
communications biology Article
A Nature Portfolio journal

https://doi.org/10.1038/s42003-025-08181-x

The evolution and convergence of
mutation spectra across mammals
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Despite the key role geneticmutationsplay in shapingphenotypic differencesbetween species, little is
currently known about the evolution of germline mutation spectra across mammals. Domesticated
species are likely particularly interesting case studies because of their high mutation rates and
complex evolutionary histories, which can span multiple founding events and genetic bottlenecks.
Here we have developed a new reusable workflow, nSPECTRa, that can undertake the key steps in
characterisingmutation spectra, from determining ancestral alleles to characterisingmultiple forms of
variation. We apply nSPECTRa to seven species, including several that have undergone
domestication, and highlight how nSPECTRa can provide important insights into mutation rate
evolution. While mutation spectra most often show marked differences between species and even
breeds, certain mutation types have risen to a high frequency in subpopulations of different species,
indicative of convergent evolution in mutation rates. This includes the previously characterized TCC-
> TTCchangeenriched amongEuropeanhumans,which is also enrichedamongEast Asian cattle.We
show Indicine cattle are particularly interesting examples of how different mutation spectra segregate
within a population and subsequently spread across the globe. Together, this work has important
implications for understanding the control and evolution of mammalian mutation rates.

As a key driver of phenotypic differences between individuals, and themain
substrate upon which selection acts, characterising the processes that gen-
erate germline mutations is vital to determine the processes driving traits,
diseases and species evolution. Owing to the importance of DNA fidelity in
mammals, there are several hundred genes1 involved in DNA repair,
spanning at least seven different repair pathways2, frommismatch repair to
non-homologous end joining. Each of these different pathways is pre-
ferentially associated with the repair of a different spectrum of DNA
changes, and because of the large number of genes and pathways involved,
natural genetic variation across them is expected to lead to differences in the
efficiency with which different mutation types are repaired between indi-
viduals. Although genetic variants with a large effect on DNA repair have
been observed,most notablywithin familieswith high incidences of cancer3,
these are generally rare in any given population, with themajority of genetic
polymorphisms affecting DNA repair between individuals likely to have a
small effect4. Nevertheless, the accumulation of multiple mutations across
hundreds of repair genes over time could potentially lead to noticeable
differences in the spectra of the mutations found between individuals.
Supporting this idea, Harris and Pritchard5 found that different human
populations preferentially carry different numbers of DNA mutations in
different K-mer contexts. For example, human European populations have

been observed to carry a relatively greater proportion of TCC > TTC
changes, suggesting that individuals from this population have less effi-
ciently corrected such changes over recent human history.

In addition to varying rates by sequence context, the distribution of
single-nucleotide variants (SNVs) has been shown to be uneven across the
genome, with directly adjacent SNVs occurring more often than expected
and most often on the same DNA strand6. Although many of these
neighbouring changes appear to be the result of a singlemutational event in
a single generation, that have been termedmulti-nucleotide polymorphisms
(MNPs)7,more commonly adjacent SNVs are found at different frequencies
in the population, suggesting that they are the result of twomutation events
at different times leading to what has been termed sequential dinucleotide
polymorphisms (SDMs)6. Consistent with this, flanking heterozygosity has
been shown to be associated with an increased probability of base sub-
stitutions in the human genome8, suggesting DNAmutations are often not
independent of those that have previously occurred nearby. In previous
work, these SDMs were shown to be even more differentiated between
populations than single-nucleotide variants (SNVs) and to be driven via
different mutational processes6.

Beyond heritable variation in the ability to repair DNA damage, other
factors also play a role in shaping the distribution of base changes in the
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genome.Perhaps themostnotabledifferencesare in the rate atwhichcertain
sequences are prone to mutate9. Likewise, different environmental expo-
sures to mutagens10, natural and artificial selection, and biased gene
conversion11. One of the largest drivers of DNA changes in mammals is the
readiness with which methylated CpG sites deaminate to TpG dinucleo-
tides, with such changes making up around a sixth of all observed germline
mutations in humans12,13. Similarly, selection is expected to rapidly remove
novel deleterious mutations from the population, potentially skewing the
mutational profile of the remaining changes. However, as most novel
mutations are expected tobeneutral due to falling innon-coding, intergenic,
or intronic regions, the impact of selection may not substantially skew the
mutation profiles between individuals. This is especially true, as the location
and number of functional regions are expected to be largely consistent
across individuals, at leastwithin species. Biased gene conversion (BGC), the
process by which one copy of an allele is preferentially replaced by another
through recombination11, can also alter the spectrum of SNVs in the gen-
ome. This effect is known to be skewed towards increasing the frequency of
C:Gbase pairs at the expense ofA:Tbase pairs.However, recent studies have
indicated that BGC is not likely to be a major driver of the observed dif-
ferences in mutation spectra observed between individuals14.

Although most studies have been carried out within species, by com-
paring the genomes of offspring to those of their parents, Bergeron et al.15

estimated germlinemutation rates across 68 vertebrate species. Factors such
as generation time, age at sexual maturity, and other fecundity traits were
observed tobe linked todifferences in thenumberof germlinemutationsper
generation between species. Domesticated species were shown to be parti-
cularly interestingmodels for studying germlinemutation profiles owing to
their unusual evolutionary histories. The authors observed them to have
unusually high mutation rates, which they attributed to a reduction in
generation time in these species rather than any inherent differences in the
underlying mutational processes. However, the relatively few mutations
identified when comparing parental and offspring genomesmeans that it is
not possible to compare the spectra ofmutations indifferentK-mer contexts
between species and populations using such trio-based approaches15. Fur-
thermore, the non-model organisms often rely on lower-quality data,
reducing the ability of bioinformatic tools to discriminate between relevant
biological events and artefacts. The impact on mutation spectra of phe-
nomena such as multiple domestication events in cattle16, selection for
phenotypic diversity in dogs17, and population bottlenecks across domes-
ticated species18 is largely unknown.

