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Neural dynamics of semantic control
underlying generative storytelling
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Storytelling has been pivotal for the transmission of knowledge across human history, yet the role of
semantic control and its associated neural dynamics has been poorly investigated. Here, human
participants generated stories that were either appropriate (ordinary), novel (random), or balanced
(creative), while recording functional magnetic resonance imaging (fMRI). Deep language models
confirmed participants adherence to task instructions. At the neural level, linguistic and visual areas
exhibited neural synchrony across participants regardless of the semantic control level, with parietal
and frontal regions being more synchronized during random ideation. Importantly, creative stories
were differentiated by a multivariate pattern of neural activity in frontal and fronto-temporo-parietal
cortices compared to ordinary and random stories. Crucially, similar brain regions were also encoding
the features that distinguished the stories. Moreover, we found specific spatial frequency patterns
underlying the modulation of semantic control during story generation, while functional coupling in
default, salience, and control networks differentiated creative stories with their controls. Remarkably,
the temporal irreversibility between visual and high-level areas was higher during creative ideation,
suggesting the enhanced hierarchical structure of causal interactions as a neural signature of creative
storytelling. Together, our findings highlight the neural mechanisms underlying the regulation of
semantic exploration during narrative ideation.

The generation of narratives has been pivotal for the transmission of
knowledge, values, and cultural norms across humanhistory1,2. It is through
stories that we make sense of the world around us shaping our under-
standing of reality3–6. This intrinsic connection between storytelling and the
human experience underscores not just the importance of narratives in
preserving cultural heritage7–9, but also in the construction and expressionof
the self 10–12.

Generating stories can be regarded as a context-dependent decision-
making process that operates in a semantic space13 by orchestrating the
selectionof linguistic units acrossmultiple levels of abstraction14, fromsingle
words to sentence-level attributes such as a coherent causal structure among
the narrated events15. Crucial for this process is the ability to exert cognitive
control on the semantic representations stored in memory16–19, a phe-
nomenon that has been named semantic control in the literature20,21. Recent
evidence has shown how semantic control is implemented across a large-
scale distributed pattern of brain networks activity22 involving left fronto-
temporal areas such as inferior frontal gyrus (IFG), posterior middle tem-
poral gyrus (pMTG), and dorsomedial prefrontal cortex (dmPFC)16,17,23,24.

This semantic control network is also partially distinct from brain areas
encoding semantic representations17,21, although they are frequently inter-
acting during both the encoding and retrieval of semantic information16,19.
The semantic representation system, centered in the anterior temporal lobes
(ATLs) and linked to the default mode network (DMN), enables automatic
retrieval and abstraction, forming stable, context-independent representa-
tions essential for storytelling16–19,25,26. Moreover, a recent meta-analysis
confirmed the involvement of these areas in semantic control and found no
implication of parietal areas20, although the inclusion criteria incorporated a
large cohort of studies including visual and auditory paradigms. In the
context of linguistic tasks, semantic control was found to be implemented
across similar fronto-temporal as well as parietal areas, especially in tasks
requiring the generation of divergent associations to linguistic cues27–30.

One of the most important questions related to storytelling is what
makes a story interesting or noteworthy. Toput it simply, howcanwedefine
a story “creative”? Linguistic creativity, defined as the ability to generate
novel and appropriate ideas, has been reframed through computational and
semantic frameworks as optimal functioning within a semantic space,
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balancing exploration and exploitation31–40. The neuroscience of creative
cognition suggests thatmultiple large-scale networks support the generation
and refinement of ideas. Generally, studies41,42 have found that creative
language production involves a balance between spontaneous processes,
mostly linked to the DMN, and controlled processes, associated with the
Executive Control Network (ECN). Despite the definition of creativity
requires both the novelty and the appropriateness components, nearly all
neuroscientific studies of linguistic creative ideation have focused only in
comparing creative versus ordinary generations, thus investigating only the
novelty component. Few studies at the behavioral level have also compared
creative solutions with random ones, effectively studying the appropriate-
ness component and the underlying semantic control processes31,43.

Moreover, despite the extensive literature investigating the neural
mechanisms of semantic control in generative language tasks, most of the
studies have implemented experimental paradigms involving basic lin-
guistic outputs such as single words or simple sentences44. Similarly in the
field of linguistic creativity41,45–47, most of the previous investigations
adopted experimental paradigmswith simpleword associations to study the
exploration of semantic space for finding novel and appropriate (i.e., crea-
tive) solutions to a given task29,31,48–50. This lack of ecological validity may be
ascribed to the difficulty in the implementation anddata analysis of complex
linguistic objects such as narratives51. Recently, the advent of deep neural
networkmodels52 applied to natural language processing has revolutionized
our ability to analyze and quantify semantic information in textual data.

These models, typically trained on large-scale linguistic corpora, provide
high-dimensional vector representations, or embeddings, that capture
semantic relationships across multiple levels, from single words to entire
sentences53,54. By incorporating contextual information, they can represent
words and phrases as points in a continuous vector space, illuminating
subtle distinctions that are especially relevant for understanding and
modeling narratives.

Due to this difficulty in quantifying large textual data and con-
textualized semantic information before deep language models, the neu-
roscientific study of generative storytelling has been scarce. For example,
one of the basic paradigms involving the generation of stories in the lit-
erature requires participants to encode stories and then report them14,55–57.
Although this can be technically described as generative storytelling, it is
quite restrictive due to the severe external constrains given to the partici-
pants by requiring them to faithfully report a previously presented story.
Nevertheless, therewere a fewexceptionsof studies involvingunconstrained
generation of stories in their paradigms40,58–61. Howard-jones and
colleagues58 found increased prefrontal and cingulate cortices activity by
contrasting neural activations underlying creative and uncreative stories.
Shah et al.59 found a large parieto-fronto-temporal network underlying the
ideation of creative stories, while Erhard et al.60 reported the left frontal
cortex and occipital cortex as being mostly activated during ideation in
expert writers. Similarly, Liu et al.61 reported a parieto-fronto-temporal
network underlying the generation andwriting of poems. Additionally, Fan
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Fig. 1 | Experimental design of our story generation task. a Graphical repre-
sentation of the underlying generative process in the semantic space among the three
different conditions, namely the Ordinary (green), Creative (pink), and Random
(blue) conditions. Participants were instructed to modulate the appropriateness and
novelty of the story, given three target words.Orange dots represent the target words,
while black dots stand for the other words composing the story. b Examples of
generated stories sampled from different participants given the same triplet of target

words (bolded orange). c Graphical depiction of the experimental paradigm. Each
condition was composed by 8 trials (stories) in a block fashion. The order of con-
ditions, as well as the assignment of the target words to the conditions, was coun-
terbalanced across participants. d Time course of a single trial, composed of 4
different stages. Crucially, the ideation period is separated from the period in which
participants had to report the story.
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and colleagues40 reported that functional connectivity networks in resting
state predicted differentially novelty and appropriateness measures extrac-
ted from generated stories. Crucially, some of these studies are confounded
by themotor artifacts derived by reporting the story61, while others even lack
direct measuring of the neural dynamics underlying the story ideation40.
Among the studieswhich are unaffected by these limitations, only theneural
activations are reported, i.e. the most active areas during the ideation of
stories. Unfortunately, this approach is neglecting the intrinsic dynamic
nature of ideating a story, leading to an incomplete characterization of how
semantic control processes select and organize conceptual knowledge for
generating narratives. Additionally, these studies did not adopt robust
quantitativemethods, such as deep languagemodels, to assess the content of
the generated stories and how linguistic features extracted from these stories
are encoded in the neural dynamics. Importantly, none of these works
compared the generation of these creative stories with proper control
conditions, by selectively excluding the novelty and appropriateness com-
ponents that characterize the ideation of creative stories. In sum, despite the
high relevance of this topic for the neuroscientific understanding of lan-
guage production and creative cognition, an extensive examination of the
neural dynamics of generative storytelling is still missing.

