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The factors shaping microbial communities in marine subsurface sediments remain poorly
understood. Here, we analyzed the microbiome of subsurface sediments within a depth range of
1.6–1.9 m, at 10 locations along the Oregon coast. We used metagenomics to reconstruct the
functional structure and 16S rRNAgene amplicon sequencing to estimate the taxonomic composition
of microbial communities, accompanied by physicochemical measurements. Functional community
structure, in terms of the proportions of various gene groups, was remarkably stable across samples,
despite the latter covering a region spanning over 300 km. In contrast, taxonomic composition was
highly variable, especially at the level of ampliconsequencevariants (ASVs) andoperational taxonomic
units (OTUs).Mantel correlation tests betweencompositional dissimilarities andgeographic distances
revealed only a moderate influence of distance on composition. Regression models predicting
taxonomic dissimilarities and considering up to 20 physicochemical variables as predictors, almost
always failed to select a significant predictor, suggesting that variation in local conditions does not
explain the high taxonomic variability. Permutation null models of community assembly revealed that
taxa tend to strongly segregate, i.e., exclude each other. We conclude that biological interactions are
important drivers of taxonomic variation in subsurface sediments, and that this variation can decouple
from functional structure.

It is becoming increasingly apparent that subsurface marine sediments,
particularly in coastal regions, harbor an enormous number of
microorganisms1–3. These microorganisms play a major role in organic
carbon deposition rates, nutrient cycling and global methane fluxes4,5. Yet,
the factors shapingmicrobial communities in subsurface marine sediments
remain poorly understood, largely due to sampling difficulties. Most pre-
vious studies explored the vertical distribution profiles ofmicrobial taxa and
genes along sediment columns, and focused on the factors shaping these
vertical profiles6–10 (but see ref. 11 for a taxonomic survey of subsurface
sediments across geographic locations). Such studies have repeatedly con-
firmed the important role that redox conditions and thermodynamics play
in the vertical distribution of microbial metabolic functions across the
sediment column12,13. However, the relationship between function and
taxonomic composition at the community level is less understood. For
example, it is unclearwhether a community’smetabolic functions are largely
decoupled from its taxonomic composition within functional groups.
Generally, such a decoupling can occur if the mechanisms that constrain

function, such as reaction stoichiometry, resource limitation and physical
transport bottlenecks, are separate from the mechanisms controlling which
particular taxa get to perform each function14–16. A decoupling between
taxonomic composition and function implies that taxonomic changes need
not necessarily affect ecosystem processes, such as nutrient and energy
fluxes,whichhas implications for howwe interpretmicrobiome surveys and
biodiversity trends17,18. For example, taxonomic shifts caused by tempera-
ture or pHchanges due to long-term environmental trends neednot a priori
have any major impact on ecosystem processes. Reciprocally, such a
decoupling affects strategies for managing ecosystems, since selecting for or
against specific taxa alone may have little impact on functions of interest19.
While such a decoupling has been observed in other microbial systems,
notably in bioreactors, host-associated microbiome, and the pelagic
ocean15,20,21, it has not yet been confirmed in marine sediments and more
broadly in subsurface environments. If such a decoupling were to be con-
firmed in subsurface sediments, this would beg the question of how dis-
persal, abiotic environmental variables, and biological interactions between
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organisms influence which taxa get to occupy specific metabolic niches in
any given geographic location, and at which lateral spatial scales each of
these factors becomes important. For example, microbial dispersal rates in
the subsurface were found to be much slower than in most surface
environments22, thus reducing homogenization across space andpotentially
enabling greater compositional differences between locations.

To address these gaps, herewe examined themicrobial communities in
subsurface intertidal marine sediments within a fixed narrow depth interval
(1.6–1.9m), at 10 different geographic locations along the coast of Oregon,
USA. Sampling locations are separated from each other by at least 1.5 km,
and cover an area over 300 km across (Fig. 1).We focus in particular on the
relationship between taxonomic composition and function, and on eluci-
dating the mechanisms that shape variation in taxonomic community
composition across geographic locations, i.e., complementary to the well-
established thermodynamic drivers of the vertical distribution of metabolic
functions. To this end, we use 16S rRNA gene amplicon sequencing to
reconstruct the taxonomic composition of bacterial and archaeal (hence-
forth simply “prokaryotic”) populations, as well as gene-centric metage-
nomic sequencing to determine their functional structure, in terms of the
proportions of various gene groups. As we describe below, we observed a

remarkably similar functional structure in all microbial communities sur-
veyed, despite a highly variable taxonomic composition. Through com-
parison with multiple environmental variables, as well as through statistical
nullmodel tests of community assembly,we further examine various factors
that might be driving this taxonomic variation.

