soil health outcomes2–4. There is
growing interest in the identificationof important taxonomic and functional
abundance shifts related to soil processes2; therefore, amplicon or marker-
gene sequencing have become standard tools in soil science5. Thesemethods
have greatly advanced our understanding of microbial community

dynamics and biological interactions within the soil environment; however,
the spatiotemporal complexity, heterogeneity, and high biological diversity
of soil microbial communities present unique challenges to research2,3,6. As
soil community analyses become more widely applied, the influence of
methodology and reproducibility between laboratories and sequencing runs
are increasinglymore apparent7 and necessitate new diagnostic tools and/or
reference standards.

Molecular analyses to assess soil biological diversity includemany steps
in the workflow, each of whichmay influence the final result7. Early steps in
DNA extraction and lysis procedures affect the downstream results such as
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recovered DNA concentrations8–10, composition7,8,11–13, and diversity7,14.
However, each step including primer selection13,15,16, polymerase chain
reaction (PCR) protocol11,17, and PCR chemistries12 also impart variability.
Biases introduced by PCR18 and/or DNA extraction7,11 can outweigh the
biases introduced in downstream sequencing steps.

The potential to introduce systemic errors or bias in a sequential
workflow with methodological differences makes data harmonization for
meta-analysis of independent study results unfeasible6. Additionally,
approaches to normalize and comparemicrobiome data across laboratories
are not yet established13. Guidelines on theminimumreporting information
and quality for amplicon19 and marker-gene sequencing20 have been
developed to support reproducibility, though lab-to-lab variability still
remains a challenge to inter-experimental comparisons12,13,21. These biases
may be further exacerbated by rapidly evolving technology, including novel
or discontinued sequencing platforms16 and commercial products10,21.

Mockor artificial communities are commonlyused and recommended
as controls to help identify bias or variability and optimize workflows across
different biological systems7,11–13,21,22. Mock community controls, either
available commercially or developed in-house, include mixes of whole cells
of a few to tens of species in known ratios10,23, genomic DNA with up to as
many as 87 genomic strains24,25, or DNA fragments such as spike-in
sequences26. However,mock communities are usually less complex than the
target system, particularly for soil ecosystems, and often do not reflect the
taxonomic composition, structure, and diversity of natural
communities7,11,22. Due to these differences, mock communities may not be
suitable for identifying errors and/or biases that arise in more complex
samples, such as soils.

Trends in agricultural researchandmolecularmicrobiologyare leaning
toward large-scale, long-term studies that are often supported by multiple
laboratories ormultiple sequence runs. These types of large-scale studies are
likely at higher risk of variability or bias; however, the extent of this effect is
largelyunknown.Cross-laboratory studies and complexmock communities
are needed to evaluate biases associated with lab effect including sources of
variability and error during each of the major workflow steps. Unlike other
science fields where reference materials are widely available for method
validation, quality control, and estimation of variability or error27, no such
mock or reference material exists for soil molecular analyses. Highly char-
acterized reference soils are available for nutrient analyses; however, these
reference soils are not characterized or stored in a way that would make
them usable for DNA analyses. Standards of sufficient complexity, either
mock communities or reference soils, that could be used for molecular
comparisons of soil communities are not yet available.

New opportunities for cross-laboratory studies to evaluate
sequencing bias and variability have arisen with the introduction of
relatively low-cost DNA sequencing technology that supports in-house
analyses. This study employed a multi-laboratory 16S rRNA amplicon
sequencing analysis to: (i) develop a standardized protocol for amplicon
sequencing with the Oxford Nanopore MinION system; (ii) test its
reproducibility across individual laboratories; and (iii) develop bioin-
formatic diagnostics to identify library inconsistencies and highlight the
use of reference soils to assist with identifying problematic sequence runs.
Of the six participating laboratories, one produced aberrant sequence
runs that could only be identified through comparison to others. This
unique dataset provided the opportunity to develop diagnostic tools and
quality controls in concert with both simple (commercial mock com-
munity of genomic DNA from 9 bacterial species) and complex (soil)
communities for improved reproducibility and the identification of
aberrant sequence runs and sources of error.

Results
In this study, six laboratories sequenced two agricultural soils and a simple
mock community with increasing levels of autonomy (e.g. self-completion)
at each of the three main workflow steps: DNA extraction, PCR amplifi-
cation, and library preparation and pooling. To achieve varying levels of
autonomy, each laboratory received samples from one of two primary labs

that were at varying stages of preparation: (i) soils which required DNA
extraction, PCR, and sequencing (Ext/PCR/Seq), (ii) soil DNA extracts that
required only PCR and sequencing (PCR/Seq), and (iii) a DNA library
prepared by the primary lab which only needed to be sequenced (Seq)
(Fig. 1). The secondary lab was responsible for completion of the remaining
steps in the workflow for each library and conducting a single MinION
sequencing run that contained all three libraries. This design allowed for the
evaluation of (i) the influence of overall sequencing run characteristics (e.g.
library size and quality); (ii) within-laboratory variability; and (iii) between-
laboratory variability. In addition, the different levels of autonomy were
used to evaluate the steps in the workflow where errors/biases were most
likely introduced. For all analyses, sequence run refers to the singleMinION
runperformed in each laboratory, library refers to the varyingpreparationof
samples within a library (PCR, PCR/Seq, and Ext/PCR/Seq), and site
(ARDEC/Pendleton) is the source of the original soil sample.

Sequence run sizes and QC
Atotal of 5–12Mreadswereobtained fromeachMinIONsequence run that
included the three pooled libraries produced with increasing levels of
workflow autonomy from Seq > PCR/Seq > Ext/PCR Seq (Supplementary
Table 1 and Fig. 1a). On average, 42.4% of the sequence readswere removed
during the de-multiplexing step, an additional 6.8% removed during the
QC-quality step, and a final removal of less than 1.0% of the sequences
during the final QC-length step. The final number of high-quality sequence
reads ranged from 1.8M to 5.8M reads per sequencing run.

The number of reads per soil sample trended similarly to the total
number of quality-filtered reads per sequence run except for Lab3 which
sequenced only one of the three libraries. Lab3 had more sequence reads
per sample than any other library for soil (130–660% more reads than
other labs), MOCK (80–650% more reads than other labs), and the
controls for DNA extraction (ExtH2O) and PCR1 (PCR1H2O). Lab5,
which had the greatest removal of sequences during the demultiplex and
QC-quality steps, had the lowest number of reads per sample for both
soils and MOCK. The number of reads per sample for the ExtH2O and
PCR1H2O controls was less than 0.4% of the total quality-filtered reads
per sequence run except for Lab3. Although the mock community was
not included in the Seq library from primary Lab1, the percent MOCK
reads per total quality-filtered reads was similar between the sequence
runs of the two primary labs (primary Lab1, 1.9–2% MOCK reads; pri-
mary Lab4, 1.6–2.1%MOCK reads) with the exclusion of data from Lab3
that included only the Ext/PCR/Seq library.

Mock community
The mock community showed little deviation in community composition
across all sequence runs (Supplementary Fig. 1). Each sequence run cap-
tured all eight genera of ZymoBIOMICSMicrobial Community Standard in
the MOCK sample with less than 0.1% of the community from con-
taminants. All samples had Bray–Curtis (BC) similarities to the expected
MOCK profile of greater than 0.860 with average (±standard deviation
[SD]) BC similarities of 0.890 ± 0.002, 0.878 ± 0.018, and 0.883 ± 0.016 for
the Seq, PCR/Seq, and Ext/PCR/Seq, respectively. When comparing
between sequence runs, all MOCK samples demonstrated similar profiles
with BC similarities above 0.838 regardless of the library preparation.
Negative (PCR1H2O and PCR2H2O) and simple mock (MOCK) control
results together suggested that all libraries and sequence runs were suc-
cessfully prepared and executed and would produce similar estimates of
microbial community profiles. However, as discussed below, complex soil
samples demonstrated increased variability and differences between
laboratories.

