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Guided visual search is associated with
target boosting and distractor
suppression in early visual cortex
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Visual attention paradigms have revealed that neural excitability in higher-order visual areas is modulated
according to a priority map guiding attention towards task-relevant locations. Neural activity in early visual
regions, however, has been argued to be modulated based on bottom-up salience. Here, we combined
Magnetoencephalography (MEG) and Rapid Invisible Frequency Tagging (RIFT) in a classic visual search
paradigm to study feature-guidance in early human visual cortex. Our results demonstrate evidence for
both target boosting and distractor suppression when the participants were informed about the task-
relevant and -irrelevant colour (guided search) compared to when they were not (unguided search). These
results conceptually replicated using both a magnitude-squared coherence approach and a General
Linear Model based on a single-trial measure of the RIFT response. The present findings reveal that
feature-guidance in visual search affects neuronal excitability as early as primary visual cortex, possibly
contributing to a priority-map-based mechanism.

Visual search is a widely used paradigm, applied to operationalize the
everyday task of finding a pre-defined stimulus (target) among distracting
stimuli (distractors), for instance, a friend in a crowd. Search is more effi-
cient for salient targets, andwhen low-level features of the target, e.g., colour
or shape, are known to the observer, allowing for top-down guidance of
attention. For example, when we know that our friend is wearing a yellow
raincoat, we will pay less attention to people wearing blue jackets. The
allocation of visual attention has long been suggested to involve a priority
map: a representation of objects in the visual field in which object locations
are weighted based on bottom-up saliency and top-down task-relevance1–6.
Priority maps have become a central component of models of selective
attention1,7,8 and visual search9,10. In the example above, this map would
assign high priority to objects containing the colour yellow and low priority
to those containing the colour blue.

Evidence from behavioural, electrophysiological, and neuroimaging
studies leaves little doubt that visual attention is guided by a mechanism
akin to a priority map, whereby neural responses to the target are
boosted, and responses to the distractors are reduced or
suppressed4,5,8,11–32. Modulation of cortical excitability in accordance with
a priority map has, for instance, been observed in electrophysiological

recordings in non-human primates from the frontal eye field and lateral
intraparietal cortex18,22,33 as well as V423. Traditionally, it has been
assumed that the primary visual cortex implements a bottom-up saliency
map during visual search, while the top-down relevance of different
locations for the task is encoded at later stages of the visual hierarchy34–36.
However, attention to spatially separable stimuli has been shown to
modulate neural activity in early visual areas; as e.g. quantified by the
blood oxygenation level-dependent signal in functional magnetic reso-
nance imaging (fMRI)37–39, intracranial recordings in non-human
primates40 and event-related responses in electroencephalography
(EEG) and magnetoencephalography (MEG)41–45. While these studies did
not explicitly investigate visual search, they do suggest that attentional
guidance benefits from recruiting V1; for instance, to utilize the high
spatial resolution of the small receptive fields24,46. In this study, we use
MEG in combination with Rapid Invisible Frequency Tagging (RIFT) in
a classic visual search paradigm to test whether feature-guided search is
associated with a modulation of neuronal excitability in early visual
cortex. RIFT is a subliminal stimulation method to probe excitability of
visual responses that has been shown to predominantly stimulate pri-
mary visual cortex47–50, leaving endogenous oscillations unperturbed47,51.
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Behavioural studies of visual search often involve complex search
displays with a large number of stimuli52,53. Electrophysiological approaches
in humans and non-human primates, however, rely on spatially separable
stimuli and therefore typically investigate visual search paradigms with
smaller set sizes of up to six items (e.g. refs. 20,21,23,54–56). Other studies
extrapolate the underlying mechanisms of visual search from experiments
on selective attention, cueing the participant to attend to certain objects
presented in a large field of stimuli11,29,57. Similarly, the neural dynamics of
distractor suppression in humans and non-human primates are typically
investigated in the context of actively ignoring a single, salient
distractor20,55,56,58–66. In the context of these studies, it has long been debated
whether the locationof an expected singletondistractor canbe suppressed in
anticipation of the search display67, with several studies arguing both for39

and against23 anticipatory distractor suppression in visual cortex.
To complement this body of work, we here leveraged MEG and RIFT to

study feature guidance in a classic visual search paradigmwith a relatively high
number of 16 and 32 stimuli, in the tradition of early behavioural studies that
motivated the hypotheses that search is guided by a map of the visual field9,10,68

(Fig. 1a). The high spatial and temporal resolution of the MEG recording,
paired with the high frequency range used for RIFT, allowed us to estimate
both the source of the RIFT signal, and the latency of the attention effects. As
we will show, the RIFT responses demonstrate that both target boosting and
distractor suppression affect neuronal excitability as early as V169. Based on the
time course of the RIFT signal, we suggest that this modulation underlies
downstream control from higher-order visual areas, such as the frontal eye
field, lateral intraparietal cortex, and V418,22,23,33. Considering the retinoptic
organization of V1, our findings open the intriguing possibility that V1 may
contribute to the implementation of a priority map to guide the search with
high spatial resolution46. We offer suggestions on the mechanisms underlying
this feedback control on V1 and how to study them.

Results
Our experimental paradigm featured two search conditions (guided and
unguided search) and two set sizes (16 and 32), presented in a block design
(with a randomized order over all participants), with each block consisting
of 40 trials (Fig. 1a). Participants were instructed to indicate if a single letter
“T” was presented among several “L”s. In the guided search condition,
participants were cued to the colour of the target “T” (either yellow or cyan)
at the beginning of the block. Importantly, as only these two colours were
used throughout the experiment, participants were able to infer the dis-
tractor colour from this cue. In the unguided search condition, a white “T”
was presented at the beginning of the block, meaning the target and dis-
tractor colours were not cued, and the colour of the T was randomized over
trials. Set size was kept constant within each block. The target and distractor
colours were frequency-tagged bymodulating their luminance sinusoidally,
at 67Hz and 60Hz respectively (balanced over trials; Fig. 1b). Participants
were instructed to perform the task while fixating on a centrally presented
dot. Note that the 60 and 67Hz flickers are invisible to the observer but
modulate neuronal activity70.