Here, we sought to fill this gap by using functional magnetic reso-
nance imaging (fMRI) to probe participants in a story generation task.
We asked them to generate stories according to a set of instructions that
modulate the level of semantic control requested for story generation, by
separating the ideation period from the report one. Specifically, partici-
pants generated stories by controlling the amount of novelty and
appropriateness in them, with creative stories regarded as the ones with a
balance of these two features while ordinary and random stories lacked
one of the two features30,31,43,62. We hypothesized that this experimental

manipulation influenced the exploration strategies of participants when
navigating the semantic space to generate a narrative. Specifically, we
hypothesized that the exploratory behavior should be minimal in the
ordinary condition, lacking novelty, and maximal in the random con-
dition, lacking appropriateness, with the creative condition having an
intermediate level of exploration. We leveraged recent deep language
models53,54 to investigate, at the behavioral level, how participants per-
formed and whether novelty and appropriateness could be reliably
extracted from linguistic stories using such computational approach.
Thus, we investigated at the neural level what aspects of the neural
dynamics could reliably distinguish creative stories from ordinary and
random ones. First, we assessed neural synchrony across participants
using inter-subject correlation (ISC)63,64 to investigate individual differ-
ences in the neural activity underlying story ideation. Then, we employed
multivariate pattern analysis (MVPA)65 to investigate how patterns of
brain activity differentiated the generation of creative stories from their
counterparts lacking either novelty or appropriateness and analyzed how
these features were encoded across brain regions. Moreover, we also
decomposed the neural dynamics underlying the story generation into its
connectome harmonics and investigated the same research questions,
using the recently proposed framework of Connectome Harmonics
Decomposition (CHD)66–68, and specifically asking whether there are
distinct spatial frequencies that discriminate the different ideation
modalities or encode the linguistic features. In addition, we conducted
functional connectivity analysis69 to study how patterns of functional
coupling within and between brain networks, known to be generally
involved in creative ideation41,42, differed when contrasting our experi-
mental conditions. Finally, we investigated the temporal irreversibility of
the neural dynamics to study the amount of non-equilibrium dynamics
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Fig. 2 | Behavioural results using distributional semantics and large language
models. aGraphical representation of the pipeline adopted for the semantic distance
analysis. We used word2vec models to extract word embedding vectors of the target
(orange) and non-target (black) words fromparticipants’ stories, excluding stopping
words (grey). The depicted story comes from a sampled participant from the creative
condition. Then, we computed the semantic distance between target and non-target
words and averaged the results across the 3 targets. b Raincloud plots depicting the
semantic distance scores across Ordinary (green), Creative (pink), and Random
(purple) conditions. Each dot represents a participant, horizontal bars with asterisk
indicate statistical significance (N = 24) and dotted lines in the boxplot show mean
values. cGraphical representation of the pipeline adopted for the surprise estimation

analysis. We used large language models (BERT) to perform masked modelling by
masking the target word tokens and computing the predictions to those masked
tokens. We then computed the surprise score as the negative log-likelihood (NLL)
between those predictions and the target words and averaged the results across the 3
targets. d Raincloud plots showing the surprise scores across the 3 conditions as in
(b). Horizontal bars with an asterisk indicate statistical significance and dotted lines
in the boxplot show mean values. For all boxplots in the raincloud plots, the dotted
and solid horizontal line represent the mean and median value, respectively, while
the whiskers extend to the minimum andmaximum data point that does not exceed
1.5 times the interquartile range.
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and entropy production underlying the story ideation, asking whether
creative stories are characterized by an increased irreversibility compared
to the other conditions.

Results
Data from 24 human participants were collected by recording their fMRI
signal while performing a story generation task (SGT).Our task consisted of
generating a story with the constrain that 3 given target words must be
included in the story. We manipulated the level of semantic control in the
story generationprocess byhavingparticipants generate a story according to
3 different instructions43, which we will refer to as the Ordinary (OR),
Creative (CR), and Random (RA) condition. These conditions differed by
the amount of 2 features, namely novelty and appropriateness, that were
required to generate a story (Fig. 1a). In theOR condition, participants were
instructed to maximize appropriateness andminimize novelty, while in the
RA were instructed vice versa. In the CR condition, they had to attempt to
maximize both features, resulting in a semantic control state that trades-off
exploration and exploitation in the semantic space31. For a qualitative
inspection of the generated stories, we sampled some of them having the
same triplets of targetwords across participants and showed them inFig. 1b.
Participants performed 8 trials for each condition in the MRI scanner
(Fig. 1c), resulting in a total of 24 stories per participant with target word
triplets counterbalanced across participants. Crucially, we separated the
period in which participants thought about the story (Ideation period) and
the period in which they verbally reported the story (Report period), as

shown in Fig. 1d. This allowed us to avoid any possible motion and verbal
confounds and clearly examine the neural dynamics of story generation70.
After the data collection, we asked 2 independent human experts to tran-
scribe the reported stories and started our data analysis pipeline from the
behavioral data, to investigate whether and how participants conformed to
the instruction set we provided. As a sanity check, we also asked 6 inde-
pendent human raters to judge the generated stories from the whole sample
across 3 scales corresponding to the same instruction sets (Figure S1a).
Indeed, we found that the stories from the OR condition were evaluated as
more ordinary than creative (t(23) = 4.77, pFDR = 0.0038, Cohen’s d = 1.02,
95%CI [−0.18, 2.22]) and random(t(23) = 5.85,pFDR = 0.003,d = 2.71, 95%
CI [1.15, 4.28]). We also observed that the CR stories were rated more
creative than ordinary (t(23) = 8.42, pFDR = 0.0001, d = 1.51, 95% CI [0.23,
2.79]) or random (t(23) = 3.08, pFDR = 0.0135, d = 0.68, 95% CI [−0.48,
1.85]), and the RA stories were more random than creative (t(23) = 4.42,
pFDR = 0.0053, d = 1.49, 95% CI [0.21, 2.77]) or ordinary (t(23) = 5.57,
pFDR = 0.0045, d = 2.80, 95% CI [1.20, 4.39]).

Next, we leveraged recent advances in the natural language processing
(NLP) field by adopting deep neural network (DNN) models trained on
large corpora of text data to analyze our data53,54. The main reason why we
made this methodological decision was due to the unique ability of these
models to handle complex textual data such as stories71,72. We aimed to
operationalize the two features (i.e., novelty and appropriateness) we asked
participants to control in the story generation. Thus, we proposed a
methodology based on a dual selection of DNNmodels and metrics that is

Fig. 3 | Group-level inter-subject correlation and multivariate pattern analysis.
a Brainplots showing the inter-subject correlation results on individual conditions.
Highlighted brain regions represent statistically significant areas. b Contrasts
between conditions for the inter-subject correlations. Highlighted brain regions
show statistically significant results. cGroup-level searchlight classification between
all pairs of conditions. Performance is computed as the difference between the
classification accuracy and empirical chance level (50% expected in this case of

binary classification). Highlighted brain regions in the glass brain plots showed
statistically significant areas. d Group-level searchlight regression of the two beha-
vioural features in theCreative condition. Performance is computed as the difference
between the model R2 scores and model’s performance with permuted features.
Highlighted brain regions in the glass brain plots showed statistically sig-
nificant areas.
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able to capture both features as distinctively and reliably as possible. For the
novelty feature, we adopted the distributional semantics framework by
using 3 word2vec models31,53 to extract word embedding vectors from the
stories (Fig. 2a). This approach allowed us to compute the semantic
distance31,43,73 metric between the target and non-target words (excluding
stopping words). We utilized this measure as a proxy for how novel or
original the story was, as it has been also similarly used to study divergent
thinking31,43,74. For the appropriateness feature, we capitalized on current
state-of-the-art transformer architectures for NLP54,75, namely the Bidirec-
tional Encoder Representations from Transformers (BERT) model. This
model allowedus tomask the targetwords fromeach story and let themodel
predict what would have been themost appropriate word to fill the masked
tokens (Fig. 2c). Thus, by computing from 2 BERT models the Negative
Log-Likelihood (NLL) between the actual target and the model predictions
we obtained a measure of howmuch appropriate that story was, a measure
thatwe referred to as surprise (since technically it canbe seenas theShannon
surprise). When we applied these twomeasures to our data, we expected to
find an increased semantic distance and surprise from the OR to the RA
condition, with the CR standing in the middle. Crucially, we found that the
semantic distance (Fig. 2b) was significantly higher in the CR compared to
OR (t(23) = 3.09, pFDR = 0.0075, d = 0.65, 95%CI [0.07, 1.23]) and higher in
RA than inOR (t(23) = 2.59, pFDR = 0.012,d = 0.76, 95%CI [0.18, 1.35]). No
significant difference was observed between CR and RA (t(23) = 0.83,
pFDR = 0.209, d = 0.20, 95%CI [-0.36, 0.77]).We also found that the surprise
(Fig. 2D) was significantly higher in the RA compared to CR (t(23) = 2.74,
pFDR = 0.009, d = 0.87, 95% CI [0.28, 1.46]) and higher in RA than in OR
(t(23) = 3.90, pFDR = 0.0015, d = 1.13, 95% CI [0.52, 1.74]). No significant
difference was observed between CR and OR (t(23) = 0.78, pFDR = 0.221,
d = 0.22, 95% CI [-0.35, 0.79]). We also ran additional analyses on the
individualmodels, since ourmeasureswere anaverage overmultiplemodels
(3 word2vec and 2 BERT) for improving the methodological robustness,
and found that the results replicated as well (Fig. S1b-c). Finally, we ran a
correlation analysis between the semantic distance and surprisemeasures to
confirm that these two measures captured different aspects of the data and
found that indeed the correlation coefficientwas low (r = 0.234, Figure S1d).
Thus, our results evidenced how participants indeed controlled the level of
novelty and appropriateness in the CR condition.

