communications biology

Article

A Nature Portfolio journal

https://doi.org/10.1038/s42003-025-07684-x

DeepCristae, a CNN for the restoration of
mitochondria cristae in live

microscopy images

M| Check for updates

Salomé Papereux ® %5, Ludovic Leconte'?®, Cesar Augusto Valades-Cruz ® %, Tianyan Liu®,
Julien Dumont®, Zhixing Chen ®3, Jean Salamero ® '?, Charles Kervrann ® '? & Anais Badoual ® 2

Mitochondria play an essential role in the life cycle of eukaryotic cells. However, we still don’t know
how their ultrastructure, like the cristae of the inner membrane, dynamically evolves to regulate these
fundamental functions, in response to external conditions or during interaction with other cell
components. Although high-resolution fluorescent microscopy coupled with recently developed
innovative probes can reveal this structural organization, their long-term, fast and live 3D imaging
remains challenging. To address this problem, we have developed a CNN, called DeepCristae, to
restore mitochondria cristae in low spatial resolution microscopy images. Our network is trained from
2D STED images using a novel loss specifically designed for cristae restoration. To efficiently increase
the size of the training set, we also developed a random image patch sampling centered on
mitochondrial areas. To evaluate DeepCristae, quantitative assessments are carried out using metrics
we derived by focusing on the mitochondria and cristae pixels rather than on the whole image as usual.
Depending on the conditions of use indicated, DeepCristae works well on broad microscopy
modalities (Stimulated Emission Depletion (STED), Live-SR, AiryScan and LLSM). It is ultimately
applied in the context of mitochondrial network dynamics during interaction with endo/lysosome

membranes.

The study of certain pathologies has shown the importance of mitochon-
dria, which above all, ensure ATP production within cells and are central in
many biological functions (e.g., metabolic pathways, ion homeostasis,
apoptosis, autophagy, epigenetics...)"”. Mitochondrial energetic adapta-
tions to environmental constraints encompass a plethora of processes that
maintain cell survival. An alteration of these processes generally leads to
serious diseases such as cancer, neurodegenerative and cardiovascular
disorders’. Although much attention has been paid to the role of mito-
chondria, the precise niche the organelle plays in cell life and death
still remains unclear. The lack of in-depth knowledge about the ultra-
structural evolution of mitochondpria in live cells, under normal and stressful
conditions, might be one of the blind spots. In particular, the cristae
formed by the inner membrane of mitochondria that concentrate ATP
production in a defined area, their dynamic behavior, sublocation or density
have been poorly related to the various functionalities or dynamic processes

(e.g., fusion, fission) that mitochondria undergo. The challenge we address
lies in imaging mitochondria cristae, which measure between 30 and 50 nm
wide’, at a high spatial and temporal resolution so that their structural
dynamics and interactions can be accurately studied over time for several
dozens of milliseconds to a few seconds. However, this is starting to be
possible with the recent development of high-resolution imaging
approaches’.

Stimulated emission depletion (STED) microscopy, which allows for
sub-diffraction resolution (xy: 30-50 nm), is one of the very few techniques*’
able to decipher dynamics of mitochondria cristae in live cells’. However,
their observation in 3D and in fast time is limited by the acquisition frame rate
capacity (1 plane = 1 to 10s). In addition, depletion STED, which is the
principle that achieves nanoscopic resolution, induces local heat by high
illumination intensity” to which mitochondria are known to be particularly
sensitive™"’. This can affect their overall physiology and potentially lead to
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apoptosis and mitophagy. A number of new fluorescent probes that are more
photostable with less saturation intensity and that allow cristae decoration,
have been developed in the very last years™”'"'"”. Yet, the application of a dark
recovery step (= 30s) after STED imaging is still necessary, again at the
expense of temporal resolution. This could be improved by applying a partial
STED depletion protocol, leading to an intermediate quality resolution
(xy = 100 nm)", but insufficient to spatially resolve mitochondria cristae and
not solving the frame rate limitation (4-5 s in average).

In this context, one solution to study the dynamics of mitochondria
cristae is to collect as much temporal information with minimal photo-
toxicity using an appropriate microscope, and then restore the spatial
dimension using computational methods. Indeed, the development of
image restoration algorithms has become increasingly popular in recent
years with the need for nanoscale analysis'**. At the heart of fluorescence
microscopy have been actively developed denoising algorithms™’, dedi-
cated to images corrupted by a mixed Poisson-Gaussian noise, as well as
deconvolution algorithms™*, designed to remove the blur induced by the
limited aperture of the microscope objective. Some methods combine the
two approaches™. However, these conventional restoration methods usually
rely on general assumptions, such as the nature and level of noise and spatial
regularity, which hampers their effectiveness on the diversity of structures
and level of degradation in microscopy images. Over the years, the literature
on image restoration has evolved considerably due to deep learning and the
rapid growth of convolutional neural networks (CNNs). These methods
have the advantage of making assumptions based on image content,
resulting in state-of-the-art performance in denoising’” and
deblurring'“"******** fluorescence microscopy images. However, these
methods have two major drawbacks. First, these CNNs often require a
training step based on a large ground truth dataset that is generally not
available in microscopy. Second, they focus on restoring the entire image,
while sometimes little information is worth restoring within it, especially in
the dark background. This is the case with mitochondria cristae, which have
a sparse number of pixels in the image compared to the background.
Therefore, CNNs that have been previously applied to mitochondria
microscopy images’"*>***" provide good global restoration of the back-
ground and mitochondria but fail to accurately restore fine details as cristae,
especially in very low spatial resolution images. To circumvent this, new
conventional methods have been proposed to enhance resolution and
suppress artifacts in high-resolution techniques, including Hessian-SIM"".
However, the denoising results are limited when dealing with low signal-to-
noise ratio images and Hessian deconvolution assumes that the unknown
image is smooth and sparse. A hybrid solution has been proposed in TDV-
SIM*, which combines the strengths of conventional physical model-based
algorithms with deep learning-based algorithms. Another hybrid solution,
rdLSIM*, incorporates the deterministic physical model of specific micro-
scopy into network training and inference. Nevertheless, the effectiveness of
these methods, along with conventional restoration algorithms, relies on the
careful selection of optimal parameters or on prior knowledge of illumi-
nation patterns, respectively.

Instead of developing an additional generic image restoration method
that may not satisfactorily enhance certain sparse but informative pixels
in the image, we present DeepCristae, a CNN specifically developed
to restore mitochondria cristae in low spatial resolution microscopy
images. DeepCristae was applied to several microscopy modalities
and different biological scenarios capturing live mitochondria at high speed
with low illumination and thus low phototoxicity. DeepCristae allows long-
term/fast dynamic observation of cristae behavior and organization. The
main challenge was to handle the low number of cristae pixels compared to
the background in the acquired images. Therefore, the main contributions
of this work are (1) the design of a new training loss dedicated to the
restoration of specific pixels of interest, (2) the development of a random
image patch sampling focusing on areas of mitochondria to increase the size
of the training set, and (3) the building of metrics for objective assessment of
cristae restoration.

Results

Overview of DeepCristae

DeepCristae aims to restore mitochondria cristae in intermediate to low spatial
resolution microscopy images. Its pipeline is illustrated in Fig. 1. DeepCristae
mainly consists of a U-Net trained on a dedicated dataset built from real high-
resolution 2D STED images (Methods) and using a novel training
loss we specifically designed for cristae restoration (Methods, Eq. (1)).
Although the term is not fully appropriate, for simplification we refer to this
dataset as “synthetic” Dy, A pipeline for random image patch sampling
focusing on regions of mitochondria in the acquired data was also developed
(Methods) to efficiently increase the size of the training set of D, and
avoid empty patches. DeepCristae image restoration network was imple-
mented in Python (TensorFlow version 2.11) and is freely available as an open-
source software (see code availability). DeepCristae is also integrated
into BiolmageIT”, an open-source platform with existing software for
microscopy.