Based on the extensive literature on visual search, we predicted search
performance to beworse (indicatedby reaction time and accuracy) formore
difficult searches, i.e. set size 32 relative to 16 and unguided compared to
guided search9,10,71,72. Indeed, these hypotheses were confirmed by a hier-
archical regression approach applied to the average reaction time and
sensitivity (d’) for eachparticipant.Reaction timewas significantly increased
for higher set size (β = 0.180) and was reduced for guided compared to
unguided search (β =−0.138, see Supplementary Analyses). A Wilcoxon
signed-rank test revealed no significant difference between unguided search,
set size 16 and guided search, set size 32, indicating that the difficulty of these
searches was similar as would be expected if colour guidance could render
half of the distractors irrelevant in the guided search, set size 32 condition
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Fig. 1 | Experimental paradigm, Rapid Invisible Frequency Tagging (RIFT), and
search performance. a Trials were presented in a blocked design. Each block con-
tained 20 target absent and 20 target present trials. Set sizes (16 or 32) were the same
within each block. At the start of a block in the guided search condition, a “T” was
presented in yellow or cyan, revealing the target colour for the following 40 trials. A
block in the unguided search condition began with the presentation of a white “T”,
and the target colour was randomized over trials. Note that the search displays are
not true to scale; the eccentricity of the search array amounted to 10° visual angle, 5°
on either side of the fixation dot. bRIFT at 60 and 67 Hz was applied to the colour of
the stimuli by modulating the luminance sinusoidally. In this example, yellow sti-
muli were tagged at 67 Hz and cyan stimuli were tagged at 60 Hz. c Search perfor-
mance decreases for more difficult searches. A hierarchical regression approach

reveals a significant main effect for set size (β = 0.180) and guided/unguided
(β =−0.138). Indicating that larger set sizes are associated with slower responses,
while guided searches are faster than unguided searches. Pairwise comparisons did
not reveal any significant difference in reaction time between unguided search set
size 16 and guided search set size 32 (V = 134, z = 2.24, r = 0.4, p = 0.148), suggesting
that participants focused their search on task-relevant items in the guided search
condition. d Analogously, for accuracy (as measured by d’), hierarchical regression
reveals a significant main effect for set size (β =−0.74) and guided/unguided
(β = 0.56), indicating that accuracy is higher in guided searches and for set size 16
compared to 32. Again, there is no significant difference in sensitivity for unguided
search set size 16 and guided search set size 32 (t(30) = 2.2, d = 0.2, p = 0.23).
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(V = 134, z = 2.24, r = 0.4, p = 0.148, see Supplementary Tables 2 and 4 and
Fig. 1c). Similarly, sensitivity decreased for the higher set size (β =−0.74)
and increased for guided vs. unguided search (β = 0.56), with no difference
between unguided search, set size 16 and guided search, set size 32 as indi-
cated by an independent sample t test (t(30) = 2.2, d = 0.2, p = 0.23). These
behavioural findings demonstrate that the participants used the colour cue
at the beginning of the block to focus their search on the target colour.

RIFT responses indicate target boosting and distractor
suppression
RIFT elicited brain responses at the respective stimulation frequencies that
were detected in a small number of MEG sensors over the occipital cortex
(Fig. 2a, left, see Supplementary Fig. 1 for individual topographic repre-
sentations per participant). Source modelling based on dynamic imaging of
coherent sources (DICS) demonstrated that the responses emerged from
early visual regions (V1, MNI coordinates [0 −92 −4], Fig. 2b). The spec-
trum in Fig. 2b indicates that the coherence between the MEG sensors of
interest and the RIFT signal is frequency specific, i.e. the response to the
60Hz RIFT signal is strongest at 60Hz and vice versa for the 67Hz signal.
The grand average time-frequency representation of coherence in Fig. 2c
indicates an evokedgamma-band response at the onset of the searchdisplay,
followed by narrow-band responses at the RIFT frequencies that are sus-
tained until the end of the search.

As outlined in our pre-registration (https://osf.io/vcshj), we hypothe-
sized that the RIFT response reflects a priority-map-based search strategy,
indicating target boosting and distractor suppression in the guided search

condition. Figure 2d, e show the RIFT response quantified by the coherence
(R2) between theMEG response (RIFT sensors of interest) and the frequency
tagging signal, averaged over participants (see “Methods” for details on the
RIFT analysis). Comparison to Fig. 2c demonstrates that the immediate
increase in coherence after the onset of the search display reflects a broad-
band evoked response, rather than the frequency-specific flicker signal. The
RIFT responses for set size 16were noticeably weaker than in the set size 32
condition, but indicated significantly reduced responses to the distractor
colour for guided compared to unguided search, which we interpret as
evidence for distractor suppression (Fig. 2d, compare blue line to the average
of the grey and black lines, p < 0.05; multiple comparisons were controlled
using aMonto-Carlo cluster-based dependent sample t test on the 0.1 to 0.5
interval, 1000 permutations).