After having established that, at the behavioral level, participants fol-
lowed our instructions and correctly exerted the right level of semantic
control, we investigated the neuralmechanisms underlying these behavioral
effects. We conducted all the neural analyses only on the entire ideation
period, given that a crucial aspect of our design was to measure the neural
dynamics underlying narrative generation in this period free of any motion
artifacts. Thus, to confirm that using the BOLD signal in the whole ideation
period was capturing relevant brain activity, we computed the variance of
the signal across trials (stories) along each volume.We found that indeed, in
the later stages of the ideation period, the variance decreased in all condi-
tions and inboth thewhole brain (Figure S2a) andall the7 regionsof interest
(Figure S2b) taken from the Yeo atlas76. A reduction in variability typically
indicates that participants converge on similar processing, which in our case
presumably indicates returning to a resting or preparatory state before
providing their narrative. Therefore, we started analyzing the neural data by
assessing the similarity of the neural dynamics underlying the generation of
the stories by means of inter-subject correlation (ISC) analysis63,64. In
essence, we asked which brain areas had a similar temporal profile in the
ideation period across participants. Crucially, we computed ISC for each
condition by separating the stories having the same triplet of target words
and averaging the results across target word triplets. This helped us to
directly quantify the degree of similarity across participants when ideating a
story starting from the same linguistic constrains. Interestingly, we found
that for all conditions (Fig. 3a), the left frontal cortex (all pFDR < 0.002, peak
ISCvalues forOrdinary is 0.187,Creative is 0.123, andRandomis 0.176) and
the visual cortex (all pFDR < 0.003, peak ISC values for Ordinary is 0.144,
Creative is 0.132, andRandomis 0.148)were significantly similarly activated
across participants. Moreover, when contrasting the ISC values across

conditions (Fig. 3b), we found that the random stories had a significantly
more similar underlying neural dynamics across participants compared to
both ordinary, in bilateral parietal cortices (all pFDR < 0.04), and creative
stories, in parietal and frontal cortices (all pFDR < 0.02). In sum, our findings
highlight that during narrative generation, left frontal and visual cortices
consistently showed inter-subject similarity across all conditions, while
random story ideation elicited even higher alignment in parietal–frontal
areas, underscoring distinct patterns of neural synchronization in response
to different storytelling constraints.

Next, we employed Multivariate Pattern Analysis (MVPA)65 methods
to extract multivariate patterns of neural activity in the ideation period that
differentiated how participants exerted their semantic control across con-
ditions. We performed all the analyses using the blood-oxygen-level-
dependent (BOLD) signal, instead of using a conventional general linear
model (GLM) approach. We opted for this since our ideation period lasted
for 30 seconds and we considered it unreasonable to search for voxel acti-
vations for such a long time period using a GLM. Critically, we performed
searchlight analyses77 at the group-level to control for the effects of the target
words that were counterbalanced across participants and to identify
population-wise invariants from neural activity patterns78. First, we con-
ducted classification analyses between every pair of conditions (Fig. 3c) and
computed the classifier’s performance as the difference between the classi-
fier’s accuracy and the accuracy of a model with permuted labels. In other
words, a performance of 0 corresponds approximately to a classification
accuracy of 50% since we always performed binary classification analyses.
We also performed statistical analysis on the searchlight results using false
discovery rate (FDR) by setting an alpha level of 0.01 for reporting in the
main text, but we also reported the results thresholdedwith an alpha level of
0.05 in Figure S3. When classifying CR versus OR, we found a cluster of
frontal regions, such as the prefrontal cortex, being significantly different
between conditions (Fig. 3c; PFC, performance=0.06, pFDR = 0.001). Spe-
cifically, the most prominent effects were located at the orbitofrontal cortex
(OFC, performance=0.10, pFDR = 0.0098), the dorsomedial prefrontal cor-
tex (dmPFC, performance=0.13, pFDR = 0.0095) and the left frontal oper-
culum (LFO, performance=0.09, pFDR = 0.0031). Then, we classified CR
against RA and found that a fronto-temporo-parietal network of brain areas
significantly differentiated their neural activations. Here, the most promi-
nent effects were located at the PFC (performance=0.06, pFDR = 0.0065), the
LFO (performance=0.01, pFDR = 0.0067), the medial parietal cortex (MPC,
performance=0.05, pFDR = 0.0066) and the left temporal pole (LTP, per-
formance=0.03, pFDR = 0.0066). Moreover, classification between OR and
RA revealed significant activity in PFC (performance=0.03, pFDR = 0.0067)
and right temporal occipital parietal cortex (performance=0.04,
pFDR = 0.0095). Then, we also asked ourselves how the semantic distance
and surprise features extracted from the generated creative stories were
mapped onto the cerebral cortex (Fig. 3d). In other words, we asked which
brain areas encoded these features in the CR condition that most probably
gave rise to the observed behavioral outcome. To answer this question, we
performed searchlight regression analyses on each feature andmeasured the
model’s performance as the difference between themodel’sR2 score and the
R2 of amodelwith a randomized dependent variable, with an alpha level set
to 0.05 for FDR correction. Note that, here the models’ performance scores
were affected by the scale of each feature. This analysis revealed that the
semantic distance was encoded most prominently in a fronto-parietal net-
work comprising the PFC (performance=2.33 × 10�4, pFDR = 0.0329), the
LFO (performance=3.41 × 10�4, pFDR = 0.0309) and the posterior parietal
cortex (PPC, performance=1.43 × 10�4, pFDR = 0.0296), while the surprise
was encodedmostly in the PPC (performance=1.36, pFDR = 0.0164) and the
frontal eyes fields cortex (FEF, performance=1.06, pFDR = 0.046). All toge-
ther, these results showed how, at the neural level, different activation
patterns underlay the participants’ semantic control strategies and sup-
ported the results at the behavioral level.

Thus, after having identified specific brain regions exhibiting sig-
nificant activity through the searchlight analysis, we next extended our
investigation to a more system-level, whole-brain approach using
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Connectome Harmonic Decomposition (CHD, Fig. 4a)66. While the
searchlight analysis provided valuable insights into localized brain regions
involved in semantic control for generative storytelling, CHD allowed us to
study how the entire brain organizes itself to explore the semantic space and
generate a story coherently with the instruction sets. CHD, based on the
mathematical framework of graph Fourier transform, decomposes neural
signals into a set of harmonic modes (Fig. 4b), each representing different
spatial patterns of brain activity68. This approach is grounded in the idea that
brain functions can be understood as a complex orchestration of these
harmonics, analogous to musical notes forming a symphony, offering a
unique perspective on the brain’s intrinsic architecture and its role in
shaping neural dynamics66. It consists of the eigen decomposition of the
structural connectivitymatrix containing both local and global information
taken from diffusion tensor imaging (DTI) and cortical surface recon-
struction data (Fig. 4a). The resulting harmonic modes are then arranged
from low to high spatial frequency, where low frequency means that net-
work proximity plays a huge role in the signal values (Fig. 4b). We then
applied the CHD to our fMRI data and performed classification analyses
between conditions on the binned (48 bins) harmonic energy values across
the spatial frequencydimension (Fig. 4c).We found that a specific patternof
low,mediumandhigh spatial frequencies significantlydiscriminated theCR
condition from the OR, with the peak of performance being in the high
frequency range (bin 45, performance=0.06, pFDR = 0.0106). When classi-
fying CR against RA, we found a different pattern of spatial frequencies and
a general higher discriminability with respect to the CR versus OR, with the
peak of performance being in the low-medium frequency range (bin 19,
performance=0.08, pFDR = 0.009). We also found the OR and RA were
significantly classified by another frequency pattern, especially in the high
frequency range (bin 44, performance=0.07, pFDR = 0.0229). Analogously to

the searchlight approach, we also applied regression analyses to investigate
howsemanticdistance and surprisewere encodedat thewhole-brain level in
the spatial frequency dimension (Fig. 4d).We found that semantic distance
was encoded specifically in the low andmedium frequencies (peak at bin 6,
performance=1.01 × 10�4, pFDR = 0.0372), and similarly was encoded the
surprise in that spatial frequency range (peak at bin 16, performance=0.74,
pFDR = 0.0223). Taken together, these findings demonstrated that the neural
dynamics of the whole-brain is organized in specific spatial frequency
patterns, representing the decoupling of functional neural activity from the
underlying structural connectivity, during the ideation of complex linguistic
outcomes such as stories requiring different abstract features to be
incorporated.

