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Perturbations in the microbiota-gut-brain
axis shaped by social status loss
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Social status is closely linked to physiological and psychological states. Loss of social dominance can
lead to brain disorders such as depression, but the underlying mechanisms remain unclear. The gut
microbiota can sense stress and contribute to brain disorders via the microbiota-gut-brain axis
(MGBA). Here, using a forced loss paradigm to demote dominant mice to subordinate ranks, we find
that stress alters the composition and function of the gut microbiota, increasingMuribaculaceae
abundance and enhancing butanoate metabolism, and gut microbial depletion resists forced loss-
inducedhierarchical demotion andbehavioral alteration. Single-nucleus transcriptomic analysis of the
prefrontal cortex (PFC) indicates that social status loss primarily affected interneurons, altering
GABAergic synaptic transmission. Weighted gene co-expression network analysis (WGCNA) reveals
modules linked to forced loss in the gut microbiota, colon, PFC, and PFC interneurons, suggesting
changes in the PI3K-Akt signaling pathway and the glutamatergic synapse. Our findings provide
evidence forMGBA perturbations induced by social status loss, offering potential intervention targets
for related brain disorders.

Social animals frequently engage in social competition for resources such as
territory and food, leading to the formation of hierarchical structures within
their groups1–5. An individual’s social dominance significantly influences its
access to resources, thereby affecting its survival, health, reproduction, and
other behaviors6. Subordinate rodents often exhibit anxiety-like behaviors,
immunosuppression, elevated basal corticosterone levels, and shorter
lifespans7, while dominant mice tend to perform better in foraging and
spatial learning memory8,9. Furthermore, losing dominant status or
experiencing downward social mobility can markedly increase the risk of
depression10 and schizophrenia in humans11,12. Therefore, exploring the
central neural mechanisms that influence social status is crucial.

Serving as a two-way regulatory pathway, the MGBA mediates com-
munication between the gut microbiota and the central nervous system
(CNS), essential for sustaining homeostasis in the gastrointestinal envir-
onment, microbiota, and central nervous system13,14. Previous researches
have demonstrated that dysbiosis of the gut microbiota could influence the
onset and progression of various neurological disorders, including autism,
schizophrenia, depression, anxiety, Parkinson’s disease, and Alzheimer’s
disease (AD)15–17. The gut microbiota is recognized as an important

contributor to stress-induced behavioral abnormalities. Chronic stress can
induce dysbiosis of the gutmicrobiota, andprebiotic treatment can improve
this dysbiosis and alleviate depression-like and anxiety-like behaviors18.
Rodent models have shown that intestinal permeability increased during
stress19, and the increased intestinal permeability in depressive mice sub-
jected to maternal separation stress can be reversed by antidepressant
treatment20. Synbiotic treatment, which combines probiotics and prebiotics,
can reduce the inflammatory response in the ileum and prefrontal cortex
induced by chronic stress, promoting resilience to depression-like and
anxiety-like behaviors in mice21. Wang et al. have also indicated that there
were differences in the gut microbiota composition between dominant and
subordinate individuals, and colonization with Clostridium butyricum can
enable subordinate rats to regain dominance22, suggesting that social hier-
archy and associated stress could influence the gutmicrobiota.However, the
deeper mechanisms of the MGBA, especially those related to the loss of
dominant status, remain to be elucidated.

Social status is closely linked to the brain23, and PFC is recognized as the
essential brainarea controlling social hierarchal behavior24,25. Changes in social
status are mediated by synaptic strength in the mediodorsal thalamus-dorsal
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medial prefrontal cortex (dmPFC) pathway26. Fan et al. reported that forced
loss activated the lateral habenula, which enhances retreat behavior in mice
during tube tests by inhibiting the medial prefrontal cortex27. While current
research primarily focuses on the neural circuitmechanisms underlying social
status28,29, a study also highlights the critical role of neuron-glia interactions in
social hierarchy30. Given the heterogeneity and functions of neuronal cell
types, Newton et al. demonstrated that single-nucleus RNA sequencing
(snRNA-seq) could identify transcriptomechanges in specificcell types related
to depressive behaviors induced by the chronic unpredictable mild stress
model31. Therefore, snRNA-seq technology enables us to investigate cellular
heterogeneity in the CNS, identify transcriptome alterations in cell types
associated with forced loss-related behaviors, and provide insights into the
neurological changes induced by social status loss.

Here, we assessed the social hierarchy among mice using the tube test
and induced a reduction in their dominance rank through a forced-loss
paradigm. Based on this model, we conducted 16S ribosomal RNA
sequencing (16S rRNA-seq) and metagenomic analyses on fecal samples
and colonic contents to evaluate whether forced loss led to alterations in gut

microbiota composition and function. Besides, we administered broad-
spectrum antibiotics to deplete gut microbiota, thereby validating its reg-
ulatory influence. Subsequently,we performedRNAsequencing (RNA-seq)
on colonic tissues to identify changes in the intestinal transcriptome. Fur-
thermore, we utilized snRNA-seq to analyze cell-type specific expression,
aiming to identify the cell types highly correlatedwith forced-loss behaviors.
Finally, WGCNAwas applied to identify key gene modules associated with
social status loss in the gutmicrobiota, colon, andPFC, revealingdisruptions
in thePI3K-Akt signalingpathway and the glutamatergic synapsewithin the
MGBA induced by social status loss.

Results
Forced loss significantly altered the social hierarchy and beha-
viors of mice
First, we utilized the tube test, a common behavioral paradigm, to measure
social hierarchy in mice32, which can divide 4 mice in a cage into 4 ranks
(Fig. 1a). These mice maintained a relatively stable rank throughout the
experimental period (Fig. 1b). Notably, body weight and movement
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Fig. 1 | Forced loss altered social hierarchy and behaviors in mice. a Schematic
diagram showed the process of obtaining mice of various ranks via the tube test,
establishing forced loss and control groups among rank1mice through forced loss or
go-through-tube procedure, followed by sample sequencing. The illustration was
created in BioRender. Yang, R. (2025) https://BioRender.com/c35i595. b–d Daily
tube test outcomes for mice with relatively stable ranks, rank1 mice before and after
forced loss, and rank1 mice before and after go-through-tube (***p = 0.0006,
Mann–Whitney test, two-tailed). e Average force (colored blue) and duration