Consequently, despite the importance of better understanding how
patterns of mutation differ between individuals, more work is needed to
study mutation-spectra differences outside of the major model
organisms14,15,19,20. To date, this has been hampered due to a lack of suitable
large, high-quality, whole-genome sequenced cohorts and easy-to-use
software tools. However, factors such as the ever-decreasing costs of whole-
genome sequencing and the availability of tools for studying SNVmutation
rates, such as mutyper21 and Relate22, have now enabled the potential
application of these approaches across awider range of species. In this study,
we expand on these tools to develop a unified, reusable workflow and
analysis approach that can characterise different types of SNV and SDM
mutation spectra in any diploid species and apply it to study the evolution
and convergence of mutation spectra. We applied this workflow across
several mammalian species, with a particular focus on domesticated ani-
mals, to characterise how mutation spectra have evolved and converged
both within and across species.

Results
A reusable workflow for characterisingmutation spectra across
species
To enable the characterisation of mutation rate spectra across any diploid
species, we generated a publicly available, reusable Nextflow workflow,
nSPECTRa23 (www.github.com/evotools/nSPECTRa). nSPECTRa enables
users to run a range of analyses, including imputation, annotation, and
calculation of both SNVand SDMspectra, and their relative rates over time.

Importantly, nSPECTRa can infer ancestral alleles for any species, a pre-
requisite for determining the direction ofmutations, butwhich are generally
unavailable for most species. The entire nSPECTRa workflow is shown
in Fig. 1.

Todemonstrate the utility of this pipeline and to explore the patterns of
germline variation across mammals, we applied nSPECTRa to whole-
genome variant calls of unrelated samples from seven different species (309
cattle, 175 African buffalo, 79 water buffalo, 36 horses, 350 pigs, 606 dogs,
and 2561 humans). These species span a diverse range of mammals and
cover three Bovidae and five domesticated species, enabling comparisons
both within and across groups.

A key challenge when attempting to compare mutation spectra within
and across species is that both the total number of mutations and the
frequency of ancestral K-mers in the respective genomes differ between
animals. This means that both factors need to be controlled for to enable
comparisons of the relative rate at which different K-mers mutate across
species. To achieve this, we adapted the median of ratios method originally
developed for RNA-seq data analysis. Using this approach, the proportion
of each K-mer in the genome showing a particular base change was first
normalised by the occurrence of the corresponding K-mer in the ancestral
genome. These normalised K-mer-specific mutation rates were further
correctedby calculating a sample-wisemedianof ratios normalisation factor
to control for differences in total mutation number between animals, as
described by Anders and Huber24. As shown in Supplementary Fig. 1, this
approach for processing mutation rates successfully places the mutation
spectra of animals onto the same scale, so that they can be directly compared
both within and across species.

Divergence of SNV mutation profiles and impact on protein
evolution across mammals
Figure 2a shows a Principal Component Analysis (PCA) representation of
the relationship between the SNVmutation spectra across the seven studied
species. All species showed a clear separation based on their spectra of
germline SNV variation, highlighting the substantial divergence in muta-
tional profiles across mammals. Consistent with their comparatively close
evolutionary distances, the two domesticated and one wild Bovidae (cattle,
water buffalo, and African buffalo) showed the most similar mutational
profiles. Figure 2b shows the large differences between species across a
diverse range ofmutation types, with the key driver of PC1being the general
difference in the rate of C >G mutations across species, with humans and
horses having the highest rate of these changes, and pigs having the lowest.
More specific mutational profiles were also observed. For example, pig
species appear to present an unusually low rate of C > T mutations in CpG
contexts.

Notably, on various principal components, the species do not cluster
according to their known evolutionary distance, suggesting that their rela-
tionship by mutational profiles is not exclusively a function of their time
since divergence. For example, PC5 separates African buffalo from the
domesticated bovids, water buffalo and cattle, while PC6 further separates
the latter two domesticated species (Supplementary Fig. 2). PC5 is in part
drivenbyAfricanbuffalopresenting a comparativelyhigh rate ofV[C >A]T
changes (Fig. 2b, Supplementary Fig. 3), mutations that are particularly
enriched in the COSMIC SBS14 signature associated with defective DNA
mismatch repair25.

To identify the keymutations driving the observed differences between
speciesmore clearly,we trained a gradient boostingmachine learningmodel
on the SNVmutation-spectra profiles. Consistent with the clear separation
in mutation profiles between species, this model was 100% accurate in
assigning species labels to individuals (Table 1). From this model, we cal-
culated SHAP (SHapley Additive exPlanations) values26 that indicated
which model features (i.e., mutation type) were most important in
differentiating betweengroups. Figure 2c shows themutational changes that
were most informative in separating species. Notably, only one or two
mutation types are sufficient to explain most of the differences between
species.
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Importantly, these mutational biases are not only observed in inter-
genic and intronic regions but also among coding changes, meaning that
they impact the relative rate of protein evolution between these species. For
example, the relative bias for T[A > T]C changes in cattle non-coding
regions was also observed among cattle missense changes, skewing the
relative rate of amino acid change in this species (Fig. 2d). Additionally,
we’ve found that A[C > T]A changes are significantly different (P-
value < 2.81 × 10−6) when comparing bovid with non-bovids species, but
not when comparing between bovids (P-value > 0.24; Supplementary Fig. 4

and Supplementary Table 1), suggesting this change is specifically enriched
and impacting rates of amino acid changes differently among Bovidae. The
full list of pairwise comparisons between species with their P-values is
shown in Supplementary Data 1.