Then, we turned our attention to the direct functional relationships
between brain regions with a hypothesis-driven functional connectivity
(FC) analysis69. While CHD provided a window into the global orchestra-
tion of brain activity, functional connectivity analysis allowed us tomap and
quantify the strength and nature of the associations between specific brain
areas. Based on previous results in the literature about semantic control17,41

and our results from the searchlight analysis, we selected and analyzed the
functional connectivity within and between the brain areas of the following
brain networks (Fig. 5a): the Default Mode Network (DMN), the Salience
Attention Network (SAN) and the Frontoparietal Control Network (FCN).
We found that the average FCwithin theDMN(i.e., functional connectivity
between brain areas belonging to the DMN) was significantly higher in CR
(Fig. 5b) compared to OR (t(23) = 2.58, pFDR = 0.0255, d = 0.62, 95% CI
[0.04, 1.2]),with stronger connections encompassing theprecuneuswith left
frontal areas. No difference was observed betweenCR and RA (t(23) = 1.00,
pFDR = 0.166, d = 0.20, 95% CI [-0.36, 0.77]) and OR and RA (t(23) = 1.57,
pFDR = 0.096, d = 0.36, 95%CI [-0.20, 0.94]).We also found that the average

Fig. 4 | ConnectomeHarmonicDecomposition reveals spatial frequency patterns
underlying the modulation of semantic control during story generation. a Data
analysis pipeline for implementing the Connectome Harmonic Decomposition.
b Brain plots showing examples of harmonics. c Group-level searchlight classifica-
tion across the harmonic space between all pairs of conditions. Performance is
computed as the difference between the classification accuracy and empirical chance

level (50% as the expected value). Horizontal lines indicate statistical significance.
d Group-level searchlight regression across the harmonic space for both behavioral
features. Performance is computed as the difference between the model R2 scores
and model’s performance with permuted features. Horizontal lines indicate statis-
tical significance. Brain plots across the x-axis depict the median harmonic inside
each bin.
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FC between DMN and SAN (Fig. 5c) was higher in CR compared to OR
(t(23) = 2.35, pFDR = 0.042, d = 0.50, 95%CI [0.08, 1.07]) but not compared
to RA (t(23) = 0.93, pFDR = 0.182, d = 0.22, 95% CI [-0.34, 0.79]). Also here,
posterior parietal regions were mostly coupled with left frontal areas in CR
compared to OR. No difference was observed between OR and RA
(t(23) = 1.45, pFDR = 0.120, d = 0.34, 95% CI [-0.23, 0.91]). Moreover, we
observed that the average FC between FCNand SAN (Fig. 5d) was higher in
CR compared to RA (t(23) = 2.45, pFDR = 0.033, d = 0.61, 95% CI [0.03,
1.19]), with stronger connections between parietal areas with bilateral
frontal regions, but not compared to OR (t(23) = 1.69, pFDR = 0.078,
d = 0.42, 95%CI [-0.15, 0.99]). No differencewas observed betweenOR and
RA (t(23) = 0.88, pFDR = 0.1935, d = 0.22, 95% CI [-0.35, 0.79]). Also, no
difference was observed in all other within and between networks com-
parison that we reported in Figure S4. Overall, our findings highlight the
critical neural pathways for semantic exploration during the ideation of
stories and contribute to a deeper understanding of the network dynamics
underpinning generative storytelling.

Finally, we complement our previous FC analysis by investigating the
temporal irreversibility of the neural dynamics underlying the ideation

period. Essentially, we quantified the degree of temporal asymmetry in the
directed connectivity,measured as time-lagged correlationsbetweenpairsof
ROIs (Fig. 5e). This provided a measure of non-equilibrium dynamics and
entropy production. After computing the irreversibility matrix for each
condition at different lags, we plotted the average across all connections as a
function of lags (Fig. 5f).We found that, while at shorter delays in the order
of few seconds (1-7 seconds) there was not a clear distinction among the
conditions, at longerdelays (8-15 seconds) the creative conditionexhibited a
consistently level of temporal irreversibility that was higher than the other
conditions. Specifically, when we averaged these results on the long delays
(Fig. 5f top), we observed a significantly higher irreversibility in creative
stories than in ordinary (t(23) = 2.59, pFDR = 0.024, d = 0.50, 95% CI [-0.07,
1.07]) and random (t(23) = 2.06, pFDR = 0.038, d = 0.49, 95% CI [-0.08,
1.06]) ones. No significant difference was observed at shorter delays (all
pFDR > 0.05). Thus, we inspected what were the directed asymmetrical
connections that drove the results on the long delays. By contrasting the
creative conditionwith the ordinary and the random,we found a large-scale
network involving mostly occipital, parietal and frontal regions for both
contrasts (Fig. 5g, all p < 0.0001, uncorrected). Together, these findings

Fig. 5 | Functional connectivity among brain networks and temporal irreversi-
bility of neural dynamics underlying story generation. a Cortical distribution of
the selected brain networks, namely theDefaultModeNetwork (DMN), the Salience
Attention Network (SAN) and the Frontoparietal Control Network (FCN). b Top,
raincloud plots showing within DMN functional connectivity averaged across all
connections for each condition. Each dot represents a participant, while horizontal
bars with an asterisk indicate statistical significance (N = 24). Bottom, connectivity
brain plot showing the top 5% connections within DMN when contrasting creative
and ordinary stories. In (c), the same plot as in (b), but showing the functional
connectivity between the DMN and SAN. Also in (d), functional connectivity
between the FCN and SAN, with the bottom contrasting creative and random
stories. e Schematic representation of the method used to quantify the irreversibility

of the neural dynamics from the time-lagged directed connectivity analysis. The
purple and azure time-series represent an example of two ROIs in the forward and
reversemode. On the right, the cross correlogram as a function of the delays. fOn the
bottom, lineplots showing the irreversibility values as a function of the lags in the
three conditions. Top, raincloud plots indicating the difference between conditions
for short and long delays (lags). Each dot represents a participant, horizontal bars
with an asterisk indicate statistical significance (N = 24). g Connectivity brain plot
showing the significant (p < 0.0001, uncorrected) directed connections when con-
trasting creative with ordinary and random stories. For all boxplots in the raincloud
plots, the dotted and solid horizontal line represent the mean and median value,
respectively, while the whiskers extend to the minimum and maximum data point
that does not exceed 1.5 times the interquartile range.
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uncover the neural dynamical signatures that distinguish creative stories
from ordinary or randomones in terms of temporal irreversibility and non-
equilibrium dynamics.

Discussion
In the present study, we investigated the neural dynamics underlying gen-
erative storytelling by varying the demands of semantic control within the
narrative ideation. We employed a within-subjects design, tasking partici-
pants with creating narratives under three distinct instruction sets, each
varying in degrees of novelty and appropriateness.Ourparadigmallowedus
to address several research questions about how semantic control operates
in naturalistic conditions such as free narrative production and its neural
signatures.

Crucially, our experimental design allowedus to disentangle the period
in which participants ideated the narrative fromwhen they reported it. This
design choice was not adopted by all previous studies on generative
storytelling40,58,60,61 and, thus, provided us with a clean time window char-
acterized only by the semantic control processes operating to generate
stories according to the instruction, free from motion and vocalization
artifacts. Another critical feature of our study design is that we control for
the inclusion of both novelty and appropriateness features30,31,43,62, while
often only one of these features is controlled especially in the context of
naturalistic narrative production40,58,60,61.

We started our analysis plan by first adopting a computational
approach to operationalize the abstract features we required participants to
manipulate during the generation of the stories. Our approach relied on
recent advances in natural language processing based on deep neural net-
work models that learn statistical patterns from large text corpora53,54,71,79

and allowed us to successfully differentiate the novel and appropriate
components of complex textual data such as narratives. Note that, although
the use of semantic distance as a measure of novelty or originality has been
extensively used in previous research31,43,74, our measure of appropriateness,
derived from the BERT model’s surprise, has not been used yet and in our
opinion can be a validmeasure for further studies attempting at quantifying
the usefulness of a narrative in the creative cognition field.

Thus, after we observed at the behavioral level that participants con-
trolled the level of novelty and appropriateness in the generation process of
creative stories, we assessed how similar was the neural dynamics across
participantswhen ideating a story bymeans of the ISC analysis63,64. Notably,
two primary cortical regions, the left frontal cortex and the visual cortex,
demonstrated significant inter-subject similarity across all conditions,
irrespective of the level of semantic control. Thesefindings suggest that these
regions are central cortical hubs in narrative generation. This is particularly
compelling given that no visual output was required during story ideation,
underscoring the intrinsic role of the visual cortex in constructing internal
representations during story generation.This alignswithErhard et al.60, who
found visual cortex involvement in expert writers. However, our results
show this engagement across all participants and conditions, suggesting that
narrative ideation inherently relies on visual processing, likely due to the
mental imagery involved in constructing coherent stories80. Interestingly,
our analysis revealed that random stories elicited greater intersubject neural
synchrony in frontal and parietal areas than both creative and ordinary
stories. One possible explanation is that random story generation, by
imposing minimal semantic control, induces a more uniform or stereo-
typical response in these high-level regions, i.e. participants essentially
aligned on a simpler pattern of activitywhen free from semantic constraints.
Another possibility is that this minimal semantic control reduces the
variability of cortical engagement, leading to higher similarity across
individuals.