Results and discussion
Microbial community composition
To elucidate the functional structure of the surveyed microbial commu-
nities,weused gene-centricmetagenomic sequencing (sequencing depths in
Table S1, collector’s curves in Fig. S1). After assembling reads into con-
tiguous sequences (contigs), predicting and annotating protein-coding
genes in the contigs, we determined gene proportions based on reads
mapped to contigs. We then classified genes into groups at each functional
classification level of theKEGGhierarchy (A toC),withAbeing the coarsest
classification level (e.g., metabolism vs cellular processes), B being a finer
level (e.g., energymetabolismvs lipidmetabolism) andCbeing an evenfiner
level (e.g., oxidative phosphorylation vs photosynthesis) corresponding to
individual KEGG pathway maps23,24. In addition, we grouped genes
according to catalyzed reactions based on enzyme commission numbers

Fig. 1 | Sample locations and conditions. A Locations of subsurface sediment
samples examined along the coast ofOregon,USA.BPhotoof a typical core extraction,
here performed South of the Columbia River, Oregon. Photo by HHS. All persons
depicted have given their consent to publish this image.C−IAnnual-average regional
environmental variables of surface waters, obtained from public gridded datasets and
interpolated onto the sampling locations. J, K Salinity and sulfate concentrations

measured in the pore waters collected from the cores. L−P Concentrations of major
elementsmeasured in the porewaters collected from the cores. In each of (C−P), each
scatterpoint represents one sample, boxes span interquartiles, whiskers show the full
data range and horizontal line segments show medians. For additional elements and
details per sample see Supplementary Data 1.
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(ECs25), which represent the finest available and meaningful functional
classification. We also grouped genes into custom categories involving
metabolic functions of general ecological importance in sediments, such as
fermentation, methanogenesis or sulfide oxidation. At KEGG level A,
profileswere dominatedbygenes involved inmetabolism, followedby genes
involved in genetic information processing, and genes involved in envir-
onmental information processing (Fig. S2). At KEGG level B, profiles were
dominated by genes involved in genetic information processing, genes
involved in signaling and cellular processes, and genes involved in meta-
bolism (Fig. 2). In terms of our custom-defined gene groups, we observed a
high abundance of genes involved in perchlorate reduction, arsenite oxi-
dation for energy, fermentation, arsenate respiration and nitrogen respira-
tion (Fig. 2B). At each considered KEGG level, all samples had nearly
identical functional structure in terms of the proportions of the various gene
groups (Fig. 2AandFig. S2).A similar observationwasmade forECs and for
our custom gene groups. This suggests that the metabolic pathways and
ecological functions of the local microbial communities are of similar
importance across samples, and their proportions strongly constrained by
similar redox conditions and stoichiometric balances12,15. This consistency
of functional structure is particularly remarkable given that these samples
were obtained along a transect that spans over 300 km. In fact, this transect
intersects the deltas of multiple major rivers such as Columbia, Siuslaw,
Nehalem and Coos, originating in distinct geographic regions and with
discharge rates spanning 3 orders of magnitude (Table S2).

To elucidate the taxonomic compositionofmicrobial communities, we
used 16S rRNA gene amplicon sequencing, with reads either resolved at the
level of individual amplicon sequence variants (ASVs)26, or clustered into
operational taxonomic units (OTUs, 99% similarity)27,28 or grouped into
higher-order taxa (sequencing depths in Table S1, collector’s curves in
Fig. S3). At the genus level, themost abundant taxa were Subgroup 10 in the
family Thermoanaerobaculaceae, followed by Woeseia, Blastopirellula and
Rhodopirellula (Fig. 3B). At the class level, microbial communities in all
samples were dominated by Planctomycetes, Gammaproteobacteria and
Thermoanaerobaculia (Fig. 3C). The bulk of the communities, i.e., most of
the reads, belonged to taxa whose proportions exhibited high variability
across samples. Among the abundant taxa, only a small number had rela-
tively stable proportions across samples. This general taxonomic variability
was particularly strong at higher taxonomic resolutions, such as ASV or
OTU level. Indeed, nearly all reads were mapped to ASVs and OTUs that
exhibited strong fluctuations in their proportions across samples (Fig. 3A
and Fig. S4). This observation contrasts the much more stable functional
structure across samples discussed earlier. This suggests that while the
proportions of various functional groups are similar across all locations, the
specific taxa encoding each function are highly variable. As a case in point,
the average number of OTUs detected in each sample was 806.2, while the
average number of OTUs shared by any two randomly chosen samples was