For set size 32, we find that the RIFT responses to the target colour in
the guided search condition were significantly enhanced compared to the
unguided search condition (compare orange line to average of the black and
grey lines in Fig. 2e, p < 0.05; cluster-based test as described above). This
suggests a boosting of the neuronal excitability to all items sharing the
known target colour. Importantly, the responses to the distractor colour
when comparing guided to unguided search were again significantly
reduced, providing evidence for distractor suppression (Fig. 2c, p < 0.05;
1000 permutations). Our findings demonstrate that knowledge about the
target and distractor colour in the guided search condition results in a
modulation of the RIFT response consistent with the concept of a priority
map, whereby target representations are boosted, and distractor repre-
sentations are suppressed. Furthermore, these results demonstrate that

Fig. 2 | Rapid Invisible Frequency Tagging (RIFT) responses reflect a target
boosting and distractor suppression. a (left) Topographic representation of the
60 HzRIFT signal (uncombined planar gradiometers), averaged over participants in
the 0.1–0.5 s interval (t = 0 s is the onset of the search display). The RIFT response is
confined to the occipital sensors. (right) Source modelling demonstrates that the
RIFT response was primarily generated in the early visual cortex. The source grid
has been masked to show the 1% most strongly activated grid points (MNI coor-
dinates [0 −92 −4]). b Grand average spectrum, obtained by averaging over the
participant-specific sensors of interest, indicating peaks at the 60 and 67 Hz sti-
mulation frequency. c Grand average of the time-frequency representation of

coherence between the MEG sensors and the RIFT signal, demonstrating an early,
unspecific response in the gamma-band, followed by narrow-band responses at the
stimulation frequency. d Set size 16. The responses to the distractor colour are
significantly reduced for guided compared to unguided search (p < 0.05; multiple
comparison controlled using a cluster-based permutation test in the 0.1–0.5 s
interval). There is no evidence for target boosting for this set size. e Set size 32. The
RIFT responses to the guided target colour are significantly enhanced and the
responses to the guided distractor colour are significantly reduced compared to the
unguided search condition (p < 0.05; cluster-based permutation test).
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RIFT is suitable to measure the neuronal excitability associated with the
priority map in visual search.

Investigating target boosting and distractor suppression at the
single-trial level using a Generalized Linear Model (GLM)
The magnitude-squared coherence results described above quantify the
degree towhich the variance in theMEGsignal is accounted for by the RIFT
signal73,74. Coherence is therefore a more interpretable measure for RIFT
than spectral power, which is likely to be confounded by changes in
broadband and/or oscillatory activity in the gamma-band. One caveat of
magnitude-squared coherence, however, is that it requires averaging over
observations75. A single-trial quantification of the RIFT response is desir-
able, as it opens opportunities for several different analytic approaches, for
instance, a GLM approach, used to link changes in oscillatory activity to
experimental manipulations and behaviour76,77. We therefore sought to
confirm the reported results using a single-trial quantification of the RIFT
response. Furthermore, using this approach, we were able to account for
effects of task duration, and thus neural adaptation to the repeated pre-
sentation of the search display78.

First, we filtered each trial in the 30–80Hz band using a two-pass
Butterworth filter. The single-trial RIFT response was quantified using a
windowing approach, whereby a sliding window of 0.1 s, multiplied with a
Hanning taper, was moved in steps of 0.025 s over the 0.2–0.5 s interval
following the onset of the search display in each trial (Fig. 3a, top). This
interval was chosen to avoid confounds with the broadband gamma
response to the onset of the display Fig. 2c. For each window, coherence
between theMEG and RIFT signal was estimated based on the Fast Fourier
Transform (FFT; zero-padded to 512 samples), and averaged over all win-
dows to obtain one coherence value per trial (as implemented by the
mscohere function inMATLAB). The resulting grand average topography is
shown for the combined planar gradiometers in Fig. 3a (bottom), showing
the strongest coherence in a small set of occipital sensors.

To investigate target boosting and distractor suppression while
accounting for task duration, we concatenated the coherence values for the
target anddistractor colours into one long vector. The effect of task duration
and stimulus was then investigated using a GLM approach, guided target,
guided distractor, and unguided stimuli modelled as separate regressors βT,

βD, and βU, respectively (Fig. 3a, right). Additionally, time-on-task (tot) was
integrated into the design matrix based on the trial index for the con-
catenated RIFT responses for the targets and the distractors, and ranged
from 0 to 1. To account for the inter-individual variability in the RIFT
signal47, we fit the model to each participant individually and calculated the
T-values for target boosting and distractor suppression based on the con-
trast between βT and βU and between βD and βU (see “Methods”). The
resulting T-values in eachMEG sensor, and for each participant, were then
compared to 0 using a dependent-sample cluster-based permutation t test.

While a model including all set size 16 trials did not yield a sig-
nificant effect of stimulus type, we found that the reduced response to the
distractors (indicated by a negative T-value for the contrast between βD
and βU over the occipital sensors) showed a trend effect with p = 0.08 for
the cluster. These less robust effects are likely explained by a reduced
signal-to-noise ratio for the set size 16 condition, and a relatively small
effect of distractor suppression for set size 16, as indicated by Fig. 2d
(Fig. 3b, right). There was no indication of a significant difference
between βT and βU (Fig. 3b, left). When fitting the GLM only to trials
with set size 32, we found that the T-values associated with the βT and βU
contrast were significantly larger than 0, indicating that the RIFT
responses to the target were significantly enhanced compared to the
unguided search condition (p < 0.05, Fig. 3c, left). Likewise, the contrast
between βD and βU showed a significantly weaker response to the dis-
tractors compared to unguided search (p > 0.05, Fig. 3c, right). These
findings are generally in line with the coherence results presented above.

Overall, the GLM approach replicated the results of the magnitude-
squared coherence. As such, the presented method can be used as a com-
plementary measure to link RIFT responses to behaviour or other neural
measures of interest, without the need to collapse over trials.