SDMmutation profiles identify fine-scale relationships among
populations
Sequential dinucleotide mutations are adjacent single-nucleotide base
mutations that are found at different frequencies in the population,

Fig. 1 | The full nSPECTRa Nextflow workflow. The workflow is available at www.github.com/evotools/nSPECTRa.
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suggesting that they are a result of multiple mutational events across dif-
ferent generations. Inpreviouswork inhumans,wedemonstratedSDMsare
controlled by distinct mutational processes from SNVs, and that the rate of
SDMs in different K-mer contexts can more effectively separate human
populations than that of SNVs6.This resultwasobserved to carryover across
species. Pigs, humans and dogs all separate into sub-groups based on their
SDM profiles (Supplementary Fig. 5), with these groups reflecting known
evolutionary relationships between sub-populations of these species,
namely Asian and European pigs, ancient and modern dog breeds, and
African versus non-African human populations. Notably, when analysing
mutation profileswithin the one species, the Indianwater buffalo breeds did
not separate with any combination of PCs based on SNV mutational pro-
files, but were clearly separated on PC2 vs. PC4 calculated from SDM

profiles (Fig. 3). Consistent with this, a gradient boosting model trained on
SNVprofiles only has an accuracy of 0.13 at assigning correct water buffalo
breed labels (Table 1), but in contrast, the accuracy of the model trained on
SDM profiles was 0.81. This is despite three of these water buffalo breeds
coming from geographically proximal regions of western India and clus-
tering closely ongenotype-basedPCA(seeDutta et al.)27. This illustrates that
SDM mutational profiles and machine learning models are potentially
effective approaches for assigning breed labels to livestock species.

Mutation-spectra divergencewithinbreedsand sub-populations
Cattle are unusual in that they have been domesticated at least twice,
leading to two lineages, Bos taurus taurus (taurine cattle) and Bos taurus
indicus (indicine cattle), which last had a common ancestor over 200,000

Fig. 2 | Variations in the SNV rates across species. a Principal component (PC)
analysis of the relationship between different species based on the rate of SNV
mutations of different ancestral 3-mers. Each point represents an individual, and the
species with larger numbers were randomly downsampled to a maximum of 80
individuals prior to calculating the PCs. b Relative contributions of the different
mutation types in each species. The 5’ and 3’ contexts of each change are shown on
the left and bottom axes, respectively, with the observed base change at the top. Each
row of changes corresponds to a different species, with the downsampled number of
individuals shown on the right. Darker blue colours indicate the relative enrichment
of the corresponding change. Note that in this plot, the data has been scaled so that
each mutation type has a mean of 0 and a standard deviation of 1 across samples.
c SHAP values associated with changes showing the greatest discrimination among
the species. The x-axis indicates the impact of the corresponding feature (y-axis) on

the model prediction. A greater spread in SHAP values indicated that the mutation
type was more strongly associated with discriminating the corresponding species
from others. The colour of the points indicates the feature (mutation) value, and the
x-axis indicates whether it is relatively enriched (positive value) or depleted (nega-
tive) in the corresponding species. The darker purple positive points indicate that the
species is associated with an enrichment of the given change, and the darker purple
negative points indicate that the species is depleted with the change. d The rate of
different changes that lead to amino acid changes in humans versus cattle. Note that
the triplet changes correspond to K-mers that may not be in frame with a single
codon. The colour of each point corresponds to the ratio of the rate of the same
change between the same species, but in intergenic regions. The protein-coding
changes enriched in cattle (above the diagonal) are generally also enriched in
intergenic regions in cattle (coloured yellow/light green).
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years ago28. These two lineages have historically populated different
global areas, with taurine animals migrating to Europe, West Africa, and
North Asia, whereas indicine cattle populated South Asia and later East
Africa (Fig. 4a). This separation was reflected in their mutation spectra,
with the two lineages separating on PC1 for both the SNV and SDM
mutation spectra (Fig. 4b, c). However, surprisingly, even animals from
the same geographic origin or breed can be further separated by differ-
ences in their mutational profiles. West African cattle breeds were
separated on PC6 of the cattle SDMmutational spectra, with members of
the NDama breed split across the two groups (Fig. 4b), suggesting dis-
tinct mutational signatures are segregating within this breed. Intrigu-
ingly, Indicine animals from the Indian subcontinent were separated on
PC4 of the cattle SNV mutational spectra (Fig. 4c). Notably, African and
East Asian indicine animals were similarly separated on this PC. This
suggests that two distinct mutational profiles segregate among indicine
cattle, with the animals transferred to East Africa carrying a distinct

mutational profile compared to those that migrated to East Asia fol-
lowing the original domestication event of all Bos indicus animals on the
Indian subcontinent. Examination of the PC4 loadings highlights that the
changes linked to the two lineages are specific, with the East Asian
indicine lineage comparatively enriched with A[C > T]C and T[C > T]C
changes, and the African indicine lineage preferentially associated with
N[A > C]G mutations (Supplementary Fig. 7). Sample coverage did not
appear to be driving this observation (Supplementary Fig. 8).

Convergence of mutational profiles across species
Using the SHAP values derived from gradient boosting models applied
within species to differentiate population groups, we examined whether
certain mutation types are enriched or depleted in populations across spe-
cies. As shown in Fig. 5a SDM biases are largely all private to sub-
populations.This is consistentwithSDMsbeingmore specifically associated
with particular groups and populations, enabling SDMs to better differ-
entiate between them, and suggests little convergence inSDMprofiles across
species and populations. However, a range of SNV mutation types were
observed to be associated with specific populations across different species
(Fig. 5b). In particular, C > T changes in different flanking contexts: for
example, the A[C > T]C change is enriched among European humans and
depleted from African taurine cattle, and the A[C > T]G change is depleted
among European humans, enriched among West African buffalo, and
differentiated between ancient and modern dog breeds.