only 478.6 (i.e., down by 40.6%), and the average number of OTUs found in
all 10 sampleswas only 51 (Fig. 3D).This pattern is even stronger at theASV
level: While each sample exhibited on average 1726 ASVs, the number of
ASVs shared by any two samples was 821 (i.e., down by 52%), and the
number of ASVs shared by all 10 samples was only 11 (Fig. 3D). Thismeans
that not only do the proportions of taxa change across samples, many taxa
found in one sample can be absent (or at least below detection limit) in
another sample. Such a decoupling between functional and taxonomic
composition in microbial communities has been reported previously in
other environments, notably in bioreactors18, human guts29, in green
macroalga30 and bromeliad plants31. Explanations previously proposed for
this pattern generally invoke functional redundancy, i.e., the existence of
multiple taxa capable of similar metabolic functions15, combined with
specific mechanisms promoting alternative taxa in any given functional
group, such as phage-host dynamics32, transport-limitedmetabolic activity16

and antibiotic warfare between species33,34.
To more systematically compare the variability of taxonomic and

functional composition, we considered the coefficient of variation (CV,
standard deviation divided by mean) of the proportions of each taxon and
eachKEGGgene group across samples.Wemention beforehand that in our
dataset the CV tends to be smaller for more abundant taxa and for more
abundant gene groups (Fig. 4). One obvious technical reason for this is that
sampling stochasticity generally decreases with the expected number of
matched reads, although less obvious biological reasonsmay also exist. This
correlation between abundance and CV means that comparisons of CVs
betweendifferent taxonomic levels, or between taxa andgenegroups, should
account for differences in overall abundances. We thus plotted CVs of
various taxa and gene groups as a function of their mean proportion
(averaged across samples, Fig. 4). From Fig. 4 it becomes clear that, while
some taxahave a lowerCVthan somegene groups andvice versa, theCVsof
taxa tend to be around an order of magnitude smaller than the CVs of gene
groups with comparable mean proportions. This observation holds true at
all considered taxonomic levels (ASV, OTU, .., phylum) and all considered
gene grouping levels (KEGG A, B, C and EC). For example, prokaryotic
classeswithmean proportions around 0.01 tend tohaveCVs about 10 times
greater than KEGGC gene groups with similar mean proportions (Fig. 4F).

The role of geographic distance
To assesswhether distance-dependent dispersal limitation could explain the
observed variation of taxonomic composition, we computed pairwise dis-
similarities between samples and performedMantel tests of Spearman rank
correlations between dissimilarities and geographic distances35, separately
for each considered taxonomic level (ASV,OTU,…, phylum).Dissimilarity
metrics that we considered were abundance-based Bray-Curtis, Hellinger
and Jaccard35–37, which are commonly used in ecology. In contrast to simple
correlation tests, Mantel tests are better suited for assessing the significance

Fig. 2 | Gene group profiles. A Estimated proportions (relative abundances) of
genes associated with various KEGG categories at hierarchical level B, based on the
average number of metagenomic reads mapped per protein basepair. B Estimated
proportions of genes associated with various metabolic functions of ecological

importance. In both figures, proportions are normalized in each sample such that
their sum over all gene groups is 1. For analogous profiles at KEGG hierarchical
levels A and C as well as enzyme commission numbers (ECs), see Fig. S2.

https://doi.org/10.1038/s42003-024-07384-y Article

Communications Biology |          (2024) 7:1663 3

www.nature.com/commsbio


of correlations between distance matrixes, as they account for inter-
dependencies between matrix entries stemming from the intrinsic data
structure. In nearly all of the 21 tests (7 taxonomic levels × 3 dissimilarity
metrics), correlations between dissimilarities and geographic distances were
non-significant (details in Table S3). A significant correlation was only
observed at the phylum level for Hellinger dissimilarity (correlation 0.35,
one-sided P = 0.021 based on a permutation test). In fact, if the significance
threshold is adjusted to account for multiple hypothesis tests using a Bon-
ferroni correction (α = 0.05/21 = 0.0024), none of the correlations are sig-
nificant. Thus, the influence of geographic distance on taxonomic
differences at these spatial scales is not strong enough to be robustly
detectable in our dataset. We stress, however, that this does not rule out the
existence of dispersal limitation between sampling points. In fact, it is likely
that dispersal between sampling points is severely limited over the time
scales at which microbial communities typically change22, and that corre-
lations between distance and taxonomic composition would be more
intense over much shorter distances than those examined here38.