(colored red) for individual trials throughout the period of forced loss
(****p < 0.0001, Mann–Whitney test, two-tailed). f Time percentage of pushing,
voluntary retreating, resistance (when pushed by an opponent), and passive
retreating (when pushed by an opponent) during tube test for mice before and after
go-through-tube or forced-loss procedure (Go-through-tube, n = 7; Forced loss,
n = 7; 21 trials per group. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns, not
significant; data are mean ± SEM; Mann–Whitney test, two-tailed).
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distance did not exhibit significant differences among mice of different
ranks, indicating that the formation of social hierarchy was not influenced
by body weight or locomotor ability (Supplementary Fig. 1a). Rank1 mice
were the dominant individuals, and the restwere subordinate.We then used
a forced-loss paradigm to compel the dominant mouse to be demoted from
its rank, thereby stripping it of its dominant status27 (Fig. 1a). Therefore, the
forced-loss mice were those that lost their dominant status after being
defeated by subordinate mice in the tube test (forced-loss group). As a
control, the go-through-tube mice merely passed through the tube during
the tube test without encountering resistance from subordinate mice, thus
maintaining their rank1 status (go-through-tube group).

In our study, we found that the behaviors of forced-loss mice differed
significantly from those of dominant mice. Forced loss mice experienced a
marked decline in rank after repeating forced loss (Fig. 1c), whilemice in the
go-through-tube group maintained their rank1 status (Fig. 1d). To inves-
tigate whether dominant mice exhibited resistance and how the resistance
changedduring the forced-loss process,we connected adynamometer to the
tube blocker on the subordinate mouse’s side to indirectly assess the force
exerted by the original rank1 mice when pushing against the subordinate
mice. We found that the force and duration exerted by the original rank 1
mice on the subordinate mice gradually decreased over time (Fig. 1e). This
indicated that the resistance of the original rank 1mice diminished, making
them more susceptible to losing to the subordinate mice.

Furthermore, to ascertain whether the behavior of dominant
mice changed before and after forced loss, we analyzed their behavior in the
tube test. Before and after the intervention, we found that go-through-tube
mice showed no significant changes in behaviors during the tube test,
while forced-loss mice exhibited reduced pushing, increased voluntary
retreating, and decreased resistance with increased passive retreating
when being pushed (Fig. 1f). These findings suggest that the behavior
manifestation of dominant mice in the tube test was significantly altered
following forced loss. Open-field tests and body weight measurements
revealed no significant differences in body weight and locomotor ability
between the forced loss and the go-through-tube group, suggesting that
forced loss did not affect these factors (Supplementary Fig. 1d). These
findings report that forced loss significantly alters the rankofdominantmice
and their behaviors in tube test, while go-through-tubemicemaintain stable
rank and behaviors.

Forced loss led to alterations in gut microbiota in mice
To explore the impact of social hierarchy on gut microbiota, 16S rRNA-
seq was employed to assess alterations in the gut microbiota (Fig. 1a).
Our results indicated that social status did not influence the diversity,
richness, or composition of the gut microbiota in mice (Supplementary
Fig. 1b, c). However, forced loss led to alterations in the gut microbiota.
α-diversity analysis revealed no significant differences in gut microbial
diversity and richness between the forced loss and the go-through-tube
group (Supplementary Fig. 1e). However, β-diversity analysis using
principal coordinates analysis (PCoA) demonstrated significant differ-
ences in community structure at the genus level across the two groups
(Fig. 2a), with the relative abundance of gut microbiota at the genus level
depicted in Fig. 2b. Species difference analysis at the ASV level identified
16 differential ASVs between the forced loss and the go-through-tube
group. Notably, forced-loss mice were characterized by 8 elevated ASVs,
primarily attributed to Muribaculaceae (4 ASVs). Furthermore, corre-
lation analysis indicated that 11 ASVs were significantly associated with
forced loss-related behaviors, particularly voluntary retreat, resistance,
and passive retreat (Fig. 2c).

To elucidate the interaction relationshipswithin the gutmicrobiota, we
established a co-expression network founded onmicrobial abundance. The
differential ASVs automatically assembled into two distinct clusters, with
ASVs from each cluster predominantly enriched in either the forced loss or
the go-through-tube group. It was observed that ASVswithin both cluster 1
and cluster 2were positively correlatedwithin their respective clusters, and4
ASVs in cluster 2 belonged toMuribaculaceae. Differently, someASVs from

cluster 1 were negatively associated with those in cluster 2 (Fig. 2d), sug-
gesting potential synergistic effects among these differential ASVs in forced-
loss mice.

To investigate the functional alteration of the gut microbiota resulting
from forced loss, we conducted metagenomic analysis (Fig. 1a). Linear
discriminant analysis effect size (LEfSe) analysis of Kyoto Encyclopedia of
Genes and Genomes (KEGG) functions (LDA > 1.333) highlighted func-
tional differences between the forced loss and the go-through-tube group,
primarily involving butanoatemetabolism (Fig. 2e). Butanoatemetabolism,
also known as butyrate metabolism, is a pathway that produces short-chain
fatty acids (SCFAs), which are important signalingmolecules in theMGBA.
Butyrate, one of the primary SCFAs, has been shown to have multiple
beneficial effects on both gut health and brain function13. The co-expression
network analysis indicated a significant positive correlation between
butanoate metabolism, valine, leucine, and isoleucine degradation, and
lysine degradation, all of which were enriched in the forced-loss group. In
contrast, the nonribosomal peptide structures, retrograde endocannabinoid
signaling, and regulation of lipolysis in adipocyte functions, which were
reduced in the forced-loss group, also showed a significant positive corre-
lation among themselves, with the latter two belonging to organismal sys-
tems (Fig. 2f). These findings suggest that forced loss primarily affected
butanoate metabolism in the gut microbiota.

Gut microbiota depletion resisted forced loss-induced hier-
archical and behavioral alteration in mice
Investigating the role of gut microbiota in forced loss-induced hierarchical
demotion and behavioral alteration, we compared microbiota-intact mice
with microbiota-depleted mice. The microbiota-depleted mice were gen-
erated through intragastric administration of broad-spectrum antibiotics
(ABX) prior to forced loss and go-through-tube paradigms, with quanti-
tative PCR (qPCR) confirming effective microbial depletion (Fig. 3a and
Supplementary Fig. 1f). Compared to microbiota-intact mice, microbiota-
depleted mice exhibited marked resistance to hierarchical demotion after
forced loss (Fig. 3b). While 76.92% of dominant (rank1) microbiota-intact
mice were demoted to subordinate status following forced loss, only 28.57%
ofmicrobiota-depletedmice lost dominance status.After the forced loss, the
proportion of rank1 mice retaining dominance increased from 7.69% in
microbiota-intact group to 42.86% in the microbiota-depleted group
(Fig. 3c). These results demonstrate that gut microbiota regulates forced
loss-driven hierarchical demotion.