Relevance of observed RIFT modulation for behaviour not
established
Using two complementary approaches, we demonstrate that the RIFT
response is modulated in line with a priority-map-based mechanism. Next,
we sought to test whether this modulation is relevant for performance. For
the magnitude-squared coherence that requires averaging over trials, we
sorted the trials in eachconditionbasedonamedian split on reaction time to
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Fig. 3 | Quantifying the RIFT response at the single-trial level. a (left, top) The
coherence between the signal-trial MEG data and RIFT signal was quantified using a
sliding-window FFT approach, whereby the coherence was estimated by averaging
over the 0.1 s in the 0.2–0.5 s interval (moved in steps of 0.025 s). (left, bottom) The
topography of the coherence (combined planar gradiometers) suggests a response in
the occipital sensors. (right) The RIFT response to the target and distractor was then
concatenated into one vector, and submitted to a GLMwith the factors target colour
(T), unguided (U), distractor colour (D), and time-on-task (tot). b The contrast

between the regressors associated with the target colour and unguided, and between
distractor colour and unguided, was compared to 0 using a cluster-based permu-
tation test (5000 permutations). Themodel fitted to the set size 16 conditions yielded
no significant results but suggested reduced responses for distractors compared to
unguided stimuli (p = 0.08). cThemodelfitted to the set size 32 conditions replicated
the magnitude-squared coherence results reported above, with a significantly
stronger response to the target colour compared to unguided and a significantly
reduced response to the distractor colour.
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compare the coherence between fast and slow trials (see Supplementary
Analyses and Supplementary Fig. 2a, b). For theGLMapproach, we selected
the trials in the guided search condition (both set sizes 16 and 32) and fitted
separate GLMs to the RIFT responses associated with the target and dis-
tractor colour, including the regressors constant, tot, and reaction time.We
hypothesized that fast trials might be associated with stronger target
boosting and/or distractor suppression, but neither the magnitude-squared
coherence nor the GLM approach indicated this to be the case (see Sup-
plementary Fig. 2).

RIFT modulation is not explained by eye movements
Even thoughparticipantswere instructed toperform the search taskwithout
making ballistic eye movements, an argument could be advanced that the
observed modulation of the RIFT responses results from an eye movement
bias towards the target. Excluding all trials in which saccades and micro-
saccades occur was not feasible, as the participants appeared to be unable to
keep their eyes still for the duration of the 1.5 s baseline and search period of
aminimumof 0.5 s. This is likely to be the case as fixational eyemovements
are needed to avoid visual fading caused by neural adaptation to a stabilized
retinal image79,80. We therefore sought to ensure that these saccades did not
reflect a gaze bias towards the target that could explain the reported effects
on target boosting and distractor suppression.

To this end, we first compared the number of saccades and eye blinks
parsed online by the EyeLink® eye tracker (see “Methods”) based on a
median split on reaction time (see Supplementary Analyses). As demon-
strated in Supplementary Fig. 3, fast trials were not associated with a sig-
nificantly higher or lower number of blinks or saccades compared to slow
trials.Whilewe did ensure that the search stimuli of each colourwere evenly
randomized over the display, we further tested whether the participants
tended to move their gaze towards the target colour. This gaze bias was
identified by binning the single-trial eye-tracking data into 0.1 s intervals
and counting how often the gaze was closest to a stimulus in the target
colour. The number of occurrences when the gaze was closest to the target
colourwas then divided by the total number of bins in the trial and averaged
over all trials. As shown in Supplementary Fig. 3c, the gaze bias appeared to
average at about 0.5 (i.e. 50% of the time bins within a trial), indicating that
the gaze was in the vicinity of target and distractor stimuli for about equal
amounts of time. Importantly, therewasnodifference in gaze bias for fast vs.
slow trials, suggesting that participants generally followed the instructions
and solved the task without moving their eyes.

Finally, the heatmap presented in Supplementary Fig. 3d demonstrates
that participants largely followed the instructions and kept their gaze within
one degree visual angle of the fixation cross (the calibration threshold of the
eye tracker, indicated by the inner box). In line with previous research,
microsaccades occurred predominantly along the horizontal plane79.

We conclude that the target boosting and distractor suppression
observed in the RIFT response reflects a modulation of the excitability of
early visual neurons, which underlies feature-based attention and not eye
movement.

Discussion
We used RIFT in combination with MEG as a novel approach to probe
neuronal excitability in the visual cortex, to investigate feature-guided visual
search. In the guided search condition, the target colourwas cued,whereas in
the unguided search condition, the target colourwas unknown.As expected,
search performance was reduced for higher set sizes and for unguided
compared to guided search; the latter confirming that participants used the
colour cue at the beginning of the block to guide their search. Importantly,
the RIFT responses revealed in the guided search condition, set size 32,
demonstrated an increase in neuronal excitability in early visual cortex
associated with the target colour and a suppression associated with the
distractor colour. As we will argue below, these results suggest that the early
visual cortex may play an important role in a priority-map-based account
for the purpose of guiding complex visual search based on known target and
distractor features. This mechanism is likely to underlie top-down control.

Our work complements previous electrophysiological recordings in
humans and non-human primates investigating visual search paradigms
with smaller set sizes of up to six, spatially distinguishable, items20,21,23,54–56.
Feature-based attention, on the other hand, has been studied using visual
flickers applied to moving stimuli11,29,57. In contrast to these works, we
employed a complex visual search display with a large set size, as tradi-
tionally used in psychophysical research9,10,68. This allows a more direct test
of the theory that visual search is guided by feature-based attention9,10.