Soils—α diversity
Species richness estimates, calculated after rarefying to a common sampling
depth, ranged from approximately 200–1200 species per soil sample
(Fig. 1b) andwere significantly (P < 0.001) influenced by sequence run, site,
and library. Sequence run had the greatest partial effect size (η2) on species
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Fig. 1 | Experimental design and species richness for community sequence data
generatedwith varying levels ofworkflow autonomy. aThe typical steps (e.g. DNA
extraction, PCR amplification, and DNA sequencing) involved in generating soil
microbial community sequence data were evaluated as sources of variability. The
bars above the steps denote the processes performed by secondary labs to generate
each of the three libraries (Ext/PCR/Seq, PCR/Seq, and Seq) that were pooled prior
to sequencing on the MinION platform (ONT). b Species richness for two soil sites
(n = 12) generated in each sequencing run (Lab1, Lab2.a, etc.) and within each of the
three pooled libraries. Datawere rarefied to 12,000 reads prior to calculating richness
estimates. Each box depicts the interquartile range (IQR), where the bottom of the

bar is the 1st quartile (Q1), the middle bar is the 2nd quartile or median, and the top
of the bar is the 3rd quartile (Q3). Whiskers are calculated as 1.5 × IQR above Q3 or
1.5 × IQR below Q1 and points outside this range are outliers. c The relationship
between the original number of sequence reads and observed species richness for
each sample. Left: Michaelis–Menten plot where points are coloured by sequence
run and equations were fit separately for each site (ARDEC, solid line; Pendleton,
dashed line). Right: Lineweaver–Burk plot where points and lines are coloured by
laboratory and equations were fit separately for each sequence run. All images in this
figure are original artwork by the authors.
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richness (F = 362.6, η2 = 0.80) followed by site (F = 17.84, η2 = 0.16) and
library (F = 6.878, η2 = 0.04). Despite rarefying, a strong non-linear rela-
tionship was observed between the original number of sequence reads and
the estimated species richness. Rectangular hyperbola (i.e.
Michaelis–Menten) curves of species richness to original sequence reads
were fitted separately for each site across all sequence runs and libraries
(Fig. 1c). Maximum species richness (±SE) differed between the ARDEC
(2093 ± 82) and Pendleton (2412 ± 79) sites. Lineweaver–Burk (LB) plots
showed that two of the sequence runs deviated from the others (Fig. 1c).
Lab2.a had a significantly different intercept (P = 0.002) and Lab5 had a
significantly different slope (P < 0.001).

Soils—β diversity
Similar patterns in the relative abundance of the top 10 phyla were observed
between sequence runs except for Lab2.a (Fig. 2a). Compared to all other
sequence runs, Lab2.a PCR/Seq and Ext/PCR/Seq library runs had sig-
nificant shifts in the top phyla, including Bacteroidota, Actinomycetota,
Planctomycetota, and Candidatus Saccharibacteria. Three of these phyla
showed multiple deviations at the family level supporting phyla-wide sys-
tematic bias rather than contamination which was also supported by the
PCR negative controls (Fig. 2b and Supplementary Table 1). Although
sequencing runs Lab2.a and Lab2.b were performed by the same technical
staff, the two runs used different thermocyclers. The change in thermocycler
did not appear to be the cause of the bias in Lab2.a since replicate reactions
performed on the different thermocyclers but sequenced in the Lab2.b
sequence run showed a high similarity of 0.895 ± 0.006 (±SD, n = 4). The
exact origin of the error in Lab2.a could not be identified nor attributed to
contamination or differences in equipment. Across all sequence runs, the
level of workflow autonomy increased the variability in taxonomic abun-
dances between sequence runs (P < 0.001) (Fig. 2c). Variability was esti-
mated as a range in the Log2FC between the average abundance for each
sequence run/library combination as compared to the average for the two
primary labs (Lab1 and Lab4). For example, at the genus level, the range in
Log2FC (±SE) was 3.2 ± 0.4, 4.1 ± 0.4, and 4.9 ± 0.4 for the Seq, PCR/Seq,
and Ext/PCR/Seq libraries, respectively.

All library/sequence run combinations were consistently grouped by
site and sequence run based on PCoA distance-based analyses of Hellinger-
transformed genera abundances (Supplementary Fig. 2a). Site separated
along axis 1, which captured about 45% of the variation, and the sequence
run separated along axis 2, which described 20.7% of the variation. Further,
variance partitioning showed that 47.7%, 26.6%, and 1.1% of the variance
was explained by site, sequence run, and library, respectively. Based on
perMANOVA analysis, site was significantly different (P = 0.001). In each
library, Lab5 was significantly different (P < 0.05) from all other sequence
runs except for Lab2.b in the two least autonomous libraries (Seq and PCR/
Seq). Comparatively, the twomost autonomous libraries (PCR/Seq andExt/
PCR/Seq) for Lab2.a were significantly different (P = 0.001) from all other
sequence runs. Consistent with the α-diversity measurements, the differ-
ences between sequence runs appeared to be linked to library size as both
axes 1 and 2 exhibited a non-linear relationship with the original number of
sequence reads per sample (Supplementary Fig. 2b).

The PCoA analysis of the Morisita distances calculated from
untransformed genera abundance datawas consistentwith theBCdistances
of Hellinger-transformed data (Supplementary Fig. 3). Similarly, the two
axes explained 57.4%(axis 1) and30.2% (axis 2)of the variationwith the two
soils separating along axis 1 (perMANOVA analysis, P < 0.05). Variance
partitioning showed that 62.1%, 22.3%, and 2.6% of the variance was
explained by site, sequence run, and library, respectively. Unlike the BC
distances, the only sequence run that was significantly different (P = 0.001)
from the others was Lab2.a in the twomost autonomous libraries (PCR/Seq
andExt/PCR/Seq).Morisita distance reduced the effect of sequencing depth
on both axes while still maintaining the significant differences between sites
(Supplementary Fig. 3b). This suggests that the Morisita distance can
mitigate some of the methodological variations in microbial community
assessments.

Within-lab variability
Extraction and analysis of the soils in triplicate allowed for the development
of a sample variability diagnostic for aberrant results based on estimates of
within-run variability between sample replicates. Overall, only minor dif-
ferences in the BC similarities between sample replicates (i.e. subsamples A
and B) were observed among libraries with median (±interquartile range
[IQR]) values of 0.906 ± 0.030, 0.891 ± 0.044, and 0.896 ± 0.040 for the Seq,
PCR/Seq, and Ext/PCR/Seq libraries, respectively (Fig. 3a). When the
analysis was conducted for each library/sequence run combination, the
PCR/Seq and Ext/PCR/Seq libraries tended to show more variability (i.e.
greater IQR’s), particularly for Lab2.a, which had a median (±IQR) of
0.802 ± 0.176 and 0.814 ± 0.120, respectively, than the overall Seq library.
The increase in sample variability (i.e. reduced consistency) in Lab2.a
starting with the PCR/Seq library suggests that errors arose during the PCR
step of the protocol.

Between-lab variability
To determine whether a complex soil community could serve as a reference
in identifying aberrant sequence runs based on low similarity indices, soil
sample-level community data were compared between the secondary
(sequence run) and corresponding primary lab data (i.e. Lab1 and Lab4)
(Fig. 3b). For the Seq libraries, the averagemedianBC similaritywas 0.88 for
all labs except Lab5. All three libraries of Lab5 exhibited lower BC simila-
rities (e.g. Seq 0.66 ± 0.07, PCR/Seq 0.75 ± 0.06, and Ext/PCR/Seq
0.67 ± 0.06) than most other sequence runs, suggesting that the error arose
during the pooling and sequencing step. Notably, Lab5 also had both the
highest number of sequences removed during sequence processing (QC
quality) and the lowest number of final sequence reads (Supplementary
Table 1). Lab2.a exhibited lower BC similarities than most other sequence
runs for the two most autonomous libraries (PCR/Seq, 0.65 ± 0.25; Ext/
PCR/Seq, 0.56 ± 0.17), supporting that the error arose during PCR.