Force and behavior analyses reveal that gut microbiota depletion
enhances resistance to forced loss in dominant mice. Dynamometer-
based force quantification found that dominant mice with depleted
microbiota gradually exerted less force against subordinate mice over
time, while the duration of the resistance remained unchanged (Fig. 3d).
Notably, during the day 2 to 4 of the forced-loss process, microbiota-
depleted dominant mice displayed elevated force and prolonged duration
toward subordinates compared to microbiota-intact dominant mice
(Fig. 3e). Besides, microbiota-depleted mice predominantly exhibited
pushing and resistance rather than retreating, and microbiota-depleted
mice exhibited stable behaviors before and after forced loss, with no
significant difference in pushing, voluntary retreating, or resistance
behaviors (Supplementary Fig. 1g). Importantly, compared to
microbiota-intact mice, microbiota-depleted mice exhibited increased
pushing, reduced voluntary and passive retreating after forced loss
(Fig. 3f), indicating gut microbiota depletion plays a role in forced loss-
induced behavioral alteration. Collectively, these findings indicate that
gut microbiota modulates forced loss-induced stress responses, whereas
its depletion allows mice to retain dominance, resisting both hierarchical
demotion and behavioral alteration induced by forced loss.

Single-nucleus RNA-seq analysis in PFC
The nuclear sequencing process of PFC from the forced-loss group and the
go-through-tube group is shown in Fig. 1a. After quality control, we cap-
tured a total of 52,626nuclei and identified 21,042 genes from thePFC in the
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6 mice (3 in the forced-loss group and 3 in go-through-tube group). After
dimensionality reduction and unsupervised graph-based clustering, 29
preprocessed clusters were identified in the PFC (Supplementary Fig. 2a).
We annotated these clusters with main cell types based on previous sum-
maries and reported marker genes from the literature34,35. These
included excitatory neurons (n = 32,822 in the PFC; marked by Slc17a7,
Rorb, Cux2), interneurons (n = 8453; Gad1, Gad2, Lamp5), microglia

(n = 1193; Ctss, C1qa, Hexb), astrocytes (n = 4570; Slc1a2, Slc1a3, Gja1),
oligodendrocytes (n = 2779; Mbp, Mog, Mag), Oligodendrocyte precursor
cells (OPC; n = 1161; Vcan, Neu4, Pdgfra), endothelial cells(n = 744;
Rgs5, Igfbp7) and fibroblasts(n = 665; Mgp, Col1a, Ptgds) (Fig. 4a–c).
Compared with the go-through-tube group, there was no proportional
difference in main cell types in the forced-loss group (Fig. 4d and Supple-
mentary Fig. 2b).
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Forced loss led to cell-specific transcriptome changes
To further elucidate the cell-specific transcriptomic alterations regulated by
forced loss, we compareddifferentially expressed genes (DEGs) between the
forced-loss group and the go-through-tube group in the PFC. Compared
with the go-through-tube group, 812DEGswere detected in the forced-loss
group across the six major cell types, including 534 up-regulated and 278
down-regulated genes (Fig. 5a). Neurons contributed 55.91% of the DEGs,
with a higher number of DEGs compared to glial cells (Supplementary
Fig. 2c). The changes in gene expression were specific to each cell type,
sharingonly 83DEGsacrossmore thanone cell type.Thehighest numberof
DEGs was detected in interneurons, including 333 genes that were exclu-
sively found in interneurons. In contrast, the lowest number of DEGs, only
9, was identified in OPC (Fig. 5b, d and Supplementary Fig. 2d). Using the
downsamplingmethod to equalize the numberof nuclei across the sixmajor
cell types, we conducted 10 comparisons36 and consistently found the
highest number of DEGs in interneurons. Compared with other cell types,
interneurons exhibited prominent changes, suggesting that they might be

preferentially affected by forced loss (Fig. 5c). Furthermore, the Gene
Ontology (GO) functions associatedwith theDEGs in each cell type differed
(Fig. 5e). For example, the DEGs in interneurons were mainly related to
GABAergic synaptic transmission, including Car2, Cckbr, Erbb4, Grik1,
Tac1. The DEGs of excitatory neurons were enriched in synaptic function
and biological metabolic processes, such as Apoe, Nrg1, Robo1. Astrocytes
and oligodendrocytes cell-specific DEGs were primarily associated with
synaptic function. Changes in microglia were mainly related to inflamma-
tion and immune regulation. The alteredOPC-specificDEGswere enriched
in signaling pathways and lipid metabolism (Supplementary Fig. 2e).

In order to explore potential correlations among cell-types, we con-
structed a co-expression network. Here, 41 DEGs were generated in three
gene clusters (GC1–3) based on their high correlations. GC1, composed of
genes from interneurons, microglia, and astrocytes, contributed to the
modulation of signaling pathways and protein functions. Genes such as
Il1rapl1, Dlg2, Kcnd2, and Kcnb2 from astrocytes and interneurons, as well
as Cadm2, Plcb1, andMap2 specifically from interneurons, were primarily
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involved in synaptic and neuronal functions. Notably, the genes Il1rapl137,
Kcnd238, and Map239 are closely associated with the occurrence of brain
diseases. The interaction between interneurons and Rims1, Atp2b1, and
Celf2 genes from glial cells involved in regulating synaptic vesicles and
calcium ion transport were represented in GC2. In contrast, GC3 was
expressed in several major cell types, indicating an interaction between
neurons and glial cells (Fig. 5f).