DeepCristae quantitatively outperforms state-of-the-art algo-
rithms on the synthetic dataset D,

Our method was quantitatively compared to existing both conventional
(Richardson-Lucy’™', Wiener”, SPITFIR(e)””) and deep learning
(ESRGAN™, CARE"”, RCAN*, and SRResNet*) algorithms for image
restoration. Details about their implementation are in Supplementary
Note 2.2.2. All deep learning methods were trained from the same patches
extracted from the training set of Dy,,,. To evaluate the performance of the
different methods, we used current metrics, namely normalized root mean
square error (NRMSE), peak signal-to-noise ratio (PSNR) and structural
similarity index (SSIM) (see Supplementary Note 2.1). However, these
measures are relevant to the image as a whole, but insufficient in the context
of mitochondrial cristae restoration. Indeed, the images contain only a few
pixels of cristae and thus have too little impact in those metrics unlike the
many background pixels. To overcome this issue, we encouraged the eva-
luation metrics to focus exclusively on mitochondria pixels (Supplementary
Fig. 1, second column). We call these mitochondrial metrics NRMSE,,,,,
PSNR,;it0> and SSIM,,,i1,- To go one step beyond and accurately assess cristae
restoration, we also introduced the cristae metrics NRMSE,,;s12es PSNR st aes
and SSIMistqe- These metrics are computed over mitochondria cristae
pixels only, obtained from manual annotations (Supplementary Fig. 1, third
column). More details about these customized metrics are given in Sup-
plementary Note 2.1. Each competing algorithm was evaluated over the test
set of Dy, for the nine aforementioned metrics (Fig. 2a). For all measure-
ments focusing on cristae, DeepCristae ranks first, and is either first or
second otherwise. Conventional methods behave worse than deep learning
approaches, CARE appearing as DeepCristae’s most competitive method. In
terms of visual assessment, we make the same observation (Fig. 2b). RCAN
amplifies the background noise, resulting in less accurate restoration of
cristae and unrealistic reconstructed structures in the background or in
mitochondria. DeepCristae and CARE remove noise background while
restoring most of the cristae details. However, CARE restores mitochondria
cristae with less sharpness compared to DeepCristae, especially for mito-
chondria with low contrast (Fig. 2b, CARE white arrows). This improve-
ment by DeepCristae is highlighted by the values of the metrics
NRMSE .istaer PSNR tyistaer and SSIM i10» and by the Fourier Image REso-
lutions (FIREs) computed using Fourier Ring Correlation Plugin* (Fig. 2c).
We also demonstrated that DeepCristae outperforms CARE by quantita-
tively studying their performance in terms of cristae resolution (Fig. 2d-f).
We measured cristae widths for 155 cristae (mean of 92.44 +23.59 nm on
HR STED) from the test set of Dj),, by fitting line profiles (Fig. 2d) to a
Gaussian model and measuring the Full Width at Half Maximum (FWHM)
(Supplementary Note 1.3). DeepCristae slightly improves the number of
cristae restored compared to CARE and, on average, restores individual
cristae at  137.62+59.64nm of resolution, as compared to
143.15+71.15nm for CARE (Fig. 2e). This improvement is statistically
relevant as confirmed by the results shown in Fig. 2f.
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In Fig. 3, we take a closer look at three of the restorations previously
obtained by DeepCristae on Ds),,.. For each restoration, a comparison of
normalized intensity profiles is performed between the input image, the
DeepCristae restored image, and the high-resolution (HR) STED image. It
shows that DeepCristae restores spatial information by revealing mito-
chondria cristae while improving signal to noise ratio.

Trained network

Robustness of DeepCristae with respect to noise, blur and
mitochondria scale in the low-resolution images

We have shown that DeepCristae performs well on 2D STED images and
outperforms state-of-the-art algorithms. However, it is important to verify
the reliability of DeepCristae more widely. DeepCristae has been trained on
a dedicated dataset acquired with specific microscope settings and
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Fig. 1 | Overview of DeepCristae. Training step: (a) Acquisition of 33 high-
resolution (HR) 2D STED images of live RPE1 cells stained with PKMITO-Orange
for mitochondria. From these HR images (Iyz), counterpart low-resolution (LR)
images (I, ) were created (b) to form the dataset D,,,: resolution degradation of
the I'jy, images by applying Gaussian filtering (with standard deviation oy, = 3.25
pixels) and by corrupting images with Poisson-Gaussian noise of standard deviation
0 oie = 4.0. ¢ Enhancement of the mitochondria cristae on the I, images using a
Richardson-Lucy algorithm. The obtained dataset D, is divided into a training set
of 24 images and a test set. To increase the size of the training set, the pair of images

Iy, /11g are then augmented (d) and sampled in patches of size 128 x 128 pixels

(e). We finally obtained 1824 pairs of HR images (blue) and LR input images
(orange) to train our network (f), 80% of which is used for training and 20% for
validation. The training is performed by minimizing our SCoP loss, especially
dedicated to restoring mitochondria pixels. Inference step: (g) Long-term and fast
acquisition with low illumination of live mitochondria. Note that if the training was
performed on degraded STED images, the inference can be made on other micro-
scopy modalities (e.g., Live-SR and Lattice Light Sheet Microscopy (LLSM)).

h, i Frame-by-frame restoration of the acquired sequence by our previously trained
DeepCristae network, allowing observation of the mitochondrial cristae dynamics at
high resolution.

mitochondria properties (e.g., fluorescence markers, width in pixels of the
mitochondria in the images). Any change in these settings during the
inference step is expected to alter the quality of the restoration results. We
performed experiments to evaluate the influence of changes in three para-
meters on the results: the level of noise, the amount of blur and the average
width in pixels of mitochondria in the images to be restored. First, our model
was trained on images obtained with specific parameters that mimic
microscope settings: real images are assumed to be corrupted by mixed
Poisson-Gaussian noise (with standard deviation 0, =4) and the point
spread function of the microscope is approximated by an isotropic Gaussian
function of standard deviation o, =3.25 pixels. We investigated the
robustness of DeepCristae to noise and to blur in the input images (Fig. 4).
To that end, we corrupted the test images of Dy, by several levels of mixed
Poisson-Gaussian noise (from 0,5, = 0 t0 0,5 = 8) and by different sizes of
a Gaussian filter (from oy, = 0 to 0y, = 7 pixels), independently. Note that
these values of 0,y Were chosen in line with the test images where the
maximum intensity varies between 80 and 259. DeepCristae was applied to
the resulting images and the metrics were computed (Fig. 4a, c). Visual
results show that the quality of the restoration decreases as ;. and oy,
increase (Fig. 4b, d). The higher the 0, OF 0y, values are, the blurriest the
mitochondria’s boundaries and their cristae. This is also confirmed by the
evolution of the metrics as a function of 9, (Fig. 4a) and by the evolution
of SSIM,,ito and SSIM, ;s as a function of o, (Fig. 4c). Surprisingly, the
evolution of the PSNR and NRMSE as a function of g, have a bell-shape
with a maximum and a minimum, respectively, for values of oy, close to
3.25 pixels. We thus recommend using DeepCristae on microscopy images
with blur and noise levels at worst equal to our training conditions (0,45, = 4
and oy, =3.25 pixels). Beyond this, the quality of the restoration can
drastically decrease. Next, our model was trained from the training images
of Dy, depicting mitochondria of width 15.64 + 4.04 pixels on average. We
studied the quality of the predictions as a function of the mitochondria
width in pixels in the input images. To that end, the test images of D, ,,, were
rescaled 11 times in order to contain mitochondria of specific widths (in
pixels) on average. It thus results on 11 test sets on which our trained
DeepCristae model was applied (Supplementary Fig. 2a, b) and the metrics
were computed. The evolution of the metrics as a function of average
mitochondrial width shows that the closer you get to the training parameters
(i.e.,an average width of 15.64 pixels), the better the quality of restoration. In
fact, if the mitochondria are too small, few cristae are restored, and the
mitochondria are thin. On the contrary, if the size is too large, DeepCristae
tends to create artifacts looking like cristae patterns (Supplementary Fig. 2b,
scaling of 31.28 pixels).