The role of local environmental conditions
To examine the role of environmental conditions as potential drivers of
taxonomic variation across samples, we attempted to build linear regression
models whose response variables were pairwise dissimilarities of taxon
proportions. A separate model was build at each taxonomic level (ASV,
OTU, …, phylum) and for each considered dissimilarity metric (Bray-
Curtis, Hellinger or Jaccard). As possible predictor variables, we considered
pairwise absolute differences in various environmental variables as well as
pairwise geographic distances. Environmental variables included annual-
average regional oceanographic variables from public gridded databases,

such as surface temperature and surface salinity, surface concentrations of
chlorophyll, nitrate, phosphate and silicate, as well as concentrations of
various elements (B, Ba, Ca, K, Mn, Na, S, Si, Sr), salinity and sulfate
concentrations that we measured directly in the collected pore waters
(Fig. 1). Note that short-term (e.g., daily or weekly) fluctuations in surface
water conditions are unlikely to impact microbial communities in the
sampled subsurface layers, due to the slow transport of heat and dissolved
substances across sediment columns16,39,40 and the fact that microbial cell
turnover rates in marine subsurface sediments are generally slow41–44. Pre-
dictors were selected one-by-one in a stepwise manner, keeping any pre-
dictors whose coefficients were statistically significant (P < 0.05).

We found that in nearly all cases, i.e., for most taxonomic levels and
dissimilaritymetrics, none of the considered variableswere chosenasmodel
predictors, that is, the majority of coefficients were non-significant (details
in Table S4). The only exceptions were models that predicted Hellinger
dissimilarities at the phylum, class, family or genus level, where Boron
concentration was selected as the sole predictor, achieving a fraction of
explained variance during cross-validation (R2

cv) between 0.22 and 0.27. The
selection of boron as predictor in some cases appears surprising to us, and
we are not aware of an obviousmechanismbywhich boronwould influence
microbial communities more strongly than other examined factors. We
speculate that perhaps boron merely correlates with — and thus acts as a
proxy for — other non-measured environmental factors impacting or
impacted by microbial communities. For example, boron can be strongly
enriched in certain organic compounds in sediments45 and is known to
interact and bind with clay minerals46. If the significance threshold were to
be adjusted for themultiple hypothesis tests across taxonomic levels,metrics
and candidate predictors (α = 0.05/(3 × 7 × 21) = 0.00011), then neither

Fig. 3 | Taxonomic profiles. A Proportions (relative abundances) of various pro-
karyotic Operational Taxonomic Units (OTUs, clustered at 99% similarity), based
on 16S rRNA gene amplicon read counts. OTUs are sorted from top to bottom in
decreasing average proportion. Only the top few OTUs are listed in the legend for
readability. Estimated taxonomic identities of OTUs are written in parentheses.

B, C Similar to A, but showing proportions of genera and classes, respectively. For a
similar plot of amplicon sequence variant proportions see Fig. S4.DCore biome sizes
as a function of the number of samples. For any given number of samples n, the
curves show the average number of ASVs or OTUs shared by n randomly chosen
samples.
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boron nor any other predictor is selected. Thus, much of the taxonomic
variation across samples was generally poorly explained by the considered
environmental variables, suggesting that this variation is driven mostly by
other factors. This finding reflects similar observations in surveys of other
environments when functional composition was either constant or sepa-
rately accounted for, for example in the foliage of bromeliads31, in ocean
waters21 and in soils47.

Null model tests of community assembly
To examine the potential role of biological interactions, such as antagonism
ormutualism, in the taxonomic composition ofmicrobial communities, we
performed two alternative null model tests commonly encountered in
ecology31,48,49. One test is based on taxon occurrence (i.e., presence/absence)
patterns50 and the other test is based on relative abundance patterns51. Both
tests define a summary statistic that measures the degree to which taxa
overlap in their distributions across samples, and a null model from which

random composition data can be generated for computing an expectation
and statistical significance of the summary statistic. The two summary
statistics are henceforth referred to as “CC score” and “MA score”,
respectively; precisemathematical definitions anddetails on the nullmodels
are given in the methods. A significantly high CC or MA score means that
taxa tend to co-occur more frequently than expected by chance, potentially
due to positive interactions,while a significantly lowCCorMAscoremeans
that taxa tend to segregate, potentially due to negative interactions. Detailed
results at each taxonomic level for the two tests are given inTables S5 andS6.
We found that at all CC scores and allMAscoreswere smaller than expected
under the null model, regardless of taxonomic level. All MA scores were
statistically significantly low (P < 0.05), evenwhen adjusting the significance
threshold for multiple hypothesis tests using a Bonferroni correction
(P < 0.0071). Similarly, nearly all CC scores (except at phylum and class
level) were statistically significantly low even after Bonferroni correction
(P < 0.0071). This strongly suggests that taxa tend to segregate in their