Site differences
The number of phyla observed in each sequence run generally trendedwith
sequencingdepth ranging from30(Lab6) to 13 (Lab5)phyla.Thirteenphyla
were shared across each sequence run and library (Fig. 4a). The Seq library
had six phyla that differed significantly by Site and across all sequencing
runs compared to only four phyla that consistently differed in the PCR/Seq
and Ext/PCR/Seq libraries. Omitting Lab5 based on low sequence reads
increased thenumberof sharedphyla between sequence runs and the library
to 17 with an additional 1–2 phyla that varied significantly by site for each
library. In general, statistically significant log2 fold changes (Log2FC)
exhibited the samedirectional patterns across sequence run and librarywith
the exclusion of Bacteroidota, Bacillota, and Gemmatimonadota. For all
three taxonomic levels, the variability (i.e. range) of Log2FCvalues increased
with increasing process autonomy (e.g. Seq < PCR/Seq < Ext/PCR/Seq) and
finer taxonomic levels (e.g. mean Log2FC variability increased from 2.0 to
3.2 for the phyla and genus levels, respectively) (Fig. 4b).

Discussion
This study evaluated the reproducibility of a soil community analysis and
tested different diagnostics to detect unusual sequence runs. Using a stan-
dard protocol to negate workflow effects, six laboratories employed varying
levels of autonomy in sequence library preparation with three main entry
pointsof error:DNAextraction, PCRamplification, and sequencing.One of
the labs (Lab2.a) produced results with very different taxonomic profiles
than the others and two labs generated librarieswith relatively low (Lab5) or
high (Lab3) sequence reads. Although library size and number of quality-
filtered reads identified the labs with the outlier sequence reads, neither the
library metrics nor the mock community positive control indicated that
Lab2.a was aberrant. With this unique dataset, we identified bioinformatic
analyses that could be applied as diagnostics for low-quality or aberrant
sequence runs. Throughout, we consider a successful sequence run tobe one
that generates a soil community profile with high similarity between
laboratories.
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The introduction of bias or variability within most steps of the
microbial community sequencingworkflow can impact downstream results
(e.g. diversity measures) and potentially skew comparative outcomes and
interpretations. In using a single protocol to negate workflow bias, we
observed that variability increased with increasing laboratory autonomy in

which DNA extraction was a greater source of variability than PCR or the
individual MinION sequence device and flow cell.

TheOxfordNanoporeMinIONplatformwas selecteddue to long-read
capabilities and relative affordability that supported options for in-house
sequencing. Low base-calling accuracy has been a concern for MinION
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sequencing (accuracy estimated near 95% for MinION compared to 99.9%
for Illumina MiSeq28) although advancements in accuracy have been made
through updated chemistry and flow cells29. Error rates of the flow cell
(R.9.4.1) and chemistry (SQK-LSK109) used in this study are benchmarked
at 7.16%compared to updatedproducts (R10.4.1flowcell and SQK-LSK114
chemistry) at 3.16%29. However, as compared to IlluminaMiSeq (V3-4with
DADA2), the MinION protocol used in this study (e.g. full-length
16S rRNA, R9.4.1, SQK-LSK109) is reported to achieve greater similarity
to the expected community profile of a mock community for both genus
(BC similarity 0.859 vs 0.809) and species (BC similarity 0.852 vs 0.809) level
analyses30. For comparison, this study demonstrated BC similarities of the
mock community to the expected profile of >0.88. Although the R9 flow
cells have a higher sequencing error rate than Illumina, this appears to be
offset by its ability to generate longer sequence reads resulting in classifi-
cation rates at least equal to, if not slightly better, than shorter reads on the
Illumina MiSeq platform.

Sample heterogeneity and DNA extraction efficiency are potential
sources of variability in soil analyses. For this study, we sequenced three
replicate sub-samples from a composite sample per plot. Sample hetero-
geneity was not likely a dominant source of variability in this study because
high similarity was observed between the primary labs (Seq library). Similar
results are shownwith non-soil templates7,11. Differences inDNAextraction
efficiency between laboratories could potentially impact the reproducibility
of sequence results where low concentrations (0.1 ng reaction) of soil DNA
template have been associated with greater variability than higher con-
centrations (5–10 ng per reaction)31. Rather than normalizing DNA con-
centrations, we diluted the soil extracts (i.e. 1:20) to reduce the potential for
quantification error and interference from PCR inhibitors. However,
extraction efficiency (or template concentration) is also not likely a domi-
nant contributor of variability since PCR template concentration between
labs was similar (approximately 6 ng DNA μL−1 amplified per reaction).
Rather, our data suggest that variability was most likely associated with
differences in operator handling (e.g. mixing and pipetting during DNA
extraction and other steps) and sequencing error. Regarding the latter, BC
similarities for the Seq library (i.e. barcoded library prepared by the primary
laboratory) showed similar BC similarities between samples (0.906 ± 0.030)
as seen for the ZymoBIOMICS mock communities as compared to their
expected profiles (ca. 0.9). We suggest that this represents an approximate
maximum threshold similarity between samples that is influenced by the
inherent errors due to sequencing platform and bioinformatics, and sam-
pling probabilities that arise from sequencing only a portion of the DNA
molecules present in a complex sample.

PCR was the second greatest source of variability as noted for the
sample-to-sample comparisons. This step was also the entry point of error
for Lab2.a since the Seq library and repeated run (Lab2.b) were consistent
with all others. The difference in thermocyclers used for Lab2.a and Lab2.b
did not explain the variability between the sequence runs since samples
replicated for PCR1 on the two instruments, but sequenced in Lab2.b, were
highly similar. Although an error was introduced at some point in the PCR
workflow, it also wasn’t attributable to PCRor extraction kit contamination
based onnegative controls nor a point source contaminant as several genera
varied within the most affected phyla (e.g. Bacteroidota, Actinomycetota,
Planctomycetota, and Candidatus Saccharibacteria).

In evaluating the overall library metrics as a diagnostic for library
qualityor confidence,we observed slightlymore than a two-fold variation in

the total number of reads (5.1–11.7M for Lab2.b and Lab1, respectively)
between sequence runs despite using similar DNA sequencing workflows.
Thoughwewere unable to definitively identify the source of this variation in
read number, plausible explanations include differences in the amount of
DNAloadedonto theMinIONflowcell, reagentquality, andvariation in the
number of sequencing pores on each individual flow cell32. Overall, the total
number of sequence readswas not a useful diagnostic as both sequence runs
with the highest and lowest number of reads were considered successful
based on the cross-laboratory comparisons.

An additionalmetric included the percentage of sequences removed at
each step of the bioinformatic quality filtering pipeline and the resulting
numberof sequence readsper sample.Given the reportedlyhigher error rate
of the MinION platform33, we chose to keep only reads with both forward
and reverse barcodes present, which removed an average of 42.4% of the
reads. This level of stringency would likely have removed more sequences
than a single barcode requirement due to either sequencing error (i.e. bar-
code mismatches) or amplicon length (e.g. missing barcodes) although we
did not specifically explore this option.

