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The lifelong nonlinear development of
spatial variability of brain signals
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The physiological information carried by brain signals is distinguished by their mean and variability.
Research has indicated that both the variability of local signals and the spatialmean of thewhole-brain
signal (known as the global signal, GS) are sensitive to brain development. This raises the question of
whether the spatial variability of the whole-brain signal, referred to as global variability (GV), could
potentially serve as a more specific marker of brain development. We first established the reliability of
GV and its topography (GVtopo) using data from the Human Connectome Project (HCP). Then, we
examined the age-related patterns of GV and GVtopo in the Nathan Kline Institute Rockland Sample
(NKI-RS; N = 968, ages ranging from 6 to 85 years) and validated these findings in an independent
dataset from Southwest University (SALD; N = 492, ages ranging from 19 to 80 years). Our results
demonstrated the robustness of GV and GVtopo, with intra-class correlation coefficients surpassing
0.61. Both GV and GVtopo exhibited distinct non-linear developmental trajectories, differring from
those of GS and its topography. Furthermore, GV demonstrated substantial age-predictive capability,
underscoring its potential as a valuable marker of brain development and its significance for future
age-related research.

The human brain evolves at multiple spatial and temporal scales, ranging
fromcells to thewhole brain andmilliseconds to the lifespan1,2. Resting-state
functional magnetic resonance imaging (rs-fMRI) has emerged as a pre-
dominant approach for unveiling the age-related development of the
human brain, from clusters of neurons to large-scale brain networks3–5.
Using rs-fMRI, numerous studies have reported age-related changes in
functional organization in almost all brain regions and networks3,6,
emphasizing the necessity of whole-brain assessments in understanding
brain development.

The global signal (GS) is formed by averaging the signals of all
voxels in the brain. Initially, the GS is often treated as noise during image
preprocessing7. However, recent studies indicate that GS regression
should be applied cautiously as a data-cleaning strategy. This is because
the GS, as a comprehensive measure of whole-brain signals, reflects
neural activity along with non-neural signals, such as cardiac and
respiratory noise8. Research involving mice9,10, monkeys11–13, and
humans14–17 has indicated that the GS, together with its topography
(GStopo), represents an intrinsic spatiotemporal organization of the
brain’s architecture14,18,19. The GS and GStopo are genetically constrained
and sensitive to the level/state of consciousness20,21, mental disorders22,
and brain aging23–25. Just like the global average temperature, they hold a

unique value for our understanding of overall dynamics in brain
function.

Despite GS providing spatially averaged amplitudes of brain signals,
our knowledge of spatial variability remains limited. Recent rs-fMRI
investigations have underscored that themean and variability of time series
of brain signals reflect distinct mechanisms associated with aging and
cognition26–28. This distinction could also be applicable to spatial sequences.
Exploring spatial variability may reveal neural mechanisms underlying
cognition and mental disorders that mean values fail to capture29–31. For
instance, evidence indicates that patients with generalized anxiety disorder
show increased spatial variability29, demonstrating an inverted U-shaped
relationship with anxiety levels. Spatial variability is generally lower in task
states than resting states and is associated withmore functional interactions
between different brain regions30. Furthermore, rs-fMRI metrics have
shown effective prediction of an individual’s age, with temporal variability
demonstrating significantly higher predictive accuracy than temporalmean
for age estimation. Therefore, it is crucial to investigate whether spatial
variability outperforms spatial mean in age prediction and whether they
reflect different developmental characteristics of the brain.