Fig. 4 | Coefficients of variation. A Coefficients of variation of relative abundances
(CVs, vertical axis) compared to mean relative abundances (horizontal axis) across
samples, for OTUs (blue circles) and KEGG-B gene groups (red triangles). Each
point represents oneOTUor gene group.B,C Similar to (A), but considering genera
and classes, respectively, instead of OTUs. D−F Similar to (A−C), but considering

gene groups at KEGG level C.G−I Similar to (A−C), but considering gene groups at
the level of enzyme commission (EC) numbers. In all cases, red triangles represent
gene groups while blue circles represent taxonomic units. Observe that OTUs,
genera and even classes generally exhibit much greater CVs than gene groups with
comparable mean relative abundances.
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distributions. This result is particularly remarkable in view of the fact that
the null model considered for the CC scores, known as “fixed-fixed”model,
is generally regarded as conservative, i.e., frequently accepting the null
hypothesis50. These results thus suggest that community assembly is
strongly influenced by mutual exclusions between taxa, likely due to bio-
logical interactions. Similar null model analyses of microbial communities
in bromeliad foliages also revealed significant segregation patterns between
OTUs31. In both the present study and in the bromeliads, the actual biolo-
gical mechanisms driving this segregation remain unknown, and may
include for example apparent competition driven by phages and antibiotic
warfare between bacteria15,32. That said, additional experimental evidence,
such as direct observations of interactions or experiments manipulating
community composition, is needed to confirm these statistical inferences.

Conclusions
We have presented a systematic examination of themicrobial communities
in subsurface coastal sediments, along a transect spanning hundreds of
kilometers and covering multiple river deltas. Despite these large spatial
scales, the functional structure of the communities in terms of the pro-
portions of various gene groupswas remarkably constant across all samples,
even at the highest resolutions considered (ECs and KEGG level C). In
contrast to this stable functional structure, we observed strong variations in
taxonomic composition, especially at lower taxonomic levels (ASV, OTU
and genus). This taxonomic variability persisted, and in fact became even
more evident, when controlling for the overall proportion of taxa and gene
groups in a sample, that is, when comparing taxa and gene groups with
similar overall proportions. Overall, these results suggest that community-
level function in marine subsurface sediments may be decoupled from
taxonomic composition within functional groups. In particular, despite the
strong environmental filters of metabolic functions across depth6–10, addi-
tionalmechanisms can cause high taxonomic variationwithin a given layer.
Conceptually, this means that one might separate community composition
into two perpendicular axes of variation, function on the one hand and
taxonomic composition within functional groups on the other hand, with
each axis being controlled by separatemechanisms14,21. Such a separation, in
turn, can guide the development of nestedmodels formicrobial community
assembly, first modeling function regardless of taxonomic composition16,52

and subsequently modeling taxonomic variation separately in each func-
tional group53. Here we statistically investigated various alternative factors
that might explain the observed taxonomic variation despite strongly con-
strained functional structure, including geographic distance, several envir-
onmental variables and intrinsic biological interactions. We found little
evidence that geographic distance and the considered environmental vari-
ables drive this variation at the considered spatial scales. Instead, we con-
clude that biological interactions – primarily antagonistic – likely strongly
affect community assembly, and appear to cause a statistically significant
segregation of the distributions of various taxa across samples.

Methods
Sample collection and measurements
Samples were collected from marine coastal subsurface sediments at 10
different locations across the Oregon coast. An overview of sampling
locations is provided in Fig. 1 and in Fig. S1. All samples were collected
within the intertidal zone, within a depth range of 1.6–1.9 m. A galvanized
steel pipe (6.045 cmdiameter) was pushed into the ground using a gasoline-
powered post driver, sealed at the top using aGripper® expanding pipe plug,
and subsequently pulled out using a farm jack affixed to the pipe with a
Morris coupling. This sampling depth was chosen as the maximum depth
that could be practically reachedwith an 8-foot steel pipe, which in turnwas
the practical size limit given the transportation means permitted at some
locations, the equipment needed for inserting and extracting the pipe, and
ultimately our overall budget. While we have no concrete reason to expect
our overall conclusions to only be valid for this sampling depth, the gen-
erality of our findings can only be fully confirmed by future studies exam-
ining alternative depths.Material forDNAextractionwas collected in 50ml

centrifuge tubes after breaking the seal created by the gripper plug and
sliding out 30 cm of the deeper end of sediment core. Water for chemical
analyses was collected from the same cores by centrifuging the collected
sediment and transferring the supernatantwater to second tubes for storage.
All sampleswere stored ondry ice in thefield and subsequently at−80 °C in
the laboratory until further processing.