A useful tool in identifying an outlier sequence run was the eva-
luation of the number of reads removed based on quality scores after
demultiplexing. The QC-quality step was effective in identifying Lab5 as
an outlier with the removal of almost 10× more sequences than all other
runs. The final QC-length step was not an effective diagnostic as it
removed less than 0.1% of the sequences and did not differ between
laboratories. The small effect of this QC step is in part due to the order of
the bioinformatics pipeline as most of the erroneous sequences were
already removed with the preceding steps. While we cannot be sure if the
lower number of sequence reads and higher sequence removal during
quality filtering in Lab5 are due to operator handling or differences in
DNA sequencing chemistry (i.e. sequence kit variability, poor flow cell
health, etc.), our results suggest that on average, quality filtering should
only remove between 2% and 5% of the sequences following demulti-
plexing. Higher removal rates may warrant more scrutiny in quality
assessment. We urge caution that these percentages are based on removal
at each step and the percentages will change based on the order of
processing or selection of criteria. Although a number of quality-filtered
reads influences the final number of reads per sample as discussed below,
all sequences remaining after this initial bioinformatics screening are
expected to be high quality and comparable.

The simple mock community that was included as a positive control
was not an effective diagnostic for a successful sequence run as all labora-
tories characterized themock community at >0.85 BC similarity. In fact, the
aberrant sequence run (Lab2.a)wasmore similar thanothers to the expected
community.One reason themock community failed to identify the aberrant
run was incongruency in the community composition. Due to apparent
taxa-specific errors introduced during PCR, the aberrant run showed sig-
nificant differences in with the Actinomycetota and Bacteroidota phyla in
which neither are present in the eight species ZymoBIOMICS mock com-
munity.Due to the apparent taxa-specific errors introduced in thePCR step,
a mock community with similar taxonomic diversity likely would have
indicated an error in the aberrant run. A potential approach toward a
diagnostic would be a complex synthetic mock community that included
key species from each of the most abundant phyla in the expected com-
munity. This task is daunting for commercialization and/or widespread
distribution due to the impracticalities of identifying a priori the relevant

Fig. 2 | β-diversity of bacterial communities analysed with increasing workflow
autonomy. a The relative abundance of phyla for agricultural soils collected at two
sites (ARDEC, Pendleton) and analysed by six participating laboratories with
increasing levels of library process autonomy (Seq < PCR/Seq < Ext/PCR/Seq). Bars
indicate each separate sequence run with two runs complete for Lab2 (Lab2.a, first
run; Lab2.b, repeat). bFamily-level taxonomic abundances for four selected bacterial
phyla. Each cell is the log2 abundance (counts per million reads) averaged across
replicate soil samples for each sequencing run/library combination. c Variability in
Log2 fold-change (Log2FC) comparing taxonomic abundances (counts per million

reads) for each sequencing run at the phylum (left), class (middle), and genus (right)
taxonomic levels. Variability was calculated as the range (i.e. abs (max–min)) in
Log2FC values comparing each sequencing run with the average of the two primary
labs (Lab1 and Lab4) for all of the 26 phyla, 71 classes, and 1019 genera in the entire
dataset. Lab3 was not included in the analysis as it did not include the Seq and PCR/
Seq libraries. Each point is the average Log2FC range with blue bars indicating the
95% confidence interval. Overlapping red arrowed lines indicate non-significant
comparisons (P > 0.05) based on repeated measures ANOVA and FDR-adjusted p-
values.
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taxa for diverse ecological samples and the cost associated with preparation,
such as culturing, mixing, and standardization.

Asdemonstratedhere, reference soils couldpotentially serve aspositive
controls for successful sequence runs. Comparison between replicate soils in
the primary (presumably the expected) and secondary (experimental) labs

by BC similarity ordinationwas an effective diagnostic for identifying errors
from PCR (Lab2.a) and/or biases associated with library size (e.g. Lab5).
This comparison identified errors for Lab5 at each workflow step and for
Lab2.a in both workflow steps following PCR. Additionally, reference soils
could be applied as tools to identify the overall consistency and repeatability

Fig. 3 | Boxplot of sample variability within each library/sequence run combi-
nation. aWithin-sequencing run variability. Each point is the similarity between
replicate soil samples within each sequencing run. For each soil sample, the simi-
larity was calculated from either BC distances calculated from Hellinger-
transformed genera relative abundances (top panel) orMorisita distances calculated
from untransformed genera relative abundances (bottom panel). b Between-
sequencing run variability. Each point is the similarity between replicate soil samples
compared to a reference soil (Lab1 or Lab4). For each soil sample, the similarity was

calculated from either BC distances calculated from Hellinger-transformed genera
relative abundances (top panel) or Morisita distances calculated from untrans-
formed genera relative abundances (bottom panel). For both panels, each box
depicts the IQR, where the bottomof the bar is the 1st quartile (Q1), themiddle bar is
the 2nd quartile or median, and the top of the bar is the 3rd quartile (Q3). Whiskers
are calculated as 1.5 × IQR above Q3 or 1.5 × IQR below Q1 and points outside this
range are outliers. Horizontal red lines are the median for each library and grey bars
are the overall median ± IQR for Lab1, Lab2.b, Lab4, and Lab6, collectively.
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of an experiment by using similarity indices of the observed vs expected
profiles as done here.

Reference soils have been available from the United States National
Institute of Standards and Technology for over 40 years. The standard
methodologies for some reference soils such as air-drying and gamma
radiation34 make them less applicable to community studies; however,
publicly available or in-house soils could be used as positive controls if they
are well homogenized, stored for stability, and well-characterized with

multiple runs which would be best if performed by more than one labora-
tory. Like the simple ZymoBIOMICS mock community, publicly-available
reference soil communities could exist as either genomic DNA extracts or
whole soils along with a well-characterized DNA sequencing library for
comparative purposes. In practice, the reference soil would be includedwith
replication in each library preparation and used to identify overall profile
similarity. We also suggest a variety of reference soils available to reflect the
sample pH and texture profile, especially when included at the DNA

Fig. 4 | Comparison of Site (soil) effects and sources of variability. a Log2FC in the
relative abundance of bacterial phyla between soil from the two research sites
(ARDEC and Pendleton). The text within each box in the Log2FC with significant
(P < 0.05) values in black and non-significant in grey. Positive values are enriched at
Pendleton and negative values at ARDEC. b Variability in Log2FC comparing the
two soil sites (ARDEC and Pendleton). Variability was calculated at the phylum
(left), class (middle), and genus (right) taxonomic levels as the range (i.e. abs

(max–min)) in Log2FC values for each of the 13 phyla, 33 classes, and 161 genera
with at least one significant difference between the two sites for all combinations of
sequence run and library. Lab3 was not included in the analysis as it did not include
the Seq andPCR/Seq libraries. Each point is the average Log2FC rangewith blue bars
indicating the 95% confidence interval. Overlapping red arrowed lines indicate non-
significant comparisons (P > 0.05) based on repeated measures ANOVA and FDR-
adjusted P-values.
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extraction step. Extensively sequenced reference soils could also be used to
help determine further potential taxonomic biases that arise from metho-
dological and/or laboratory differences.

Across the seven sequence runs, therewas a three-fold difference in the
final (QC) library size. The omission of two of the three libraries by Lab3
artificially increased the numberof reads per soil samplewhereas the greater
removal of low-quality sequences by Lab5 compared to the others resulted
in sampleswith low reads. The two sequence runswere distinguishable from
the other runs based on species richness even after rarefying all samples to a
common sequencing depth. The effect of sampling depth on α- and β-
diversity estimates is well known in ecological studies with diversity esti-
mates increasing asmore individuals are sampled35 and rarefaction (i.e. sub-
sampling to a common depth) has been suggested as a potential means to
remove this potential bias36. Due to the patchy distribution and over-
dispersed nature of microbial communities a larger library size will always
have more taxonomic (i.e. species, OTU, or ASV) richness as rare species
will not be detected in the smaller library size. Rarefaction techniques37 do
not differentiate between absence (zero probability of being detected) or
rarity (non-zero probability of being detected but below detection level). As
a result, no matter how the larger library is rarefied, the rare taxa present in
that library will never be detected in the smaller library. The effect of
unobserved species on α-diversity estimates following rarefaction is not a
new problem38 and although rarefaction can improve estimates it cannot
fully address the problems in estimating α-diversity, particularly in over-
dispersed, incompletely sampled communities that are typical in soils. If
sampling efforts are large enough, this artefact may render rarefaction
inadequate to remove biases. As opposed to rarefaction, we suggest that α-
diversity estimates between treatments of interest are instead compared
using the relationship between species richness and sampling depth. LB
plots are a potentially useful diagnostic tool to identify such differences
between treatments. In this study, LB plots were successful in identifying
abnormal libraries: Lab5 which had the highest removal of sequences with
low-quality scores, and Lab2.a which exhibited a different community
profile from the other five laboratories. Thus, LB plots are a potential tool to
diagnose problematic libraries or account for the variability in library sizes
when comparing similar treatments/sites in different sequence runs. In
addition, LBplotsmaybe a good tool to compare treatmentswhen sampling
depth varies within a single run.