Furthermore,CellChat40was used to compare the ligand-receptor pairs
between the forced-loss group and the go-through-tube group, aiming to
understand the effects of forced loss on the communication between
interneurons andothermajor cell types.Withinmain cell types, 737 and653
ligand-receptor pairs were recognized in the go-through-tube and the
forced-loss group (Supplementary Fig. 3a). We then compared specific
ligand-receptor pairs associated with interneurons, resulting 75 pairs in the
go-through-tube group and 24 pairs in the forced-loss group. Interneurons
primarily communicated with excitatory neurons, followed by oligoden-
drocyteprecursor cells.Compared to the go-through-tubegroup, forced loss
resulted in the greatest reduction in communication between interneurons

and excitatory neurons, decreasing from 46 pairs to 8 pairs (Fig. 5g, h).
Additionally, the ligand-receptor relationships between interneurons and
excitatory neurons were related to synaptic transmission and neural
development (Supplementary Fig. 3b). For example, neurexins (Nrxns) play
an essential role in neurotransmission and synaptic differentiation, and
mutations in neurexin genes were associated with brain disorders such as
autism and schizophrenia41. The reduced intercellular communication
between interneurons and excitatoryneurons indicatesprimarily changes in
neuronal and synaptic functions.

WGCNA showed potential associations between interneurons
and forced loss-related behaviors
Toanalyze the cellular and genemodules that drive different phenotypes,we
employed WGCNA and adopted four behaviors (push, voluntary retreat,
resistance, passive retreat) with significant differential alterations. 126
modules were identified in six cell types (astrocytes, 24; oligodendrocytes,
23; interneurons, 20; excitatory neurons, 20; OPC, 20;microglia, 19) (Fig. 6a
and Supplementary Fig. 4a–e). Voluntary retreat behavior was significantly

Fig. 4 | Identification of cell types and cell proportion in PFC. aThe UMAP graph
showed the clusters after cell annotation in PFC. b The most specific marker genes
for the eight cell types in PFC. c Bubble plot illustrating marker genes expression in
PFC. The diameter of each bubble illustrates the percentage of cells expressing their

marker genes within the clusters (Pct. exp.), and the color intensity signifies the
average level of gene expression (Avg. exp. scale). d Proportion of cell types in PFC
(Go-through-tube, n = 3; Forced loss, n = 3).
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associated with the largest number of gene modules in four forced loss-
related behaviors, suggesting that this behavior was more vulnerable to
regulation by gene expression. Compared to other cell types, interneurons
contained the greatest number of genemodules relevant to voluntary retreat
behavior (three modules). Interestingly, all three behavior-related gene
modules in interneurons were only associated with voluntary retreat. In

addition, these three gene modules exhibited significant overlap with the
interneuronDEGs (Fig. 6b, p = 1.85e-36, 159 genes in turquoiseM; 1.2e-41,
113 genes in red M; 1.72e-29, 72 genes in salmon M; hypergeometric test).
Therefore, we explored the biological functions related to voluntary retreat
behavior in interneurons (Supplementary Fig. 4f). Two gene modules
(turquoise M and red M) showed a positive correlation with voluntary
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retreat behavior, including genes such as Adgrb1 and Akap7, which were
involved in ion transmembrane transport, signaling pathways, and synaptic
transmission. In contrast, the negatively correlated salmon module, con-
taining genes such asArhgap33 and Baiap2 genes, was primarily associated
with dendrite and synaptic functions. These findings indicate that altera-
tions in synaptic function in interneurons may drive the voluntary retreat
behavior in forced-loss mice.

Contribution of interneuron subtypes to forced loss-related gene
modules
We further analyzed whether the interneuron subtypes were altered. All
8453 interneurons were clustered into seven subtypes: Meis2, Meis2-Reln,
Sst, Pvalb, Lamp5, Vip, Cnr1 (Fig. 6c, d). We found no difference in the
proportion of interneuron subtypes between the forced-loss group and the
go-through-tube group (Fig. 6e). In addition, 181 Meis2 subtype gene
markers overlappedwith theDEGs of interneurons, whichwas greater than
in the other six subpopulations (Fig. 6f). Genes such as Abl2 can regulate
actin cytoskeleton organization and presynaptic axon guidance42. The
Meis2 subtype gene markers, including Celf2 and R3hdm1, are related to
mRNA splicing and neuronal development43–45. To investigate the con-
tribution of interneuron subtypes to forced loss-related gene modules, we
further analyzed the association between the gene markers of interneuron
subtypes and the gene modules related to voluntary retreat behavior
(Fig. 6g). The turquoise and red modules, which were positively correlated
with voluntary retreat behavior, showed the most significant overlap with
the Meis2-Reln and Meis2 subtypes, involving ion transport and axono-
genesis in neurons. The negatively correlated salmon module mainly
overlapped with the Pvalb subtype, and the overlapping genes, such as Slit2
and Robo1, were involved in cell growth and migration46. These results
suggest that the Meis2, Meis2-Reln, and Pvalb subtypes may collectively
influence forced loss-related behaviors.

WGCNAanalysis revealedMGBAsignaling pathways associated
with forced loss
Given that forced loss may lead to changes in the function and composition
of the gut microbiota, we further investigated the colon, where these
microbes reside, for associated alterations.We performedRNA-seq analysis
on colonic tissue and identified DEGs, with 6 up-regulated and 6 down-
regulated in the forced-loss group (Fig. 7a). GO analysis showed that these
DEGs were involved in gut microbiota-host signaling, including positive
regulation of the Notch signaling pathway and cysteine biosynthetic pro-
cesses (Fig. 7b). Additionally, KEGG pathway analysis indicated that these
DEGs could activate taurine and hypotaurine metabolism, glutathione
metabolism, and arachidonic acid metabolism (Fig. 7c).

To further explore the potential regulatory pathways of the MGBA
associated with forced loss, we compared gene modules from the gut
microbiota, colon, PFC, and PFC interneurons. We found that gene mod-
ules associated with forced loss-related behaviors were present in all four
datasets (Fig. 7d). The overlapped biological pathways across different
tissue-derived gene modules suggested a coordinated role of the MGBA in
regulatingbehaviors associatedwith forced loss.We found that the common
pathways shared by the gut microbiota, colon, PFC, and PFC interneurons
were the PI3K-Akt signaling pathway and the glutamatergic synapse. The
modules to which the two pathways belong were significantly associated
with the four forced loss-related behaviors: pushing, voluntary retreating,
resistance, and passive retreating. The gene Igf1, which is associatedwith the
PI3K-Akt signaling pathway, is crucial for the adult brain and promotes
neurogenesis following trauma47,48. Besides, upregulation of the IGF1R-
PI3K-AKT pathway can enhance colonic epithelial integrity and
regeneration49. The overlapped pathways between the gut microbiota and
PFC interneurons included ABC transporters and the TGF-beta signaling
pathway, and the modules that these pathways belong to were significantly
associated with pushing voluntary retreating, and resistance behaviors.
Additionally, the modules containing the pathways shared by the gut
microbiota and the PFC exhibit a significant correlationwith the same three

forced loss-related behaviors. In addition, the modules containing the
pathways shared by the gut microbiota and the colon were significantly
associated with four forced loss-related behaviors (Fig. 7e). The shared
pathways provide evidence that intercellular signal transmission, particu-
larly through signaling pathways and neurotransmitter systems, regulates
the effects of forced loss on mouse behavior via the MGBA. The findings
underscore the significance of the gutmicrobiota, colon, andPFC,with PFC
interneurons playing a crucial role in forced loss.