Using MEG inverse modelling, we localized the source of the RIFT
response to the early visual cortex. This is consistent with recent studies
suggesting that rhythmic responses to a high-frequency flicker do not
propagate meaningfully beyond V1/V2 (ref. 47; also see refs. 49,81). We
theorize that this priority-map-based account involves the recruitment of
retinotopically organized V1 neurons, effectively utilizing their small
receptive field size to guide visual search with high spatial precision82,83.

The modulation of the RIFT signal can be observed at about 200ms
after search display onset. This time course is congruent with the observa-
tion that guidance by colour takes about 200–300ms to be effective84, and
further conformswith the latency of previously observed effects of attention
on neural activity in V185. Electrophysiological recordings in non-human
primates have shown target boosting and distractor suppression in the
frontal eye field and lateral intraparietal cortex about 90ms after stimulus
onset18,22,33 and after about 110ms in V423. In light of these findings, we
propose that neuronal excitability in V1may bemodulated by higher-order
visual areas through feedback connections, as shown in spatial attention
paradigms46,86–90. Our findings are intriguing in that they suggest that the
excitability of colour-responsive, retinotopically organized neurons in early
visual cortex can be modulated by visual areas with a lower spatial resolu-
tion. While the importance of feedback connections to V1 in visual search
and attention has been discussed in the context of the Reverse Hierarchy
Hypothesis46, feature-guidance in early visual regions has been argued to
underlie saliency of the stimulus, or a serial search of the display34,46. We
propose that the presented findings suggest that feedback connections
modulate the excitability of the colour-sensitive early visual neurons in
parallel. This hypothesis could be tested based on a modified version of the
experiment with spatially separable stimuli in the target and distractor
colour and theguided/unguided feature cue.Neuropixels recordings innon-
human primates would allow simultaneous recordings in multiple cortical
areas and could be used to investigate the spike rates of neurons responding
to stimuli sharing the target and distractor colour. Based on ourfindings, we
predict that the spike rates of neurons with different receptive fields in V1
would be modulated in parallel to boost potential target locations and
suppress distractors.

To conclude, we argue that the timing and spatial specificity of our
results aremost consistentwith the idea that higher-order areas recruit early
visual neurons to benefit from their high spatial resolution during complex
visual search. This suggests that the early visual cortex partakes in the
execution of a priority-map-based mechanism, which has been argued to
emerge through a collaboration between several sensory and cognitive
processes9.

Limitations and outlook
Target boosting and distractor suppression have been argued to be imple-
mented by two distinct mechanisms54,58,91. In this study, participants were
able to infer the distractor colour from the cue provided at the beginning of
the block, thus preventing us from disentangling these mechanisms. In
future studies, it would be useful to use RIFT in a paradigm relying solely on
distractor inhibition92, inwhich the participants are only informed about the
distractor colour, while the target colour varies. This would clarify how
distractor suppression is implemented when the target colour is unknown.

It is strongly debated whether known distractors can be suppressed in
anticipation of the search display67,93. Anticipatory distractor suppression is
traditionally studied using spatially distinct, salient distracting stimuli23,59.
Wehere aimed to study themodulationofneural excitability associatedwith
feature-guided and unguided search amongst a high number of stimuli, and
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therefore refrained from including singleton distractors. The time course of
the RIFT response presented here does however not indicate any evidence
for anticipated suppression of the known distractor colour. However, the
gamma-band response to the onset of the search display (see Fig. 2) com-
plicates conclusions about the onset of the distractor suppression and target
boosting in these data.As such, the current experimentwasnot optimized to
answer the question of whether known distractors can be suppressed in
anticipation. However, as noted above, the observed evidence for distractor
suppression for both set size 16 and 32 suggests that ignoring irrelevant
stimuli may be an important strategy for efficient visual search.

While the modulation of the RIFT response is clearly observed for the
set size 32 condition, the results in the set size 16 condition were less robust.
This could be due to a lower number of pixels flickering, resulting in a
reduced signal-to-noise ratio. Alternatively, the set size 16 condition might
not benefit from guidance in early visual cortex, as the larger distance
between the stimuli might not necessitate a retinotopic resolution (see
above). Moreover, the large distance between the stimuli might reduce the
need for target boosting and distractor suppression in this condition. Pre-
vious EEG work has linked the amplitude of the N2Pc (indicative of
enhancement) and Pd (associated with distractor suppression) component
of the ERP to the proximity of targets anddistractors, suggesting that a small
distance between task-relevant and irrelevant stimuli increases the need for
target boosting and distractor suppression. Indeed, a recent MEG study
has demonstrated that enhanced responses to a target stimulus at a known
location are associated with reduced responses to a nearby distractor69.
Variations of the current set size 16 condition with varying distances
between the search stimuli may serve to disambiguate the question of
whether the observed results are due to insufficient signal-to-noise ratio or
the difficulty of the search.

Conclusion
In conclusion, ourworkdemonstrates that guided search is associatedwith a
modulation of neuronal excitability in early visual regions according to a
prioritymap. Aswe have argued above, the retinotopic organization of early
visual regions and the onset of the effect after about 200ms, suggest that this
modulation underlies top-down control from higher-order visual regions.
While the presented results do not allow conclusions about the source of the
prioritymap, they suggest that feature-guidance in visual search plays a role
in its implementation.