Finally, it is worth noting that DeepCristae has been developed and
trained to restore mitochondria cristae in microscopy images. Conse-
quently, any use of DeepCristae for other specimens or for any other
application may lead to invalid results (Supplementary Fig. 2c, d).

Reliability of image restoration by DeepCristae

It is important to guarantee that under well-controlled conditions of use
(mitochondria width, image blur and noise), DeepCristae is stable and
hallucination-free. By stable we mean that different training leads to con-
sistent predictions. To demonstrate that this requirement has been met, we
performed two experiments. First, we trained 10 DeepCristae neural net-
works with different training data (Fig. 5), each generated with our patch

generation method applied to the 24 training images of D,,,,. For each
training, the resulting model was applied to the test set of D,,,, and the
metrics were computed. The average metrics obtained over the 10 trainings
are close to the ones obtained with our model and the standard deviations
are very low, showing consistency between predictions (Fig. 5a). By visually
analyzing the predictions, the color map of the standard deviation (Fig. 5b)
as well as looking at normalized intensity line profiles along mitochondria
(Fig. 5¢c-f), we observe that the 10 trainings agree overall on the presence or
absence of cristae but diverge in their intensity and their precise boundaries.
In this experiment, all networks were initialized with the same weights,
confirming that our image patch-sampling method is robust and leads to
homogeneous learning. A second similar experiment was carried out. Ten
trainings were performed from one dataset but with 10 different initi-
alizations of weights (Supplementary Fig. 3). This experiment indicates that
the same dataset leads to homogeneous learning, meaning that the ran-
domness of initialization does not play a key role in the learning process.

Now, that stability has been demonstrated, it is important to investigate
if our method is hallucination-free. Correctly defining what hallucinations
are and providing an appropriate quantifier is not trivial. In our case, it is
reasonable to consider as hallucinations cristae perceived by DeepCristae
that are non-existent (or imperceptible) in the data, creating nonsensical
results such as cristae outside mitochondria or with a too high density inside
mitochondria. To investigate hallucinations, we acquired 6 pairs of real 2D
STED images. Each pair contains one low-resolution (LR) and one HR
STED image, acquired as quickly as possible (~30 s), to minimize the dis-
placements and deformations of mitochondria between the two acquisitions
(Supplementary Note 1.2.1). The LR STED images were resized to have an
average mitochondrial width of 15.64 pixels (391 nm), in line with the
conclusions drawn above, and were then given as input to DeepCristae. The
obtained predictions were qualitatively compared to the HR STED images
to control their consistency (Supplementary Fig. 4). Four ROIs, from three
of the six pairs of real STED images and corresponding predictions, were
selected in regions where small mitochondrial displacements were observed
to better appreciate the restoration (Supplementary Fig. 4a—c). For each
RO, a comparison of normalized intensity profiles between the input LR
STED image, the DeepCristae restored image, and the HR STED image is
performed (Supplementary Fig. 4d-g). Despite an offset due to mitochon-
drial motion, a correspondence can be established between the peaks of
intensity, corresponding to cristae, of the line profiles of the restored images
and the ones of the HR STED images. Moreover, the distance between
cristae was measured along ten-line profiles taken through the six pairs of
real data (Supplementary Fig. 4h). The metrics obtained on the restored
images are comparable to the ones obtained on the HR images. Hence, a
consistency in terms of location and density between the cristae restored by
DeepCristae and the ones present in the HR STED images is observed
overall. This result, combined with the stability of DeepCristae and the fact
that no cristae were seen in the background, except for bad conditions of use
(Supplementary Fig. 2b, scaling of 31.28 pixels), strongly suggests that we
can consider DeepCristae hallucination-free, in the sense that if hallucina-
tions exist, they are rare and minimal.

DeepCristae enables to restore 2D+time STED images
To validate the restoration capabilities of DeepCristae in live biological
samples, we first compare HR STED raw data with their DeepCristae
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Fig. 2 | DeepCristae outperforms state-of-the-art methods for restoring mito-
chondria cristae in low-resolution 2D STED images. a Quantitative comparison of
DeepCristae with conventional (Richardson-Lucy (RL)***', Wiener”, SPITFIR(e)*)
and deep learning (ESRGAN™, CARE", RCAN™, and SRResNet™) image restora-
tion methods. Metrics were computed on the test set of D, ,,.. Data are expressed as
mean * standard deviation. Note that all deep learning methods were trained using
the same patches extracted from the training set of D;,,,. Parameters used for
conventional methods are indicated in Supplementary Note 2.2.2. b The image grid
displays restoration results of 3 test images from D,y,,, obtained with DeepCristae
and two competitive deep learning methods: RCAN* and CARE". Pixel size: 25 nm.
Scale bar: 0.5 pm. White arrowheads indicate mitochondria with low contrast

restored by CARE; to be compared with DeepCristae column. ¢ Fourier Image
REsolution (FIRE) was estimated using Fourier Ring Correlation™ for 3 test images
before restoration, after CARE restoration and after DeepCristae restoration.

d-f Measurement of cristae widths for 155 cristae from the test set after CARE and
DeepCristae restoration. Line profiles (as depicted in (d)) were fitted to a Gaussian
model and FWHM was measured (Supplementary Note 1.3). d Scale bar: 0.5 pm.
e Table with the number of cristae restored by CARE and DeepCristae, in com-
parison to the 155 observed in HR STED images, and their average width. Data are
expressed as mean + standard deviation. f Table with statistical significance from
Student’s ¢-tests and Fisher’s tests; ns non-significant.

restoration (Fig. 6a). This initial test confirms the absence of hallucinations,
allowing us to proceed with a series of 2D-+time data. While 2D
STED nanoscopy enables to resolve mitochondria cristae and was here
helpful to develop DeepCristae, live STED acquisition encompasses a

number of hurdles. It includes relatively long-time frames between
images, even when a photostable probe was used (Fig. 6b), limiting the
temporal overview of the mitochondrial dynamics in the same
plane. Moreover, STED imaging may rapidly induce photo-bleaching,
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Fig. 3 | DeepCristae reveals mitochondria cristae from low resolution (LR) 2D
STED images. a—c Restoration of 3 test images of D, ,,, depicting RPE1 cells that
were labeled with PKMITO-Orange for mitochondria. Pixel size: 25 nm. Scale bar:
0.5 pm. Top, from left to right: thumbnails of the LR image (Input), the image
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restored by DeepCristae and the HR STED image, respectively. Bottom: comparison
of normalized intensity line profiles along a mitochondrion in the three thumbnails.
The yellow line indicated in the HR STED thumbnail serves to identify the fluor-
escence profile.

which makes ultrastructural details progressively dimmed. More proble-
matic, repeated STED imaging rapidly induces morphological deterioration
of live mitochondria, illustrated by their swelling in the latest time points
(Fig. 6b). This swelling effect was quantified here for HR STED by mea-
suring the lateral widths of 7 distinct mitochondria over the 10 time points
(Fig. 6d) in the image series (Fig. 6b). Swelling appears between the 4th and
the 7th frames.