Next, we performed multivariate decoding analyses to investigate
which brain areas differed among the creative, ordinary, and random
generatednarrativesbasedon their activity pattern in a searchlight fashion77.
We found that creative stories were distinguished from ordinary stories
mostly by the neural activity located in the dmPFC, LFO, and OFC, while
from random ones by the activity pattern in PFC, LFO, LTP, andMPC.We

interpreted these findings as evidence that different semantic control stra-
tegieswere implemented in the generation of these different types of stories.
Particularly, the involvement of the orbitofrontal cortex and dmPFC in the
former comparison could be the result of the increased exploratory behavior
in the semantic space required to generate creative stories31,81, given that the
instructions set a higher value of novelty for this condition compared to the
ordinary one. These areas have been predominantly indicated in the lit-
erature as crucial cortical hubs for the pursuit of exploration in decision-
making and the resolution of the exploration-exploitation trade-off in
reinforcement learning82–85. Also, the involvement of the medial parietal
cortex in the latter comparison could be ascribed to the higher semantic
constrains imposed in creative story generation, since this region is known
to be important for memory retrieval and attentional control17,86,87. Inter-
estingly, our observation of parietal involvement diverges from a recent
meta-analysis20 that found no parietal activation for semantic control. One
likely explanation is that the meta-analysis primarily examined simpler,
word-level or passive comprehension tasks, whereas our study employed an
active,more complexnarrative-generationparadigm.We speculate that this
increased complexity may specifically recruit parietal regions that do not
come into play when the task is limited to simpler or more passive forms of
language processing. Importantly, we observed the activity patterns in the
LFO and PFC being different in both comparisons, indicating a unique
control strategy to access semantic representations when participants
balanced novelty and appropriateness17,25,88. Thus, our results confirm and
extend previous studies to complex and naturalistic settings such as gen-
erative storytelling, since all the brain areas we found in our study were also
reported in the semantic cognition literature17.

Moreover, we also tried to directly predict the trial-by-trial fluctuations
of semantic distance and surprise during creative story generation from the
neural activity to investigate where in the brain these features were mostly
encoded. Strikingly, we observed that the semantic distance was encoded
predominantly in fronto-linguistic areas suchas LFO,while the surprisewas
encoded in parietal areas such as PPC. We interpreted these findings as
crucial confirmation of the differences we observed between conditions at
the behavioral level since these areas largely overlappedwith the comparison
results we obtained at the neural level in the searchlight analysis. In other
words, the semantic distance feature thatwas higher in creative compared to
ordinary stories was encoded in brain areas that belonged to the set of areas
that differentiated the neural activity underlying the ideation period of these
two conditions. Similarly, we found parietal cortices encoding the surprise
feature related to the areas resulting from the searchlight classification of the
creative versus randomstories.Note that, our semanticdistancemeasure is a
generalization to narratives of the usualmeasure applied in previous studies
to pairs ofwords31,43,73. Yet,we found surprisingly similar areas encoding this
measure, extending previous results from word pairs to complex sentence
level structures17. It is alsonoteworthy that ourmeasure of surprise suited for
long text data was better predicted by parietal areas that are found in the
literature to be involved in the computation of surprise in decision-making
tasks89.

Next, we focused our investigation on a more system-level, whole-
brain approach using Connectome Harmonic Decomposition (CHD)66,
which consists of decomposing the neural activity, via the structural con-
nectivity matrix, into its connectome harmonic modes ranging from low to
high spatial frequency patterns. CHD offers a foundational shift from the
traditional perspective that views brain activity as consisting of isolated
spatial units, presenting additional and complementary insights that the
location-focused approach does not capture68. We found that low-medium
spatial frequency patterns discriminated mostly creative from ordinary
story generation, while high frequency connectome harmonics differ-
entiated creative from random stories. Also, we observed how the features
representing novelty and appropriateness of the stories were encoded in
low-medium frequency connectomeharmonics. Generally, we showed how
the neural dynamics at the whole-brain is arranged in specific frequency
patterns of connectome harmonics during story ideation requiring the
modulation of different abstract features. Note that, the transition from low

https://doi.org/10.1038/s42003-025-07913-3 Article

Communications Biology |           (2025) 8:513 8

www.nature.com/commsbio


to high spatial frequencies can be interpreted as a growing decoupling of
functional neural activity from the underlying structural connectivity90,91.
Therefore, theCHDframework allowedus to reveal themulti-scale network
organization of the connectome as well as the asymmetric relationship
between brain structure and function when participants performed natur-
alistic story generation68.

Then, we turned our investigation to study functional connectivity
among thebrain areaswe foundpreviously. Basedalso onprevious results in
the literature about semantic cognition17,41, we identified and selected the
DMN, SAN, and FCN and compared the within and between functional
coupling among the conditions. Recent evidence has highlighted the
importance of these large-scale brain networks for domain-general pro-
blem-solving and their causal role in information processing during task-
related decision-making92. We observed creative story generation being
characterized by an increased FC within the DMN and between the DMN
and SAN compared to ordinary generation and by increased coupling
between FCN and SAN compared to random generation. These findings
highlight previous findings on the role of the default network being impli-
cated in spontaneous associations41,93,94 and control network being related to
attentional inhibition95,96. Interestingly, our results suggest that the salience
networkmay be responsible for orchestrating the activity of the default and
control network when the balance between novelty and appropriateness is
required, which falls well in line with previous research in this
direction41,92,97.

Finally, we investigated the temporal irreversibility of the neural
dynamics underlying the story ideation. We achieved this by observing the
temporal asymmetry between directed functional couplings among brain
areas98. The more asymmetrical is the lagged interaction between two areas
in the temporal domain, the more the system is irreversible. Conversely, if
there is no difference between the temporal sequence of brain states in
forward or reverse mode, then the system is reversible. Crucially, this
temporal irreversibility can be seen as amarker of directed informationflow
between brain regions, with higher irreversibility signaling a more pro-
nounced hierarchy (more directed interactions) of causal interactions in the
neural dynamics. Remarkably, we found that creative stories required a
higher level of irreversibility compared to both ordinary and random ones.
In other words, there was a higher level of hierarchical processing among
critical cortical hubs,which comprised linguistic, visual andhigh-level areas,
during the ideation of a creative story. This could be explained by the
observation that creative stories required generally more effort than the
control ones, since the need to balance two essential features as novelty and
appropriateness, which is reflected in the higher need to orchestrate and
structure the neural dynamics to reach the creative solution. Notably, we
observed this effect at long delays in the order of 8 to 15 seconds. We
reasoned that this is line with the intrinsic time scale of the generative task,
since generating a story requires much more recurrent cognitive dynamics
than simpleword associations,which can span several seconds.Moreover, it
is also important to note that the notion of temporal irreversibility is closely
tied to the concept of entropy production, which is not equivalent to
entropy. Entropymeasures the degree of disorder in a system, and it reaches
itsmaximumat thermodynamic equilibrium,where the systemhas diffused
into the largest possible number of states. At this point, entropy production
becomes zero because the systemno longer changes its distribution of states.
In order words, if the entropy of the system ismaximum, there is no chance
to increase it. At thermodynamic equilibrium, the probability distribution
over the system’s microstates becomes stationary, even though individual
state transitions continue, the overall distribution remains unchanged,
resulting in zero net entropy production. Once the system is driven away
from equilibrium, the absence of detailed balance leads to entropy pro-
duction and marks the emergence of temporal irreversibility. We high-
lighted this distinction since there is reported in the literature evidence for
increased resting-state entropic brain dynamics in divergent thinking99. Our
irreversibility results contrast these previous findings, since higher irrever-
sibility are linked to lower entropic states. We propose three main expla-
nations for this discrepancy. First, the earlier work relied on correlating

resting-state measures with behavioral performance rather than directly
assessing the entropy of neural dynamics during creative ideation, as we do
by focusing on the ideation period itself. Second, the reported findings were
primarily regional (mostly localized to left frontal areas), whereas our results
capture network-level dynamics across the brain. Third, the task in that
prior study focused exclusively on novelty, whereas our paradigm addresses
both novelty and appropriateness, thus encompassing the full range of
creative cognition processes. In sum, to our knowledge, our study is the first
to establish the level of entropyproduction, and indirectly the entropy, of the
neural dynamics at the network level during the ideation of creative
narratives.

Building on our findings, these offer promising avenues for investi-
gating how narrative generation processes may be altered in clinical
populationswhere language or semanticmemory function is compromised,
such as individuals with schizophrenia or other disorders affecting semantic
control. Tracking the neural signatures of generative storytelling identified
here could shed new light on the cognitive and neural disruptions that
underlie clinical language and high-level cognitive processing deficits.
Likewise, examining how these findings about the neural dynamics of
narrative production are also present in children could reveal important
milestones in the maturation of semantic control.

In conclusion, our results highlight the neural mechanisms underlying
the regulation of semantic exploration during naturalistic narrative pro-
duction and contribute to a deeper understandingof the neuralmechanisms
underlying the role of semantic control in generative storytelling.

Methods
Participants
The initial sample included twenty-five individualswhowere recruited from
the University of Trento through advertisements in online platforms. None
of the volunteers had a history of psychiatric or neurological disorders, were
on psychoactive drugs, or had anyMRI-related contraindications. Of the 25
volunteers, one was removed because of technical issues during the
recording of behavioral data. Thus, the final sample used for the analysis
included 24 healthy individuals (50% female), Italian language speakers,
aged between 19 and 33 years (M = 25.67, SD = 4.48). The study protocol
(2020–018) was approved by theHumanResearch Ethics Committee of the
University of Trento. All ethical regulations relevant to human research
participants were followed. Participants provided their informed consent
and were compensated for their participation.