BC index is one of the most common distance metrics used in ecology
due to its sensitivity to community changes which is in part due to
dependency on sample size39.While this may be a desired goal in individual
studies where sampling efforts are often similar between treatments, the
sensitivity should be considered when sampling depth differs between
treatments or sequencing runs. Such problems may be particularly
important in meta-analyses, cross-laboratory comparisons, or larger single
studies that require multiple sequencing runs. In this study, variance par-
titioning showed that 47.7%, 26.6%, and 1.1% of the variance was explained
by site, laboratory, and librarywhenusingBCdistances.Due to thenature of
the design of this study, samplesproducedby each laboratory differeddue to
sequencing depth and variation in laboratory procedures (e.g. PCR setup).
As shown here, sampling depth was an important factor in variance parti-
tioning for BC, but less so for Morisita distances although both metrics
clearly identified Site and Laboratory as dominant drivers. Additionally,
both metrics identified Lab2.a as an outlier in the two most autonomous
libraries but only BC identified Lab5. As a result, we suggest that researchers
evaluate the effect of sample size on ordination patterns and/or use distance
metrics that are less sensitive to sample size to verify that treatment differ-
ences are not an artefact of sample effort.

Capturing the complexity of soils within a biological context using
DNA sequencing is challenging, yet amplicon or marker-gene sequencing
techniques have been widely adopted and instrumental in understanding
the biological processes within the soil ecosystem. Our cross-laboratory
comparison produced irregular libraries that that were not detected with
common diagnostics of run statistics (e.g. total library size, quality filtering,

etc.) and/or use of a simple mock community positive control. It was only
through the replicated analysis by different laboratories that the irregular
libraries, and more importantly an aberrant library, were identified. Addi-
tionally, variability increased with each step in the workflow in which PCR
errors anddifferences in library size had strong impacts onmeasures of both
α and β-diversity. We recommend the following diagnostics for library
accuracy in soil microbial community analyses: (i) summary statistics of
sequencing depth and sequence removal at each processing step, (ii) com-
parison of replicate samples for estimates of within-lab variability, and (iii)
inclusion of a reference soil that can be compared across sequence runs
and/or multiple laboratories. As shown by the effects of library size on
α- andβ-diversity estimates, regression techniques anddistance indiceswith
and without sample size bias are recommended for treatment comparisons
to ensure accuracy and reproducibility in soil microbial community
analyses.

Online methods
Study design
Six independent laboratories participated in the study by sequencing soil
bacterial communities with different levels of preparation autonomy. Two
laboratories (primary labs) collected soil fromagricultural cropping systems
typical for each region, performed soil DNA extraction, and produced a
barcoded PCR library on samples from both sites. Both primary labs sent
aliquots of each soil, soilDNAextract, and thebarcodedPCR library to three
secondary laboratories. All laboratories received aliquots of the sameprimer
stocks.

The samples received for sequencing by the six laboratories were at
varying stages of library preparation: (i) soils which required DNA extrac-
tion, PCR, and sequencing (Ext/PCR/Seq), (ii) soil DNA extracts that
required only PCR and sequencing (PCR/Seq), and (iii) a DNA library
prepared by the primary lab which only needed to be sequenced (Seq)
(Fig. 1). All three libraries (Ext/PCR/Seq, PCR/Seq, and Seq) were pooled
into a single 16S rRNAamplicon library and sequenced in a single run using
the Oxford Nanopore MinION platform (Oxford Nanopore Technologies
[ONT], Oxford, UK). One laboratory repeated the study bringing the total
number of sequence runs to seven.

Soils
The experiment included soils from two agricultural field experiments: the
first in Fort Collins, Colorado, USA (40° 39′ 6″N, 104° 59′ 57″W, 1535m
elevation) and the other in Pendleton, Oregon, USA (45° 42′N, 118° 36′W,
438m elevation). The Fort Collins site is located at the Colorado State
University Agricultural Research and Development Education Center
(ARDEC) with an average annual precipitation of 245 ± 80mm
(2013–2022) (https://coagmet.colostate.edu/) and the soil is a Fort Collins
clay loam (fine-loamy,mixed,mesic AridicHaplustalfs). The Pendleton site
soil is aWallaWalla silt loam (coarse-silty, mixed, superactive, mesic Typic
Haploxerolls) and the area receives approximately 413 ± 81mm annual
precipitation (1930–2018)40.

Soils were collected in June 2019 from four replicate plots at each site
(n = 4). The ARDEC soils were collected from control plots of a
conventionally-tilled continuous corn (Zea mays L.) system41. The Pen-
dleton soils were sampled from plots managed in dryland annual wheat
(Triticum aestivum L.) under no-tillage. For each site, six 2-cm diameter
cores were sampled from a 0 cm to 10 cm depth either between the crop
rows (ARDEC) or at the plant crowns (Pendleton). The cores were com-
posited in a bag and stored on ice until transferred to the laboratory. Large
clods were fragmented with a rolling pin. Samples were sieved to <4mm,
homogenized by hand, and aliquoted. Soils were frozen at −20 °C and
shipped overnight on ice to each laboratory.

DNA extraction and library preparation
All laboratories performed the following steps of a standard protocol
starting from soil, soil DNA, and prepared libraries provided by the primary
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labs. Fromsoil,DNAwas extracted from0.25 goffieldmoist soil in triplicate
using the Qiagen DNeasy PowerSoil Pro Kit (Qiagen, Germantown, MD)
per the manufacturer’s recommendations. Three soil-free extractions were
included asnegative kit controls (ExtH2O). Primary labs shipped aliquots of
the DNA extracts in 0.65mL Lo-Bind microcentrifuge tubes (Eppendorf,
Enfield, CT) overnight on ice to secondary labs.

Soil DNA extracts generated in-house and provided by primary
labs were diluted 1:20 with nuclease-free water and amplified in triplicate
in 20 μL PCR reactions (PCR1) using the Bact-27F42 and Univ-1492R43