Methods
Experimental design and stimuli
Task. We applied RIFT in a classic visual search paradigm to probe the
neuronal excitability to the target and distractor colour in guided and
unguided search. The participants’ task was to indicate whether a cyan or
yellow letter “T” was present or absent among several cyan and yellow
“Ls” (Fig. 1a). Each participant completed 24 blocks of 40 trials each. At
the beginning of a block in the guided search condition, a yellow or cyan
letter “T” was presented in the centre of the screen, indicating the colour
of the target for the following block (Fig. 1a). In blocks in the unguided
search condition a white “T”was shown before the trial, and the colour of
the target in the search display, if present, was randomly chosen to be
cyan or yellow over trials. The set size of each 16 or 32 items was kept
constant within each block. As such, each participant completed 240
trials of guided and unguided search, respectively, for each set size (960
trials total). Every trial started with a 1.5-s baseline interval in which a
white fixation dot was presented in the centre of the screen. The trials
were terminated with the participants’ button press, or automatically
after 4 s. The button press was followed by a black screen, presented for
500 ms, before the start of the pre-search interval of the following trial. All
participants completed four practice blocks consisting of 10 trials each
before the experiment. Participants were instructed to find the target
without moving their eyes. The experiment and MEG recording were
paused every 10 min, and participants were encouraged to rest their eyes
and move their heads.

Display physics. The stimuli were presented using a Propixx lite pro-
jector (VPixx Technologies Inc., Quebec, Canada), set to a refresh rate of
480 Hz. The luminance of the yellow and cyan stimuli in the
search display was modulated sinusoidally, respectively at 60 and 67 Hz
(Fig. 1b, target and distractor colours, tagging frequencies, and set sizes
were randomized within participants). The stimuli consisted of hor-
izontal and vertical bars with a width and height of 1° visual angle,
arranged in a search grid of 10° × 10°, i.e. 5° in each direction from
the fixation point. The search display was created using the Psycho-
physics Toolbox version 394 in MATLAB 2017a (The Mathworks,
Natick, MA, USA).

Apparatus for data acquisition
The MEG data were acquired using a MEGIN Triux (MEGIN Oy, Espoo,
Finland), with 204 planar gradiometers and 102 magnetometers at
102 sensor positions, housed in a magnetically shielded room
(Vacuumschmelze GmbH & Co, Hanau, Germany). Data were filtered
online between 0.1 and 330Hz using anti-aliasing filters and then sampled
at 1000 Hz. The dewar orientation was set to 60° to allow the participants to
comfortably rest their heads against the back of the sensor helmet, opti-
mizing the recording of the neuromagnetic signals in the occipital cortex.

The three fiducial landmarks (nasion and left and right periauricular
points), theparticipant’s head shape (>200samples), and the locationof four
head-position-indicator (HPI) coils were digitized using a Polhemus Fas-
track (Polhemus Inc.,Vermont,USA)prior to the recording.The locationof
theHPI coilswas acquiredat the beginning of eachnew recording block, but
not continuously throughout the experiment.

TheRIFT signals at 60 and67Hzwere further applied to two squares at
the outer corners of the screen and recorded using two custom-made
photodiodes (Aalto NeuroImaging Centre, Aalto University, Finland),
connected to the MEG system.

Eyemovements and blinkswere tracked using an EyeLink® eye tracker
at a sampling rate of 1000Hz (SR Research Ltd, Ottawa, Canada), posi-
tioned at the minimum possible distance from the participant. The con-
version of the EyeLink® Edf files was done with the Edf2Mat Matlab
Toolbox designed and developed by Adrian Etter andMarc Biedermann at
the University of Zurich. For the online saccade detection, we used con-
servative thresholds that allow detection of eye movement as small as 0.3
degrees: 0.1 degrees for the motion, 22 degrees/s for velocity, and 3800
degrees/s2 acceleration (see EyeLink®manual). The identified saccadeswere
used for the Supplementary Analyses of ocular artefacts and gaze bias
described below.

The T1-weighted anatomical scans were obtained using a whole-body
3-Tesla Philips Achieva scanner (echo time TE = 0.002 s, repetition
time TR = 2 s).

Participants
This study was carried out in accordance with the Declaration of Helsinki
and the COVID-19-related safety measures at the University of Birming-
ham in place between April 2021 and January 2022. All ethical regulations
relevant to human researchparticipants were followed, and ethical approval
by the University of Birmingham ethics committee was obtained prior to
any data collection associated with this study. A telephone screening was
conducted 48 h before the experiment to ensure that all participants were
safe forMRI and free of COVID-19 symptoms. Forty-eight volunteers with
no history of neurological disorders gave written informed consent prior to
participating in the MEG experiment or structural MRI scan. The partici-
pants’ colour vision was assessed prior to the experiment using 14 Ishihara
plates95. Participants for whom the eye tracking recording was missing due
to technical errors were not considered for the analysis (N = 6). Three
additional participants were excluded as their button presses often extended
into the following trials (in 160–300 trials), resulting in a total sample size of
N = 39. Participantswhodidnot showa significant tagging response (N = 8)
were excluded at a later stage (see RIFT response sensor selection below),
leaving 31 data sets (20 females, see below).
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Behavioural performance
The participants’ performance on correctly detecting the presence and
absence of the target was quantified based on average reaction time and
perceptual sensitivity (d’), calculated as:

d0 ¼ zðHÞ � zðFAÞ ð1Þ

with z(H) being the z-scored portionof hits in targetpresent trials and z(FA)
being the z-scored portion of false alarms in target absent trials.

MEG pre-processing
Signal Space Separation (SSS, “Maxfilter”) implemented in MNE Python
was applied to suppressmagnetic signals emerging from sources outside the
participant’s brain. The remaining pre-processing of the MEG data, fre-
quency and source analyses, and cluster-based permutation test were per-
formed using the Fieldtrip toolbox96 inMATLAB 2019b. Statistical analyses
of the behavioural and eye tracking data were carried out in RStudio 1.1.456
with R version 3.6.1. (The R Foundation for Statistical Computing).