Most notably, one of the main drivers of the separation of East Asian
indicine cattle from other indicine cattle is an elevated rate of TCC > TTC
mutations. This is the same mutational profile that has been extensively
characterised among European humans across a number of studies5,29, but
whose cause is unknown. Closer examination highlights that, as in humans,
there has been a pulse of an increase in the rate of these mutations, speci-
fically in this one population of cattle (Fig. 6a). This suggests the same
mutational bias has arisen at least twice, once inEuropeanhumans andonce
in East Asian cattle. This mutation is a strong contributor to the observed
separationof indicine cattle described aboveonPC4 (Supplementary Fig. 7).
Therefore, these results suggest not only are European humans associated
with a pulse of TCC> TTCmutations, but this change is specifically linked

Table 1 | The performance of predicting the population groups
within species (or species label across species in the bottom
row) using gradient boosting models trained on the spectrum
of SNVs or SDMs

SNVs SDMs

Populations
compared

Accuracy P-Value
[Acc >NIR]

Accuracy P-Value
[Acc >NIR]

Cattle 0.90 2.20E-16 0.81 2.20E-16

W buffalo 0.13 0.9365 0.81 5.44E-05

A buffalo 0.97 4.02E-10 0.97 3.14E-05

Pig 1 2.20E-16 0.99 2.20E-16

Dog 0.96 6.18E-07 1.00 8.32E-11

Human 0.98 2.20E-16 1.00 2.20E-16

Between species 1 2.20E-16 1.00 2.20E-16

One-sided exact test P-values of the accuracy above that expected from the no information rate
are shown.

Fig. 3 | More effective clustering of animals by breed using SDMs versus SNVs.
a For PC1 vs. PC2 calculated from SNV profiles, only the divergent Mediterranean
buffalo was clearly separated from the other water buffalo breeds. The inset shows
the geographic origins of the six Indian breeds. No combination of the first eight PCs

calculated from the SNV mutation profiles could be used to separate these breeds.
b PC2 vs. PC4 based on SDM profiles effectively clusters all seven breeds. PC1 vs.
PC2 based on the SDM profiles are shown in Supplementary Fig. 6.
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to a sub-group of indicine cattle that we canmap to changes in its frequency
between different animals of the same breed.

Comparison with cancer somatic COSMIC signatures
We finally compared the germline mutational spectra observed in each
species to the curated set of human somatic mutational signatures in the
COSMIC cancer dataset30,31, to see if any of the COSMIC signatures may be
contributing to the observed mutation profiles. Cosine similarities between
the rank 1 nonnegative matrix factorisation (NMF) signatures for each
species and the different COSMIC signatures is shown in Fig. 7a. The
highest cosine similarities between the signatures for the different species
with the COSMIC database signatures range from 0.84 to 0.94 for the horse

and pig species, respectively (Supplementary Table 2), with all of the NMF
signatures for the different species most strongly matching the COSMIC
SBS5 pattern. This pattern has been observed across several studies to be
linked to human germline mutation rates, and this signature appears to
make a major contribution to the mutation spectra of all species studied.
Across-species links to the different COSMIC signatures were broadly
comparable. However, a clear exception is observed for signature SBS1,
which is strongly linked to themutation spectra of all species apart frompigs
(Fig. 7a). SBS1 is known tobedrivenby thedeaminationofCpGsites toTpG
dinucleotides. While this is one of the strongest drivers of mutation rates
across all species, it is observed to be comparatively low in pigs (Fig. 7b). To
exclude the possibility that a problem with the pig ancestral genome was

Fig. 4 | Divergence of mutation spectra within cattle sub-populations. a The
historic migration patterns of the two cattle subspecies, Bos taurus taurus in green
and Bos taurus indicus in orange. b Separation of West African Bos taurus animals
on PC6, calculated from the SDM profiles. Each West African animal was labelled

with its breed of origin. The “Taurine” group corresponds to the European taurine
animals, and the “Indicine” group corresponds to animals from the Indian sub-
continent. c The separation of the Indicine cattle on PC4 when calculated from their
SNV profiles.

Fig. 5 | Convergence of SNV mutation profiles across species. a Discriminating
SDM signatures are generally not shared across populations of different species.
Lines indicate changes that are preferentially associated with different sub-
populations in the SHAP analyses. As the horse had no annotated sub-populations,
it is excluded. The width of each bar corresponds to the observed variance in the
SHAP values for the corresponding change. The higher the variance, broadly the

more strongly the change (shown on the right) is specifically associatedwith the sub-
population (shown on the left). Only changes with a variance greater than 0.05 are
shown. b In contrast to SDMs, SNV profiles are shared across sub-populations with
three selected changes that are linked to sub-populations in different species
highlighted.
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leading us to underestimate the number of changes due tomisassigning the
direction of change, we collapsed CpG to TpG changes with their reverse
change (TpG to CpG). This collapsed frequency was, though, still lower in
pigs than the other species examined (Supplementary Fig. 9). Pigs show a
generally similar number of methylated CpG sites across their genome as
other species32, meaning a reduced frequency of these sites can also not be
invoked to explain this observed difference. Closer examination of the two
major pig sub-groups, European and Asian, highlights that Asian pigs are
particularly depleted with rare CpG > TpG changes (Fig. 7c), suggesting
they are the stronger contributors to this observed depletion.

Discussion
In this work, we present a workflow designed to streamline the process of
characterising different types of mutation spectra in any diploid species. As
well as enabling the profiling of the rates of the more commonly studied
SNVs, it also enables the characterisation of the rates of SDMs, which we
illustrate can provide distinct insights. In particular, SDMs more clearly
separate species and are more effective at assigning breed labels to domes-
ticated animals. This is consistent with previous work, specifically in
humans, where we illustrated it is the difference in the rate at which the first
and secondchangesoccur inSDMs thatprovides thediscriminatorypower6.

The nSPECTRa workflow incorporates all the major steps required to
study mutation spectra, from imputation and phasing, through variant
annotation and mutation classification using tools like mutyper, to calcu-
lating PCs from the resulting mutation profiles. The workflow allows users
to run all these steps with little intervention. Importantly, nSPECTRa also
incorporates a workflow for reconstructing the ancestral state of a given
genome, an important prerequisite for determining the direction of change
of mutations. With ancestral genomes currently missing for most species,
this can be a major obstacle to performing mutation-spectra analyses. The
only prerequisite for determining this ancestral state of a genome is a
multiple genome alignment in HAL format containing the reference gen-
ome of interest. Some HAL files are publicly available, such as the 241
mammals from the Zoonomia project33, or can be generated de novo using
the progressive cactus alignment tool34. Although other studies of mutation
spectrahaveuseddifferent approaches to determine ancestral alleles, such as

the est-sfs approach14,35, an important disadvantage of such approaches is
that they rely on variant allele frequencies, which are in turn dependent on
the availability of good-quality population genomics data for the focal
group. In contrast, the approach implemented in nSPECTRa only requires
the availability of reference genomes, which are increasingly available for
most species, and can characterise ancestral alleles across both polymorphic
and fixed sites in the focal species. Consequently, we expect this ancestral
genome workflow to be of potential use across studies that require an
ancestral sequence and are not restricted to those investigating mutation
spectra.