primers with ONT 5′ tail sequences (Bact-27F-Mn, 5′-
TTTCTGTTGGTGCTGATATTGCAGRGTTYGATYMTGGCTCAG-3′;
Univ-1492R-Mn, 5′-ACTTGCCTGTCGCTCTATCTTCTACCTTGT-
TACGACTT-3′; ONT tail sequences are underlined). Reactions contained
1× Phusion HSII Master Mix (Thermo Scientific, Waltham, MA), 0.2 μM
forward and reverse primers, and 2 μL diluted template or water as a
negative control (PCR1H2O). On average, the PCR reactions for soil
samples contained 6.6 ± 1.8 ng DNA across all laboratories and both soils.
The ZymoBIOMICS Microbial Community DNA Standard (product
D6305; Zymo Research, Irvine, CA) was included as a positive control
(MOCK) at 2 ng per reaction. The theoretical composition and relative
abundance based on the 16 S rRNA gene (%) of the ZymoBIOMICS stan-
dard is Pseudomonas aeruginosa (4.2%), Escherichia coli (10.1%), Salmo-
nella enterica (10.4%), Lactobacillus fermentum (18.4%), Enterococcus
faecalis (9.9%), Staphylococcus aureus (15.5%), Listeria monocytogenes
(14.1%), and Bacillus subtilis (17.4%). Amplification was performed by
denaturing at 98 °C for 30 s followed by 25 cycles of a three-step reaction
with 98 °C for 15 s, 50 °C for 15 s, and 72 °C for 60 s with a final extension of
72 °C for 5min. Replicate PCR products (15 μL each) were pooled, purified
with AMPure XP beads (Beckman Coulter, Indianapolis, IN) in a 1:1
volume per manufacturer’s protocol, and resuspended in 40 μL nuclease-
free water. Amplification products were verified for expected size and
estimated quantity using gel electrophoresis before and after the bead
purification. Purified PCR1 products (including controls) were diluted 1:10
in nuclease-free water and barcoded using the PCR Barcoding Expansion
1–96 kit (ONT). Barcoding reactions were performed in 50 μL reactions
with 1× Phusion HSII Master Mix, 1 μL sample-specific PCR barcode, and
5 μL diluted PCR1 product or water for the negative control (PCR2H2O).
Reactionswereplaced in a thermocycler for the followingprotocol: 98 °C for
30 s followed by 15 cycles of 98 °C for 15 s, 62 °C for 15 s and 72 °C for 60 s,
and a final extension at 72 °C for 5min. Products were visualized by gel
electrophoresis to confirm the addition of the barcode sequences. Barcoded
products (45 μL) were purified using AMPure beads in a 1:1 ratio and
resuspended in 50 μL nuclease-free water.

BarcodedPCR libraries (PCR/SeqandExt/PCR/Seq)were individually
prepared by pooling 5 μL of each reaction. The three libraries that
differed in the level of preparation autonomy (Ext/PCR/Seq, PCR/Seq, Seq)
were diluted to 8–10 ng μL−1, pooled volumetrically, and prepared for
sequencing. Library preparation was initiated with 400 ng of pooled, bar-
coded library according to ONT 1D PCR barcoding (96) genomic DNA
(SQK-LSK109) protocol (PBGE96_9068_v109_revD_23May2018) using
the SQK-LSK109 Ligation Sequencing Kit and R9.4.1 (FLO-MIN106D)
flow cell (ONT). Sequencing was performed for 48 h with the setting
of −180 V.

Except for the sequencing device and the model of the flow cell,
equipment including thermocyclers, pipet tip types (i.e. low adhesion, fil-
tered), and centrifuges were allowed to vary based on available equipment.
The lab that repeated the sequencing run (Lab2) used different thermocyclers
for each experiment to evaluate the potential impact of the thermocycler
model on the sequence results. For the repeated experiment (Lab2.b), a
subset of samples (n= 4) was amplified with the two different thermocyclers
for PCR1 and then treated similarly for the remaining protocol.

Sequence processing
Basecalling and sequence processing for each of the six participating
laboratories was performed by a single participating laboratory and, except

when noted, default parameters were used for each processing step. To
reflect the processing that typically occurs in each participating laboratory,
all bioinformatics steps were conducted for each sequencing run individu-
ally. Sequences generated on the MinION platform were base-called using
the high-accuracy configuration (dna_r9.4.1_450bps_hac.cfg) and demul-
tiplexed according to both the forward and reverse barcodes (--requir-
e_barcodes_both_ends) usingGuppyv6.0.1 (ONT). Sequenceswerefiltered
based on a minimum q-score of 70 using Filtlong v0.2.144 followed by
filtering based on length (1000–2000 bp) using Cutadapt v3.245. All
remaining sequenceswere classified usingminimap2 v2.2246 and the default
NCBI-linked Reference Database47–49 available from EMU v3.0.050 at the
bacteria species level. Following classification, EMU applies an expectation
minimization algorithm to adjust taxonomic assignments using up to
50 sequence alignments per sequence read to reduce potential errors50. The
final species-level count table generated with EMU from each sequencing
runwas then pooled into a single table and used in all downstream analyses.

Statistics and reproducibility
All statistical analyses on the final pooled species-level count table were
performed in R Studio v2022.07.2 using the R statistical package v4.3.151.
Observed species richness (Sobs) was used as the sole metric of α-diversity
and calculated with the R phyloseq package v1.44.052 after rarifying all
samples to 12,000 reads. Differences in Sobs were tested by ANOVA for the
three main effects (site, library, and sequence run nested in the library) and
partial effect sizes (η2) were estimated with the effect size package v0.8.553.
Non-linear (i.e. Michaelis–Menten) regressions of the relationship between
thenumber of original sequences read per sample andSobsweredetermined
for each sequence run/library combination using the R nls function in the
stats v3.6.2 package. LBplotswere used to compare the regressions of species
richness versus the original number of sequence reads by sequence run.

A phylogenetic tree was constructed from the EMU reference
database50 using mothur v1.42.154. Briefly, sequences were aligned to the
SILVA reference alignment v138 and a neighbour-joining tree was con-
structed with fastreeR v1.4.055. The phylogenetic tree was used to develop a
heatmap of the mean family-level taxonomic abundances normalized to
counts per million reads. Variability in taxonomic abundances between
sequence runs was calculated as the Log2FC between normalized (counts
per million reads) abundances for each run relative to the base mean
observed at the two primary laboratories (Lab1 and Lab4). Differences in
variability (i.e. range in Log2FC across all sequence runs) were then tested
using a repeatedmeasuresANOVAwith taxon as the subject and library the
main effect calculated at the phylum, class, and genus taxonomic levels.

Significant differences between site, library, or sequence run were
determined by perMANOVA and the data visualized by distance-based
unconstrained ordinations (i.e. Principal correspondence analysis or PCoA)
constructed from either BC distances of Hellinger-transformed genera
abundances (i.e. counts) using the R vegan package v2.6-456. Additionally,
perMANOVA and PCoA were performed from Morisita distances of
untransformed genera abundances as this index previously has been shown
to be less sensitive to sample size39. The variation associated with each
treatment factor (site, library, sequence run) was evaluated by variance
partitioning of this same distance matrix using the adjusted R2 values
derived from a distance-based redundancy analysis (db-RDA). Where
appropriate the BC orMorisita distances were converted to similarities (e.g.
1− distance). Variability was calculated as the IQR or difference between
the 75th and 25th percentiles.

Differentially abundant taxa between the two siteswere testedusing the
DESeq2 v1.40.2 package57 as a middle-ground approach for both Type I
(false-positive) and Type II (false-negative) errors58. Recent research
recommends the use ofmore conservative differential abundance tools than
DESeq2 due to potential Type I error58; however, DESeq2 was used to
evaluate variation between sequencing runs for different phyla rather than
specifically contrasting the two soilswhichwould bemore affected byhigher
error rate59. For each sequence run, the differential abundance of phyla
between the two soils was reported as Log2FC values. To control for
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differences in sample depth, all data were normalized using the relative log
expression algorithm which is the default method in DESeq2. Variation in
Log2FC changes at the phylum, class, and genus taxonomic levels was
calculated independently for each library as the range for each taxon across
all sequence runs. Differences in variability (i.e. range in Log2FC across all
sequence runs) were then tested using a repeated measures ANOVA with
taxon as the subject and library as the main effect.

Within-laboratory (e.g. sample-to-sample) and between-laboratory
(e.g. reference soil) sample variability was evaluated as potential diag-
nostics. Sample variability within each sequencing run was calculated as
the BC similarity between replicate samples (e.g. subsamples from the
same site/plot combination) using Hellinger-transformed genera relative
abundances. The potential of reference soils to identify aberrant
sequencing runs was evaluated as the BC similarities of the Hellinger-
transformed genera relative abundances for each individual soil sample
between the secondary lab (i.e. sequence run) and the two primary labs
(Supplementary Table 1).