In order to improve the frame rate of 2D-+time STED imaging while
limiting photodamage on mitochondria, one may adjust the STED imaging
protocols (Supplementary Note 1). Accordingly, we built another live
STED dataset, first to indicate how long we can image under lower depletion
conditions before the mitochondria are damaged, and second to control
the efficiency of DeepCristae restoration over time. In what follows, these
low-resolution (LR) STED images were referred to as Fast STED images.
This goes at the dependence on the xy resolution (Fig. 6c, left bottom
triangles in image series) for both the lateral width of mitochondria
and the cristae width (Fig. 6d, Fast STED and Fig. 6e, Raw, respectively).
Applying DeepCristae restoration on these latest series clearly revealed
cristae morphology (Fig. 6¢, right top triangle in image series). As expected,
LR (or Fast) 2D+time STED images show little changes in mitochondria
lateral widths in time, in contrast to HR STED (early and late time points
in Fig. 6d), but a degraded resolution in the cristae widths (from a mean
(4) of ~90nm in HR STED to ~120 nm in Fast STED with standard
deviation o = +47 nm). Applying DeepCristae allows recovery of a reso-
lution lower than 100nm and drastically reduces the variability of
the measurement. The mean crista-to-crista distance, measured as peak-to-
peak intervals (Fig. 6f), widely depends on the cristae density along the
mitochondria network. Here, in RPE1 cell, it varies from 50 nm to 173 nm
in early time points in HR STED (4 =104.9 nm, o=+38 nm) while
the heterogeneity increases in late time points (from 130 nm up to 1.6 um),
consistently with the observable swelling of the mitochondria. In Fast
STED, the cristae intervals measurements were non-signiﬁcant. However,
after DeepCristae restoration the mean crista-to-crista distance was esti-
mated at ~142 nm (0 = +46 nm) (Fig. 6f, g). Differences in these crista-to-
crista measurements with similar studies'’ on HeLa or Cos7 cells
for instance, will be further discussed. DeepCristae restored the individual
cristae at 81 nm of resolution (0 =+9nm) at FWHM, as compared to
the approximately 50 nm obtained in other studies’. DeepCristae provides
a useful way to improve live STED nanoscopy by improving the resolution
and decreasing the frame rates (3 to 6s versus 13s), yet with no
observable photodamage as illustrated here by measuring the swelling of
mitochondria.

DeepCristae restores 3D+time images of mitochondria cristae
by using intermediate high-resolution and diffraction limited
microscopy

STED nanoscopy is not the only high-resolution microscopy adapted to
resolve internal mitochondria ultrastructures in live cells. Indeed, a number
of works using adaptation of SIM approaches have been published over the
last few years'®”, some combined with conventional deep learning
methods’****'. Yet, the best compromise between fast and 3D imaging
still remains an issue. We next investigated the performance of
DeepCristae prediction on intermediate HR microscopies chosen for
their 3D optical slicing performance. Spinning disk confocal equipped
with a Live-SR module (or SDSRM for Spinning Disk Super Resolution
Microscopy) is one of those well-disseminated systems equivalent to
SIM. It improves the xy resolution by a factor of ~2 (~120-130 nm at
488 nm, ~140 nm at 561 nm)*® while giving access to the depth (z-axis) of
the sample and the live imaging of mitochondria (time t) without severe
photo-bleaching and phototoxicity. The use of the Live-SR is therefore
motivated here by both the study of these four dimensions and the ability of
our model to correctly perform cristae reconstruction via multiple micro-
scope imaging modalities. DeepCristae efficiently revealed cristae organi-
zation in single 2D Live-SR images acquired within 30 ms (Fig. 7a, upper
images) and thus in 3D (Fig. 7a, lower images, MIP on 14 planes, with a stack
time ~800 ms), giving access to the overall mitochondria network in the live
cell at a fast rate. In this respect, it outperforms HR STED imaging and even
Fast (LR) 2D STED imaging after DeepCristae restoration (compared to
Fig. 6c). Cristae width comparative estimation (Fig. 7b) shows the
improvement in resolution obtained after DeepCristae restoration on single
plane Live-SR images (Raw: 149 + 64 nm when measurable; DeepCristae:
87 + 11 nm). These results are close to the expected widths of circumvoluted
cristae tubules (50 to 100 nm) obtained by other methods derived from SIM
imaging™.

We then tested DeepCristae restoration on Lattice Light Sheet
Microscopy (LLSM)"” imaging which is not an HR microscopy by itself
(at least in the dithered mode) but gives the best compromise in terms
of fast 3D acquisition with minimal photon dose illumination and
consequently low photo-damage of the mitochondria over time. Surpris-
ingly, although with intrinsic limited and non-isotropic resolutions
(PSF xy =300 nm and z=600-700 nm in our system) and a particular
geometrical acquisition mode, cristae were however detectable in some
mitochondria after realignment (deskew) and a Richardson-Lucy decon-
volution. The resulting images were here considered as “Raw” data (Fig. 7c,
2D upper panel, left image). Applying DeepCristae to them (Fig. 7c, 2D
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Fig. 4 | Robustness of DeepCristae to noise and blur in the LR image. First
experiment (a, b): assessment of the robustness of DeepCristae to the level of noise in
the image. To that end, RPE1 cells were labeled with PKMITO-Orange prior to 2D
HR STED imaging. The obtained HR images, whose maximum intensity varies
between 80 and 259, were then degraded with a Gaussian filter (o}, = 3.25 pixels) to
approximate the blurring effect due to the point spread function (PSF) of the
microscope. Then, 17 test sets composed of 26 images were obtained by applying
different levels of additive mixture of Poisson-Gaussian noise (from 0,,,;, = 0 to
Opoise = 8 with an increment of 0.5 unit, 0,,,;, being the standard deviation of the
Gaussian noise). Our trained model DeepCristae was then applied on each of these
test sets. Note that our model was trained from the training set of D, constructed
with oy, = 3.25 pixels and 0,,,;,, = 4. a Evolution of the metrics (NRMSE, PSNR,
and SSIM) as a function of o,,,. Full image metrics (blue line), mitochondrial
metrics (red line), and cristae metrics (green line). The dashed lines on the plots
indicate the training parameters of our model. b Illustrations of two test images for

noise

Goar = 325

five different values of 0,,;,, (left to right: 0,,5;c = 0, 2, 4, 6, 8) (top-left) and the
corresponding predictions obtained with DeepCristae (bottom-right). Pixel size:
25 nm. Scale bar: 0.5 pm. Second experiment (c, d): assessment of the robustness of
DeepCristae to the level of blur in the image. To that end, from the HR images
described above, 29 test sets composed of 26 images were obtained by applying
different sizes of a Gaussian filter (from oy, = 0 to 0y, = 7 pixels with an incre-
ment of 0.25 pixel) to approximate different PSF sizes. Then, mixed Poisson-
Gaussian noise with o,,;,, = 4 was added. Our trained model DeepCristae was then
applied on each of these test sets. ¢ Evolution of the metrics (NRMSE, PSNR and
SSIM) as a function of o;,,. Full image metrics (blue line), mitochondrial metrics
(red line), and cristae metrics (green line). The dashed lines on the plots indicate the
training parameters of our model. d Illustrations of two test images for five different
values of 0, (left to right: oy, = 0, 1.75, 3.25, 4, 5 pixels) (top-left) and the
corresponding predictions obtained with DeepCristae (bottom-right). Pixel size:
25 nm. Scale bar: 0.5 pm.
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Fig. 5 | Stability of image restoration by DeepCristae. Assessment of the stability of
DeepCristae by studying the consistency between its predictions obtained with
different training. To that end, 10 DeepCristae neural networks were trained with
different training data, each one generated with our patch generation method
applied to the 24 training images of D ,,,. Note that for this experiment, all networks
were initialized with the same weights. a Quantitative comparison of the 10 Deep-