Discussion
In this study, we combined a model of social dominance loss in mice with
multi-omics analysis to investigate the influence of forced loss on the
MGBA.Weobserved that forced lossmice exhibitedalterations inmicrobial
composition and function, primarily characterized by disruptions inMur-
ibaculaceae and butanoate metabolism. Additionally, we found changes in
signaling transmission within the colon, where these microbes reside.
Notably, significant changes in single-nucleus transcription levels were
primarily observed in interneurons, involving GABAergic synaptic trans-
mission. By integrating 16S rRNA-seq, metagenomics, colon RNA-seq, and
snRNA-seq data, we identified consistent alterations in intercellular sig-
naling dysfunction across the gut microbiota, colon, PFC, and PFC inter-
neurons. Our findings provide evidence for the MGBA perturbations
induced by social status loss. Furthermore, these discoveries may offer
insights into a better understanding of the pathophysiological mechanisms
underlying brain disorders.

Social status has been shown to have a significant correlation with
depression50, and social status loss significantly elevates the probability of
developing brain disorders in humans, such as depression51. Fan et al. uti-
lized the tube test to create a paradigmof social status loss, thereby revealing
the neural mechanisms linking social status loss to depression27. In our
study, we found that forced loss could disrupt the abundance of Mur-
ibaculaceae and butanoate metabolism. The main metabolic capability of
Muribaculaceae is the degradation of polysaccharides, which can produce
SCFAs such as acetate and propionate52–54. Butyrate serves as an important
medium for signal transduction and can influence the brain via the
MGBA13. A study has demonstrated that sodium butyrate could alter the
expression of brain-derived neurotrophic factor (BDNF) in mice, and
prolonged treatment with sodium butyrate has been validated to induce
antidepressant-like effects55. Butyrate could regulate orexin signaling in the
lateral hypothalamus, playing a crucial role in sleep56. Prolonged low-dose
lead exposure can lead to significant impairments in learning, memory, and
cognitive functions, accompanied by a reduction in butyrate levels. Sup-
plementation with butyrate can mitigate the learning and memory deficits
caused by lead exposure57. Moreover, we observed that forced loss affected
the regulation of the Notch signaling pathway in the intestine. The Notch
signaling pathway is a critical signaling pathway for maintaining intestinal
homeostasis58, and Xue et al. found that the Notch signaling pathway could
be modulated by probiotics to promote mucosal repair and improve
intestinal homeostasis59. Therefore, theNotch signaling pathwaymay play a
role in the MGBA’s response to forced loss by influencing intestinal
homeostasis.

Previous research has indicated that pyramidal neurons exert disin-
hibitory effects in social competition, influencing the social status of mice23.
A study on the neurobiological mechanisms of social hierarchy has pri-
marily focused on the regulation of neural circuits28, highlighting the sig-
nificance of neurons in social status modulation. However, the
transcriptome changes at the single-nucleus level induced by social status
remain largely unexplored. Here, we utilized snRNA-seq to identify specific
transcriptional alterations in neurons and glial cells following forced loss.
Interneurons were preferentially influenced in PFC. Consistent with our
findings, Tan et al. revealed that silencing GABAergic interneurons in the
dmPFCenhanced social status inmice60, further emphasizing the significant
role of interneurons in social status. Additionally, Huang et al. discovered
the absence of gut microbiota led to significant changes in neuropsychiatric
behaviors and neuroimmune dysfunction by causing alterations in the
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transcriptome of microglial subpopulations61. A study has linked PFC
synaptic transmission deficits to social impairments, emotional dis-
turbances, and memory impairment in brain disorders such as autism,
schizophrenia, depression, and AD62. By establishing a causal relationship
between excitatory synaptic strength and social status, it was found that
reducing AMPA receptor-mediated synaptic transmission could transform
dominant mice into subordinate63. Our study suggested that forced loss
impaired GABAergic synaptic transmission in PFC interneurons. Fur-
thermore, our WGCNA of snRNA-seq data indicated that the phenotypes
of forced loss-related behaviors involved diverse cell types and emphasized
the role of neurons. Specifically, Interneurons showed a unique correlation
with voluntary retreat behavior during the tube test, characterized by
changes in synaptic transmission function and signaling pathways. Per-
turbations of signal transmission may provide insights into brain disorders
induced by forced loss. In particular, ErbB4 and Grik1 were involved in

GABAergic synaptic transmission of DEG enrichment in interneurons.
Consistent with our findings, ErbB4 was expressed in the adult brain and
maintained the excitation-inhibition balance by promoting or sustaining
GABA release64,65. Moreover, ErbB4 has been identified as a susceptibility
gene for major depressive disorder, schizophrenia, and other disorders66.
Additionally, selectively silencingGrik1within the adult amygdala has been
shown to reduce GABAergic transmission and induce mild anxiety-like
behavior67.

Furthermore, our multi-omics analysis revealed that the PI3K-Akt
signaling pathway might be an important pathway through which
forced loss regulates behaviors in mice via the MGBA. Kanoski et al.
reported that ghrelin signaling in the ventral hippocampus could enhance
food intake in rats through the PI3K-Akt signaling pathway68. Additionally,
the PI3K/Akt/GSK-3β signaling pathway may be the mechanism by
which melatonin mitigates amyloid beta-induced memory deficits, tau
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Fig. 7 | Correlation between gut microbiota, colon, PFC, PFC interneurons, and
behaviors related to forced loss. a Volcano plot displayed DEGs between the go-
through-tube group and the forced-loss group in RNA-seq (Go-through-tube, n = 7;
Forced loss, n = 7; ∣log2(FC)∣ > 0.585, and FDR < 0.05). b The biological processes
related to the DEGs in RNA-seq were identified by GO enrichment analysis
(p < 0.05). c KEGG pathway analysis of DEGs in RNA-seq (p < 0.05). d Heatmap
showed the correlations betweenWGCNAmodules from the gut microbiota, colon,