To address these issues,we introduced the concepts of global variability
(GV) and GV topography (GVtopo) and investigated their age effects
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throughout the lifespan. Drawing on the algorithms of GS and GStopo32,33,
we defined the standard deviation of whole-brain signals at each time point
as GV and the Pearson correlation between GV and the spatial standard
deviation of each brain region as GVtopo. Our initial focus was to evaluate
the robustness of GV and GVtopo with the HCP dataset. Subsequently, we
investigated the age effects of GV and GVtopo using a large sample dataset
spanning the lifespan. To ascertain whether GV is an independent measure
from GS, we conducted identical analytical procedures to assess the age
correlation of GV after global signal regression (GSR) and to examine the
developmental trajectory of GS after global variability regression (GVR).
Our findings revealed distinct development patterns for GV and GS. Sig-
nificantly, the regression of GS did not impact the development pattern of
GV, and vice versa. This discovery strengthens the notion that GV contains
age-related information independently of GS. Finally, we utilized GV and
GVtopo as features in a support vector regression (SVR) analysis, revealing
their ability to predict age effectively. Overall, our results suggest that GV
and GVtopo represent unique developmental patterns of brain functional
organization, providing valuable insights into the neural basis of age-related
changes in brain function.

Results
The GV and GVtopo exhibited high degrees of test-retest
reliability
We employed four runs of rs-fMRI data from the HCP dataset to examine
the test-retest reliability of theGVandGVtopo. BothGV (ICC = 0.616) and
GVtopo (ICC = 0.978) yielded good reliability (Fig. 1), surpassing themean
reliabilities of traditional functional connectivity34 and brain activation35. As
shown in Fig. 1B, the spatial distribution of GVtopo followed a
ventromedial-dorsolateral pattern, with the lowest value located in the
parahippocampal gyrus and the highest in the parietal cortex, distinct from
the sensorimotor-association cortex pattern of GStopo36.

The quadratic relationship between age and GV/GVtopo
As shown in Fig. 2, there was a significant positive quadratic effect between
age and GV, characterized by its peak during early life and a subsequent
decline with age, stabilizing at approximately 50. In contrast, the GS was
essentially stable at all ages, consistent with the findings of Ao et al.25.

A curve-fitting analysis was conducted on both GVtopo and GStopo.
As illustrated in Fig. 3A, the developmental trend of GVtopo displayed a
U-shaped curve in the inferior frontal gyrus, thalamus, insula, amygdala,
parahippocampus, and hippocampus, while an inverted U-shaped curve
was observed in the posterior superior temporal sulcus, inferior parietal
lobule, precuneus, and cingulate gyrus. After GSR, the age-related fit
demonstrated a similar pattern of curve distribution (see Fig. 3B). In con-
trast, GStopo predominantly exhibited an inverted U-shaped curve across
the almost entire brain,withnonotable alterations in the age-related pattern
following GVR (Fig. 3C, D). These results demonstrate that GVtopo and
GStopo have opposing developmental trajectories and distinct spatial
patterns.

The GV can predict age better than GS, but it is even more
accurate when combined with their topographies
Just as timevariability shows robust predictive ability for age,GVexhibited a
significantly higher predictive potential for age thanGS (r2: 0.243VS. 0.007;
see Fig. 4A). When incorporating their topographical maps, both GV and
GS exhibited a similar level of predictive capability for age (r2: 0.311 VS.
0.332). Furthermore, the combination of GV and GS only marginally
enhanced predictive ability (r2: 0.376), indicating that both topological
structures may equally capture the developmental patterns of the brain.
These results were duplicated with the independent SALD dataset
(see Fig. 4B).

Discussion
Delineating the developmental characteristics of brain function is a highly
challenging problem. Our study demonstrated that GV and its topography
are robust indicators, showing apparent sensitivity to age-related changes
across the human lifespan. Notably, GV topography exhibited a U-shaped
pattern of brain development, varying distinctly from medial to lateral
regions, and this distribution was significantly different from that of GS
topography. Moreover, the age-predictive power of GV was much stronger
than that of GS. These findings highlight the potential of GV and its
topography as markers for assessing brain maturation and aging, offering
new insights into neural developmental processes.

GV and GVtopo are reliable indices
Various research fields, including neuroimaging, are confronting a severe
crisis in reproducibility37. Here, the reliability of GV and GVtopo was
established through ICC, which consistently exceeded 0.6 across the four
runs of HCP data, outperforming the ICC for FC (ICC < 0.6) derived from
theHCPtest-retest dataset38,39. Suchevidencepoints to the reproducibility of
GV and GVtopo as measures of brain function.