Cristae models. Metrics were computed on the test set of D, ,,,. Data are expressed as

T

Normalized intensity [AU.]

mean + standard deviation. b From left to right: predictions of three DeepCristae
networks on two images, the average prediction over the 10 trainings and the cor-
responding pixel-wise normalized standard deviation. Pixel size: 25 nm. Scale bar:
1 pm. c-f Comparison of normalized intensity line profiles along a mitochondrion in
(b) between the 10 trainings. The yellow line, indicated in the corresponding colored
inset in (b) serves to identify the fluorescence profile.

upper panel, right image and composite zoomed area for comparison)
improves the cristae resolution (Raw: 339 +248 nm, when measurable;
DeepCristae: 94+ 15nm) and strongly reduces the variance of paired
measurements (Fig. 7d). One of the obvious advantages of LLSM over
confocal imaging is to allow continuity between single image planes over
large stacks coupled to an extended depth of focus, as illustrated here by the
3D rendering as an oblique projection (Fig. 7¢c, 3D). Moreover, LLSM is
particularly adapted to long range/high frequency imaging on whole living
cells, which, coupled to low photon dose illumination, makes it one of the
best imaging systems, if not the best, for the highly light-sensitive organelles
that are the mitochondria. Applying DeepCristae adds information on
cristae ultrastructural organization in the whole mitochondria network of
the cell.

Finally, Fast 3D Live-SR and LLSM time series (Fig. 7e, f) were treated
for DeepCristae restoration. Cristae ultrastructural features can be observed,
while the mitochondrion network undergoes well known dynamic mod-
ifications such as fusion or fission processes (Fig. 7, f, panels of composite
zoomed area in both time series; left “RAW “ and right “DeepCristae”;
Supplementary Movies 1 and 2). Images are of better quality after restora-
tion of Live-SR compared to LLSM images. However, it should be noted the
gain in acquisition parameters for the latter in these experiments, with
71 slices per stack and a double channel stack time of 1.3 s versus 14 planes
per stack and double channel stack time of 5.6 s for Live-SR. DeepCristae
restoration was also tested with an AiryScan 5 LSM 980. It provided similar
improvements, although for a 15 planes stack time of about 30 s and with
more artifacts appearing after DeepCristae, the nature of which most
probably lies in the way the reconstruction of the AiryScan images was
carried out from the values determined automatically by the commercial
software (Supplementary Fig. 5a—c).

DeepCristae restoration allows to decipher mitochondria cristae
morphodynamics during inter organelles interactions

The most documented membrane-membrane interactions involving
mitochondria are the endoplasmic reticulum (ER)-mitochondria contacts,
whose functions have been continuously expanded since the 1990s**. In
addition to the ER, mitochondria contact vacuoles/lysosomes, peroxisomes,
lipid droplets, endosomes, the Golgi, the plasma membrane and
melanosomes™. The number of these interactions as well as their duration
drastically vary from one type to the other, as they depend on the respective
membrane surface of the specific organelles within the cell and their contact
time™". Their detection may thus require fast and/or long-range 3D imaging.
As already mentioned, even high-resolution approaches which are well
adapted to decipher ultrastructural features of mitochondria such as cristae,
generally fail to capture their dynamic evolution in the 3D space of the whole
cell at multiple time scales. This can be critical, if one wants to study inter-
organelle membrane interactions and their effects. We next initiate the
investigation of endosome/lysosome-mitochondria dynamic interactions
by addressing specifically the ultrastructural behavior of the cristae during
these contacts. This was done by imaging multiple 3D-+time double
fluorescence series in Live-SR (represented as a single stack MIP in Fig. 8a,
left) or LLSM (represented as a single stack MIP in Supplementary Fig. 5d),
where the membranes of the endo-lysosomal pathway were continuously
labeled with Plasma Membrane Deep Read (PMDR) (Supplementary
Note 1.1). DeepCristae restoration was applied on both datasets. A number
of mitochondria dynamic events correlated with endosomal structure
behaviors were captured. Only a few of them are here extracted as thumbnail
time series (Fig. 8a right and Supplementary Fig. 5e) of zoomed area
(colored insets in Fig. 8a left and Supplementary Fig. 5d) from the Live-SR
and LLSM acquisitions, respectively. Among others, the formation of endo-
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lysosomes contacts sites with mitochondria (Fig. 8a and Supplementary
Movie 3, blue and red insets), very long confinement of endo-lysosomes
within the mitochondria network (Fig. 8a and Supplementary Movie 3,
orange inset) and image series of endo-lysosomes appearing to pull a small
mitochondrion from one to another elongated tubules of mitochondria
(Fig. 8a, red inset). DeepCristae restoration on the space-time localization of

these events can also be evaluated dynamically (Supplementary Movie 3).
Similar events are followed with LLSM, such as the fission of mitochondria
at a contact site with an endo/lysosome vesicle (Supplementary Fig. 5e,
orange inset) and long confinement of an endo/lysosome vesicle within the
mitochondria network (Supplementary Fig. 5d and Supplementary
Movie 4, green inset). The main advantage of the LLS modality (fast frame
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Fig. 6 | DeepCristae reveals mitochondria cristae from low resolution 2D

live STED. a—c 2D live STED imaging of RPE1 cells labeled with PKMITO-Orange.
a Single time points of 2D high-resolution (HR) STED (Raw) imaging (see Sup-
plementary Note 1) before and after DeepCristae restoration. b First 4 time points of
a 10-image time series (At ~ 13s) using 2D HR STED. Phototoxic damage is shown
by the swelling of the mitochondria. Pixel size is 50 x 50 nm in (a) and 25 x 25 nm in
(b). ¢ Time series of 2D Fast STED, reducing the time delay between time points
(At ~ 5.9s) and minimizing mitochondrial damage. Each thumbnail is diagonally
divided into raw 2D Fast low-resolution (LR) STED images (bottom-left) and after
DeepCristae restoration (top-right). Note: a rescaling factor of 1.87 was applied to
the LR image data before DeepCristae inference to match the training mitochondria
settings (see Results, “Robustness of DeepCristae with respect to noise, blur, and
mitochondria scale in low-resolution images”). Scale Bars in (a-c) are: 2 pm.

d Lateral widths of 7 mitochondria measured at each time point (series of 10 time
points) in HR STED and Fast (LR) STED, before and after DeepCristae restoration

(line profiles as indicated by arrowheads in (b) t2 and t4). Line profiles were fitted to a
Gaussian model and the Full Width Half Maximum (FWHM) was measured, as
described in Supplementary Note 1. Data are presented as mean + SD. e Cristae
widths were measured as described in (d) for 30 cristae from 20 mitochondria (from
4 distinct image series) at early and late time points of HR STED, and for 31 cristae of
Fast (LR) STED, before (Raw; two measurements outside the ordinate scale) and
after DeepCristae restoration (line profiles as illustrated in (b) t4 and (c) t10). Data
are expressed as mean + SD. Student’s ¢-test: ** (p-value = 0.0082), ***(p-value =
0.0003). f Distances between two cristae (cristae intervals) measured from peak-to-
peak intensity in plot profiles (measurements from Raw Fast STED imaging was not
possible). Early: N = 56 from 2 series; Late: N = 80 from 2 series; DeepCristae: N = 60
from 3 series, distributed in all time points. Data are expressed as mean * SD. F-test:
A, (p-value < 0.0001). g Statistics table, including significance testing with Stu-
dent’s t-test and Fisher’s test; ns non-significant.

rate, low photon illumination of the sample coupled to whole cell 3D
acquisition) is the improvement of the time resolution of the data series (or
long-range acquisition). Consequently, fast events involving endo-lysosome
contacts with mitochondria are easier to capture and these dynamics are
precisely deciphered. For instance, one may extract first (Supplementary
Fig. 5d, blue inset), probably a fusion process (Supplementary Fig. 5e, blue
inset, from time point 105 to time point 113; At = 8s), and second a fission
process (Supplementary Movie 4, from time point 192 to time point 198;
At = 6s). At each time point, the DeepCristae restored mitochondria and
denoised/deconvoluted endo-lysosomes double-labeled images (Supple-
mentary Note 1) are paired to non-treated images (right and left panel,
respectively, of thumbnails time series in Fig. 8a and Supplementary Fig. 5e).
While cristae resolution in LLSM does not reach that obtained with Live-SR,
DeepCristae restoration brings values closer together (Fig. 7b, d).