Faulty sensors were identified and corrected prior to the SSS using
MNE python. The filtered data were divided into intervals of 4.5 s, starting
2.5 s before, and extending to 2 s after the onset of the search display in each
trial. Semi-automatic artefact rejection was performed on the 4.5 s intervals,
by manually identifying and rejecting epochs with a comparably high var-
iance, separately for gradiometers and magnetometers. Independent com-
ponent analysis was used to suppress oculomotor and cardiac artefacts
based on the 68 components that were identified for each participant. Trials
with unreasonably short reaction times of up to 200ms, as well as trials
without a response were rejected97.

RIFT response sensor selection
The MEG sensors containing a reliable frequency tagging response were
identified using nonparametric (Monte Carlo) statistical testing, proposed
by Maris and Oostenveld98) and implemented in the Fieldtrip toolbox. The
pre-processed data were divided into a baseline (0.7–0.2 s before stimulus
onset) and stimulation interval (0.5 s following the onset of the search
display).Coherence betweena givenMEGsensor and the 60 Hzphotodiode
signal over trials was estimated separately for the pre-search and the search
interval. The difference between the coherence in the baseline and search
interval was z-transformed using the following equation:

Z ¼ ðtanh�1ðjcohsearchjÞ � biasÞ � ðtanh�1ðjcohbsljÞ � biasÞffiffiffiffiffiffiffiffiffiffiffiffiffi
2*bias

p ð2Þ

whereby cohsearch and cohbsl are the coherence between the respectiveMEG
sensor and the photodiode at 60Hz during the search and pre-search
interval, respectively. The bias is calculated as bias ¼ 1

2n�2 with n being the
number of trials.

The statistical significance of the z-transformed coherence difference
(the empirical z-value) was estimated using a permutation procedure. To
this end, a null distribution for the empirical z-value was estimated by
generating 10,000 random permutations of the trial labels and calculating
the z-values for the shuffled pre-search and search interval, again using
Eq. (2). If the coherence difference obtained for the unshuffled data in the
respective sensorwas larger than 99%of the null distribution, the sensorwas
considered to show a significant tagging response at a 1% significance level.
This procedure was completed for a total of 81 occipital and occipito-
parietal sensors to identify the sensors of interest for each participant.
Thirty-oneoutof 39participants hadat least one significant gradiometer.As
only 27 participants showed a significant response in at least one magnet-
ometer, only gradiometers were considered for the sensor and source ana-
lyses. In total, we used the data from 31 volunteers for further analyses (20
females; aged 23.4 years ± 3.18). All participants were right-handed
according to the Edinburgh Inventory (augmented handedness score:
M = 84.08; STD = 14.37 (ref. 99).

RIFT response magnitude
Magnitude-squared coherence. For the offline analyses, we replaced
the photodiode signals with a perfect sine wave with the same phase
as the RIFT signal, extending into the baseline interval. The magnitude
of the RIFT response was quantified by calculating the spectral coher-
ence between theMEG sensors of interest, identified as described above,
and RIFT signal. The data were bandpass-filtered using a two-pass
windowed-sinc finite-impulse response filter at 60 and 67 ± 3.5 Hz,
respectively. The analytic signal was obtained from the filtered
data using the Hilbert transform. The spectral coherence was then
calculated as73:

cohmeg;diodeðtÞ ¼
jn�1Pn

k¼1mmegðtÞmdiodeðtÞeiϕðtÞj
ðn�1

Pn
k¼1jmmegjÞðn�1

Pn
k¼1jmdiodejÞ

ð3Þ

with mmeg and mdiode being the analytic MEG and RIFT amplitude,
respectively, φ being the phase difference between the two signals, and n
being the number of trials. To obtain the coherence to the RIFT signal of the
target colour, for instance, we split the data into trials in which the target
colour was tagged at 60 and 67Hz, and calculated the coherence separately
over these trials. Afterwards, the coherence was averaged over the two
frequencies. Note that for the spectra and time-frequency representation
presented in Fig. 2b, c, showing the coherence between theMEG and RIFT
signal at frequencies from 50 to 75Hz we added a small amount of noise
(with an amplitude of 0.05) to the perfect sine wave, to avoid division by 0
(which is the power spectral density of the perfect sine wave at frequencies
different from 60 and 67Hz).

Generalized Linear Model. As the mean-squared coherence averages
over observations (see Eq. (2)), we next sought to investigate the RIFT
response at the single-trial level. While single-trial measures have the
disadvantage of a reduced signal-to-noise ratio and loss of temporal
information, they allow correlations with behavioural measures and
confounding variables that change over time. Here, we used the single-
trial measure of coherence in conjunction with a GLM to account for
effects of tot on the RIFT signal.

The single-trial MEG data were first filtered with a two-pass Butter-
worthfilter at 30–80Hz, in the−2 to 4 s interval before andafter the onset of
the search display. This generous length was chosen for the epochs to avoid
edge effects of the filter in the time window of interest (during the search).
The coherence between theMEGsignal in each trial and thephotodiodewas
then estimated in the 0.2–0.5 s interval after the onset of the search display
using Welch’s method, with MATLAB’s built-in function mscohere. This
method divides the signal in each trial into segments (here 0.1 s with a 75%
overlap), multiplies each segment with a window function (here Hanning
taper), applies the FFT to each window, and calculates the coherence based
on the cross-spectral and power-spectral densities of the MEG and photo-
diode signal.

The resulting single-trial RIFT measures for the target and distractor
colour were then concatenated for each participant and further investigated
using a GLM approach (for an in-depth description of the methods, see
Quinn et al.77).