We highlight how the median of ratios method, introduced for nor-
malisingRNA-seq data, is also an effective approach for addressing the issue
of normalising mutation spectra, so that they can be compared across
species that exhibit different mutation counts. An alternate approach
adopted in a recent study to correct for this is to downsample the variants to
match the specieswith the lowest diversity14. However, as highlighted in this
previous study, this method has the potential disadvantage of effectively
adding noise to the estimates and can lead tomutation counts of 0 following
downsampling, effectively removing signals. Future direct comparison of
these two approaches would be of interest to evaluate their relative merits
and impact on downstream results.

We also illustrate how the use of SHAP values can effectively identify
key mutation types driving differences between species and populations.
Downsampling to 30 samples per group results in SHAPvalues qualitatively
similar to the entire dataset, suggesting this approach can be applied even
when sample sizes are relatively small. Lowering the sample size further, to
10 individuals per group, renders the SHAPplot uninformative, as shown in
Supplementary Fig. 10. Demonstrating the utility of the nSPECTRa pipe-
line, we characterise the mutation profiles across five domesticated species
(pigs, cattle, water buffalo, dogs and horses) and two outgroups (African
buffalo and humans) providing insights into the evolution of these species.
Cattle were observed to have an unusually complex pattern of mutation-
spectra evolution, partly reflecting the fact the species were domesticated at
least twice from two independent ancestral populations, leading to distinct
mutational profiles in the two lineages. More surprisingly, though, cattle
populations that are traditionally treated as single populations separated

Fig. 6 | The convergent appearance of TCC > TTCmutation pulses in human and
cattle sub-populations. a The top row shows the SHAP values in human (left) and
cattle (right) of the SNV changesmost predictive of individual sub-populations. The
TCC > TTC change is marked in the red rectangles and associated with separating
the sub-populations in both species. The bottom row shows the fraction of TCC >
TTC changes found at different frequencies in each sub-population. Consistent with

previous observations5, a pulse is observed in variants with a frequency of around 1%
in European humans. A similar enrichment for TCC > TTC changes is observed in
East Asian Indicine cattle. b The relative enrichment of different changes in the
different cattle groups. The TCC > TTC change in East Asian indicine cattle is
marked by a red asterisk.
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based on their mutational profiles. African taurine cattle, including animals
from the same N’Dama breed, were separated based on their SDM profiles.
The causes of this remain unclear, with no individual SDM change driving
this separation, but rather differences across a range of SDM types. It is
possible that admixture from other breeds into one or other population
could skew their SDM profiles, but arguing against this hypothesis, the
samples cluster closely in a traditional genotype-based PCA (Supplemen-
tary Fig. 11), which would not be expected if, for example, recent admixture
from European cattle had occurred.

Indicine cattle are also separated based on their SNVmutation spectra.
In particular, African indicine cattle were associated with N[A >C]G
changes and East Asian indicine cattle were linked to A[C > T]C and

T[C > T]C changes, suggesting independent ancestries of these two indicine
populations. Most surprisingly, though, indicine animals from the Indian
subcontinent could also be broken down into these two lineages based on
their profiles, despite their close geographic origin and situation at the
original site of domestication. It is possible this is due to a bottleneck event
leading to two independent Bos indicus lineages, or even potentially two
independent Bos indicus cattle domestication events, possibly consistent
with the two major mitochondrial haplogroups observed in the sub-
species36. But arguing against this, the enrichment of TCC > TTC changes
observed in East Asian cattle is preferentially found among low-frequency
variants, suggesting the divergence in the rate of these changes happened
more recently. Perhapsmore plausibly, introgression fromotherBos species

Fig. 7 | COSMIC signatures in each species. aCosine similarities between theNMF
signatures on each species and the known COSMIC signatures, with the blue-to-red
gradient representative of the 0-to-1 similarity values. b The fraction of mutations

that are CCG > CTG changes by derived allele frequency across species and popu-
lations. The Asian pigs show the lowest rate of these changes, in particular among
rare changes. For comparison, data on 15 wild pigs are included in this plot.
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may have driven these differences, with up to 1.57% of Chinese indicine
genomes proposed to have arisen through introgression from banteng, B.
javanicus37. Future studies intersecting the location of such regions with
known DNA repair genes, or the study of the mutational spectra in B.
javanicus, may provide insights into the potential causes of these distinct
mutational spectra.

A further potential avenue of future research is using nSPECTRa to
investigate the sex chromosomes, which were excluded in the current
analysis. For example, investigating whethermale and female germ cells are
associated with different mutation spectra.

Another interesting addition to the analyses would be to expand the
investigation to closely relatedwild species. Species such as thewildYak (Bos
mutus) and the Chimp (Pan troglodytes), two species with high-quality
reference genomes and large sequencing projects, would potentially offer
further insights into the evolution of mutational profiles across multiple
mammalian species and following domestication.

A particularly notable finding is the observation of the pulse in
TCC> TTC changes, previously observed in European humans, in East
Asian cattle. Although strongest for this change, this convergence in
mutational profiles across populations from different species is seen for
other mutation types and suggests expanding these analyses to further
species and populations would identifymore examples of such convergence
in mutation spectra. This could potentially be used to refine the potential
mechanisms underlying shared biases in mutation spectra.

These differences in mutation spectra are expected to have down-
stream consequences. For example, we demonstrate that the biases in
mutation rates in non-coding areas of the genome are also observed in
coding regions, consequently impacting the rate of change of different
amino acids. This ultimately means that not all amino acid changes are
equally likely across species, and certain speciesmay be prone to accumulate
certain deleterious mutations at different rates over extended timescales,
potentially influencing factors such as codon usage bias38.