In all situations and for both intermediate HR (Live-SR) and diffracted
limited (LLSM) (Supplementary Fig. 5d) imaging modalities, DeepCristae
restoration provides ultrastructural information on the positioning, density,
and dynamics of mitochondria cristae. We then wanted to quantitatively
assess how the dynamic architecture of the mitochondria internal mem-
brane during endo/lysosomes-mitochondria interaction could be revealed
with DeepCristae. We focused on the fission process. To do so, we first
selected 21 distinct 3D+time image series from the Live-SR datasets, in
which mitochondria fission was monitored. Intensity line plots were mea-
sured along mitochondria on some time points framing the fission event
(Fig. 8b). This was done on both DeepCristae-restored and unrestored
individual time points in a “blind” manner, meaning without looking in the
second channel depicting the location of endo-lysosomes. Measurements of
“peak-to-peak” intervals between cristae, were only possible in the Deep-
Cristae restored images and show an increased density after fission occurs
(Fig. 8¢, dark circles). Interestingly, by overlaying the second channel in a
second step, 62% (13 out of 21) of these selected time series showed
proximity if not direct contact between endo/lysosomes and mitochondria
at the site where mitochondria fission is observed (Fig. 8c, red circles; Fig. 8d
for statistics). Similarly, 32 distinct 3D+time image series from Live-SR
datasets of labeled mitochondria (PKMITO-Orange) and lysosomes
(SIR_lysosome) were analyzed (Supplementary Fig. 6). In this case, 59% (19
out of 32) of the selected time series showed proximity between lysosomes
and mitochondria, where mitochondrial fission was observed (Supple-
mentary Fig. 6b, ¢). While still preliminary and not deciphering the exact
nature of the endosomal compartments involved (i.e., PMDR labels the
overall endo-lysosomal pathway), this illustrates how DeepCristae would
represent an asset to quantitatively study the dynamic architecture of the
mitochondria internal membrane during diverse dynamic processes or in
particular physiological or constrained conditions.

Discussion

Mitochondrial membrane architecture is essential for the many functions
of mitochondria. In particular, mitochondria cristae are the main site
of energy production and are dynamic ultrastructures that remodel

in response to various cellular stimuli and natural processes (apoptosis';
aging™). Therefore, understanding the structure and dynamics of cristae
is vital for comprehending mitochondrial function and its implications
in cellular physiology and diseases. High-resolution microscopy coupled
with robust mitochondrial probes” are key recent developments that
started to reveal the fine details of mitochondrial cristae structure and
organization, overcoming the limitations of conventional microscopy.
However, imaging at high spatial and temporal resolution remains a
challenge.

DeepCristae exploits the power of deep learning to reveal cristae in
images taken with low photon illumination, enabling clearer visualization
and analysis of mitochondria cristae in living cells without interfering with
the natural behavior of mitochondria. While it has been trained on a
dedicated dataset that was created from real high-resolution 2D STED
images, we have shown that it operates for a wide range of optical resolu-
tions, from diffraction-limited to intermediate high-resolution microscopy,
providing researchers with a powerful tool to study cristae dynamics
without compromising their structural integrity or functionality.

While there are other deep learning approaches available for revealing
cristae ultrastructure”*>*>*!, DeepCristae offers unprecedented advantages.
First, thanks to a well-defined training loss dedicated to the restoration of
mitochondria signals; it outperforms state-of-the-art methods. Secondly, it
not only makes it possible to visualize and restore cristae dynamics in 2D
STED nanoscopy with minimal illumination and without damaging
mitochondria but more importantly, it extends these capabilities to other
high-resolution imaging techniques such as Live-SR and AiryScan, more
suited to such 3D dynamics. Finally, DeepCristae can be applied to advanced
microscopy techniques such as LLSM, enabling fast and long-duration 3D
+time acquisitions within the diffraction-limited range. This versatility
makes DeepCristae a unique and valuable solution for studying cristae
dynamics across a range of spatial and temporal scales.

Overall, our results show that fluorescence microscopy combined with
DeepCristae enables long-term/fast dynamic observation of cristae behavior
and organization with high quality. To illustrate the contribution of our
approach to biological phenomena that are likely to involve the functional
structure of mitochondria, we have chosen to focus on inter-organelle
interactions and their consequences. While mitochondria-associated ER
membranes, the biochemical composition of the contact sites and diverse
physiological and disease-related functions have been extensively studied
over the decades™, it is increasingly recognized that other organelle con-
tacts have a vital role in diverse cellular functions™. More recently, there has
been growing interest in quantifying other membrane interactions with
mitochondria and their cell distribution in space and time’", in particular
within the endo-lysosomal pathway and their contribution to the fission/
fusion process of the mitochondria network™. Here, while confirming the
coincidence of contacts between the endo-lysosomal membrane and
mitochondria, we enlightened the change of cristae density during fission
(Fig. 8 and Supplementary Fig. 6). This density as well as complex cristae
arrangements depends on cell types and metabolic activities”’, not talking
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of obvious modifications induced by environmental conditions. Until now,
to provide a dynamic view of individuals and groups of cristae required 3D
nanoscopy or linear SIM'®, which are not always compatible with the time
frame required to capture the event of interest. In this respect, DeepCristae
might be an asset to compare the cristae dynamics in different cell types and
in these various conditions.

Cristae width [nm]
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However, as with any image restoration method, scientists may be
concerned by the reliability of DeepCristae to accurately restore mito-
chondria cristae and not hallucinate them. This is why we investigated the
robustness, stability and limits of our method (Figs. 4 and 5, Supplementary
Figs. 2,3 and 4). We worked out different conditions of use to be respected to
guarantee good quality and truthfulness of the results. It is important to feed
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Fig. 7 | DeepCiristae restoration enhances cristae width resolution in 3D and 3D
+live imaging. a 2D plane (top) and 3D MIP (Maximum Intensity Projection of 14
planes) (bottom) of an RPEI cell labeled with PKMITO-Orange, acquired using an
SD microscope with a Live-SR module, before (left) and after DeepCristae (right)
restoration. Thumbnails are zoomed areas corresponding to the insets (red and blue)
and are composites of RAW and DeepCristae images. Color scale bar indicates
mitochondria position (z-step: 200 nm) from bottom to top (bottom right). b Cristae
widths were measured as in Fig. 6e; each individual measurement in DeepCristae
restored images is compared to its equivalent in RAW images, except for 10 cristae
that were not measurable in RAW (N =60 and N = 60-10, respectively). Data are
expressed as mean + SD (DeepCristae: 87 + 11 nm; RAW: 149 + 64 nm; Student’s t-
test, [****] p <0.0001). c One section plane (top) and 3D reconstructed MIP of 71
planes (bottom) of a RPEL1 cell labeled with PKMITO-Orange, acquired with a
Lattice Light Sheet Microscope (LLSM) in dithered mode (after realignment (des-
kew) and a Richardson-Lucy deconvolution), before (left, RAW) and after Deep-
Cristae (right). Thumbnails are zoomed areas corresponding to the insets (red and