Stimuli
The word stimuli were extracted from a starting pool of 60 concrete words
from 6 categories (plants, jobs, objects, animals, places, vehicle). The length
of the words was controlled, ranging from 3 to 8 letters. Since the word
stimuli were presented in triplets, we computed all possible combinations of
words with the constrain that a triplet can contain maximum one word per
category. Then, we computed the semantic similarity for each pair of words
inside a triplet (word 1 - word 2; word 1 - word 3; word 2 –word 3), using a
word2vecmodel architecture calledContinuous BagOfWords (CBOW)100.
TheCBOWmodel is a deepneural network that is trained to predict a target
word according to its context. Thismodel was trained onWikipedia articles
and the OSCARmultilingual corpus101 and its output is a 300-dimensional
vector. To compute the semantic similarity, we calculated the cosine dis-
tance between the two vectors associated with the considered words. Also,
we extracted the word frequency of each word based on the PAISÀ
corpus102, which comprises about 20M tokens,mainly includingWikipedia
pages and, to a minor extent, Wikibooks and Wikinews documents. Fre-
quency values were normalized using the minmax scaler in the range of 0
and 1. Once we had semantic similarity and frequency values for all the
triplets, our goal was to select the 24 triplets for the experiment based on the
followingcriteria. First, the semantic similarityof eachof the3pairsofwords
has to be somehow in themiddle, in order to avoid triplets of words that are
semantically too close or too distant from each other. Therefore, we set the
ideal value of the semantic similarity to 0, since this measure ranges from -1
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to 1. Second, as for the semantic similarity, the frequency value has to be
neither too high nor too low, therefore we set the ideal value to 0.5. Since we
have to select these triplets based on 6 values (3 semantic similarity pair
values, 3 word frequency values) we use the Mean Square Error (MSE) to
quantify how close these values are to the ideal target values. The final set of
stimuli used in the experiment consists of the 18 triplets that have the lowest
MSEvalue anddonot containwords that have beenalready selected inother
triplets. For an extensive description of the cued words listed in the Sup-
plementary Materials, see Table S1.

Procedure
Participants were instructed to perform a story generation task (SGT). A set
of three target words was presented to participants and they were asked to
thinkof aplot of a story that included thesewords and thenvocalize it.Word
triplets were controlled for possible semantic confounds (e.g. semantic
similarity, length in letters, avoiding category repetition etc.) and grouped in
three sets of 8 word triplets each. The experiment consisted of three con-
ditions where individuals performed the SGT according to different
instructions31,43. For the ordinary condition, the instructions were: “When
you see three words, use them all to formulate an appropriate, unoriginal
story. By ‘ordinary’wemean a coherent, sensible, common story that could
happen often. A story that would probably come to mind for many people
when they read the words presented.”. For the random condition, the
instructions were: “When you see three words, use them all to formulate an
inappropriate and original story. By ‘Random’ we mean an unusual, non-
sensical and infrequent story. A story that would not occur mind of any
other person when reading the words presented.”. For the creative condi-
tion, the instructions were: “When you see three words, use them all to
formulate an appropriate and original story. By ‘creative’ we mean a story
that is coherent and makes sense, but in an unusual and infrequent way. A
story that is neither ordinary nor random and that would come tomind for
few other people when read the words presented.”. We also presented an
exemplar story for each condition based on a triplet word that was not
included in the task. Participants completed the SGT in three runs of a block
design. The order of conditions and the assignment of word triplet sets to
each conditionwere counterbalanced across participants.While the order of
triplet presentation within each condition was randomized across partici-
pants, the order of words within a triplet remained fixed. Each of the three
blocks consisted of 8 trials resulting in a total of 24 stories per participant.
Before starting the experiment, in order to familiarize themselves with the
task, participants performed2practice trials usingwords that didnot appear
in the word stimuli used in the experiment. The time-course of a single trial
(90 s) is illustrated in Fig. 1d. Each trial began with a fixation-cross in the
middle of a black screen as a baseline for 25 sec. Then, the word triplet was
shown for 5 sec. When the words disappeared from the screen, a fixation-
cross appeared in themiddleof ablack screen indicating thebeginningof the
ideationperiod, inwhichparticipantshad togenerate the story in theirmind
for at most 30 seconds. Crucially, during this time period, no response was
required from participants. Afterwards, the image of a microphone pre-
sented on the screen signaled participants to verbally report the generated
story. They were instructed to report the story without further elaboration
from the ideation period. We used an MRI compatible microphone to
record the participants’ responses. This fixed-timing approach ensures that
the number of trial repetitions and time spent on the story ideation is equal
across participants, which implies higher experimental control enabling a
more straightforward analysis of the brain data. The experimental proce-
dure was implemented using Opensesame103 with PsychoPy as the
backend104.

Behavioral data analysis
We started our analysis of the behavioral data by enrolling 2 independent
human experts in the Italian language to faithfully transcribe the reported
stories into text. Only one story from one participant was not possible to
decode from the audio recording and this trial was excluded from the
behavioral analyses as well as from all the subsequent neural analyses

involving the linguistic features of the stories. Then, we collected human
ratings from 6 raters which independently judged all stories from all par-
ticipants. We asked them to rate with a 5-point Likert scale (ranging from
“not at all” as 1 to “verymuch” as 5) each storywith their related triplet target
words on three scales, namely ordinary, random, and creativity.

Next, we analyzed behavioral data by means of recent advances in the
NLPfield, usingdeepneural networkmodels trainedon large corporaof text
data53,54. We opted for the adoption of these deep language models because
of their unique ability to handle complex textual data such as stories71,72.
Thus, we leveraged thesemodels to extractmetrics from the data that can be
seen as an operationalization of the featureswe asked participants to control
in the story generation, namely the novelty and appropriateness of the story.
For thenovelty feature,weusedword2vecmodels31,53 fromthedistributional
semantics framework to extract word embedding vectors from the stories.
There are mostly two versions of this model family, called Continuous Bag
OfWords (CBOW) and Skip-gram. Bothmodels employ a sliding window
approach to move through text corpora. CBOWmaximizes the probability
of the target given the context, while Skip-gram is trained vice versa100.
Notably, there is evidence in the literature that the hidden representations of
these models highly correlate with judgments of human relatedness73. We
used 3 pre-trainedmodels trained using differentmethods (CBOWor Skip-
gram) and different Italian text corpora for methodological robustness
reasons. The first was a CBOW model trained using fastText on a con-
catenation of theCommonCrawl andWikipedia105, while the secondmodel
was trainedusing the Skip-gramapproachonWikipedia106. The thirdmodel
was also a Skip-gram model trained using fastText on the OpenSubtiles
corpus107. All themodels we used here were trained with a window size of 5,
10 negatives, and an embedding dimensionality of 300. We extracted word
embeddings of the target and non-target words present in each story,
includingverbs, adjectives, andnouns in their lemmatized form.Weexclude
fromthis analysis stopwords.Thus, by lettingϕt andϕnt represent the sets of
target andnon-targetwords in the stories, the semantic distancemetricSD
is defined as the average cosine distance between each target word wi ∈ ϕt
and all non-target words wj ∈ ϕnt:
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where ϕt
�� �� and ϕnt

�� �� denote the cardinality of the target andnon-targetword
sets, respectively, and N represents the embedding dimensionality.

For the appropriateness feature, we capitalized on current state of the
art transformer architectures forNLP54,75, namely the Bidirectional Encoder
Representations from Transformers (BERT) model. Trained on vast
amounts of text data, BERT captures complex syntactic and semantic
dependencies between words, accounting for the full context of a sentence
by analyzing words bidirectionally (i.e., in both forward and backward
directions). It does so by employing the Transformer75, a deep neural net-
work architecture that operates on the mechanisms of attention, enabling
the model to focus on various elements of the text. For the same metho-
dological robustness reasonsas above,weused2 instancesof themodel from
HugginFace108, namely the Italian cased BERT-XXL109, trained on Wiki-
pedia and the OPUS corpora110, and BERTino111, a distilBERT model112

trainedon thePaisa and ItWaCcorpora102. Thesemodels allowedus tomask
the target words from each story and let the model predict the most
appropriate word to fill themasked tokens. Given a sequence of words as in
our stories, the BERT model inputs the “tokenized” version of the story
S ¼ ft1; t2; :::; tMg, where ii is the i-th token in the story and M is the
number of tokens. For the set of target words ϕt � S, we computed the
negative log-likelihood (NLL) of observing each target token ti 2 ϕt in its
context as provided by the BERT output. Thus, for a given context CðtiÞ
around the target token ti, where C ti

� � ¼ S n ti
� �

, BERT generates the
probability distribution P tiC ti

� �� �
over the possible words at the place of

themasked ti. Thus, we computed our surprisemetric δ as the averageNLL
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across all target words in a story:

δ ¼ 1

ϕt
�� ��

X
ti2ϕt

�log P tiC ti
� �� �

ð2Þ

MRI data acquisition
Imaging data were acquired using a 4 T Bruker MedSpec Biospin MR
scanner with a birdcage transmit and 8-channel receive head radio-
frequency coil. The scanning duration of each fMRI session was approxi-
mately 12min (730 volumes). fMRI images were acquiredwith a single shot
T2*-weighted gradient-recalled echo-planar imaging (EPI) sequence (TR
= 1000ms, voxel resolution = 3 × 3 × 3 mm3, TE = 28ms, FA = 59°,
FOV = 210 × 210mm2; slice gap, 0 mm). Moreover, a structural T1-
weighted anatomical scan was acquired (MP-RAGE; 1 × 1 × 1 mm3; FOV,
256 × 256mm2; 176 slices; GRAPPA acquisition with an acceleration factor
of 2; TR, 2530ms; TE1 = 1.64ms, TE2 = 3.5ms, TE3 = 5.36ms, TE4 =
7.22ms; inversion time (TI), 1100ms; 7° flip angle).