Some limitations of the current study should be highlighted. Notably,
when comparingmutation spectra across species, different genomic regions
are invariably studied. Although the results are normalised by sequence
content, and the majority of the genome was studied in each species, this
could lead tomismatches in the types of sequences examined. For example,
certain repeat classes are not found in all species39, whichmay have distinct
mutational profiles. However, other approaches to try and mitigate this
issue, for example, restricting the analyses to orthologous regions found
across every species, would also likely lead to biases such as towards ultra-
conserved regions. For this reason,wehave primarily focused on thewithin-
species analyses. A further aspect to note is the fact that the population levels
differ between species: for instance, cattle and water buffalo are broken
down by breed, while other populations are by geographical area. This is
partly a result of available annotations for the different datasets and partly
because the concept of breed does not apply to species such as the African
buffalo. But this means the ability to separate populations should not be
directly compared across species. Likewise, changes inmutation spectra can
havemultiple causes, such as changes in demography. This is potentially the
driver of the observed difference in CpG deamination rates in pigs. A pre-
vious study in human populations highlighted that differences in the rate at
whichCpGsitesmutate is a result of the fact that these sites aremore likely to
mutate more than once. This impacts their relative frequency, and the
occurrence of this is dependent on demography29. Furthermore, while early
and foundational mutation-spectra studies generally counted variants in
each carrier individually, one proposed approach when undertaking prin-
cipal component analysis of mutation spectra is to randomly allocate each
variant to a single carrier14,19. This method can potentially help reduce
inflated similarities due to shared ancestry or close relatedness. However, it
also discards potentially important information concerning the overall
mutational load of individuals, and the composition of the dataset (e.g.,
which samples are included) impacts the variants assigned to each sample
and consequently their assayed mutation spectra. Hence, while random

allocation may reduce over-clustering in certain scenarios, it also has the
potential to introduce dataset-dependent biases.

In conclusion, we introduce the nSPECTRa workflow for determining
mutation spectra in any species, and we illustrate the utility of approaches
such as the median of ratios method to normalise the output of this
workflow. We also demonstrate their utility by applying them across seven
different mammalian species to study the evolution and convergence of
mutation spectra.With the increasing availability of population genetic data
for an ever-expanding set of species, we expect these resources and
approaches to be of widespread use to provide further important insights
into the evolution ofmutation spectra and their relevance to shaping species
and populations.

Methods
Defining the ancestral sequence
A reliable definition ofmutation changes relies on the accurate definition of
the ancestral state of each base in the genome of interest. To achieve this, we
used CACTUS34 which can generate ancestral genomes from multiple
genome alignments. For the dog, human, horse andpig species, we provided
the 241-way cactus alignment generated byArmstrong et al.34 and accessible
at https://cglgenomics.ucsc.edu/data/cactus/. For each species, we specified
a different ancestral branch, representative of the different clades: full-
TreeAnc209 for the dog, fullTreeAnc105 for the human, fullTreeAnc92 for
the macaque, fullTreeAnc226 for the horse and fullTreeAnc192 for the pig.

As this existing alignment did not contain suitable genomes for the
bovids, for these we generated a cactus alignment containing 17 publicly
available genomes (Supplementary Table 3). The supporting phylogenetic
tree was defined using theMASH (v2.2) software40 with default parameters
to calculate thepairwise genomedistances.Thesewere thenusedas input for
Phylip’s neighbour algorithm, using the UPGMA approach, to define the
guide tree for the CACTUS run. This phylogenetic tree was represented
using FigTree41 and shown in Supplementary Fig. 12.

Prior to the generation of the multiple genome alignments for the 17
assemblies, these were masked using a combination of DustMasker42,
WindowsMasker43 and RepeatMasker44 with trf 45, to provide homogenous
and comparable levels of soft-masking of the different genomes.

Cactus (v2019.03) was then used to generate the multiple genome
alignments and the ancestral state at each split of the phylogenetic tree. The
ancestor Inner 13 has been selected as the ancestral state for all the Bovinae
genomes, since commonamong all of them.This Inner13 ancestral genome
presents a good coverage of all the assemblies. And for the cattle, water
buffalo and African buffalo genomes, we had coverages of 90%, 94% and
93.5%, respectively.

Datasets and variant pre-processing
We considered variant datasets for 7 different species in this study: human,
cattle, water buffalo, African buffalo, horse, pig and dog.

Thehumandatasetwas generated as part of the 1000GenomesProject,
and consists of 3202 samples from five super-populations46. The cattle (Bos
taurus) dataset consists of 477 animals from 71 worldwide populations,
representative of both subspecies (B. t. taurus and B. t. indicus) and from
four continents (Europe,Asia,Africa andSouthAmerica) described inZhao
et al.47. The water buffalo (Bubalus bubali) dataset consists of 79 water
buffalo genomes of 7 breeds including theMediterranean buffalo from Italy
and 6 others from India27. The African Buffalo (Syncerus caffer) dataset
consists of 196 buffaloes from 4 different subspecies (S. c. caffer, S. c. nanus,
S. c. aequinoctialis and S. c. brachyceros) from conservation areas across the
range of this species in Africa48. The pig (S. scrofa) and horse (E. caballus)
datasets were retrieved from the Genome Variation Map database49.

The human genomes had already been filtered and phased. For the
other species, we performed the same pre-processing of the datasets,
reducing as much as possible factors such as batch effect and depth of
sequencing effects. Any cattle, African buffalo, macaque, horse and dog
samples with very high missingness (>75%) and low average depth of
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sequencing (<8×) were discarded. For pigs, only the high missingness filter
(>75%) could be applied due to the absence of the DP flag in the VCF
annotation. For eachdatasetwe only retainedbiallelic SNPswith a call rate>
90% and minor allele count (MAC) > 2. Following variant filtering, we also
retained only 2nd-degree-unrelated individuals identified by converting the
biallelic SNPs to plink binary format using plink v1.90b450 and then running
the KING software51 (v2.2.4) with options --unrelated --degree 2. After
excluding the related individuals, we performed a second round of variant
filtering to only retain variants with a minor allele count >2 and a missing
frequency <10%. After all the filtering the number of samples for each
dataset was as follows: 309 cattle and 64,377,549 variants; 175 African
buffalo and41,226,919 variants; 79waterbuffalo and24,057,736 variants; 36
horses and 15,956,650 variants; 350 pigs and 27,402,978 variants; 606 dogs
and 15,750,570 variants; and 2561 humans and 49,890,585 variants.