The non-linear relationship between age and GV
The positive quadratic relationship between GV and age, supported by
robustmeasurements, aligns with existing evidence illustrating the dynamic
age-related reorganization of the human brain40–43. White matter volume,
for instance, follows a non-linear trajectory, peaking in the fifth decade of
life. In contrast, the gray matter volume decreases gradually during the
fourth and fifth decades of life, while the mean cortical thickness and total
surface area diminish gradually until they stabilize after the age of 50
years44,45. These structural changes coincide with functional alterations in
the brain, which adjust its architecture to maintain flexibility and efficiency
in information processing46,47.

The synchronicity observed between the developmental trajectory of
the GV and that of brain structure implies that the GV reflects the spatial
complexity of the brain. This, in turn, mirrors the greater integration and
lesser separation of brain networks in older adults, which reaches a relatively
stable state around age 5046,48–50. Additionally, substantial evidence indicates
that the temporal variability of brain signals is associated with cognitive

Fig. 1 | The test-retest reliability of GV and
GVtopo. A The four colored dashes indicate the
distribution of GV among the 82 subjects for the
four Runs. The ICC of GV across the four runs is
0.616. B This panel presents the average GV topo-
graphy across all subjects for each Run. Z-values
were obtained using the Fisher z-transform of
Pearson correlation coefficients. The ICCofGVtopo
across the four runs is 0.978.
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flexibility, which is tuned by brain dynamics51. The similarity between the
developmental trajectories of cognitive flexibility and GV suggests that
spatial variability, like temporal variability, may play a role in cognitive
adaptability50.

Moreover, numerous studies point to an age-related inflection point
occurring between 35 and 55 years. This transition is primarily evident in
higher-order cognitive functions such as arithmetic, comprehension,
information, and vocabulary52, attentional functions like sustained
attention53 and conflict control54, and network properties such as global
strength of within-network connectivity55, rich club architecture and net-
work mean anatomical distance56, and the metabolic level of the basal
forebrain cholinergic system42. The U-shaped changes observed in these
brain and cognitive functions may reflect the brain’s ongoing requirement
for flexibility and stability across the lifespan, a hallmark of human intelli-
gence and cognitive abilities57. In older adults, the observed increase in GV
may signify a compensatory response, where heightenednetwork variability
is employed to counteract the decline in cognitive efficiency or to sustain
functional capacity in the face of structural brain changes that come with
aging23,25.

Differentiated age patterns of GVtopo and GStopo
Our findings indicate that bothGVtopo andGStopo are nonlinearly related
to age, exhibiting either U-shaped or inverted U-shaped trajectories. This
observation aligns with the nonlinear dynamics of the brain, suggesting that
nonlinear functions are more effective in portraying the brain’s develop-
mental trajectory than linear models58. However, we also note that the age

trajectories ofGVtopo andGStopo differ in the distribution of specific brain
regions. From a developmental perspective, GS and GV topographies likely
reflect complex, region-specific processes of development and aging within
the brain23.

The inverted U-shaped pattern observed in GStopo has been
associated with the maturation of brain networks during childhood and
adolescence, where increased connectivity and integration across
regions lead to a peak in global signal synchronization. In later adult-
hood, neurodegenerative processes, loss of synaptic density, and
decreasedefficiencyofbrainnetworks contribute todeclines in cognitive
function and neural synchrony45.

In contrast, GVtopo exhibits a different developmental trajectory,
showing a U-shaped pattern in the medial frontoparietal (M-FPN) and
lateral frontoparietal (L-FPN) networks, and an inverted U-shape in the
midcingulo-insular (M-CIN)network. These networks are derived from the
unified taxonomy proposed by Uddin et al., where M-FPN and L-FPN are
labeled as control and default, respectively, while M-CIN is associated with
salience59. Together, these networks facilitate cognitive flexibility and
adaptability to changing life demands, which evolve significantly through-
out an individual’s life50.