The single-trial correlation in each gradiometer (RIFTgrad) was mod-
elled as a linear function of stimulus identity according to

RIFTgrad ¼ XBgrad þ e

RIFTgrad contained the RIFT responses in the gradiometers, con-
catenated for targets anddistractors, respectively.X is thedesignmatrixwith
four columns for the guided target, guided distractor, and unguided stimuli,
respectively, as well as time-on-task (tot). The target column contained
values of 1 for each rowwithaRIFT response to a guided target, and0 for the
unguided stimuli and distractors. Column 2 and 3 followed the same logic
andwere set to 1 for the unguided stimuli anddistractors, respectively, and0
everywhere else. The values of the tot regressor ranged from 0 to 1.
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Bgrad contains the regressors associated with the RIFT response to
the target colour, unguided stimuli, and distractors gradiometers for each
gradiometer, as well as time-on-task, and was estimated by multiplying the
Moore–Penrose pseudo-inverse of X with RIFTgrad

77.

bB ¼ XþRIFT

Note that we dropped the grad index for readability.
Following conventional approaches in fMRI data analysis100, we cal-

culated the Contrast of Parameter Estimates (cope) for the GLM are cal-
culated by multiplying the estimated regressors with the contrast vector C

cope ¼ CbB

wherebyCtarget ¼
1
�1
0
0

2
664

3
775wasmultipliedwith B̂ to quantify target boosting

and Cdistractor ¼
0
�1
1
0

2
664

3
775 was used to quantify distractor suppression. The

variance of the respective contrast of the model was calculated as

varcope ¼ diagðCðXTXÞ�1
CÞσ2

with σ2 being the variance of the residuals. The t values for each contrast
were then calculated as

t ¼ copeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varcope

p

We used the t values rather than the estimated regressors, as they
account for the variance of the contrasts77. The resulting t values for each
sensor were then compared to 0 using a one-tailed cluster-based permu-
tation t test with 5000 permutations.

Source localization
The anatomical sources of the RFT response were estimated using the
DICS101 beamformer, implemented in the Fieldtrip toolbox96.

MEG lead field. To calculate the MEG lead field, we first aligned the
fiducial landmarks in the individual T1-weighted images with the digi-
tized points taken prior to the experiment. The coordinate system of the
participant’s T1-weighted scan was then automatically aligned to the
digitized head shape using the iterative closest point algorithm102,
implemented in the Fieldtrip toolbox, and corrected manually as
necessary. For the two participants for whom there was no T1 scan
available, the digitized fiducial landmark and head shape were aligned
with a standardized template brain provided with the Fieldtrip toolbox.

Next, the brain volume was discretized into a source grid of the
equivalent current dipoles by warping each participant’s realigned anato-
mical scan to the Montreal Neurologic Institute (MNI) coordinate system,
using a template MRI scan, and an equally spaced 8mm grid, with 5798
locations inside the brain. The lead field was then estimated at each point in
the source grid using a semi-realistic headmodel103.

Dynamic imaging of coherent sources. The spatial filters of the DICS
beamformer were calculated as a function of the forward model (esti-
mated using the lead fieldmatrix) and the cross-spectral densitymatrix of
the sensor data. Here, we used the cross-spectral matrix of the gradi-
ometers only. The SSS (“Maxfilter”) caused the data to be rank deficient,
making the estimate of the sensor cross-spectral density matrix unreli-
able. To ensure numerical stability, we calculated the truncated singular
value decomposition (SVD) pseudoinverse104,105 of the sensor cross-

spectral density matrix. This method decomposes the covariance matrix
using SVD, selects a subset of singular values (the subset size is defined by
the numerical rank) and calculates a normalized cross-spectral density
matrix using this subset. The spatial filters are then estimated based on
the normalized cross-spectral density matrix using unit-noise gain
minimum variance beamforming105,106.

To estimate the cross-spectral densitymatrix for theRIFT response, we
first extracted data segments from0 to 0.5 s (theminimumreaction time for
all participants). The complex cross-spectral density between the signal in
the (uncombined) planar gradiometers and the RIFT signal was computed
basedon the Fourier-transformeddata segments (Hanning taper, separately
for the 60 and the 67Hz photodiode signal). The cross-spectral density
matrices were used to estimate the forwardmodel to create a spatial filter for
each frequency. The spatial filters were then applied to the cross-spectral
densitymatrix to estimate the RIFT response as the coherence between each
point in the source grid and the photodiode signal.

Statistics and reproducibility. The effect of search condition on beha-
viour shown in Fig. 1 was tested for statistical significance using a linear
mixed model with a hierarchical regression approach, whereby the full
modelwas compared to amodel containing only a subset of the regressors
of interest (see Supplementary Material). This approach revealed sig-
nificant main effects for both set size and condition. Pairwise compar-
isons using the Wilcoxon signed-rank test (for reaction time) and
dependent sample t test (for sensitivity) were corrected for multiple
comparisons using the Hedges and Bonferroni corrections, respectively.

The effect of search condition and stimulus type (target vs. distractor)
on the RIFT signal was assessed using a nonparametric dependent sample t
test, with the significance probability calculated by means of the Monte
Carlomethod.This approach involves the estimationof thenull distribution
by permuting the condition labels, for instance, guided search vs. unguided
search 1000-10,000 times (number of permutations reported for each test).
Asdescribed above, this approachwasused for the identificationof theRIFT
sensors of interest and to contrast the RIFT response to the targets and
distractors in the different conditions, for both themean-squared coherence
and GLM approach.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The source data to create all the figures presented in the manuscript can be
found in the SupplementaryDatafile. RawMEGdata canbe requested from
the first author.

Code availability
Custom-written analysis scripts are shared at https://github.com/
katduecker/visual_search_rift
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