PFC, PFC interneurons and behaviors related to the forced loss (r > 0.6 or <−0.6,
*p < 0.05, **p < 0.01, ***p < 0.001, two-tailed Pearson correlation). The illustration
was created in BioRender. Yang, R. (2025) https://BioRender.com/c35i595. e Co-
expression network of KEGG pathways within WGCNA modules that were sig-
nificantly associated with forced loss-related behaviors (r > 0.6 or <−0.6, and
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hyperphosphorylation, and neurodegeneration in mice69. Moreover, pre-
biotics can improve neuroinflammation, learning, and memory function
induced by a high-fat diet through the IRS/PI3K/AKT signaling pathway70.
Gu et al. demonstrated that Prevotella copri could activate the PI3K-Akt
signaling pathway by increasing the levels of guanosine, a gut microbial
metabolite, thereby promoting neurorehabilitation in mice with traumatic
brain injury71. Therefore, the PI3K-Akt signaling pathway is involved in the
regulation of the microbiota-gut-brain axis, and we consider it a potential
pathway through which forced loss alters mice behaviors via MGBA.

We have discovered that forced loss can induce disruptions in the
MGBA using a multi-omics research approach, providing evidence for
further studies on how forced loss influences mental disorders. However,
there are limitations to our findings. First, this study involved only male
mice to circumvent the potential impact of estrogen. The impact of sex
differences on social hierarchy behaviors and neuralmechanisms still needs
further exploration. Second, further quantificationof gutmicrobiota-related
metabolites, including butanoate, is needed to verify our findings. Third,
several confounding factors could influence the structure of gutmicrobiota,
such as the normalization of microbiota due to the co-housing effect and
coprophagic behavior72,73. Whether social hierarchy is restored with the
normalization of the gut microbiota remains to be further confirmed.
Fourth, the gut microbiota itself possesses a complex compositional nature.
We observed correlations among differential ASVs resulting from forced
loss, and further studies, including in vitro co-culture experiments and
functionalmetabolomics ofmicrobial interactions, are required to elucidate
the underlying interaction mechanisms. Finally, how the key microbiota
mediated by forced loss acts on the CNS and interneurons via the MGBA
needs further validation.

Taken together, our analysis of the gut microbiota composition and
function revealed that forced-loss mice exhibit disturbances in Mur-
ibaculaceae and butanoate metabolism. By integrating metagenomics,
colon RNA-seq, and snRNA-seq data, we identified consistent alterations
in the PI3K-Akt signaling pathway and the glutamatergic synapse from
the gut microbiota to the prefrontal cortex following forced loss. These
findings provide evidence for understanding the mechanisms of the
microbiota-gut-brain axis in neuropsychiatric disorders associated with
forced loss. Furthermore, the snRNA-seq analysis highlighted the critical
role of interneurons in behaviors related to forced loss. A focus on
interneuron subtypes revealed that the Meis2, Meis2-Reln, and Pvalb
subtypes might collectively influence forced loss. These findings provide
a potential foundation for investigating the major neurological changes
resulting from forced loss.

Methods
Ethics statement
This research protocolwas reviewed and approved by the EthicsCommittee
of Chongqing Medical University (No. IACUC-CQMU-2024-0409). We
have complied with all relevant ethical regulations for animal use. All
experiments utilized 6-8-week-old male pathogen-free C57BL/6J mice
sourced fromHunan SJA Laboratory Animal Co., Ltd. (Changsha, China).
The sample size for each experiment was determined with reference to the
literature61,74. A total of 46mice were used. The number ofmicewas defined
in the figure legends. All C57BL/6Jmale mice were bred and housed in the
Experimental Animal Center of Chongqing Medical University. All mice
were maintained under controlled conditions of temperature (22–24 °C)
and humidity (50-60%), with a 12-hour light/dark cycle, and had free access
to food and water.

Antibiotic treatment
Antibiotic treatment was conducted following a customized protocol
derived from establishedmethodologies75. Daily intragastric administration
to mice included neomycin sulfate at 200mg/kg, ampicillin at 200mg/kg,
metronidazole at 200mg/kg, and vancomycin at 100mg/kg. To deplete the
gutmicrobiota, antibiotic treatment lasted 7 consecutive days prior to forced
loss or go-through-tube.

Fecal DNA extraction and quantitative PCR (qPCR)
Fresh fecal pellets were aseptically collected to evaluate antibiotic-induced
gut microbiota depletion. Total genomic DNA was extracted using the
E.Z.N.A.® Stool DNA Kit (Omega Bio-tek, Norcross, GA, USA; Cat. No.
D4015-01) following the manufacturer’s protocol76. Quantitative PCR was
performed using TB Green® Premix Ex Taq II77 (Takara Bio, Shiga, Japan;
Cat. No. RR820A) with universal bacterial 16S rRNA primers 27 F (5’-
GAGAGTTTGATCCTGGCTCAG-3’) and 1492 R (5’-TACGGC-
TACCTTGTTACGAC-3’)78. Each 20 μL reaction contained 10 μL 2× Pre-
mix, 0.8 μL each primer (10 μM), 2 μL fecal DNA (20 ng/μL), and 6.4 μL
nuclease-free water. Thermal cycling comprised initial activation at 95 °C
for 30 s (4.4 °C/s), 40 cycles of 95 °C for 5 s (4.4 °C/s) and 60 °C for 30 s
(2.2 °C/s) with endpoint fluorescence acquisition, followed by melt
curve analysis from 60 °C to 95 °C at 0.11 °C/s (continuous acquisition,
5 readings/°C), and final cooling to 50 °C for 30 s (2.2 °C/s).

Tube test
As described previously32, tube test is employed to assess the social status
among mice (Fig. 1a). Prior to the tube test, the mice were trained to
alternate through the tube 10 times over four days. This training phase is to
acclimate the mice to the testing process and surroundings. During the
testing phase, two mice from the same cage were placed at the
opposing extremities of the tube, and were then permitted to move towards
each other until they encountered in the middle. They were then simulta-
neously released, and the mouse compel its opponent to exit the tube
was deemed the “winner”, while the one that first retreat from the tube
was considered the “loser”. Four mice in the same cage were tested in
pairs six times a day. Social status among the mice was defined by the
number of wins, with rankings assigned as 1, 2, 3, and 4 accordingly. The
behavior of the mice during each tube test was video-recorded for sub-
sequent analysis.