Specifically, the GVtopo in M-FPN and L-FPN is lower in early and
late life stages compared to middle age, indicating diminished modula-
tion within these networks. This likely leads to increased reliance on
crystallized knowledge and a decline in fluid cognitive skills60,61. Con-
versely, the positive polynomial trajectory of M-CIN may suggest that its
global coordination mechanism for maintaining network function differs

Fig. 2 | Distinct relationships between GV/GS and age. A The quadratic rela-
tionship between GV and age. B The quadratic relationship between GV and age
after GSR. C The weak correlation between GS and age. D The correlation between

GS and age diminishes after GVR. The drop line of each subplot is labeled with the
maximum/minimum value of the fitted curve.
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from that of M-FPN and L-FPN. This hypothesis is supported by evi-
dence from Zuo et al., who found that the M-CIN and FPN are not
similarly engaged during memory encoding tasks, potentially explaining
the observed age-related differences in background connectivity62. Fur-
thermore, the pattern of decreasing and then increasing GVtopo in
M-CIN may reflect a broader trend of differentiation and dediffer-
entiation within this network63.

Effective age prediction using GV and GVtopo
The temporal variability of brain signals outperforms their temporal mean
in predicting age64, as does the spatial variability compared to the spatial
mean. This underscores the significance of brain signal variability, in both
temporal and spatial dimensions, as a robust indicator of brain functional
development and, potentially, of other brain functions and dysfunctions.
The predictive performance increased when GS/GStopo and GV/GVtopo

Fig. 3 | TheGVtopo primarily exhibits a positive quadratic relationship with age,
whereas the GStopo mainly shows a negative quadratic relationship with age.
AThe quadratic relationship betweenGVtopo and age.BThe quadratic relationship

between GVtopo and age after GSR. C The quadratic relationship between GStopo
and age.DThe quadratic relationship between GStopo and age after GVR. The cyan
dots in the brain map mark the brain regions with the highest R2 values.
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were incorporated as additional features, suggesting that synchronization
between global and local signals provides valuable complementary infor-
mation for age prediction,which is not capturedby individual global or local
signals alone. Given the different timescales of local signals, global signals,
and their synchronization17,65, a comprehensive understanding of brain
function necessitates the consideration of the spatiotemporal dynamics of
global topography.

We attained an R-value of 0.36 for the external validation in an inde-
pendent dataset. It is worth noting that the validation sample lacks parti-
cipants from the lower age range, whereas the metrics we examined
demonstrate swift alterations within this age range. This discrepancy may
underestimate the external validity. Nevertheless, the moderate effect size
indicates that themetrics are not just artifacts of the specific sample but have
broader applicability.

Limitations
This study has several limitations. First, the explanation of GV’s function-
ality, derived from its mathematical characteristics and age trajectory, is
conjectural and necessitates verification in various contexts. Second, GV
and its topographymay be susceptible to physiological noises. Even though
several denoising techniques have been utilized and their independence
from GS and GStopo has been proven, along with the revelation of their
developmental trajectories, there is still a need for a systematic evaluation of
the effects of various physiological noises on them.

Conclusion
By utilizing large-scale lifespan datasets, we validated the robustness of
global variability (GV) and its topography (GVtopo), demonstrating not
only their reliability but also their ability to reveal distinct, non-linear
trajectories of brain development that markedly diverge from traditional
global signal (GS) measures. Additionally, these metrics show enhanced
predictive accuracy for estimating age. This research signifies an
advancement in our understanding of brain development, moving
beyond conventional measures like GS by establishing GV as a refined
and sensitive marker of neural changes over the course of the human
lifespan. These works have advanced our understanding of the spatio-
temporal structure of the brain66, offering new avenues for compre-
hending the dynamic changes in brain function from a spatiotemporal
neuroscience perspective.