Following thedefinitionof the ancestral state, theworkflowextracts the
sites forwhichwe could successfully define the ancestral allele (i.e., either the
reference or the alternate allelematches the ancestral allele) andwithderived
allele frequency (DAF) < 0.98. This retained 26,908,970 variants for the
cattle; 18,342,327 variants for theAfricanbuffalo; 10,371,926 variants for the
water buffalo; 7,427,557 variants for the horses; 11,986,618 variants for the
pigs; 7,319,094 variants for the dogs; and 18,383,907 variants for the
humans.

Determining mutation counts
The inference of the mutation spectra was performed using Mutyper
(v0.6.1) and the sequential dinucleotide mutation (SDM) approach from
Prendergast et al.6. The two algorithms were implemented into nSPECTRa
(nextflow SPECTRum analysis), a Nextflow mutation spectrum analysis
workflow that performs the analyses in a species-agnostic, low-interaction
and highly parallelised fashion. The Relate software, that can calculate
mutation rates and their change over time22, was also included as an option
in this workflow, but was not used in the current study. The scheme of the
workflow can be seen in Fig. 1, and can be summarised as follows: (1) pre-
processing of the VCF file; (2) preparation of the ancestral reference (3)
computation of the mutation spectra.

The nSPECTRa VCF pre-processing consists of first imputing the
sparse missing genotypes, followed by phasing. The workflow supports
either Beagle v5 or greater52 or shapeit4 v4.2.053. In this study, we applied
Beagle (v5.2) with the following effective population sizes (Ne): 1000 for the
cattle27, 358 for water buffalo27, 5000 for the African Buffalo54, 5000 for the
pig55, 100 for horse56 and 230 for dog57.

Following the imputation and phasing, the workflow uses the variant
effect predictor (VEP) software to define the effect of each variant con-
sidered in the analysis. This step can be performed by either passing a cache
compliant with the installed version of VEP58, or by providing a custom
GFF, suitable for recently annotated genomes or genomes for which a cache
is not available. More specifically, we used the VEP cache v104 to annotate
the cattle and the dog datasets (references ARS_UCD1.2 and CanFam3.1,
respectively),VEP cache version 97 for the human (referenceGRCh38.p12),
and 94 for the domestic Horse (reference EquCab2.0), the NCBI GFF
annotation for thewater buffalo and the pig (reference Sscrofa 10.2) and the
Ensembl rapid release annotation for the African buffalo (reference
GCA_902825105.1).

The ancestral reference state consists of detecting the most likely
ancestral base in the reference genome used to call the variants. To do so,
nSPECTRa takes the HAL generated by CACTUS as input, and extracts the
alignments from the reference and the Inner 13 genome in multiple align-
ment format (MAF) using the hal2maf function from HAL59. The align-
ments are then processed using a series of custom scripts that identify the
most likely base in the Inner 13 genome covering the reference genome, and
uses this information to generate an ancestral reference genome with the
ancestral base instead of the reference base, where defined. For non-Bovidae
species, the principle is the same, but uses a different set of alignments and
different ancestral genomes for each species: fullTreeAnc209 for the dog,

fullTreeAnc105 for the human, fullTreeAnc92 for the macaque, full-
TreeAnc226 for the horse and fullTreeAnc192 for the pig.

Once the inputs are prepared, the third stage can be run using one of
the three software previously described. ForRelate, theworkflow runs all the
steps required on the guide, preparing the inputs, estimating the effective
population size and, finally, calculating the mutation spectra and
mutation rate.

For mutyper, the software can calculate the mutation spectra for all
samples, chromosome by chromosome to increase the throughput, for a
set of K-mer sizes specified by the user, allowing them to account for
multiple context sizes (e.g., K = 3 will consider 1 basepair flanking
sequences such as A[T > C]A, whereas K = 5 will consider 2 basepair
flanking sequences such as TA[T > C]AG). The raw mutation counts are
then normalised using the initial state frequency in the ancestral
sequence (e.g., the number of A[T > C]A changes is divided by the
number of ATA K-mers in the ancestral genome). This allows the user to
factor in the increased or decreased probability of a mutation occurring
because of the intrinsic K-mer content of the ancestral genome. If
mutyper and relate are run together, the Ne will be used in combination
with the Ksfs vector generated by mutyper to perform demographic
analysis and inference on the different populations considered.

Finally, SDM will estimate the rate of sequential dinucleotide muta-
tions for each individual in each population, considering not only the
context but also the effect of the variants and their position in the codon.The
raw counts are normalised for the initial K-mer content in the ancestral
sequence, analogously to what is done for the Mutyper counts.

The minimum requirements to run nSPECTRa are a VCF file con-
taining genotypes for one or more samples and either an existing ancestral
genome or a suitable HAL file so that one can be calculated de novo. Note
that the calculation of SDMs requires population-level data. Running the
whole nSPECTRa workflow on the largest (human) dataset of 3202 indi-
viduals, including generation of a new ancestral genome, characterisation of
the individual changes and SDMs, required 1358 CPU hours.

Grouping of the populations
The grouping of the different individuals has been done according to the
individual characteristics of each dataset considered.

For the cattle, we classified the individuals as belonging to 6 major
groups: African indicine (n = 59), E.Asian indicine (n = 56), Indicine
(n = 35) East Asian Taurine (n = 53), African Taurine (n = 31) and taurine
(n = 75). Indicine refers to indicine animals from the Indian subcontinent,
the site of original indicine domestication, and taurine refers to taurine
breeds of European origin.