Anatomical data preprocessing
Results included in this manuscript come from preprocessing performed
using fMRIPrep 23.1.3 (RRID:SCR_016216)113,114, which is based on
Nipype 1.8.6 (RRID:SCR_002502)115. A total of 1 T1-weighted (T1w)
images were found within the input BIDS dataset. The T1-weighted
(T1w) image was corrected for intensity non-uniformity (INU) with
N4BiasFieldCorrection116, distributed with ANTs (RRID:SCR_004757)117,
and used as T1w-reference throughout the workflow. The T1w-reference
was then skull-stripped with a Nipype implementation of the antsBrai-
nExtraction.sh workflow (from ANTs), using OASIS30ANTs as target
template. Brain tissue segmentation of cerebrospinal fluid (CSF), white-
matter (WM) and gray-matter (GM) was performed on the brain-
extracted T1w using fast (FSL, RRID:SCR_002823)118. Volume-based
spatial normalization to one standard space (MNI152NLin2009cAsym)
was performed through nonlinear registration with antsRegistration
(ANTs), using brain-extracted versions of both T1w reference and the
T1w template. The following template was selected for spatial normal-
ization and accessed with TemplateFlow (23.0.0)119: ICBM 152 Nonlinear
Asymmetrical template version 2009c (RRID:SCR_008796; TemplateFlow
ID: MNI152NLin2009cAsym)120.

Functional data preprocessing
For each of the 3 BOLD runs found per subject (across all tasks and
sessions), the following preprocessing was performed. First, a reference
volume and its skull-stripped version were generated using a custom
methodology of fMRIPrep. Head-motion parameters with respect to the
BOLD reference (transformation matrices, and six corresponding rotation
and translation parameters) are estimated before any spatiotemporal fil-
tering usingmcflirt (FSL)121. BOLD runswere slice-time corrected to 0.452 s
(0.5 of slice acquisition range 0s-0.905 s) using 3dTshift from AFNI
(RRID:SCR_005927)122. The BOLD time-series (including slice-timing
correctionwhenapplied)were resampledonto their original, native spaceby
applying the transforms to correct for head-motion. These resampled
BOLD time-series will be referred to as preprocessed BOLD in original space,
or just preprocessed BOLD. The BOLD reference was then co-registered to
the T1w reference using mri_coreg (FreeSurfer) followed by flirt (FSL)123

with the boundary-based registration124 cost-function. Co-registration was
configured with six degrees of freedom. Several confounding time-series
were calculated based on the preprocessed BOLD: framewise displacement
(FD), DVARS and three region-wise global signals. FDwas computed using
two formulations following Power (absolute sumof relativemotions)125 and
Jenkinson (relative root mean square displacement between affines)121. FD
and DVARS are calculated for each functional run, both using their
implementations inNipype (following the definitions byPower et al.125). The
three global signals are extracted within the CSF, the WM, and the whole-
brain masks. Additionally, a set of physiological regressors was extracted to

allow for component-based noise correction (CompCor)126. Principal
components are estimated after high-pass filtering the preprocessed BOLD
time-series (using a discrete cosine filter with 128 s cut-off) for the two
CompCor variants: temporal (tCompCor) and anatomical (aCompCor).
tCompCor components are then calculated from the top 2% variable voxels
within the brainmask. For aCompCor, three probabilisticmasks (CSF,WM
and combined CSF+WM) are generated in anatomical space. The
implementation differs from that of Behzadi et al.126 in that instead of
eroding the masks by 2 pixels on BOLD space, a mask of pixels that likely
contain a volume fraction of GM is subtracted from the aCompCor masks.
This mask is obtained by thresholding the corresponding partial volume
map at 0.05, and it ensures components are not extracted from voxels
containing a minimal fraction of GM. Finally, these masks are resampled
into BOLD space and binarized by thresholding at 0.99 (as in the original
implementation). Components are also calculated separately within the
WMandCSFmasks. For eachCompCor decomposition, the k components
with the largest singular values are retained, such that the retained com-
ponents’ time series are sufficient to explain 50percent of variance across the
nuisance mask (CSF, WM, combined, or temporal). The remaining com-
ponents are dropped from consideration. The head-motion estimates cal-
culated in the correction step were also placed within the corresponding
confounds file. The confound time series derived from head motion esti-
mates and global signals were expanded with the inclusion of temporal
derivatives and quadratic terms for each127. Frames that exceeded a
threshold of 0.5 mm FD or 1.5 standardized DVARS were annotated as
motion outliers. Additional nuisance timeseries are calculated by means of
principal components analysis of the signal found within a thin band
(crown) of voxels around the edge of the brain, as proposed by Patriat
et al.128. The BOLD time-series were resampled into standard space, gen-
erating a preprocessed BOLD run in MNI152NLin2009cAsym space. First, a
reference volume and its skull-stripped version were generated using a
custommethodology of fMRIPrep. All resamplings can be performedwith a
single interpolation step by composing all the pertinent transformations (i.e.,
head-motion transform matrices, susceptibility distortion correction when
available, and co-registrations to anatomical and output spaces). Gridded
(volumetric) resamplings were performed using antsApplyTransforms
(ANTs), configured with Lanczos interpolation to minimize the smoothing
effects of other kernels129. Non-gridded (surface) resamplings were per-
formed usingmri_vol2surf (FreeSurfer).

fMRI data analysis
After generally preprocessing the signal with fMRIPrep, we proceeded to
analyze the fMRI data using the following steps. First, we cleaned the images
by performing linear detrending, low-pass (butterworth with a cutoff of
0.09Hz), andhigh-pass (butterworthwith a cutoff of 0.008 Hz)filtering and
confounding regression analyses on the preprocessed BOLD signal, in this
exact order.We included in the confounder variables taken from fMRIPrep
the six rigid-body motion parameters (three translations and three rota-
tions) and the estimated global, cerebrospinal fluid (CSF) and white matter
signal, alongside the first derivatives of all these variables, resulting in a total
of 18 variables.Weperformed all the analyses using the preprocessed BOLD
signal, instead of using a conventional general linear model (GLM)
approach.Wemade this choice since the period of interest (i.e., the ideation
period) lasted for 30 seconds and we considered the adoption of a GLM
approach unreasonable. This is because it would have implied that voxel
activations should have lasted (on average) for such long time period. Thus,
we extracted only the volumes belonging to the ideation period (30 in our
case since we had a TR of 1 second), for each participant, condition, and
trial. As a sanity check, we computed the variance of the signal across trials
(stories) along each volume for each participant and condition to confirm
that using the BOLD signal in the whole ideation period was capturing
relevant brain activity.We also averaged the results across voxels in both the
whole brain and all the 7 regions of interest (ROI) taken from theYeoatlas76.

Then, we computed the inter-subject correlation (ISC)63,64 to investi-
gate the similarity of the neural dynamics during the ideation period across
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participants. To this end, we used the Schaefer atlas130 with 400 ROIs and
averaged the activity of the voxels within each ROI. Then, for each condi-
tion, we computed the correlationmatrix between all pairs of participants in
each ROI, using the entire BOLD time-series of the ideation period. Cru-
cially, we computed the correlation matrix only using the stories across
participant who were cued by the same target word triplets and average the
results across target word triplets. Finally, we averaged the lower triangle of
the correlation matrix to obtain a ISC value for each ROI.

Next, we performed Multivariate Pattern Analysis (MVPA) on the
BOLD signal of the ideation period using the searchlight approach77. We
used the Schaefer atlas130 with 400 ROIs to select the voxels as local features
on which performing the appropriate analysis. Thus, we conducted classi-
fication analyses using the support vector machine model with the radial
basis function as kernel (rbf-SVM) and a regularization value C of 1. Model
performance was evaluated using classification accuracy. We classified all
the possible pairs of conditions at the group-level, by concatenating all the
stories from all participants. In other words, for each selected ROI we had a
matrix with as many rows as multiplying the number of participants, two
times the number of stories (since was a binary classification) per condition
and the number of volumes per story, and as many columns as the number
of voxels in eachROI.Weopted for performing group-level analysis because
it allows us to identify population-wise invariants from neural activity
patterns78 and to control for the effects of the target words that were
counterbalanced across participants. Similarly, we performed regression
analyses to investigate where the semantic distance and surprise features
were mostly encoded using the linear regression model with the ordinary
least square estimator. Model performance was evaluated using mean
square error.