blue) and are composites of RAW and DeepCristae restored images. Color scale bar
indicates mitochondria position (z-step: 325 nm) from bottom to top (bottom right).
d Cristae widths were measured as in Fig. 6e in DeepCristae restored images and
compared to their RAW equivalents, when possible (N =60 and N = 60-19,
respectively). Data are expressed as mean + SD (DeepCristae: 94 + 15 nm; RAW:
339 + 248 nm; Student’s t-test, [****] p < 0.0001). e, f 3D+time imaging using Live-
SR (e) or LLSM (f). MIP of single time points are shown (left images). Insets indi-
cated in red are zoomed in the thumbnails (right image series) to illustrate fusion or
fission dynamics of mitochondria. The selected zoomed areas are shown at different
time points before (left panel) and after (right panel) DeepCristae restoration. Time
frames between stacks are 5.6 s and 1.31 s in double-channel acquisition for Live-SR
and LLSM, respectively. Scale bars are 5 um in full field images and 1 pm in zoomed
thumbnails. Before DeepCristae restoration, rescaling factors of 2.6 and 4.16 were
applied to each raw Live-SR and LLSM dataset, respectively (see Results, “Robust-
ness of DeepCristae with respect to noise, blur, and mitochondria scale in low-
resolution images”).

DeepCristae with images containing mitochondria whose average width in
pixels is close to the one seen during the training. Concerning the micro-
scope settings, it is better to ensure that the level of noise and blurring in the
input images is equivalent to or better than the one present in the training
data (which was quite high in our training). Under these conditions of use,
across all our experiments on real data and through different microscopy
modalities, no hallucination was observed: a consistency between line
profiles along mitochondria between raw and restored data was always
observed (Figs. 6 and 7).

Like cytoskeletal elements, the mitochondrial ultrastructure is a key
element for comparing the performance of new super-resolution micro-
scopy techniques. In terms of applications, DeepCristae makes it possible to
track the evolution of mitochondrial cristae morphology over time, during
interactions with other membrane components of the cell, or under extra-
cellular conditions that mimic various pathological or stress situations.

Methods

In this section, we present the main features of DeepCristae. We first present
the dataset we created from real 2D STED images to train and evaluate the
network. Then, we overview our network architecture and present the novel
learning loss function, which prioritizes the restoration of specific pixels. We
finally detail the image patch-sampling method used during the training
step to efficiently increase the size of our training set and thus improve the
learning process.

Generation of the 2D STED dataset - D,

As mitochondria are living organelles, mostly organized as a quite fast-
moving network in RPE1 cells (Supplementary Note 1.1), the acquisition of
a pair of high and low-resolution images at the exact same time point is
impossible. To train and quantitatively validate DeepCristae, we thus cre-
ated a dataset (Fig. la—c), called Dy, from 33 acquired 2D HR STED
images (25 x 25 nm) that we denote I;;z. More information on the acqui-
sition of the images I}, are available in Supplementary Note 1.2.1.

First, we degraded the images I to obtain LR images of mitochondria,
denoted I, ~(Fig. 1b), that will serve as input to the neural network. To
that end, we first applied a Gaussian filter of standard deviation 0y, = 3.25
pixels to the images I, in order to approximate the blurring effect due to
the point spread function of the microscope. Then, we added a Poisson-
Gaussian noise (0,,;,, = 4.0), consistently with noises observed in real
STED images. The parameters 0y, and 0,,0;5. Were set to create pertinent
input data that mimic real LR STED images (Supplementary Note 1.2.1).
Note that the value of ¢, was chosen in line with our data where the
maximum intensity varies between 56 and 356. Second, we paired the LR
STED images I,,,, ) with their restored counterpart, the HR STED images
I g that are considered as ground truths. Finally, we split the dataset D,
into 24 training images and 9 test images. Note that to improve the training,
we enhanced the mitochondria cristae in the images Iz of the training set

using the Richardson-Lucy algorithm™"' (Fig. 1c). Other non-iterative
deconvolution algorithms were tried, such as SPITFIR(e)” or Wiener”, but
the results obtained after training were not as good.

To further increase the size of the training set, data augmentation
(Fig. 1d) and patch sampling (Fig. le and described in Methods “Image
patch sampling for the training step”) are performed on the pair of LR
images I, and HR STED images I ;5. The dataset is first augmented by
applying three different rotations to the images (90°, 180°, and 270°). Then, a
shrink transform, and horizontal and vertical flips are successively applied to
25% of the augmented dataset, randomly selected. The final training set is
made of 1824 patches of size 128 x 128 pixels, whose 20% are used for the
validation set and so that there is no overlap with the patches used for
training (summary in Supplementary Table 1).

The 9 HR STED test images I}, have different levels of noise and blur
due to out-of-focus light mitochondria. For the evaluation of our method,
we selected 26 ROIs out of these 9 I, images where the mitochondria are in
the focal plane, that we have labeled as “test images”.

Network architecture

We used the network proposed by Weigert et al.”’ as the backbone of the
CNN architecture, itself built upon the U-Net™. It has a contracting path and
an expansive path, each one consisting of 3 sequential downsampling and
upsampling blocks, respectively. Each block of the first path is skip-
connected to the associated one of the expansive paths. The contracting path
consists of two successive 3 x 3 convolutions, each followed by a Rectified
Linear Unit (ReLU), and a 2 x 2 max pooling operation with stride 2 for
downsampling. Every depth in the expansive path consists of a 2 x 2 up-
sampling of the feature map, concatenated with the corresponding feature
map from the contracting path, followed by two 3 x 3 convolutions with a
ReLU activation function. At the final layer, one 1 x 1 convolution is used.
The output results from an additive assembly between the input of the
neural network and the last layer’s output. The network (Fig. 1f) outputs the
same size restored images. Note that the network was trained with patches of
size 128 x 128 pixels, but in the inference step (Fig. 1g-i), raw data of any size
can be used as input.

Design of the training loss

We present our new loss, the Similarity Component Prioritization (SCoP)
loss, that has been designed to better restore mitochondria cristae. Most
losses and metrics used to train networks or to evaluate the quality of
restorations compute the score on the whole image, giving the same weight
to any pixel. For example, the MAE computes the mean absolute error
between the prediction and the target image, while the SSIM, despite not
basing the calculation on pixels-to-pixels difference, computes the simi-
larity among all the pixels of both images. Instead, our purpose is to focus
on informative pixels corresponding to target structures in images. Indeed,
the dark and noisy background occupies most of fluorescence images,
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Fig. 8 | DeepCristae reveals 3D+time cristae morphology during endo/lysosome
mitochondria interactions. a, b RPE1 cells incubated for 4 h with Cell Mask Plasma
Membrane (PM) Deep Red (red) were labeled with PKMITO-Orange (green) in the
last 15 min. (a-left) A Maximum Intensity Projection (MIP) (20 planes; stack
time = 1.86 s/channel, time point T1 out of 60) image acquired with Live-SR
microscopy is shown after DeepCristae restoration of the mitochondria (green
channel), as well as after denoising (ND-SAFIR) and Richardson-Lucy (RL)
deconvolution of the endo/lysosomes (red channel). Colored Insets indicate intra-
cellular locations with dynamic events of interest. (a-right) Thumbnails show
selected time points of blue and red zoomed areas, as indicated by insets. They are
presented as paired images: before (left panels) and after (right panels) DeepCristae
restoration. Both time points (left panels) and time frames in seconds (right panels)
are indicated for comparison. Full acquisition video (T1-T60), including the four
regions, is provided as Supplementary Movie 3. Scale bars are 5 pm in the full field
image and 1 um in zoomed thumbnails. b Thumbnails show selected time points of a
zoomed area, from a different cell than (a), as MIP (14 planes; stack time =2.8's/
channel, time points T6, T8 and T9) from an image acquired with Live-SR