DNA was extracted from the collected sediments using the Qiagen™
DNeasy PowerBiofilm kit following themanufacturer’s protocol. To reduce
spurious variance in microbial community compositions merely due to
microheterogeneities anddue to the coarseness of the core’s depth estimates,
3 extractions were performed from each core from nearby layers and sub-
sequently pooled, roughly equally spacedwithin the depth range 1.6–1.9 m.
Shotgun metagenomic and 16S rRNA gene amplicon sequencing was
performed for each of the 10 samples by the Integrated Microbiome
Resource (IMR) in Dalhousie, Canada. Specifically, metagenomic libraries
were prepared using the Illumina Nextera Flex kit and sequenced using a
NextSeq2000 (2 × 150 bp paired ends). 16S rRNAgene amplicon fragments
(V4-V5 region) were PCR-amplified using the Phusion Plus polymerase
and “universal” bacterial + archaeal primers (515FB = GTGY-
CAGCMGCCGCGGTAA, 926R = CCGYCAATTYMTTTRAGTTT54,55),
and sequenced on a MiSeq (2 × 300 bp paired ends).

Environmental variables
In-situ salinity of pore waters was measured using a refractometer. In-situ
sulfate concentrations (mg/L) were measured using a Hach®
DR1900 spectrophotometer and the Hach® TNT 865 sulfate kit. Con-
centrations of boron, barium, calcium, potassium, magnesium (I and II),
manganese, sodium, sulfur, silicon and strontium were determined using
Inductively Coupled Plasma Optical Emission spectroscopy (ICP-OES) at
the Keck laboratory, Oregon State University. Overviews of the main ele-
mental concentrations measured are shown in Fig. 1. For detailed mea-
surements per sample see Supplementary Data 1. Annual average values of
regional environmental variables used for model building were determined
for each sampling location based on publicly available datasets, accessed on
May 21, 2024. Monthly average ocean surface temperatures, surface
chlorophyll concentrations and solar insolationswere downloaded from the
NASA Earth Observations gridded database, spatial grid resolution 0.25°
(dataset IDs MYD28M, MY1DMM_CHLORA and CERES_INSOL_M,
respectively), and subsequently averaged over the 12months preceding our
sample collections (October 2022−September 2023). Monthly multi-year
average ocean surface nitrate, phosphate and silicate concentrations were
downloaded from theWorldOceanAtlas database release 202356, hosted by
the US National Centers for Environmental Information, accession
0270533, spatial grid resolution 1°, and subsequently averaged over all
12 months. Monthly multi-year average ocean surface salinities were
downloaded from theWorldOceanAtlas database release 2023, spatial grid
resolution 0.25°, and subsequently averaged over all 12 months. Gridded
datawere evaluated at sample locations via bilinear interpolation. If a sample
was located inside a grid cell where values were missing on some or all cell
corners, interpolationwas done using a triangulation of the grid pointswith
non-missing values.

Analysis of 16S rRNA gene amplicons
Onaverage 11846 16S rRNAgene read pairs were obtained for each sample.
Reads were quality-filtered and amplicon sequence variants (ASVs) were
inferred and chimera-filtered using the R package dada2 v1.28.026, as
follows. Reads were quality-filtered using the dada2 function filter-
AndTrim, with options “truncLen=(250,200),maxEE=(1,1),
truncQ=(0,0), trimLeft=(6,6), minLen = (100,100),
maxLen = (100000,100000)”, retaining on average 9327 read pairs
per sample. Error model calibration for ASV inference was performed
jointly for all samples but separately for forward and reverse reads. Cali-
bration was performed using the dada2 function learnErrors with
options “nbases=1e8, randomize=TRUE, MAX_CONSIST=10,
errorEstimationFunction=loessErrfun”. Reads were
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dereplicated using thedada2 functionderepFastq. ASVswere inferred
from the dereplicated sequences separately for forward and reverse reads,
using the dada2 function dada (options “pool=TRUE, self-
Consist=FALSE”) and the previously calibrated error models. ASVs
from forward and reverse reads were merged using the dada2 function
mergePairs with options “minOverlap=12, maxMismatch=0,
trimOverhang=TRUE”. Merged ASVs were chimera-filtered using the
dada2 function removeBimeraDenovo (option method = 'con-
sensus'). This yielded an ASV table of 4380 chimera-filtered ASVs,
accounting for 54116 reads across 10 samples.

ASVs were taxonomically classified based on a comparison to the
SILVA database v138.157, using a consensus approach58. In total 1 ASV was
identified as chloroplast, no ASVs were identified as mitochondria and 64
ASVs could not be classified at any taxonomic level; these ASVs were
omitted from subsequent analyses. This left us with 4315 prokaryotic ASVs,
accounting for 53477 reads across all samples. To remove species-level
redundancies in ASVs, we also clustered ASVs into operational taxonomic
units (OTUs) de-novo at 99% similarity27,28. Clustering was done using
vsearch –cluster_fast with options “–iddef 2 –strand
plus”, which yielded 1526 prokaryotic OTUs. Taxonomic identities of
OTUs were inherited from their representative (centroid) ASVs. To
examine the achieved taxonomic coverage of our samples, we computed
collector’s curves (also known as “accumulation” or “rarefaction” curves) of
the number of taxa discovered versus the number of reads (Fig. S3). Pairwise
dissimilarities between samples in terms of microbial taxonomic compo-
sition (ASV andOTU levels) were computed using 3 differentmetrics, all of
which accounted for ASV/OTU abundances: Bray-Curtis, Hellinger and
Jaccard35. These dissimilarity matrixes were used for Mantel tests and
regression analysis, described below.