Water buffaloeswere classified into the sevenbreedsdescribed inDutta
et al.27: Banni (n = 12), Bhadawari (n = 13), Jaffrabadi (n = 13), Murrah
(n = 12), Pandharpuri (n = 11), Surti (n = 12) and Mediterranean (n = 6).

African buffaloes have been classified depending on their macro-
geographical origin: Eastern African (n = 101), Western African (n = 36),
Southern African (n = 38).

The pig dataset has been categorised depending on the individual
geographical ancestry: European (n = 161), Asian (n = 180) and wild pig
species (n = 15). This separation was validated by a PCA of the samples.
Seven samples that were extreme outliers on this PCA were excluded from
downstream analyses.

The horse dataset presents the lowest number among the species
considered (n = 36) and lacks information on any sub-groupings; therefore,
these samples were considered as a single pan-population.

Due to their high degree of diversity, dogs have been classified by
applying the hierarchical clustering on principal component (HCPC)
method from the FactoMineR R package60. This identified two groups:
modern breeds (n = 507), and ancestral breeds and village dogs (n = 117).

Finally, humans are classified into the same 5 super-populations, as
defined by the 1000 genome project: East Asian (n = 506), South-East Asian
(n = 504), European (n = 524), African (n = 678) and American (n = 349)
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but due to their high levels of admixture the American population was
dropped from analyses.

Following normalising SNV and SDM mutation counts by the
occurrences of their ancestral K-mer in the ancestral genome, we then
applied the median of ratios method24 to enable the comparison of nor-
malised counts across individuals and species.We implemented themedian
of ratios as anR script function that applies the formula described byAnders
S. and Hubers W. (2010):

ŝj ¼ mediani
kij

ðQm
v¼1kivÞ1=m

First, we compute the geometrical mean for each change across all
samples. We then divide the value at each count for each sample by the
geometrical mean of each count type. Then, we compute the median ratio
for each sample, producing a normalisation factor. Finally, each original
count is divided by the normalisation factor, obtaining the final value to be
used for the analyses. Due to the larger number of zeros in the SDMmatrix
for the human species, themedianof the ratio can return infinite normalised
values for samples with more than half the values equalling 0. To avoid this
problem, we added a small value to the K-mer-normalised counts. This
small number is equal to 1 multiplied by 10 N, where N is the decimal
notation of the smallest value in the matrix (e.g. if the smallest value is
3.5 × 10−9, we add 1 × 10−9 to each K-mer-normalised value).

Dividing the values by theK-mer counts in the ancestral genomeallows
us to make the datasets comparable across species by accounting for the
probability of a change occurring in a species due to an increased number of
sites. The second normalisation allows us to make samples comparable
when accounting for different numbers of mutations across species.

Cross-species spectra analysis
We investigated the relationships between the populations for both SNVs
and SDMs using a PCA on the normalised values. We represented the
heatmap of the single-change mutation matrix pooled for each population
using amodifiedversionof theplot_standardized_profile_heatmap function
from the MutationalPatterns R package61, and represented the single-
change mutation profile using a modified version of the plot_96_profile
function from the same package.

For the multispecies comparisons, we first combined all the K-mer
normaliseddatasets, and thennormalised themthrough the samemedianof
ratios approach. We represented the relationship among the mutation
spectra in thedifferent speciesusing the samemethodspreviously described.

Derived allele frequencies in the different populations have been
computed using the bcftools +fill-tag command, and values were then
extracted using bcftools query. These have then been processed by a custom
script that counts how many rare changes occur in each group.

Changes showing significant differences in their frequencies (Supple-
mentary Table 1 and Supplementary Data 1) were identified using the
method described by Harris and Pritchard5.

Modelling and SHAP values
To identify whichmutation types best differentiate populations and species,
we fitted the normalisedmutation spectra as features inmulti-class extreme
gradient boostingmodels using the xgbtreemethod in the caret R package62

with five-fold cross-validation. To assess model performance, 20% of the
individuals were left out of the data prior to model training to act as an
independent test set from which model metrics such as accuracies could be
derived.

To identify those genetic changes that best differentiatepopulations,we
calculated SHAP26 values from these models using the xgboost R package63.

Comparison with COSMIC profiles
Finally, we compared the spectrum for each species with the COSMIC
signatures (v3.3)31. The signatures for the GRCh38 human genome have
beendownloadeddirectly fromtheCOSMICwebsite (https://cancer.sanger.

ac.uk/signatures/documents/2047/COSMIC_v3.3.1_SBS_GRCh38.txt)
and processed locally.

We identified the mutation signatures by applying the NMF analysis
implemented in the R NMF package64 (rank = 1 and performing 10
iterations). After extracting the signatures, we identified the most similar
SBS COSMIC profile by using a customised version of the rena-
me_nmf_signatures function from the MutationalPatterns R package,
which computes the cosine similarity between the NMF and the COS-
MIC profiles. We used a cosine cut-off of 0.8 to identify the most similar
signature in the COSMIC database.

After identifying the most similar COSMIC signatures, we extracted
the contribution to the signatures for each species.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The human 1000 genomes cohort genetic variants were obtained from
https://www.internationalgenome.org/data-portal/data-collection/30x-
grch38, The pig (S. scrofa) and horse (E. caballus) datasets were retrieved
from the Genome Variation Map database (https://ngdc.cncb.ac.cn/gvm/),
the dog genotypes from https://sra-pub-src-1.s3.amazonaws.com/
SRZ189891/722g.990.SNP.INDEL.chrAll.vcf.1 and the cattle and water
buffalo genotypes were those published inDutta et al.27. The African buffalo
data from Talenti et al. 2023 is available at ENA under accession
PRJEB59220. The mutational profiles for the different species have been
deposited in Zenodo with https://doi.org/10.5281/zenodo.1527610765. The
data underlying Figures is provided as Supplementary Data 2.

Code availability
The Nextflow workflow (nSPECTRa) is available at https://github.com/
evotools/nSPECTRa and in Zenodo, with https://doi.org/10.5281/zenodo.
10784677.
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