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
All raw sequence data for this study have been deposited in the European
Nucleotide Archive (ENA) at EMBL-EBI under accession number
PRJEB75585.

Code availability
All scripts and files used for final data processing and analysis, figure gen-
eration, andphylogenetic tree construction are available onGitHub (https://
github.com/DanielManter-USDA/16S_CLC), as well as a Zenodo
repository60.

Received: 29 September 2023; Accepted: 17 July 2024;

References
1. Fierer, N. Embracing the unknown: disentangling the complexities of

the soil microbiome. Nat. Rev. Microbiol. 15, 579–590 (2017).
2. Manter, D. K., Moore, J. M., Lehman, R. & Hamm, A. K. Microbial

community composition, diversity, and function. InSoil Health Series:
Volume 2 Laboratory Methods for Soil Health Analysis 289–323 (Soil
Science Society of America, Madison, 2021).

3. Fierer, N.,Wood, S. A. & deMesquita, C. P. B. Howmicrobes can, and
cannot, be used to assess soil health. Soil Biol. Biochem. 153,
108111 (2021).

4. Chatterjee, S., Mondal, K. C. & Chatterjee, S. (eds) Soil Health and
Environmental Sustainability: Application of Geospatial Technology
(Springer, 2022).

5. Alteio, L. V. et al. A critical perspective on interpreting amplicon
sequencing data in soil ecological research. Soil Biol. Biochem. 160,
108357 (2021).

6. Walters, K. E. & Martiny, J. B. Alpha-, beta-, and gamma-diversity of
bacteria varies across habitats. PLoS One 15, e0233872 (2020).

7. Sinha, R. et al. Assessment of variation in microbial community
amplicon sequencing by the microbiome quality control (MBQC)
project consortium. Nat. Biotechnol. 35, 1077–1086 (2017).

8. Bruner, E. A.,Okubara,P. A., Abi-Ghanem,R., Brown,D. J. &Reardon,
C. L. Use of pressure cycling technology for cell lysis and recovery of
bacterial and fungal communities from soil. Biotechniques 58,
171–180 (2015).

9. Kennedy, N. A. et al. The impact of different DNA extraction kits and
laboratories upon the assessment of human gut microbiota
composition by 16S rRNA gene sequencing. PLoS One 9, e88982
(2014).

10. Mori, H. et al. Assessment of metagenomic workflows using a newly
constructed human gut microbiome mock community. DNA Res. 30,
dsad010 (2023).

11. Brooks, J. P. et al. The truth about metagenomics: quantifying and
counteracting bias in 16S rRNA studies. BMC Microbiol. 15, 1–14
(2015).

12. Tourlousse, D. M. et al. Characterization and demonstration of mock
communities as control reagents for accurate human microbiome
community measurements.Microbiol. Spectr. 10, e01915–e01921
(2022).

13. Han,D. et al.Multicenter assessmentofmicrobial communityprofiling
using 16S rRNA gene sequencing and shotgun metagenomic
sequencing. J. Adv. Res. 26, 111–121 (2020).

14. Szóstak, N. et al. The standardisation of the approach to
metagenomic human gut analysis: from sample collection to
microbiome profiling. Sci. Rep. 12, 8470 (2022).

15. Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene
PCR primers for classical and next-generation sequencing-based
diversity studies. Nucleic Acids Res. 41, e1–e1 (2013).

16. Fouhy, F., Clooney, A. G., Stanton, C., Claesson, M. J. & Cotter, P. D.
16S rRNA gene sequencing of mockmicrobial populations-impact of
DNA extraction method, primer choice and sequencing platform.
BMC Microbiol. 16, 1–13 (2016).

17. Ahn, J.-H., Kim, B.-Y., Song, J. & Weon, H.-Y. Effects of PCR cycle
number and DNA polymerase type on the 16S rRNA gene
pyrosequencing analysis of bacterial communities. J. Microbiol. 50,
1071–1074 (2012).

18. Lee, C. K. et al. Groundtruthing next-gen sequencing for microbial
ecology-biases and errors in community structure estimates from
PCR amplicon pyrosequencing. PLoS One 7, e44224 (2012).

19. Keenum, I. et al. Amplicon sequencing minimal information (ASqMI):
quality and reporting guidelines for actionable calls in biodefense
applications. J. AOAC Int. 106, 1424–1430 (2023).

20. Yilmaz, P. et al. Minimum information about a marker gene sequence
(MIMARKS) and minimum information about any (x) sequence (MIxS)
specifications. Nat. Biotechnol. 29, 415–420 (2011).

21. Costea, P. I. et al. Towards standards for human fecal sample processing
in metagenomic studies. Nat. Biotechnol. 35, 1069–1076 (2017).

22. Bakker, M. G. A fungal mock community control for amplicon
sequencing experiments. Mol. Ecol. Res. 18, 541–556 (2018).

23. Singer, E. et al. Next generation sequencing data of a defined
microbial mock community. Sci. Data 3, 1–8 (2016).

24. Meslier, V. et al. Benchmarking second and third-generation
sequencing platforms for microbial metagenomics. Sci. Data 9,
694 (2022).

25. Sevim, V. et al. Shotgun metagenome data of a defined mock
community using Oxford Nanopore, PacBio and Illumina
technologies. Sci. Data 6, 285 (2019).

26. Hardwick, S. A. et al. Synthetic microbe communities provide internal
reference standards for metagenome sequencing and analysis. Nat.
Commun. 9, 3096 (2018).

27. Olivares, I. R. B., Souza, G., Nogueira, A., Toledo, G. & Marcki, D. C.
Trends in developments of certified reference materials for chemical
analysis-focus on food, water, soil, and sediment matrices. TrAC
Trends Anal. Chem. 100, 53–64 (2018).

28. Santos, A., van Aerle, R., Barrientos, L. & Martinez-Urtaza, J.
Computational methods for 16S metabarcoding studies using
nanopore sequencing data. Comput. Struct. Biotechnol. J. 18,
296–305 (2020).

29. Zhang, T. et al. The newest Oxford nanopore R10. 4.1 full-length 16S
rRNA sequencing enables the accurate resolution of species-level
microbial community profiling. Appl. Environ. Microbiol. 89,
e00605–e00623 (2023).

30. Stevens, B. M., Creed, T. B., Reardon, C. L. & Manter, D. K.
Comparison of Oxford nanopore technologies and Illumina MiSeq

https://doi.org/10.1038/s42003-024-06594-8 Article

Communications Biology |           (2024) 7:913 11

https://github.com/DanielManter-USDA/16S_CLC
https://github.com/DanielManter-USDA/16S_CLC


sequencingwithmockcommunities andagricultural soil.Sci. Rep.13,
9323 (2023).

31. Kennedy, K., Hall, M. W., Lynch, M. D., Moreno-Hagelsieb, G. &
Neufeld, J. D. Evaluating bias of Illumina-based bacterial 16S
rRNA gene profiles. Appl. Environ. Microbiol. 80, 5717–5722
(2014).

32. Ip, C. L. C. et al. MinION analysis and reference consortium: phase 1
data release and analysis. F1000Research 4, 1075 (2015).

33. Delahaye, C. & Nicolas, J. Sequencing DNAwith nanopores: troubles
and biases. PloS one 16, e0257521 (2021).

34. Mackey, E. et al. Certification of three NIST renewal soil standard
referencematerials for elementcontent:SRM2709aSanJoaquinSoil,
SRM 2710a Montana Soil I, and SRM 2711a Montana Soil II. NIST
Spec. Publ. 260, 1–39 (2010).