microscopy after DeepCristae restoration (green channel), as well as after denoising
(ND-SAFIR) and RL deconvolution for endo/lysosomes labeling (red channel). It
represents a location where mitochondria fission is occurring. Profile lines are
indicated in orange in (b) top. The bottom plots illustrate the PKMITO-Orange
intensity line plot before (orange line) and after DeepCristae restoration (blue line)
at the same time points. Scale bar in (b) is 1 um. ¢ Graphs measuring the “peak-to-
peak” intervals between cristae in DeepCristae restored images, measured before,
during and after fission. Measurements were first taken from 21 distinct time series,
in a blinded manner (black circles; number of peak-to-peak intervals (N) are indi-
cated in (d)), and then where endo/lysosomes contacts with mitochondria occur in
the same series (13 of 21 distinct time series; red circles). Error bars indicate

mean + standard deviation (SD). d Statistics table for cristae intervals measure-
ments, including mean, standard deviation (SD), and significance levels using Stu-
dent’s and Fisher’s tests. Note that a rescaling factor of 2.6 was applied to raw Live-SR
data prior to DeepCristae restoration. This is done to comply with the usage con-
ditions of DeepCristae (see Results, “Robustness of DeepCristae with respect to
noise, blur and mitochondria scale in the low-resolution images”).

where SSIM;’;F is the map of the local structural similarity (SSIM) values for
corresponding pixels between the images y and . Each SSIM value ranges in
[—1, 1], where —1 (1, respectively) testifies of a bad (very good similarity,
respectively) between y(i,j) and (i, j). The parameter y, ; prioritizes the
restoration of specific regions of interest. In our case, we chose y; ; = 1 if the
pixel (i,7) belongs to a mitochondrion, 4 otherwise. In this way, we
encourage the network to focus on restoring mitochondria pixels and reduce
the influence of a poorly restored background on the loss. Determining
whether a pixel belongs to the background or to a mitochondrion can be
performed automatically (using our method described in Methods “Image
patch sampling for the training step - Thresholding”) or manually by using
any binary segmentation provided by the user.

Data normalization

Our training images of D, ,, have different ranges of intensity values. To
homogenize them, we normalized the input data and their corresponding
ground truth to a common distribution of intensity values with the per-
centile normalizer. This normalization also has the advantage of excluding
outliers, which are very frequent in microscopy imaging due to noise and

luminance. The percentile normalization of an image I is defined as

_ I—- perC(Lplow)
B perC(Lphigh) - perC(I’Plow)

where perc(I, p) is the p-th percentile of I. We used py,, = 2 and ppign, = 99.8.
This step is also performed during the inference step on any input data.

)

Inorm

Image patch sampling for the training step

Our model is trained on the training set of D, ,,, containing 24 images (96
after data augmentation) of different sizes. In order to homogenize and
increase the training dataset, we performed patch sampling. We sampled
each input training image I € R"*L, defined over the grid Q of size W x L,
within N; = [[2] # [L] patches of size 128 x 128. As our images contain
more background pixels than mitochondria pixels, grid or simple random
patch sampling will end in too many empty patches. This can degrade the
training of our model. Instead, we perform a random sampling focusing on
the regions of interest, the mitochondria. Our pipeline (Supplementary
Fig. 7) is described as follows.

o Anscombe transform. To detect the areas of interest, we need to
enhance the mitochondria signal with respect to the noise. To do this,
we first remove the Poisson-Gaussian noise in STED images. This is
achieved by applying an Anscombe transform, which enables to
stabilize noise variance and to approximately convert Poisson-
Gaussian noise into white Gaussian noise with a constant variance.

The Anscombe transform of an image I is given by
. 3 . o
IAmc(l,]) =2 §+I(1,]),V(z,]) eQ 3)
» Z-score. Then, we compute the Z-score map defined as

Z(i,j) = Lane () — e 0 <. ¥(i,j) e @ (4)
where j1, and 6, are the estimated mean and standard deviation of the
Gaussian noise ¢, respectively. Since most of the pixels in I, belong
to the background, we consider 1, = median({1,,,.(i, ) } (i,j)m). For
g,, we use a robust estimator derived from the Median Absolute
Deviation (MAD) such that 6, = 1.4826 - median({ |r(, j)l}(i,j)e(l)’
where r(i, j) = ZIA”S‘(i'j)_IA'“‘(jEIJ)_IA"“(i‘j+l), Y(i,/)e, are the pseudo-
residuals. In fact, under the hypothesis of having a white Gaussian
noise and that the noise-free image is piecewise smooth in a local
neighborhood, we have that 67 = E[r?(i, j)|.

¢ Thresholding. The higher the Z-score in Eq. (4), the higher the pixel
value is above the mean of the measured noise and therefore the pixel
(1, j) is considered as a pixel of interest. We apply a threshold ¢, in a way
that any pixel (i,) € Q such that Z(i, j) > ¢ is considered as a mito-
chondria pixel. We denote this set as Q,,;,,. The threshold is auto-
matically adapted for each training image. Starting from a fixed high
value of 30, while Q,,;,, does not contain a minimum of 10% mito-
chondrial information (i.e., #Q,,io < 10% #Q, where #Q and #Q,,i;,
denote the number of pixels in the sets Q and Q,,;,,, respectively), we
subtract 5 from the threshold value. This creates a binary mask on
which we apply a median to remove the surrounding noise. This
automatic procedure avoids cumbersome manual annotations. Note
that this mask can also be used to compute the parameter y; ; in our loss
(see Eq. (1)).

* ROIs selection. From Q,,,;,,, we randomly choose N; different pixels to
be the center of ROIs of size 128 x 128 pixels. Thus, the more pixels of
mitochondria a ROI contains, the more likely it is to be chosen. The
following conditions have to be respected: (i) the ROI centers should
not belong to the borders of the image; (ii) to avoid redundancy, a
minimum distance of 60 pixels is established between each pairwise
ROI center. The resulting ROISs are finally used to create the patches
from the normalized training data (see above “Data normalization”).
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Network evaluation

In addition to a quantitative comparison to the state-of-the-art methods and
experiments to show the reliability of our method (Results), an ablation
study was also performed (Supplementary Fig. 8 and Supplementary
Note 2.3) to highlight the individual contribution of key components of our
method. More details about the evaluation metrics and the implementation
details of DeepCristae are also given in Supplementary Note 2.1 and Sup-
plementary Note 2.2.1, respectively.

Other methods and materials

Cell culture and biological materials, fluorescence labeling, all used micro-
scopy techniques, image acquisition protocols and quantitative measure-
ments are detailed in the Supplementary Note 1. PKMITO dyes are
commercially available at Spirochrome (Stein-am-Rhein, Switzerland) and
Genvivo Biotech (Nanjing, China). The hTERT-immortalized RPEI cells
(Human Retinal Pigment Epithelial Cell) were purchased from ATCC
(CRL-4000).

Statistics and reproducibility

Student -test and Fisher-test were performed using GraphPad Prism 9 and
Excel Microsoft 365. We performed unpaired student -test with two-sided
p-values. In all cases, p-values more than 0.05 were considered not sig-
nificant. Sample sizes were not predetermined using statistical methods. The
sample sizes are indicated in the figure legends, and error bars represent the
standard deviations. The number and definition of experimental replicates
are provided in the figure legends, where applicable.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Data generated during this study are available in Figshare™ with the iden-
tifier https://doi.org/10.6084/m9.figshare.26940892.

Code availability

DeepCristae source code used in this publication is open-source and pub-
lished under the BSD 3-Clause “Original” or “Old” License. It is available at
https://gitlab.inria.fr/anbadoua/DeepCristae. It can also be found in
Zenodo® with the identifier https://doi.org/10.5281/zenodo.14714199.
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