Analysis of metagenomes
Onaverage 4,788,369metagenomic readpairs (~1.2 Gbp)were obtainedper
sample. Adapters were trimmed from reads using the toolskewer v0.2.259.
Reads were then quality-filtered using vsearch v2.22.160 with options
“–fastq_ascii 33 –fastq_maxee 0.2 –fastq_truncee
0.2 –fastq_qmax 64 –fastq_maxee_rate 0.002 –fastq_
stripleft 0 –fastq_trunclen_keep 10000”, retaining on
average 3,164,169 high-quality read pairs per sample. Paired reads from all
10 samples were coassembled into longer contiguous sequences (contigs)
using megahit v1.2.961 with option “–min-contig-len 500”. A total
of 133,241 contigs were generated, with an average length of 821 bp, a
maximum length of 44,434 bp and an N50 of 780.

Gene-centric functional profiles were generated from assembled con-
tigs similar to58. Here we thus only provide a brief summary. Contig cov-
erages were computed for each sample by mapping the non-assembled
reads to the contigs, then counting the number of reads mapped to each
contig with a MAPQ score ≥30 and dividing that number by the contig
length. Contig coverages were then normalized in each sample to sum 1,
thus yielding contig “proportions”. Protein-coding genes (PCGs) were
predicted in the contigs using prodigal v2.6.3 with option “-p meta”
and otherwise default options62. PCGs were then either mapped to KEGG
gene orthologs (KOs) in the KOfam HMM database r10563, or mapped to
the AsgeneDB amino-acid sequence database of arsenic-metabolism-
related genes64, or mapped to a custom set of perchlorate reduction genes
(pcrABC). Only hits with an E-value below 10−10 were considered. Pro-
portions of PCGs were computed in each sample by first associating with
each PCG the proportion of its host contig, and then normalizing those
values in each sample to sum1; in otherwords, PCGproportions express the
relative abundance of each PCG in a sample compared to all predicted
PCGs. The proportion of a given gene in a given sample was estimated by
summing the proportions of all proteins mapped to the specific gene. To
obtain profiles of the functional potential of each sampled microbial com-
munity, genes were assigned to custom functional groups described pre-
viously [58 Table S3 therein]. KOs were also grouped into standard KEGG
categories, at hierarchical levels A, B and C. In addition, KOs were grouped

according to their EnzymeCommission (EC) numbers25, which correspond
to distinct enzymatic functions and provide the highest meaningful reso-
lution of functions. Note that the individual KOs represent level D in the
KEGG hierarchy; since KOs are defined based on orthology and not based
on function, level D profiles are not strictly speaking functional profiles and
are thus not considered here. The proportion of each functional group (or
KEGG category or EC) in each sample was computed as the sum of pro-
portions of all associated genes. The following KEGG categories were
omitted, as they are not actually defined based on function: “brite hier-
archies”, “enzymes with ec numbers”, “not included in pathway or brite”,
“poorly characterized”, “general function prediction only”, “others”,
“unclassified viral proteins”, “function unknown”.

Regression analysis and Mantel tests
To examine the potential role of dispersal on microbial community struc-
ture, we performed Mantel rank correlation tests35, comparing pairwise
dissimilarities in community composition to pairwise geographic distances.
We considered 3 of the most common dissimilarity metrics, Jaccard, Bray-
Curtis andHellinger35–37, calculated at the level ofASVsaswell asOTUs.The
one-sided statistical significance of Spearman rank correlations was esti-
mated through 1000 random permutations of the dissimilarity matrix’s
rows and columns, each time permuting rows and columns in the same
manner, as is standard procedure in Mantel tests. An overview of dissim-
ilarities and geographic distances is shown in Fig. S5.