35. Bunge, J. &Fitzpatrick,M.Estimating thenumberof species: a review.
J. Am. Stat. Assoc. 88, 364–373 (1993).

36. Gotelli, N. J. & Colwell, R. K. Quantifying biodiversity: procedures and
pitfalls in themeasurement and comparison of species richness.Ecol.
Lett. 4, 379–391 (2001).

37. Chao, A. & Jost, L. Coverage‐based rarefaction and extrapolation:
standardizing samples by completeness rather than size. Ecology 93,
2533–2547 (2012).

38. Willis, A. D. Rarefaction, alpha diversity, and statistics. Front.
Microbiol. 10, 492464 (2019).

39. Cao, Y., Williams, W. P. & Bark, A. W. Effects of sample size (replicate
number) on similarity measures in river benthic Aufwuchs community
analysis.Water Environ. Res. 69, 107–114 (1997).

40. Williams, J. D., Reardon, C. L., Wuest, S. B. & Long, D. S. Soil water
infiltration after oilseed crop introduction into a Pacific Northwest
winter wheat–fallow rotation. J. Soil Water Conserv. 75, 739–745
(2020).

41. Halvorson, A. D., Del Grosso, S. J. & Stewart, C. E. Manure and
inorganic nitrogenaffect tracegasemissionsunder semi‐arid irrigated
corn. J. Environ. Qual. 45, 906–914 (2016).

42. Lane, D. J. in Nucleic Acid Techniques in Bacterial Systematics (eds
Stackebrandt, E. & Goodfellow, M.) (John Wiley & Sons Ltd., 1991).

43. Muyzer, G., Teske, A., Wirsen, C. O. & Jannasch, H. W. Phylogenetic
relationships ofThiomicrospira species and their identification in
deep-sea hydrothermal vent samples by denaturing gradient gel
electrophoresis of 16S rDNA fragments. Arch. Microbiol. 164,
165–172 (1995).

44. Wick, R. R. & Menzel, P. Filtlong. Available online: github.com/rrwick/
Filtlong (accessed on 4 Mar 2022) (2018).

45. Martin, M. Cutadapt removes adapter sequences from high-
throughput sequencing reads. EMBnet J. 17, 10–12 (2011).

46. Li, H. Minimap2: pairwise alignment for nucleotide sequences.
Bioinformatics 34, 3094–3100 (2018).

47. O’Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI:
current status, taxonomic expansion, and functional annotation.
Nucleic Acids Res. 44, D733–D745 (2016).

48. Stoddard, S. F., Smith, B. J., Hein, R., Roller, B. R. & Schmidt, T.M. rrn
DB: improved tools for interpreting rRNA gene abundance in bacteria
and archaea and a new foundation for future development. Nucleic
Acids Res. 43, D593–D598 (2015).

49. Schoch, C. L. et al. NCBI taxonomy: a comprehensive update on
curation, resources and tools. Database 2020, baaa062 (2020).

50. Curry, K. D. et al. Emu: species-level microbial community profiling of
full-length 16S rRNA Oxford nanopore sequencing data. Nat.
Methods 19, 845–853 (2022).

51. R: a language and environment for statistical computing (R
Foundation for Statistical Computing, Vienna, Austria, 2023).

52. McMurdie, P. J. &Holmes,S. phyloseq: anRpackage for reproducible
interactive analysis and graphics of microbiome census data. PLoS
One 8, e61217 (2013).

53. Ben-Shachar, M. S., Lüdecke, D. & Makowski, D. effectsize:
estimation of effect size indices and standardized parameters. J.
Open Source Softw. 5, 2815 (2020).

54. Schloss, P. D. Reintroducing mothur: 10 years later. Appl. Environ.
Microbiol. 86, e02343–02319 (2020).

55. Gkanogiannis, A. fastreeR: Phylogenetic, Distance And Other
Calculations on VCF and Fasta Files https://github.com/
gkanogiannis/fastreeR, https://github.com/gkanogiannis/
BioInfoJava-Utils (2023).

56. Oksanen, J. et al. Vegan: Community Ecology Package, R Package
Version 2.6–4 https://CRAN.R-project.org/package=vegan, https://
CRAN.R-project.org/package=vegan (2022).

57. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold
change and dispersion for RNA-seq data with DESeq2.GenomeBiol.
15, 1–21 (2014).

58. Nearing, J. T. et al.Microbiomedifferential abundancemethodsproduce
different results across 38 datasets. Nat. Commun. 13, 342 (2022).

59. Weiss, S. et al. Normalization and microbial differential abundance
strategies depend upon data characteristics.Microbiome 5, 1–18 (2017).

60. Manter, D. et al. Cross-laboratory comparison of bacterial 16s rRNA
communities in soil using nanopore sequencing [Dataset]. Zenodo
https://zenodo.org/doi/10.5281/zenodo.11557861 (2024).

Acknowledgements
Theauthors thank thecontributionsofEmmiR.Klarer, RyanP.McGhee, and
Yichao Yang for their assistance in sample analysis. The authors also thank
Christopher Burgess and Jennifer Moore for their critical reviews which
improved the quality of the manuscript. This researchwas supported by the
US Department of Agriculture, Agricultural Research Service (USDA-ARS).
The authors thank the USDA-ARS Office of National Programs for the
designation and support of the USDA-ARS Soil Biology Groupx (SBGx) on
project number 0500-00034-001-000-D. Mention of trade names or com-
mercial products in this publication is solely for the purpose of providing
specific information and does not imply recommendation or endorsement
by the USDA. USDA is an equal opportunity provider and employer.

Author contributions
All authors (D.K.M., C.L.R., A.J.A., A.M.I., R.M.L., J.E.M., D.N.M., T.C.,
P.M.E.,S.P., T.F.D.,H.L.T., K.S.V.,S.L.W., andD.B.K.) contributedequally to
the conceptualization, methodology, and review and editing. A.J.A., A.M.I.,
C.L.R., D.K.M., D.N.M., J.E.M., R.M.L., P.M.E., S.P., and T.C. performed
sequencing. D.K.M. conducted the data analyses, and D.K.M. and C.L.R.
wrote the first draft.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s42003-024-06594-8.

Correspondence and requests for materials should be addressed to
Daniel K. Manter or Catherine L. Reardon.

Peer review information Communications Biology thanks Anastasiia K
Kimeklis and the other, anonymous, reviewer(s) for their contribution to the
peer review of this work. Primary handling editor: Tobias Goris.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1038/s42003-024-06594-8 Article

Communications Biology |           (2024) 7:913 12

https://github.com/gkanogiannis/fastreeR
https://github.com/gkanogiannis/fastreeR
https://github.com/gkanogiannis/fastreeR
https://github.com/gkanogiannis/fastreeR
https://github.com/gkanogiannis/fastreeR
https://github.com/gkanogiannis/fastreeR
https://CRAN.R-project.org/package=vegan
https://CRAN.R-project.org/package=vegan
https://CRAN.R-project.org/package=vegan
https://CRAN.R-project.org/package=vegan
https://CRAN.R-project.org/package=vegan
https://zenodo.org/doi/10.5281/zenodo.11557861
https://zenodo.org/doi/10.5281/zenodo.11557861
https://doi.org/10.1038/s42003-024-06594-8
http://www.nature.com/reprints


Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’sCreativeCommons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

This is aU.S.Governmentwork andnot under copyright protection in theUS;
foreign copyright protection may apply 2024

https://doi.org/10.1038/s42003-024-06594-8 Article

Communications Biology |           (2024) 7:913 13

http://creativecommons.org/licenses/by/4.0/

	Unveiling errors in soil microbial community sequencing: a case for reference soils and improved diagnostics for nanopore sequencing
	Results
	Sequence run sizes and QC
	Mock community
	Soils—α diversity
	Soils—β diversity
	Within-lab variability
	Between-lab variability
	Site differences

	Discussion
	Online methods
	Study design
	Soils
	DNA extraction and library preparation
	Sequence processing
	Statistics and reproducibility
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