Materials and methods
Dataset
Weused theHumanConnectome Project (HCP) 100 unrelated dataset67 to
validate GV reproducibility. The Nathan Kline Institute - Rockland Sample
(NKI–RS) dataset68 was used to explore the age effect of GV and the pos-
sibility of age prediction by GV. The reproducibility of the age prediction
model was assessed using an independent Southwest University Adult
Lifespan Dataset (SALD)69. All ethical regulations relevant to human
research participants were followed.

Fig. 4 | Correlation of predicted age with actual age. A The NKI-RS dataset was
used as an internal validation with GV, GS, GVtopo, GStopo, and the different
combinations of them as predictive features, respectively. BModels trained on the
NKI-RS dataset were used to predict the age of the subjects in the SALD dataset. The
prediction performance is shown for the cases where GV, GS, GVtopo, GStopo, and

the different combinations of them are used as predictive features respectively. The
dash line in the scatterplot indicates y = x. NKI-RS The Nathan Kline Institute -
Rockland Sample, SALD The Southwest University Adult Lifespan Dataset, MAE
the mean absolute error.

https://doi.org/10.1038/s42003-025-07939-7 Article

Communications Biology | (2025)8:500 5

www.nature.com/commsbio


TheHCPdataset contains four runs of rs-fMRI data collected over two
days, coded in left-to-right and right-to-left phases, respectively (i.e.,
REST1_LR, REST1_RL, REST2_LR, and REST2_RL). The local Institu-
tional Review Board at Washington University in St. Louis approved the
collection. Informed consent was obtained from all the participants. Details
regarding recruitment and data collection are available at https://www.
humanconnectome.org. We adopted data using a minimal preprocessing
pipeline. These preprocessing steps include artifact removal, motion cor-
rection, and registration to the standard space. Linear trend, mean signal of
Friston-24 parameters, white matter (WM), cerebrospinal fluid (CSF), and
respiratory and cardiac noises were regressed out, smoothing with a full-
width half-maximum (FWHM) of 6mm, and temporal band-pass filtering
(0.01–0.1 Hz). Resting-state fMRI image processing was performed using
the DPARSF toolbox70.

NKI-RS is a large-scale lifespan sample (6–85 years old). The NKI
Institutional Review Board approved the scanning protocol. Informed
consent was obtained from all the participants. The details can be found at
http://fcon_1000.projects.nitrc.org/indi/enhanced. The rs-fMRI data were
preprocessed by removing the first ten time points, slice timing, realign-
ment, normalization, nuisance regression (linear trend, Friston-24 para-
meters, WM, and CSF), smoothing (FWHM= 6mm), and filtering
(0.01–0.1 Hz).

The SALD contained a total of 492 volunteers (19–80 years old)
recruited from SWU, China. This study was approved by the Research
Ethics Committee of the Brain Imaging Center of SWU following the
Declaration of Helsinki. Written informed consent was obtained from all
the participants. The details can be found at https://fcon_1000.pro-
jects.nitrc.org/indi/retro/sald.html. The preprocessing steps used were the
same as those used for theNKI-RS dataset. Participants whose headmotion
of rotation was > 2.0 °or translation > 2.0mm were excluded.

GS, GV, and their topography
For each participant, the GS/GV time series was obtained by calculating the
mean and standard deviation of the signals overall gray matter voxels
constrained by the binary BN_Atlas_246_3 mmmask at each time point71.
The GS topography is the Pearson correlation between the GS and local
signals16,72. Similar to the calculation ofGS topography, GV topographywas
calculated using the Pearson correlation between GV and the spatial
variability of each brain region (the standard deviation of the signal values
from all voxels within the region). The correlation coefficient r was trans-
formed into Z-values (transformed) for subsequent analyses8,73.