Then, we continued our data analysis by applying the Connectome
Harmonic Decomposition (CHD)66 framework to our data. CHD decom-
poses a whole-brain activation signal in terms of harmonic modes of the
human connectome. Each connectome harmonic mode quantifies to what
extent the functional brain activity patterns deviate from the organization of
the underlying structural connectome66,68 based on its granularity (i.e., its
spatial frequency value). Thus, CHD is a complementary approach to our
previous searchlight analysis, since each harmonic is a whole-brain pattern
with a characteristic spatial scale while in the searchlight approach, the
implicit is that the brain activity can be seen as a composition of signals from
localizedunits.We started ourworkflowby computing a template structural
connectivity matrix from openly available data since we did not record
individual DTI data. We used data from 88 healthy control individuals
participating in the Early-Stage SchizophreniaOutcome study131. Individual
structural connectivity matrices were already provided and arranged
according to the Automated Anatomical Labeling (AAL) atlas132 with 90
ROIs. We averaged them across participants, symmetrized the resulting
matrix by summing it with its transposed and dividing by 2, and binarize it
with a threshold corresponding to the average value across all connections.
Then, we used surface reconstructed data from the fsaverage133 as the
template brain surface. We used the pial reconstructed surface with 5124
vertices for both hemispheres. With this data, we constructed the template
structural connectome as a binary adjacency matrix A, using each cortical
surface vertex as a node: for each pair i and j of the n = 5124 cortical nodes,
each entryAi;j was set to 1 if there was a whitematter tract connecting them
and 0 otherwise. We achieved this by transposing the data from the pre-
viously computed structural matrix to the template adjacency matrix A via
identifying the regions in fsaverage of the AAL atlas and connecting them
accordingly. This procedure accounted for the global or long-range struc-
tural connections given by the white matter tracts that wire the brain areas.
Butwe also accounted for short-range grey-matter connections by setting to
1 entries of the matrix A whose distance between the nodes was less than
10mm, since it has been shown the importance of accounting for both local
grey-matter and long-range white-matter structural connectivity patterns
for the estimation of the connectome harmonics134. We projected the pre-
processed BOLD signal to the cortical surface coordinates using the regis-
tration fusion method135, which allows accurate projection from standard

volumetric coordinates to fsaverage cortical surface. Then, for extracting the
connectome harmonics from the template structural connectome, we
defined the degree matrix D of the structural graph as:

Di;i ¼
Xn
j¼1

Ai;j ð3Þ

We then calculated the symmetric graph LaplacianΔG on the template
adjacency matrix A to estimate the Laplacian of the human structural
connectome:

ΔG ¼ D�1
2 LD�1

2;with L ¼ D� A ð4Þ

Thus, we computed the connectome harmonics φk, k 2 1; :::; nf g by
solving the following eigenvalue problem:

ΔGφk vi
� � ¼ λkφk vi

� �8vi 2 V;with 0 < λ1 < λ2 < . . . < λn ð5Þ

where λk is the corresponding eigenvalue of the eigenvector φk and V is the
set of cortical vertices. Once obtained the connectome harmonics, we
decomposed the spatial pattern of neural activity Ft(v) over vertices v and
time (volume) t as a linear combination of the set of connectome harmonics
Ψ ¼ φk

� �n
k¼1:

Ft ¼
Xn

k¼1

ωk tð Þφk vð Þ ð6Þ

with theweightωk(t) of each connectome harmonicφk at volume twas
estimated as theprojectionof the fMRIdataFt(v) ontoφk via thedot product
operation :h i:

ωk tð Þ ¼ Ft; φk

� 	 ð7Þ

Thus, our new data representation was a matrix for each story with
rows as volumes and with columns as the weights ωk(t) assigned to each
connectome harmonic mode sorted in ascending order from the values of
the corresponding eigenvalues λk. We conducted MVPA analyses such as
classification and regression analyses with the same hyperparameters as in
the searchlight analysis to investigatehowspatial frequencypatternsdiffered
between each pair of conditions and how the behavioural features were
encoded in the connectome harmonic space. For this, we adopted a sliding
window approach by selecting for each run the 4% of the total harmonics
(i.e., 205 harmonics) and a step size equal to the 2%.

In addition, we conducted functional connectivity analysis69 to quan-
tify the strength of functional coupling between specific brain areas during
the story ideation period. Thus, we averaged the activity of the voxels within
each of the 400 ROIs in the Schaefer atlas130 and defined the functional
connectivitymeasure as the inverse hyperbolic tangent function (arctanh)of
the Pearson correlation coefficient between the two selected ROI time-
series, for each story and participant. We average all the connectivity
matrices computed per story within a participant to have one matrix per
participant. Based on our results from the searchlight analysis and previous
findings in the literature about semantic control, we selected three networks
of areas using the Yeo atlas76, namely the Default Mode Network (DMN),
the Salience Attention Network (SAN) and the Frontoparietal Control
Network (FCN). We computed the functional connectivity measure both
within and between these networks for all possible pairs of ROIs and
averaged the resulting values.

Finally, we also investigated the temporal irreversibility of the neural
dynamics98,136–138 in the ideation period using time-lagged directed con-
nectivity analysis at the whole-brain across all brain areas. The key idea is to
detect the temporal irreversibility (the arrow of time) through the asym-
metry in the causal relationships between forward and artificially reversed
backward time series. Specifically, we assessed temporal irreversibility
between two ROI zero-meaned time series ROIi tð Þ and ROIj tð Þ and their
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reversed backward version ROIðrÞi tð Þ and ROIðrÞj tð Þ, obtained by flipping the
time ordering. For forward and time-reversed evolution, the causal
dependency is measured via the time-lagged correlation, for each story and
participant, defined as:

Cf τð Þ ¼ corr ROIi tð Þ; ROIj t þ τð Þ

 �

ð8Þ

Cr τð Þ ¼ corr ROI rð Þ
i tð Þ; ROI rð Þ

i t þ τð Þ

 �

ð9Þ

Notably, if the system is reversible, then the lag τ will not induce any
temporal asymmetry in the cross correlation between the two ROIs. We
computed Cf(τ) and Cr(τ) across all pairs of the 400 ROIs (averaging the
activity of all voxels in that region) in the Schaefer atlas130, with the lag τ
ranging from 1 to 15. We opted for this lag range since the ideation period
consisted of 30 volumes, thus at the longest delay there are enough samples
to compute the cross correlation in a reliable way. We then calculated the
irreversibility matrix as the squared difference between the forward and
reversed time-lagged correlations:

R τð Þ ¼ Cf τð Þ � Cr τð Þ

 �

°2 ð10Þ

where ∘2 stands for element-wise squaring operation. We average all the
irreversibility matrices computed per story within a participant to have one
matrix per participant. To examine the level of irreversibility between
conditions across the lag dimension, we split the irreversibility values in
short (from lag 1 to 7) and long (from lag 8 to 15) delay clusters and average
the results.

Statistics and Reproducibility
Statistical comparisons of the behavioral data (N = 24) were assessed by
means of one-tail paired t-tests (α = 0.05 if unspecified) as a statistical test
and Cohen’s d as a measure of effect size alongside its 95% confidence
interval values. For the fMRI data analysis (N = 24), statistical analysis of
the intersubject correlation was carried out using a permutation
approach. A null distribution was generated by creating surrogate data
via circularly shifting the time courses of the participants in the ideation
period and repeating the ISC with 5000 iterations. P-values were defined
as the proportion of permuted ISC values that were exceeded the
observed ISC value at each ROI. Statistical analysis of the classification
and regression MVPA analyses were carried out using the 5 × 2 cross-
validation F-test139. We repeated 5 times a two-fold cross validation (i.e.,
50% split) and measured the performance of the model against a model
trained with permuted labels for 100 random permutations. Thus, we
computed the pseudo f-statistic and the p-value using an F distribution
with 10 and 5 degrees of freedom and used the difference between the
models’ performance as a measure of effect size. Statistical analysis of the
functional connectivity results was carried out with the same approach as
for the behavioral data. Multiple comparison correction was performed
using False Discovery Rate (FDR) correction140.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Minimally preprocessed behavioral and fMRI data for reproducing the
results of this study are openly available at Open Science Framework
(OSF)141 with the following link https://osf.io/gxfpc/. Source data are pro-
vided as Supplementary Data.

Code availability
The deep language models utilized in this study are available at the
following links: - The first word2vec model was trained with the CBOW

on Italian Common Crawl and Wikipedia using fastText. https://fasttext.
cc/docs/en/crawl-vectors.html - The second model was trained with the
Skip-grammethod on ItalianWikipedia. https://wikipedia2vec.github.io/
wikipedia2vec/pretrained/ - The third model was trained with the Skip-
gram method using fastText on the Italian OpenSubtiles corpus. https://
github.com/jvparidon/subs2vec - The first BERT transformer model
bert-base-italian-xxl-uncased is available on HugginFace at https://
huggingface.co/dbmdz/bert-base-italian-xxl-uncased - The second Dis-
tilBERT model named BERTino is available on HugginFace at https://
huggingface.co/indigo-ai/BERTino.
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