Forced loss
Forced loss was performed as previously described27. After identifying mice
that consistently maintained rank 1 for at least four consecutive days, we
randomly assigned these mice to either the forced-loss group or the go-
through-tube group (Fig. 1a). Rank1 mice in the forced-loss group were
positioned in the tube against subordinate individuals within the same cage
(rank2, 3 and 4), with the exit of subordinate mice was blocked, thereby
forcing rank1 mice to lose. This process was repeated ten times per day for
four consecutive days. We attached a dynamometer to the blocker on the
side of the subordinate mouse to measure the force and duration of the
pushing applied to the subordinatemouse.We then performed the tube test
to determine whether the original rank1 mice suffered a decline in their
social hierarchy after the four-day forced-loss period. In contrast, rank1
mice in the go-through-tube group alternated through the tube ten times
each day for four days without experiencing forced loss. The process of
forced loss and the final tube test on the fifth day were video-recorded for
subsequent analysis.

Analysis of tube test behavior
A camera was positioned 30 cm away from the tube to record a lateral view
of the entire tube, recording the behavior of themice during the tube test. To
minimize potential confounding factors in tests, we conducted each test at
the same time and used the same equipment. We analyzed the video
recordings of the rank1 mouse before and after forced loss or go-through-
tube. The duration and proportion of “push”, “voluntary retreat”, “resis-
tance”, “passive retreat” and “stillness” behaviors of rank1 mice were
recorded and analyzed statistically. “Push” refers to onemouse extending its
head noticeably forward to push against the opponent or inserting its head
beneath the opponent to push forward. “Voluntary retreat” was defined as
the rank1 mouse voluntarily retreating when it is not being pushed by the
opponent. “Resistance” was defined as one mouse maintaining territory
without retreating when pushed by its opponent, usually with its head being
elevated higher by an opponent. “Passive retreat”was described as the rank1
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mouse retreating when pushed by the opponent. “Stillness” was char-
acterized by neither mouse doing anything other than sniffing.

Open-field test (OFT)
Each mouse was separately placed inside an open cube (42 × 42 × 42 cm)
with awhite background61. A six-minute videowas recorded for subsequent
analysis. The total distance each mouse moved was utilized to assess the
motor ability. Data analysis was performed using Noldus software.

Sample preparation
Afterdeepanesthesia andeuthanasia, themice’sbrainswere rapidly removed.
Subsequently, the prefrontal cortex was isolated and immediately immersed
in liquid nitrogen to facilitate rapid freezing, ensuring the nuclei remained
intact. The samples were then stored at −80 °C for long-term preservation.
The cryopreserved tissue samples were rinsed with ice-cold PBSE (PBS
supplemented with 2mMEGTA). The nuclei were isolated according to the
instructions provided by Singleron Biotechnologies using GEXSCOPE®
Nuclei Isolation Reagent (Nanjing, China). After isolation, the nuclei were
resuspended in PBSE at a density of onemillion per 400 μL. This suspension
was then passed through a 40 μmcell strainer for purification, and the nuclei
concentration was determined by trypan blue exclusion before staining with
DAPI (1:1000) from Thermo Fisher Scientific (Cat. No. D1306)79.

The upper segments of the colon were excised from the mice after
anesthesia, and the colon contents were immediately removed and dis-
pensed into sterile tubes. Both the colon contents and the colonic tissue from
the upper segment were rapidly immersed in liquid nitrogen for freezing
and then stored at −80 °C.

16S rRNA gene sequence analysis
The procedure for preparing and sequencing the 16S rRNA gene amplicon
library was carried out80. Raw sequencing reads were subjected to quality
control via fastq software, followedbymergingwith FLASH software. Based
on the recommended parameters, noise reduction was applied to the
optimized sequences post-quality control and assembly using the DADA2
plugin within the Qiime2 pipeline. Amplicon Sequence Variant (ASV) is a
unit used to represent microbial species or populations. Utilizing DADA2
denoising processing, DNA sequences devoid of chimeras and sequencing
errors were obtained. DNA sequences within microbiomes are measured
and analyzed to calculate their differences and similarities. Similar DNA
sequences are clustered into the same ASVs, thereby obtaining an ASV
number for each microorganism. Utilizing the Silva 16S rRNA gene data-
base (version 138), taxonomic analysis of ASVs was performed using the
Naïve Bayes classifier available in Qiime2.

Differences inASV abundance across the two groupswere analyzed by
the Wilcoxon rank-sum test. The Ace index for species richness and
Shannon and Simpson indices for species diversity were used to measure
microbial community diversity. The analysis of group differences in Alpha
diversity was conducted with the Wilcoxon rank-sum test. To examine the
similarity of microbial community structures among samples, principal
coordinates analysis (PCoA) based on the abund_jaccard distance metric
was employed. Furthermore, PERMANOVA nonparametric testing was
combined with the PCoA analysis to evaluate the statistical significance of
distinctions in microbial community structures among sample groups.

Metagenomic analysis
The metagenomic analysis began with the extraction of DNA, then pro-
ceeded to the establishment of paired-end (PE) library, bridge PCR, and
sequencing81. Subsequently, quality trimming was performed using fastp to
retain high-quality paired-end reads and single-end reads. Using the BWA
software (http://bio-bwa.sourceforge.net, version 0.7.17), the reads were
aligned to the host DNA sequences, and reads with high alignment simi-
larity to contaminants were excluded. The refined sequences were then
assembled with MEGAHIT (https://github.com/voutcn/megahit, version
1.1.2), selecting contigs of at least 300 bp as the final assembly output. In
these configurations, the open reading frames were identified by Prodigal

(https://github.com/hyattpd/Prodigal, version 2.6.3). Genes exceeding or
equal to 100 bp in nucleotide length were selected and translated into their
corresponding amino acid sequences.

Using CD-HIT (http://weizhongli-lab.org/cd-hit/, version 4.7), these
predicted gene sequences were then clustered to establish a non-redundant
gene catalog. SOAPaligner (https://github.com/ShujiaHuang/SOAPaligner,
version soap2.21) was used to calculate gene abundance. Finally, the amino
acid sequences from the non-redundant gene catalog were aligned against
the KEGG database, and the abundance of corresponding functions was
quantified by calculating the gene abundance associated with KEGG
Orthology, pathways, enzyme commission numbers, and modules.