Reproducibility of GV
Using the HCP 100 dataset (https://db.humanconnectome.org), which
contains four rs-MRI runs of the same participant, test-retest reliabilities of
GV (represented by themean value of GV time series), andGV topography

were quantified by the intraclass correlation coefficient (ICC) among dif-
ferent runs74 that have been adopted in awide range of fMRI studies75–77. The
ICC can be calculated using the following formula:

ICC ¼ MSb �MSw
MSb þ ðk� 1ÞMSw

where MSb represents the mean square between subjects, MSw represents
the mean square within subjects, and k = 4 indicates the number of mea-
surements. In this study, we categorized ICC values into four intervals: poor
reliability ( < 0.4), fair reliability (0.4–0.6), good reliability (0.6–0.8), and
excellent reliability (0.8–1.0)78. In practice, we believe that GV and GVtopo
exhibit reliability greater than fair, with ICC values exceeding 0.479.

Age effect analysis
Using the NKI-RS dataset, we initially examined the correlation between
frame-wise displacement (FD)80 and age.Weobserved a positive association
in which subject head movement increased as age increased, as shown in
Fig. 5. To mitigate the influence of head movement on the age effect of the
global indicator, we performed a regression analysis that included head
movement as a covariate alongside gender. Subsequently, we conduct an
analysis by examining the residuals. To examine the age-related trajectories
of GV, GS, and their topography, we fitted both linear and quadratic
polynomial models. The quadratic model is defined as
y ¼ β0 þ β1x þ β2x

2, where y represents GV, GS, or their topographic
values, x represents age, and β2 is the quadratic coefficient. Trajectories were
classified based on the sign of β2: a positive β2 indicated a U-shaped tra-
jectory, and a negative β2 an inverted U-shape. We selected the model with
the highest explained variance (R²) to characterize the developmental pat-
tern of each measure.

Age prediction
The age was predicted using a quadratic kernel-based support vector
regression (SVR) model with a default error penalty factor (c = 1). The
features utilized for prediction included various integrations of GV, GS,
GVtopo, and GStopo. Themodel was initially validated internally using the
NKI-RS dataset. To assess the model’s predictive performance, a 10-fold
cross-validation approach was employed with 100 repetitions. In each
repetition, thedatasetwas randomlydivided into 10 subsets, with one subset
held out for validation while the remaining nine subsets were used for
training. This process was repeated 100 times, and performance metrics
were averaged over these iterations. The evaluation metrics included the
mean Pearson’s correlation coefficient between the actual and predicted
ages (R) and the mean absolute error (MAE).

Following this internal validation, we created a consensus model for
external validation to evaluate the model’s ability to generalize to new data.

Fig. 5 | Demographic information and the relationship between FD and age. A Age and gender distribution. B Pearson’s correlation between head motion and age.
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This involved training the model on the entire NKI-RS dataset and then
using it to predict subjects’ ages in the SALDdataset. TheRand theMAE for
all subjects in the SALD dataset were used to assess the model’s perfor-
mance. This cross-dataset prediction helped test themodel’s robustness and
the selected features’ effectiveness in predicting age across different datasets.

Statistics and reproducibility
The statistical analyses employedseveral robustmethodologies to ensure the
reliability and validity of thefindings. Intraclass correlation coefficientswere
used to assess the reliability of GV and GVtopo across four independent
scans, giving a comprehensive evaluation of their consistency. Both linear
and nonlinearmodels were applied tomodel the developmental trajectories
of GV/GS, allowing for a nuanced comparison of age-related patterns
reflected in thesemetrics. Additionally, an independent sample was utilized
for external validation to rigorously evaluate the predictive power of GV in
estimating individuals’ ages. This approach effectively demonstrated the
generalizability and robustness of the predictive model beyond the original
dataset. Furthermore, we provide the analysis procedure along with the
corresponding code to ensure the reproducibility of the results, enhancing
the transparency and credibility of our findings.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Theoriginal datasets used in this study are publicly accessible (seehttps://db.
humanconnectome.org, https://fcon_1000.projects.nitrc.org/indi/pro/
nki.html, http://fcon_1000.projects.nitrc.org/indi/retro/sald.html).

Code availability
The code involved can be obtained from https://doi.org/10.5281/zenodo.
1500371481.
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