To examine the potential ability of environmental variables to explain
taxonomic composition differences between samples, we attempted to build
linear regression models, whose response variables were pairwise dissim-
ilarities (Bray-Curtis or Jaccard or Hellinger) in taxonomic composition (at
ASV level, or OTU level etc) and whose potential predictor variables were
pairwise geographic distances as well as pairwise absolute differences in the
20 physical-chemical variables mentioned earlier (regional environmental
variables, ICP-OESmeasurements, in-situ salinity).Hence, each samplepair
constituted a single datapoint for the model. Linear coefficients were fitted
using least squares, and predictors were added one at a time using a stepwise
approach whereby a predictor was only included if its linear coefficient was
statistically significantly different from zero (P < 0.05). This statistical sig-
nificance was assessed through simultaneous permutations of the response
matrix’s rows and columns, similar to the permutation null models com-
monly deployed in Mantel tests, following Legendre et al.65.

Analysis of taxon co-distributions
To examine potential interdependencies between taxon distributions across
samples, we performed two alternative null hypothesis tests separately for
each taxonomic level (ASVs, OTUs, genera etc). Both tests are commonly
used in ecology to detect non-neutral patterns in the joint distributions of
multiple species, for example resulting from competitive exclusion or
mutualisms50. Each test defines a test statistic that conceptually corresponds
to a notion of taxon overlaps, or a correlation in the distribution of taxa, as
well as a null model for generating random data for computing statistical
significances. In the first test, we considered a summary statistic computed
based on the presences/absences of taxa in each sample, henceforth referred
to as checkerboard cooccurrence (CC) score:

CC ¼ 1�
PM

i¼1

Pi�1
j¼1ðNi � NijÞðNj � NjiÞPM

i¼1

Pi�1
j¼1ðNi � NpipjÞðNj � NpipjÞ

ð1Þ

where M is the total number of considered taxa, N is the total number of
samples, Ni is the number of samples containing the i’th taxon, Nij is the
number of samples containing both taxa i and j and pi: = Ni/N. Hence, for
fixed N1, N2, . . , NM, the CC-score becomes larger if taxa co-occur more
frequently (i.e., Nij are larger). Note that this summary statistic is closely
related to the “C score” described by Gotelli50, with two differences: The CC
score is normalized differently such that its scale remains roughly constant
as the number of samples increases, and it is reversed such that a greater
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value corresponds to a greater overlap in taxon distributions. To assess
whether an observedCC scorewas probably due to chance (i.e., if taxa occur
independently of eachother), we compared it to theCC score distribution of
1000presence-absencematrices randomly generatedunder anullmodel.As
null we used the “SIM9” permutation model described by Gotelli50, also
known as “fixed-fixed”model because it preserves the number of taxa per
sample and the number of samples per taxon31,66. If random CC scores
generated by the null model are mostly above the observed CC score, this
would mean that taxa tend to exclude each other more often than expected
by chance (i.e., taxa are segregated). To account formultiple hypothesis tests
(i.e., one for each taxonomic level), we also considered a Bonferroni-
adjusted significance threshold of ~α ¼ α=n ¼ 0:05=7 ¼ 0:0071. An over-
view of results is shown in Table S5.

In the second test, we considered a summary statistic based on the
relative abundances of taxa in each sample, known as generalized Morisita
similarity index67 and henceforth referred to as “MA-score”51:

MA ¼

PM
i¼1

PN
j¼1 pij

� �2
�PS

j¼1 p
2
ij

� �

ðN � 1ÞPM
i¼1

PN
j¼1 p

2
ij

;
ð2Þ

where pij is the relative abundance of taxon i in sample j. Hence, a lowerMA
score indicates a lower similarity between samples in terms of taxon
abundances and thus a potential segregation between taxa. As null we
considered the “IT”model suggestedbyUlrich et al.51,whichassigns reads to
matrix cells proportional to the total number of reads in each sample and
proportional to the total number of reads assigned to each taxon across
samples, until the total number of reads per sample and per taxon is
reached31. We used 1000 abundance matrices randomly generated by this
model to asses the statistical significance of MA scores.

Statistics and reproducibility
Unless mentioned otherwise, all statistical analyses involved the 10 inde-
pendent and unique microbiome samples described above. All statistical
analyses can be reproduced following the details described above.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Raw metagenomic and amplicon sequence data are available on the NCBI
Sequence Read Archive under BioProject PRJNA1114803, BioSamples
SAMN41500170–SAMN41500179, runs SRR29139261–SRR29139270
(metagenomes) and SRR29138647–SRR29138656 (16S rRNA gene ampli-
cons). Samplemetadata, includingmeasured environmental conditions, are
available as SupplementaryData 1.Metagenomic gene profiles (abundances
per sample) are provided as Supplementary Data 2. Taxonomic profiles are
provided as Supplementary Data 3. All other data are available from the
corresponding author on reasonable request.

Code availability
All software used in this paper have been described in theMethods and are
freely available online.

Abbreviations
ASV amplicon sequence variant
OTU operational taxonomic unit
CV coefficient of variation
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