Transcriptome sequencing analysis
Total RNA extractionwas performed using Trizol reagent (Invitrogen), and
following the manufacturer’s protocol, the cDNA library was prepared
utilizing theVAHTSUniversalV6RNA-seqLibrary PrepKit from Illumina
(vazyme, Inc.). The library underwent quality control using theAgilent 2200
platform, followed by paired-end sequencing at 150 bp using theDNBSEQ-
T7 sequencer. During the RNA-Seq data analysis process82–84, we used
Hisat2as theRNAalignment algorithmtomap thefiltered sequencing reads
to the reference genome (mm10_Ensembl) corresponding to the sequenced
species (Taxonomy ID: 10090) to determine their genomic locations.
RUVSeq was utilized to remove unwanted variation from the RNA-Seq
data. The DESeq2 algorithm was utilized to identify DEGs with the criteria
of ∣log 2(FC)∣ > 0.585; FDR < 0.05. GO enrichment analysis was typically
conducted using Fisher’s exact test and chi-squared (χ²) test for classifica-
tion. The p-values obtained from these tests were corrected for false dis-
covery rate (FDR), and lower FDR suggests a smaller error in the assessment
of the p-values. Significant pathways for the DEGs were identified based on
the KEGG database. Pathway annotations for microarray genes were
downloaded from the KEGG database (http://www.genome.jp/Kegg/). To
identify pathways with significant enrichment, Fisher’s exact test was
applied, and the resulting p-values were subsequently adjusted by the
Benjamini-Hochberg (BH) FDR algorithm. For results to be considered
statistically significant, the adjusted p-values needed to be less than 0.05.

Preparation of single-nucleus RNA sequencing library
Using a microfluidic chip (GEXSCOPE® Single Nucleus RNA-seq Kit,
Singleron Biotechnologies)85, a mononuclear suspension with a con-
centration of 3–4 × 105 nuclei/mL was processed, and snRNA-seq libraries
were then generated according to the manufacturer’s instructions.
Sequencing was conducted on an Illumina NovaSeq 6000 system, config-
ured for a read length of 150 base pairs at the end of each fragment.

Single-nucleus RNA sequencing and analysis
The raw reads were processed using the default parameters of CeleScope
(Singleron Biotechnologies, version 1.5.2) to generate gene expression
profiles86. FromR1 reads, barcodes anduniquemolecular identifiers (UMIs)
were extracted and corrected. The adapter sequences and poly-A tails were
clipped fromR2 reads,whichwere then alignedwere aligned to theGRCh38
(hg38) or GRCm38 (mm10) transcriptome using STAR (version 2.6.1b).
Subsequently, FeatureCounts (version 2.0.1) was used to assign uniquely
mapped reads to genes. Successfully assigned reads with identical cell bar-
codes, UMIs, and genes were combined to compile the gene expression
matrix for subsequent analysis.

Using the Seurat package (version 4.3.3), scaled datawas obtained after
normalization and regression at the cell level. A total of 29 unsupervised cell
clusters were identified through graph-based clustering methods. DEGs
were calculated using the FindAllMarkers (Wilcoxon)method according to
default criteria, and those marker genes satisfying ∣log2(FC)∣ > 0.25, and
FDR < 0.05 (Bonferroni correction) were selected. The 29 clusters were
further annotated into several major cell types based on their marker genes.
Gene function enrichmentswere explored throughGOenrichment analysis
(geneontology.org). Functions fulfilling FDR < 0.05 were presented as sig-
nificant entries.
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Cell communication analysis
The intercellular interactions in the PFC were analyzed using the CellChat
package (version 2.1.2). The CellChat package includes a comprehensive
ligand-receptor interaction database. Through the integration of gene
expression data with the existing database, which comprised known inter-
actions of signaling ligands, receptors, and their cofactors, we modeled the
probability of intercellular communication40 and identified statistically
significant (p < 0.05) intercellular communications.

Weighted gene co-expression network analysis
Using the WGCNA package (version 1.72), we aimed to analyze gene
modules associated with behaviors in the gut microbiota, colon, and PFC87.
This process involved importing both gene expression data and trait data,
assessing data quality and detecting outliers, and selecting an appropriate
soft thresholding parameter (β) value. Typically, the minimum β value
satisfying R2 > 0.9 or closest to 0.9 was chosen (β value: 12, gut microbiota;
16, colon; 30, PFC; 13, PFC interneurons; 11, PFC excitatory neurons; 13,
PFC microglia; 21, PFC astrocytes; 20, PFC oligodendrocytes; 8, PFC oli-
godendrocyte precursors). To minimize noise and false correlations, the
gene expression matrix was converted into a topological overlap matrix
(TOM). The resulting TOM matrix represented the weighted correlation
coefficients between genes. The weighted gene matrix was then clustered,
and the gene count for each module was defined. Different modules were
clustered, and a module-trait correlation plot was generated. The obtained
modules demonstrated an association with behaviors related to forced loss,
and modules that showed a significant correlation (r > 0.6 or <−0.6 and
p < 0.05) were considered behavior-related modules.

Statistics and reproducibility
The statistical data were all analyzed using GraphPad Prism software
(GraphPad Software, La Jolla, CA; version 9.5.0) and R studio (version
4.3.3). A two-tailed unpairedMann–Whitney test was used to compare two
groups in terms of rank changes, behaviors, force and duration, proportion
of cell type, and DEGs downsampling analysis. An unpaired t-test was
employed to compare the twogroups in termsof bodyweight, total distance,
and relative DNA expression levels. To compare four groups,
Kruskal–Wallis test (Tukey post hoc test) was utilized. The Chi-square test
was used for the success rates of demoting dominant mice to subordinate
status and retaining rank1 between the two groups. A p-value < 0.05 was
considered statistically significant. We did not exclude any data points
because there were no extreme values during the data analysis process. The
experimenterwasblinded to the allocation informationuntil the completion
of statistical analyses. Additional information regarding sample size and raw
data is provided in the supplementary data.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
All data supporting the findings of this study are available within the paper
and its supplementary information (Supplementary Data 1–2). The data that
support the findings of this study are available from the corresponding
author upon reasonable request. The 16S rRNA sequencing data generated
by this study is available in the Gene ExpressionOmnibus (https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE289698). The raw data of metage-
nomics and single-nucleus RNA sequencing are available in the Sequence
Read Archive (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1223975,
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1226127).

Code availability
All data analysis procedures were described in the methods. The code for
analysis can be found at https://doi.org/10.5281/zenodo.1492786188.
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